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Abstract

MIMO (Multiple Transmit and Multiple Receive) antenna techniques are widely
used in the most recent wireless communication standards. For example, LTE
(Long-Term Evolution), WiMAX (Worldwide Interoperability for Microwave Ac-
cess) and IEEE 802.11n have recently been rolled out across the world. In any
communication system, the ML (Maximum Likelihood) receiver provides optimal
error rate performance, but it turns out to be difficult to implement in system
with 4 antennas or more.

This thesis studies ways to approach the optimal performance for MIMO chan-
nels with M-QAM (4-QAM, 16-QAM and 64-QAM) in Rayleigh MIMO channels
with low complexity. While linear detectors like ZF (Zero Forcing) and MMSE
(Minimum Mean Square Error) have very low computational complexity, they
suffer from noise enhancement and ISI (Inter Stream Interference) respectively.

LR (Lattice Reduction) coupled with ZF or MMSE will give us near optimal
results close to that of the ML receiver. Same diversity order like ML is also
found. Basically, LR is aiming to find a basis of the channel matrix as orthogonal
as possible. A basis is composed by a set of linearly independent vectors. A big
improvement can be achieved by replacing linear detectors with LR techniques.

Correlated channels will be studied for comparison reasons. To evaluate the
impact of channel correlation, Kronecker Model with three different correlation
factors will be discussed.

In future work section, some cutting edge algorithms will be mentioned, for
example: BKZ (Block Korkine Zolotarev) Algorithm.
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Chapter 1
Introduction

1.1 Problem description

For LTE and LTE-Advanced protocols, high-speed transmission and larger capac-
ity will be the future trends. In consideration of fulfilling the connections between
wireless networks, LAN (Local Area Network), blue-tooth and satellite commu-
nication, are applied to 4G networks in pursuance of increasing the spectrum
efficiency. OFDM (Orthogonal Frequency-Division Multiplexing) is the key point
to avoid frequency selective fading. To achieve high spectrum efficiency and to
achieve larger capacity, MIMO technology is applied. MIMO has eminent features
which offer significant increment in data throughput and link range without ad-
ditional bandwidth or increased transmit power [14]. When it comes to MIMO,
there are MU-MIMO (Multi User Multiple Input and Multiple Output) and SU-
MIMO (Single User Multiple Input and Multiple output). SU-MIMO, MU-MIMO
suffer from co-channel interference in general. Even though ZF and MMSE can
help to avoid MUI, they result in a reduced throughput or require higher power at
the transmitter [26] due to the lack of shared information in MU-MIMO. In this
thesis, only SU-MIMO will be studied.

In this chapter, the main methods have been used for reducing the BER (Bit
Error Rate) and complexity will be introduced. ML is closely related to the CVP
(Closest Vector Problem) in a lattice. The most common used method for CVP is
sphere decoding. The CVP is the problem to find the smallest Euclidean distance
from the received signal to the signal constellation [14]. In [14], 3 MIMO config-
urations are studied: 2x2, 2x3 and 2x4 MIMO for Rayleigh fading channels with
QPSK (Quadrature Phase Shift Keying). For a modified MMSE detector with SIC
(Successive Interference Cancellation) proven in [14] that BER achieves optimal
performance without requiring large number of signals. With the utilization of
sphere decoding in CVP, the complexity at high SNR (Signal to Noise Ratio) is
quite low, but the complexity grows exponentially with the system size MT [23],
where MT is the number of transmit antennas.

We introduce LR combined with ZF or MMSE. The reduced lattice will highly
decrease BER for each channel. The LR method makes the column vectors of the
MIMO channel matrix close to mutually orthogonal [24].

ZF or SIC will not preserve the diversity order of the system [20]. However, the
augmented LR will have better performance with LLL-SIC (Lenstra–Lenstra–Lovász
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4 Introduction

with Successive Interference Cancellation), the price is to increase the complexity
[20], [25], and [30]. This is the reason why we are going to investigate LR further
in this thesis.

A correlated model in MIMO for ultra wideband is proposed in [3]. It’s for
the purpose of robustness and delivering higher data rates without extra power,
BW (Bandwidth), and time slots. For indoor environment, it is assumed in [3]
that the correlation among the receive antennas and the correlation among the
transmit antennas are independent of each other, with the justification that merely
ambient environment of antenna array brings to bear on the correlation between
array elements; however the coupling effect of antenna is ignored in our model,
meanwhile the spatial correlation is our only concern. Hence, the well-known
Kronecker model is introduced with fixed transmit and receive correlation matrices.
The correlation factors are chosen from 0 to 0.5 (highly correlated). The BER
performances of LLL-SIC and MMSE-SIC (MMSE with Successive Interference
Cancellation) are compared with ML’s BER performance in [30].

The complexity for each algorithm is measured by the average number of flops.
Which can be either a multiplication, a division, an addition or a subtraction [28].
For LLL, an integral part of LR, the complexity is polynomial in the size of the
input; while for LLL has n-dimonsional lattices with integer input basisvectors
with bounded length B, it is terminated after at most O(n2 logB) iterations. For
a real-valued Gaussian channel model, it is upper bounded in the dimension of the
lattice, not applicable for a broadcast precoding case [31].

In the future, SA (Seysen’s Algorithm) should be brought into consideration
experimental results show in [17] that SA requires significantly fewer iterations
than the LLL algorithm. SA implements global vectors searching simultaneously
which reduces the lattice basis and its dual, it also leads to a more orthogonal
lattice basis compared with LLL. However this case not applicable for LR SIC
situation, there will be no such advantage to diminish the number of iterations
while having SA algorithm in LLL-SIC.

In this thesis, the basic idea is to combine LR with linear detectors, which
gives us the sub-optimal performance with reasonable complexity. For the sake of
comparison, the correlated channels with different factors will be introduced.

1.2 Basic MIMO channel models

In order to get an MT ×MR channel, we assume MT transmitter antennas and MR

receiver antennas in our channels as illustrated in Figure 1.1. The input-output
relation of the channel can be mathematically described as:

x = Hs+ n. (1.1)

In this channel, we take s as the complex transmit signal, and n represents AWGN
(Additive White Gaussian Noise) with variance of σ2

n per element. The channel H
is assumed to be uncorrelated flat fading, which means that it will remain constant
for each frame, and independent.
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Figure 1.1: MIMO Channel with MT transmit and MR receive an-
tennas

In 1.1 quantities are defined as follows x = [ x1 x2··· xMR ]
T
, s = [ s1 s2··· sMT ]

T
,

n = [ n1 n2··· nMR ] , Where (.)T denotes the transpose of a vector.

H =

⎡
⎢⎢⎢⎣

h11 h12 . . . h1MT

h21 h22 . . . h2MT

...
...

. . .
...

hMR1 hMR2 . . . hMRMT

⎤
⎥⎥⎥⎦ . (1.2)

For the data vector s, we use M-QAM (M-Quadrature Amplitude Modulation)
information symbols, the transmit power is normalized to 1 for each antenna. Im
is identity matrix, MT equals to MR, so the dimension of Im is MT ×MR.

Im =

⎡
⎢⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤
⎥⎥⎥⎦ . (1.3)

1.3 Rayleigh Fading Channels with AWGN

Table 1.1: Simulation Parameters

Antenna Configurations 1×1 - 8×8
SNR(dB) 0-40
Channel type Rayleigh Flat Fading, Kronecker Model
Constellations 4-QAM, 16-QAM, 64-QAM

The simulation parameters that are used in this thesis are illustrated in Table
1.1. The number of antenna varies from 1 to 8, the SNR value ranges from 0 dB to
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40 dB; two types of channels are probed: Rayleigh channel and Kronecker model;
three kinds of signals are chosen: 4-QAM, 16-QAM and 64-QAM.

Three types of constellation diagrams 4-QAM, 16-QAM and 64-QAM will
be discussed, on Figure 1.2, Figure 1.3 and Figure 1.4, respectively. By simply
combining PSK (Phase shift keying) with ASK (Amplitude shift keying), an M-
QAM symbol will be obtained. QAM symbols have been enormously used in
telecommunication systems.

Basically, a Rayleigh fading channel is an i.i.d (independent and identically
distributed) Gaussian channel with zero mean and NLOS (Non-line-of-sight). It
usually applies to environments like urban areas with many buildings, where NLOS
happens, which means that no dominant component between the transmitter and
receiver exists, and only scattered signals are included.

The i.i.d channel is composed by real and imaginary parts, each part has
variance 0.5, that is to say the total variance of each element hm,n is 1. Meanwhile,
the phase of each element is uniformly distributed between 0 to 2π. In other words,
the channel is an uncorrelated complex Gaussian channel with unit variance and
zero mean, which can be used in urban areas with NLOS.

1.4 Kronecker Model

In general, the correlated channels can be defined as follows:

HCor =R
1/2
R H(R

1/2
T )T (1.4)

where RR and RT are spatial correlation matrices. They are defined differently in
4×4 MIMO and 2×2 MIMO. The covariance matrix of BS and MS are called RT

and RR separately. The correlation scaling factor for the BS and MS are α and
β. The definition of channel spatial correlation matrixis is according to the LTE
specification in [35], where various set of antenna combinations (1×1, 2×2, 4×2
and 4×4). However, only 2×2 and 4×4 are taken into consideration in this thesis.

For 2×2 MIMO:

RT = RR =

[
1 α
α∗ 1

]
(1.5)

when it comes to 4×4 MIMO:

RT = RR =

⎡
⎢⎢⎣

1 α1/9 α4/9 α
(α1/9)∗ 1 α1/9 α4/9

(α4/9)∗ (α1/9)∗ 1 α1/9

α∗ (α4/9)∗ (α1/9)∗ 1

⎤
⎥⎥⎦ (1.6)

1.5 Signal to Noise Ratio

In this section, SNR and BER will be described. For SNR, as it is shown on Table
1.1, it varies from 0 dB to 40 dB to see the trend of changes for different numbers
of antennas and all the kinds of linear detection methods to be studied. BER will



Introduction 7

be shown in logarithmic scale from 10−5 to 100. The overall SNR at the receiver
for MIMO is defined as:

ρ � E{‖x‖2}
E{‖n‖2} = E{‖Hs‖2}

E{‖n‖2} =
E{∑MT

i=1

∑MR
j=1 |hi,jsi|2}

E{∑MR
i=1 n2

i }
=

MTMRσ2
s

MRσ2
n

=
MTσ2

s

σ2
n

, (1.7)

while

E{| hi,j |2} = 1 (1.8)

E{| si |2} = σ2
s (1.9)

E{| ni |2} = σ2
n. (1.10)

The SNR per transmit antenna is computed as follows:

ρaverage =
ρ

MT
=

σ2
s

σ2
n

=
Es

N0
. (1.11)

For MIMO channels, the SNR equals MT times the SNR per transmit antenna,
because the antennas receive the imcoming power from MT number of antennas:

ρMIMO = MT
Es

N0
= MT log2(M)

Eb

N0
, (1.12)

where the average energy per bit is Eb = Es/ log2(M).

1.6 Average Energy

In order to get the average energy of each signal for 16-QAM, let’s calculate the
total energy in each quadrant, E16−QAM = (12+12)+(12+32)+(32+32)+(32+
12) = 40, since there are 4 in each constellation, the average energy of each symbol
is Es = 10. The normalization factor for each symbol then is 1/

√
Es = 1/

√
10. By

proceeding in the same way, the average energy for 4-QAM is 2; when it comes to
64-QAM, the average energy is 42 for each symbol.

1.7 Modulation

Different modulation schemes can carry various types of signals; the information
which needs to be transmitted will be carried by modulated carrier signals. QAM
is the most well known modulation type used among all the modulation schemes.
By increasing the modulation order M, of course more bits per symbol will be
conveyed and higher spectral efficiency will be obtained, however, if the mean
energy remains constant, this will lead to dissatisfactory results since it will be:
less resilient to noise and interference.
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So high modulated symbols like 64-QAM and 256-QAM are more often used
in downstream channels in both cable modem systems and digital cable systems.
In 64-QAM and 256-QAM, they are more sensitive to noise and other sources of
impairments which makes the system less reliable and generate higher BER. In
this thesis, we will take a close look at the performance of 4-QAM, 16-QAM and
64-QAM, respectively.

1.7.1 4-QAM signals

When it comes to 4-QAM, the definition of the signal set is: A={a + bj} where
a, b ∈ B where B = {±1}. There are 2 bits in each symbol which will illustrated
in Figure 1.2

Figure 1.2: 4-QAM Constellation Diagram with Bit Mapping

1.7.2 16-QAM signals

The 16-QAM signal constellation is defined as: A={a+ bj} where a, b ∈ B where
B = ±1, ±3. For each symbol, there are 4 bits, Gray mapping is used to encode
and decode both the transmitted and received signals as shown in Figure 1.3.

1.7.3 64-QAM signals

In 64-QAM, each symbol contains 6 bits. The coefficient of the 64-QAM constella-
tion is shown in Figure 1.4. They are defined as follows: A={a+bj} where a, b ∈ B
where B = ±1, ±3, ±5, ±7. 6-bits Gray code as shown in Figure 1.4.



Introduction 9

Figure 1.3: 16-QAM Constellation Diagram with Bit Mapping

Figure 1.4: 64-QAM Constellation Diagram
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1.8 Complex channels to real channels

To get the best results from Lattice reduction, we have to convert the complex
channel system to a real-valued system, and the system can be rewritten as:

x = Hs+ n (1.13)

x = [R(x), I(x) ]
T , H = [R(H), −I(H); I(H), R(H) ]

T , s = [R(s), I(s) ]
T , n = [R(n), I(n) ]

T .
The dimension of the channel will be doubled to 2MT × 2MR, Imreal

is an
identity matrix in real-valued system, so the dimension of Imreal

will be increased
to 2MT × 2MR. Imreal

is a square matrix since MT = MR, Imreal
will be used in

our algorithms since real-valued channels are implemented.

Imreal
=

⎡
⎢⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤
⎥⎥⎥⎦ . (1.14)

1.9 Detection Methods

In MIMO, MSI will be the main issue that we will have to deal with. Frequency flat
channels are applied in our MIMO system. The number of transmit and receive
antennas will be the same for simplicity. ISI is assumed here. In order to cancel
MSI, let’s discuss linear detection methods like ZF and MMSE. Then, we can move
on to non-linear methods and in this thesis we will study lattice aided reduction
combined with linear detection in closer detail. We will include channel correlation
according to a Kronecker model.

1.10 Modulation and Demodulation Methods

Let’s take 4-QAM as an example to iillustrate modulation 1 and demodulation 2
algorithms. By subtracting the received bits with the transmitted bits, BER can
be easily obtained by comparing how different those two streams of bits are. This
filter will balance the multi-stream interference and noise enhancement very well,
in the meantime, the total amount of errors are largely decreased. So it is quite
obvious that the MMSE filter is superior to the ZF filter.

During 4-QAM modulation process in Algorithm 1, the first step taken into
consideration is to generate corresponding random bits; secondly, We get all poss-
bile symbol conbinations in decimal for both real and imaginary parts; thirdly, the
random bits are converted to binary bits; afterwards binary bits are converted to
decimal bits; finally they will be converted to Gray coded symbols. After sym-
bols have been through the channel, we would need to consider the process in
Algorithm 2.

To simplify the calculation process in Algorithm 2, we treat the real and imag-
inary equally as long as the same decimal options are provided. Since there are
only two possibilities in decimal for 4-QAM in either real or imaginary part: 1
or -1; so as a result, 4 different symbols in total will be involved in the process.



Introduction 11

Algorithm 1 Modulation for 4-QAM - s = Mod-QAM(bits, K, D)

1: % create all possible 2-bit sequences for both real and imaginary parts
2: r = [−1 : 2 : 1];
3: im = [−1 : 2 : 1];
4: bits_reshape = reshape(bits,K,D).′;
5: bin2dec = ones(D, 1) ∗ (2.[(K/2−1):−1:0]); %binary to decimal
6: % Real part for 4-QAM
7: Re_bits = bits_reshap(:, [1 : K/2]);
8: Re_decbits = sum(Re_bits. ∗ bin2dec, 2);
9: Re_graydec = bitxor(Re_decbits, floor(Re_decbits/2));

10: % Imaginary part for 4-QAM
11: Im_bits = bits_reshape(:, [K/2 + 1 : K]);
12: Im_decbits = sum(Im_bits. ∗ bin2dec, 2);
13: Im_graydec = bitxor(Im_decbits, floor(Im_decbits/2));
14: Re_s = r(Re_graydec+ 1);
15: Im_s = im(Im_graydec+ 1);
16: s = Re_s+ 1j ∗ Im_s; % complex signals with gray coding
17: s=s.’; % s are signals without normalization
18: end

For 4-QAM demodulation algorithm, the received signal will be estimated to it’s
closest coordinate value in decimal. Thus if the coordinate value is close to 1,
then the corresponding Gray bits =’1’; otherwise if the coordinate value is close
to -1, the Gray bits =’0’; the final step is to reconstruct it into the right order
for received Gray coded bits. By comparing the received bits with the original
random bits, the Bit Error Rate can be obtained, which will be discussed later.

1.10.1 Zero Forcing Equalizer

In ZF detection, if the signal is transmitted through MIMO channels with noise,
the noise will surely be enhanced. The good thing is that the complexity is low
compared with ML. The filter matrix is as follow:

sZF =H†x = (HTH)−1HT (Hs+ n) (1.15)

= s+ (HTH)−1HTn (1.16)

where H† = (HTH)−1HT represents the Pseudo-inverse of channel H. By multi-
plying the received signal with the Pseudo-inverse of the channel H†, we can get
the signal after ZF equalizer sZF as the signal that has been through ZF filter.
Then we can use bit decoder to achieve the received bits. Comparing the received
bits with the original ones, the number of wrong bits will be obtained. The bit
error rate is calculates as follows:

BER =
Total errors

Number of realizations× Total bits in one realization
.(1.17)
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Algorithm 2 Demodulation for 4-QAM - [bits] = Demod 4-
QAM(Shat,MT )

1: Symbollength = length(Shat)
2: temp = [ ]
3: r = [−1 : 2 : 1] %get all possible coordinate values
4: im = [−1 : 2 : 1]
5: s_dem = 2 ∗ floor(s_hat/2) + 1;
6: s_dem(find(s_dem > max(r))) = max(r);
7: s_dem(find(s_dem < min(r))) = min(r);
8: s_dem = s_dem.′;
9: for i = 1 : symbollength do

10: if s_dem(i) == 1; then
11: temp = [temp; 1]; % if coordinate value=1, output is 1
12: else
13: temp = [temp; 0]; % if coordinate value=-1, output is 0
14: end if
15: end for
16: bits_hat_temp = temp;
17: bits_temp_Re = bits_hat_temp(1 : symbollength/2, :);
18: bits_temp_Im = bits_hat_temp(symbollength/2 + 1 : end, :);
19: bits_temp = [bits_temp_Rebits_temp_Im];
20: bits_out = reshape(bits_temp.′, 2 ∗MT , 1)

′;
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1.10.2 Minimum Mean-Square error Equalizer

As a well-known method of measuring the mean square error in signal processing,
the MMSE equalizer reaches a better performance compared with ZF. MMSE
keeps good balance between complexity and BER.

Let’s take the expectation of product of the received signal x and the conjugate
transpose of xT , which is E(xxT ), because E(HT sTn) = 0, so the expectation can
be written as:

E(xxT ) =E[(Hs+ n)(Hs+ n)T ] (1.18)

= HE(ssT )HT +
N0

2
IMt (1.19)

= HHT +
N0

2
Imreal

. (1.20)

The signal after MMSE equalizer sMMSE is defined as:

sMMSE =(HTH + σ2
nImreal

)−1HT (Hs+ n) (1.21)

= (HTH + σ2
nImreal

)−1HTx (1.22)

where σ2
n = N0/2. In MMSE equalizer, the demodulation function must be called

for the purpose of decoding sMMSE into bits, which gives us the received bits
BitsMMSE . As in Figures 1.2, 1.3 and 1.4, the 4-QAM is a 2-bit Gray-code
sequence; similarily, the 16-QAM symbols are combined by 3-bit Gray-code se-
quence and 64-QAM symbols are constructed with 4-bit Gray-code sequence. In
Figures 1.2, 1.3 and 1.4, the Gray coded constellations are exhaustively described
for 4-QAM, 16-QAM and 64-QAM.

1.10.3 Maximum Likelihood Equalizer

As it’s acknowledged, ML obtains the highest complexity but the best perfor-
mance, which makes it the optimal method in case of performance. ML detection
calculates the Euclidean distance between the received signal vector and the prod-
uct of all possible transmitted signal vectors with the channel H and finds the one
with the minimum distance [6].

ŝML = argmin
s

‖ x−Hs ‖2 . (1.23)

In Algorithm 3 and Figure 1.5, the process and BER performance of ML are
described. ML detection will add complexity as we increase the modulation order
or the number of antennas [6]. However, the performance should be superior to
the MMSE equalizer. For example, in 4-QAM maximum likelihood, let’s take all
possible constellations as samples: A = {1+1j, 1-1j, -1+1j, -1-1j}. Even though
we don’t know which symbols are transmitted, the coordinate value table can be
assessed to decoded the received symbols by ML algorithm in Algorithm 3. Once
we get the estimation, the exact symbols can also be estimated, which will be
examined in the following paragraph.

In maximum likelihood algorithm for 4-QAM, the metric is set as a fairly
large number, then all possible coordinate value combinations for it are listed for
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comparison factor. As is shown in the 4-QAM maximum likelihood algorithm,
we start with taking the first column of the received signal, subtract it from the
product of first column from the channel and the one possible symbol chosen from
the coordinate value table, this subtraction gives us the estimated received symbol,
for more accuracy, the metric which is related to ||x−Hs||2 can be calculated, thus
we need to compare the received symbols column by column with the coordinate
value table, the complexity is extremely high. The tempMT

is to save the correct
symbols after a careful comparison. The number of elements to search over this
algorithm is MMT .

1.10.4 Limitations

The complexity of ML increases exponentially with the modulation order and
number of antennas, so it will be harder to implement a higher modulation order
and more antennas. Performance of ZF and MMSE are not as good as ML, while
ML’s is optimal. As we mentioned above, the performance that we expected should
be as close to ML’s performance as possible. But because of the noise enhancement
in ZF and lattice reduction achieves higher complexity than MMSE, we would like
to find a better solution, which is why we will take a close look at LR combined
with linear detectors in next chapter.

Figure 1.5: Maximum Likelihood for 4-QAM, in 4×4 MIMO channel,
10000 frames
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Algorithm 3 ML Algorithm for 4-QAM - [x̂]⇐ MLdetector(s,H)

Initialization:
Set metric ⇐ inf
coordinate values: A = {1+1j, 1-1j, -1+1j, -1-1j}

Iteration:
1: for all s in A do
2: temp(1) = A(s)
3: est1(:, 1) = x−H(:, 1). ∗ temp(1)
4: for all s in A do
5: temp(2) = A(s)
6: est2(:, 1) = x−H(:, 2). ∗ temp(2)
7: for all s in A do
8: temp(3) = A(s)
9: est3(:, 1) = x−H(:, 3). ∗ temp(3)

10: for all s in A do
11: temp(4) = A(s)
12: est4(:, 1) = x−H(:, 4). ∗ temp(4)
13: e ⇐ ‖xreal −Hreal ∗ shat‖2
14: metrictmp = sqrt(est4(:, 1)′ ∗ est4(:, 1))
15: if metrictmp < metric then
16: x̂ = temp
17: metric = metrictmp

18: end if
19: end for
20: end for
21: end for
22: end for
23: bits ⇐ demod4QAM(shat)
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Chapter 2
Lenstra–Lenstra–Lovász lattice basis

reduction

2.1 Brief Introduction

The first time lattice basis reduction introduced was in Lagrange and Hermite.
In this chapter, we are aiming to mitigate noise enhancement and to improve the
performance closer to ML’s. The main reasons why we take further research about
lattice basis reduction are for the sake of getting the shortest and the closest vec-
tors. In recent year’s research, there are many efficient methods to approach these
two goals: LLL, BKZ. However, the most well-known and widely used algorithm is
LLL. A lattice is a combination of a group of linearly independent vectors, which
are a set of discrete points. For a reduced basis, which directly reduces the vector’s
lenght to a shorter one; meanwhile, the shorter the basis, the more orthogonal the
basis is. In a lattice-reduced matrix for our thesis, only real values are included,
which make the dimension of the matrix doubled.

For the purpose of achieving lower BER with lower complexity, we combine
LR with linear detection methods: ZF and MMSE. A real-valued system with
reduced basis can be defined as follows:

x =Hs+ n = HTT−1s+ n (2.1)

= H̃z + n (2.2)

H̃ = HT, TT−1 = 1, z = T−1s. H̃ is the channel with reduced basis. For the
transformation matrix T, det(T ) = ±1, T is an integer and unimodular matrix,
so the inverse of T is also an integer matrix. The channel matrix after LR is a
sub-optimal orthogonal matrix with the shortest basis besides ML.

2.2 Lenstra–Lenstra–Lovász Algorithm

In this section, the process of LLL Algorithm will be interpreted. Gram-Schmidt
Orthogonalization, Size Reduction, Lovász Condition and Swap process are the
four algorithms needed to implement LLL. First, Let’s take a look at Gram-
Schmidt Orthogonalization.

17
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2.2.1 Gram-Schmidt Orthogonalization

Gram-Schmidt Orthogonalization is a process of transformation, which is con-
verted from sets of linear dependent vectors into unimodular vectors with orthog-
onal basis, where its process is exhaustively described in Algorithm 4. First, a
basis H is defined as

H = {h1, h2, ..., hMT
} (2.3)

.
In Algorithm 4, h1, h2, ..., hMT

are the columns of H, MT is the number of
transmit antennas, while M(i) are the norm squared of columns of H. For an orthog-
onal matrix, orthogonal bases are needed, they can be defined as μ1, μ2, ..., μMT

.
Here let’s first convert the complex channel system into real-valued system by

the following formula:

H = [R(H), −I(H); I(H), R(H) ]
T
. (2.4)

Its Gram-Schmit Orthogonal basis vector is defined as follows:

HT = {hT
1 , h

T
2 , ..., h

T
MT

}, (2.5)

which can be written as:

H(:,MT ) = {H(:, 1),H(:, 2), ...,H(:,MT )}. (2.6)

The channel after Gram-Schmit orthogonal is H. For the reason of simplicity,
hT
1 , h

T
2 , ..., h

T
MT

will be replaced by H(:, 1) or H(:, 2), ..., H(:,MT ) in Algorithm 8,
which actually explains how a specific reduced basis is taken out from the whole
channel. Meanwhile, the same expressions like hT

1 , h
T
2 , ..., h

T
MT

will be remained in
the text while we mention reduced basis vector. The coefficients for Gram-Schmidt
Orthogonalization are described as below:

μi,j =
1

Hj

(
〈hj , hj〉 −

j−1∑
k=1

(μj,kμj,k)Hk

)
, 1 < i < j < MT , (2.7)

where μj,k is the conjugate of μj,k, hj = H(:, j),

Hj = H(:, j)−H(:, 1 : (j − 1)) ∗ μ(i, 1 : (j − 1)). (2.8)

It can also described as:

μ1 = h1 (2.9)

μ2 = h2 − h2, μ1

‖μ1‖2 μ1 (2.10)
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μ3 = h3 − h3, μ1

‖μ1‖2μ1 − h3, μ2

‖μ2‖2μ2 (2.11)

... (2.12)

...

2.2.2 Size Reduction

According to the Gram-Schmidt coefficients, the basis vectors can be judged by an
certain condition whether Size Reduction Algorithm 5 should be applied or not.
The formula is written as below:

| μk,k−1 |> 1

2
, (2.13)

where this condition in Size Reduction Algorithm 5 is described as:

round(μ(k, k − 1)) ∼= 0. (2.14)

If the condition above holds, which means its basis we obtained is not the
shortest one, at a later time the Size Reduction algorithm should be applied for
the sake of achieving a more reduced basis vector; if condition fails then we keep
the original one. The basis and the Gram-Schmidt coefficients need to be updated
afterwards, basis vectors Ḣi, basis ḣi and coefficients ˙μi,j are acquired to save the
final data.

The whole process can be stopped by the estimated stage number k,

k = max(2, k − 1) (2.15)

for cases like j= k-2 to 1, we perform action: step -1, the updated Gram-Schmit
coefficients will be applied to the updated conditions as follows:

| μk,k−1 |> 1

2
, (2.16)

until the shorest vectors are obtained.
The size reduction process in Algorithm 5 is based on the condition we men-

tioned above, H can easily converted into a reduced basis. If q = round(μ(k, i)) >
0, subtract each basis with the previous basis; if q < 0, the original basis is kept,
then we update the coefficient μ. Next step is to check the Locasz Condition, let’s
move to the next section.

2.2.3 Lovász Condition

In 1982, as the concept of LLL Algorithm was first mentioned in [32], Lovász
condition was defined as follow:

|hT
k + μk,k−1h

T
k−1|2 ≥ δ|hT

k−1|2, δ = 0.75. (2.17)
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Algorithm 4 Gram-Schmidt Orthogonalization - [H, μ, i][34]
Initialization:

Lattice Basis H: H = [ h1 h2··· hMT ] ,
Iteration:
1: H(:, 1) = H(:, 1)
2: % set the first column of H same as H’s first column
3: M(1) ⇐ norm squared of the first column of H
4: for i = 2 : m do
5: μ(i, 1 : (i− 1))= (H(:, i)′)* H(:, 1; (i− 1)))./M(1 : (i− 1))
6: H(; , i) = H(:, i)−H(:, 1 : (i− 1)) ∗ μ(i, 1 : (i− 1))′

7: M(i) = dot(H(:, i), H(:, i))
8: end for

Algorithm 5 Size Reduction Algorithm - [H, k, i][34]
Initialization:

Lattice Basis H: H = [ h1 h2··· hMT ] ,
Iteration:
1: S ize Reduction
2: for i = k − 1 : −1 : 1 do
3: q = round(μ(k,i));
4: if q ∼= 0 then
5: H(:, k) =H(:, k) - q ∗H(:, i) // Reduce the size of the k-th basis vector
6: end if
7: end for



Lenstra–Lenstra–Lovász 21

hT
k is defined in Equation 2.5. So as a common sense, when people talk about LLL

algorithm, they mean LLL algorithm with factor δ = 0.75. According to [33], the
Lovász condition can be rewritten as

|hT
k |2 ≥ (δ − μ2

k,k−1)|hT
k−1|2 (2.18)

for each basis vector, where 1 ≤ k ≤ MT , while the corresponding process is shown
in Algorithm 6. Where if we take the whole channel into consideration, it can be
rewritten as in Algorithm 6:

|H(:, k),H(:, k)| ≥ (δ − abs(μ(k, k − 1))2) ∗ |H(:, (k − 1)),H(:, (k − 1))|. (2.19)

Algorithm 6 Locasz Condition Algorithm - [H, k, δ][34]
Initialization:
1: |H(:, k),H(:, k)| ≥ (δ − abs(μ(k, k − 1))2) ∗ |H(:, (k − 1)),H(:, (k − 1))|

The step after Size Reduction is to check if Lovász Condition holds. If the
Lovász condition holds, perform this command line: k=k+1; if not, Swap process
will be implemented, meanwhile, the coefficient μ must be updated. Otherwise,
redo the Size Reduction process for k ranges from k − 1 to k and update the
coefficient μ. For k bigger than 2, the following command line will be executed: k
= k-1.

2.2.4 Swap process

As we mentioned above, if the Lovász condition fails, we need to swap the two
vectors for basis vectors according to Algorithm 7. Swap process must be applied
to ensure the norm of the basis vectors won’t decrease too much. After the Swap
process, it should continue checking if Lovász condition fulfills . If the Lovász con-
dition successed, ultimately the coefficients will be updated, otherwise it continues
with Swap process until the Lovász condition holds.

Algorithm 7 Swap process - [H, k][34]
Initialization:
1: Swap the k-th and (k-1)-th basis vector
2: V = H(:, k)
3: H(:, .k) = H(:, k − 1)
4: H(:, k − 1) = V

Finally, we will achieve the reduced basises which are shorter and more or-
thogonal.

2.3 Lenstra–Lenstra–Lovász Algorithm Analysis
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Algorithm 8 LLL Reduction Algorithm by K. Shum- [H, δ] [34]
Initialization:

Factor δ:
1: if nargin == 1 then
2: δ = 0.75
3: end if

m: Vector space’s dimension
H: Vectors after Gram-Schmidt Process
μ : Gram-Schmit coefficients
M: M(i) is the norm squared of i-th column of H

Iteration:
4: Gram-Schmidt Orthogonalization
5: k = 2
6: while k <= 2 do
7: S ize Reduction
8: μ(k,1:i)=μ(k,1:i)-q*[μ(i,i:(i-1)) 1]// update Gram-Schmit coefficients
9: end while

10: Check the Lovasz Condition
11: if Lovasz Condition holds then
12: k = k + 1
13: else
14: The Lovasz Condition fails
15: Swap the k-th and (k-1)-th basis vector
16: Update the Gram-Schmit coefficients
17: for s = (k − 1) : k do
18: μ(s, 1 : (s− 1)) = ((H(:, s)′) ∗ H(:, 1 : (s− 1)))./M(1 : s− 1)
19: H(:, s) = H(:, s) - H(:, 1 : (s− 1)) ∗ μ(s, 1 : (s− 1))
20: M(s) = dot(H(:, s),H(:, s))
21: end for
22: μ((k + 1) : m, (k − 1) : k) = (H(:, (k + 1) : m)′ ∗ H(:, (k − 1) :

k))/diag(M((k − 1) : k)) // updated Gram-Schmit coefficients
23: if k > 2 then
24: k = k-1
25: end if
26: end if
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Now we can draw a full picture of the LLL process according to Algorithm 8,
before that some initializations must be done: first we initialize δ = 0.75, let’s set
m as vector space’s dimension, H is the vectors after Gram-Schmit process, and
μ is used to save Gram-Schmit coefficients, lastly we treat M as the norm squared
of the i-th column of H.

Then we start with the main process, before the Gram-Schmidt Orthogonal-
ization was applied.

1. Set the first column of H as the same value as H ′s first column; then M(1)
was set to save the norm squared of the first column of H;

2. For i from 2 to MT , all columns of the vectors of Gram-Schmit process and
Gram-Schmit coefficients and norm squared of H are saved, repectively;

3. When k ≤ 2, we apply size reduction to the k-th basis to get the size-reduced
vectors and the Gram-Schmit coefficients will also be updated;

4. Lovasz condition will be checked afterwards in order to ensure it holds if
we increase k; if Lovasz condition fails, we swap the k-th and (k-1)th basis
until the Lovasz condition holds again, then all Gram-Schmidt coefficients
will be updated;

5. If k is larger than 2, we apply equation k = k -1; then we continue the Gram-
Schmidt process until Gram-Schmit coefficients, H and M are all updated.

After taking the view of whole LLL’s process and functionality, let’s move to
the application part in the following chapter.
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Chapter 3
Linear Detections combined with Lattice

Reduction

3.1 Linear Detections combined with LR

In this chapter we combine linear detections with lattice aided reduction to give a
lower noise enhancement and better performance.

3.1.1 ZF Estimator with LR

In ZF detector, the ZF pre-filtering was yielded by multiplying the inverse of
transformation matrix T with the signal after ZF equalizer:

ZZF_LR =T−1sZF (3.1)

= T−1(s+ (H̃T H̃)−1H̃Tn)s. (3.2)

As is shown above, we can obtain our desired signal ŝZF_LR by multiplying
ZZF_LR with the transformation matrix.

ŝZF_LR =TZZF_LR. (3.3)

Matrix T is an integer and unimodular matrix. After going through the filter of
ZF, ZZF_LR will be received and then rounded to its closest constellation due to
the constellation table in related demodulation algorithms: a simple demodulation
example is shown Algorithm 2; during demodulation process, we get both received
signals sZF_LR and its originally sent bits.

3.1.2 MMSE Estimator with LR

For the case in MMSE, we would like to take a look at the expectation of following
product:

E(zzT ) =E[T−1s(T−1s)T ] (3.4)

= T−1E(ssT )(T−1)T (3.5)

= T−1(T−1)T , (3.6)

25
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E(xxT ) =E[(H̃z + n)(H̃z + n)T ] (3.7)

= H̃E(zzT )H̃T +
N0

2
IMT _real (3.8)

= H̃T−1(T−1)T H̃T +
N0

2
IMT _real (3.9)

= H̃H̃T +
N0

2
IMT _real. (3.10)

Then the pre filter of MMSE turns out to be:

ZMMSE_LR =T−1sMMSE (3.11)

= T−1(HTH + σ2
nIMT _real)

−1HTx (3.12)

= (H̃T H̃ + TTTσ2
nIMT _real)

−1H̃Tx. (3.13)

The received signal which combines LR with MMSE is shown as follow:

ŝMMSE_LR =TZMMSE_LR (3.14)

= T (H̃T H̃ + TTTσ2
n)

−1H̃Tx. (3.15)

ZMMSE_LR is the signal received after MMSE filter. In order to get the
exact sent symbols and bits, ZMMSE_LR must be decoded through corresponding
demodulation method. After demodulation process, the estimated received symbol
is ŝMMSE_LR and its received bits.

3.2 Performance analysis

With the calculation of BER, we can organize all the BER performance related to
SNR in the same figure for comparison.

3.2.1 4-QAM

The comparison between different number of antennas is shown in Figure 3.1.
10000 realizations of 4-QAM signals are transmitted through channels with various
numbers of antennas. The BER and gain are considered in those cases:

1. The BER for linear detection methods decreases with the increase of trans-
mit or receive antenna number, it changes around 10−3. The BER reaches
its best performance for 4-QAM in 4×4 MIMO at 40 dB, which is close
to 10−4; when the number of antennas is larger than 4, the performance
becomes less satisfying. For cases of Lattice Reduction, its best record will
be at 31dB in 6×6 MIMO for BER 10−5;

2. In cases with only linear detectors, the gain over ZF and MMSE in 2×2
MIMO is close to 0 dB, and in 8×8 case, the gain increases to 3 dB. There
is not much differences in all cases of Lattice Reduction;

3. For situations with LR, its BER is much smaller than cases with pure lin-
ear detectors, which successfully overcomes the imperfect orthogonalization
problem, whose BER performance benefits a lot from the reduced basis
vectors;
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4. The gap between ML and ZF is the largest, then comes MMSE without
LR, the third is ZF with LR, the smallest gap goes to MMSE with Lattice
Reduction, which implies it achieves the best performance in this scenario
and the closest performance to ML’s; ML in 4×4 MIMO with 4-QAM has
its SNR around 20 dB while reaching BER 10−5, so MMSE in 6×6 with LR
is the sub-optimal solution compared with ML.

3.2.2 16-QAM

The performance of 16-QAM with antenna number ranging from 1 to 8 are illus-
trated in Figure 3.2.

1. In SISO channel, the performance of ZF and MMSE are the same for both
LR and witout LR detectors.

2. When it comes to the MIMO scenario, for those cases without LR, it’s best
BER for 40 dB is around 10−3 for 4×4 MIMO; and for cases with LR, the
most eye-catching performance is at 35 dB when the BER is 10−5 in 6×6
MIMO.

3. There is only a 1 dB gain between ZF and MMSE in both with and without
LR cases.

4. The performance in ML with 16-QAM is a bit worse than ML with 4-QAM,
it reaches BER of 10−5 around 27 dB, while 20 dB for 4-QAM. And the
result from 6×6 MIMO is pretty close to ML’s performance, which can be
regard as the sub-optimal performance in 16-QAM.

3.2.3 64-QAM

In Figure 3.4, the comparison for different number of antennas with 64-QAM will
be shown, where 1 to 8 antennas will be applied in those cases.

1. For linear detectors, their peak performance arrives at somewhere between
10−3 and 10−4 for 50 dB in 4×4 MIMO.

2. For LR combined with linear detection methods, the results are improved
compared with linear detection methods, the best result for BER is close
to 10−4 where SNR is 40 dB, while the MMSE with LR was carried out in
6×6 MIMO.

3. The BER for MMSE with LR in 6×6 MIMO can be considered as the sub-
optimal solution compared with ML’s performance.

3.2.4 Comparison between 4-QAM, 16-QAM and 64-QAM

1. Among all those modulation methods, the best performance goes to ML
method, and the sub-optimal performance is MMSE combined with Lattice
Reduction in 6×6 MIMO with 4-QAM, which is the closest to the perfor-
mance of ML.



28 Linear Detections combined with LR

(a) SISO, 1×1 (b) 4-QAM, 2×2

(c) 4-QAM, 3×3 (d) 4-QAM, 4×4

(e) 4-QAM, 5×5 (f) 4-QAM, 6×6

(g) 4-QAM, 7×7 (h) 4-QAM, 8×8

Figure 3.1: Figure for comparison between different amount of an-
tenna numbers for 4-QAM, the number of antennas varies from
1 to 8, 10000 frames
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(a) 16-QAM, 1×1 (b) 16-QAM, 2×2

(c) 16-QAM, 3×3 (d) 16-QAM, 4×4

(e) 16-QAM, 5×5 (f) 16-QAM, 6×6

(g) 16-QAM, 7×7 (h) 16-QAM, 8×8

Figure 3.2: Figures for comparison between different amount of
antenna numbers for 16-QAM with Maximum Likelihood algo-
rithm, the number of antennas varies from 1 to 8, 10000 frames
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Figure 3.3: Maximum Likelihood for 16-QAM in 4×4 MIMO chan-
nel, 10000 frames

2. The detection methods combined with LR have largely affected how close
the performance can reach ML, which are obviously better.

3. The larger modulation, the worse performance, which means the 4-QAM
symbols achieve the best performance among 4-QAM, 16-QAM and 64-
QAM.
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(a) 64-QAM, 1×1 (b) 64-QAM, 2×2

(c) 64-QAM, 3×3 (d) 64-QAM, 4×4

(e) 64-QAM, 5×5 (f) 64-QAM, 6×6

(g) 64-QAM, 7×7 (h) 64-QAM, 8×8

Figure 3.4: Figures for comparison between different amount of
antenna numbers for 64-QAM, the number of antenna varies
from 1 to 8, 10000 frames
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Chapter 4
Correlated LTE channels

4.1 Correlated LTE channels with Kronecker Model

First, we would like to review correlation factors in Table 4.1.

Table 4.1: Correlation levels for MIMO

Correlation Level Value
No 0
Low 0.1
Medium 0.3
High 0.5

The correlated channels we used is:

HCor =R
1/2
R H(R

1/2
T )T (4.1)

The covariance matrix of BS (Base Station) and MS (Mobile Station) are as follows:
for 2×2 MIMO,

RT = RR =

[
1 α
α∗ 1

]
, (4.2)

when it comes to 4×4 MIMO:

RT = RR =

⎡
⎢⎢⎣

1 α1/9 α4/9 α
(α1/9)∗ 1 α1/9 α4/9

(α4/9)∗ (α1/9)∗ 1 α1/9

α∗ (α4/9)∗ (α1/9)∗ 1

⎤
⎥⎥⎦ . (4.3)

4.2 Performance analysis

4.2.1 2×2 MIMO with 4-QAM symbols in LTE channels

In this section, four typical correlation values will be compared. With different α
values, three different RT and RR will be obtained. Let’s take a look at Figure
4.1:
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(a) No Correlation (b) Low Correlation

(c) Medium Correlation (d) High Correlation

Figure 4.1: The comparison of different coefficient factors range
from low to high for 2×2 MIMO with ML, 4-QAM signal, 10000
frames

In Figure 4.1, it is a 2×2 MIMO where 4-QAM signals are transmitted, there
are no much difference between different coefficient factors, no matter with high
correlated factor or low correlated factor. Meanwhile, the high correlated model
has the best performance for both linear detectors and the ones with LR, the
performance for MMSE with LR and ZF with LR are similar. As acknowledged,
the LR will still obtains superior outcomes to the linear detectors. Even the
performance of ML didn’t vary too much for each case.

4.2.2 2×2 MIMO with 16-QAM symbols in LTE channels

In Figure 4.2, different coefficient factors are applied to 2×2 MIMO with 16-QAM
symbols which has 10000 frames.

1. As is shown in Figure 4.2, the MMSE with LR is superior to other detection
methods. But the coefficient factors don’t influence much of the performance
of each method.

2. The results vary from no correlation to high correlation don’t affect much
between different detection methods. They have similar performance in
each coefficient factor, but as for the individual situation, the best award
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still remains for the Lattice-Aided Reduction combined with MMSE, then
LR with ZF, and the worst is with pure ZF detection method.

(a) No Correlation (b) Low Correlation

(c) Medium Correlation (d) High Correlation

Figure 4.2: The comparison of different coefficient factors range
from low to high for 2×2 MIMO with 16-QAM signals, 10000
frames

4.2.3 4×4 MIMO with 4-QAM symbols in LTE channels

The comparison for 4-QAM and 16-QAM in 4×4 MIMO with various coefficient
factors are shown in Figure 4.3.

1. In sub-figures a, b, c and d, the BER increase enormously while larger
coefficient factors are added. The less correlated the channel is, the better
BER it will obtain, which means the best results are in the cases without
any coefficient factors, which means sub-figure a obviously is sub-optimal to
ML’s performance in this case.

2. For cases with LR, they suffer approximately 25 dB loss if we compare the
cases without any correlated channels with the ones with high correlation
factors. As for the linear detectors, the gain losses are unpredictable. For
example in high correlation case with ZF detector, the BER almost reaches
0.5 which means half of the transmission went wrong.
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(a) No Correlation (b) Low Correlation

(c) Medium Correlation (d) High Correlation

Figure 4.3: BER performance for 4-QAM in LTE channel compared
with ML, in 4×4 MIMO channel, 10000 frames
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3. The coefficient factors have great impact in 4×4 MIMO, which causes the
worse performance in high correlated channels. The 4×4 MIMO channels
are very sensitive to the correlation factors.

4.2.4 4×4 MIMO with 16-QAM symbols in LTE channels

(a) No Correlation (b) Low Correlation

(c) Medium Correlation (d) High Correlation

Figure 4.4: The comparison of different coefficient factors range
from low to high for 4×4 MIMO with 16-QAM signals, 10000
frames

Then 16-QAM situation in Figure 4.4 can be discussed as shown below:

1. With higher modulation order, the BER increases enormously. In high
correlated channels, there is no difference between the four methods we’ve
discussed above. All transmitted bits go wrong. With only linear detectors,
half of the received bits can be wrong which makes the channels useless.

2. When the coefficient factor increases, the performance differences between
ZF and MMSE are more obvious, which gives MMSE a much better result
ever compared with ZF; on the other hand, it makes no difference between
the ones with LR, their performance in high correlated channels are almost
the same as ZF.
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Chapter 5
Complexity Analysis

5.1 Complexity Analysis for MIMO

The complexity for each algorithm basically depends on the average number of
flops. It can be either a multiplication, a division, an addition or a subtraction [28].
For LLL, the complexity is polynomial in the size of input; while for termination of
LLL, it is bounded to O(n2) iterations. For real-valued Gaussian channel model,
it is uppper bounded polynomial in the dimension of the lattice, not applicable for
a broadcast precoding case [31].

ZF(s) MMSE(s) ZF with LR(s) MMSE with LR(s)
Zero Correlation 118 117 523 530
Low Correlation 117.5 113.1 857 946

Medium Correlation 105.5 106.5 903 1052
High Correlation 120.4 111.9 1063 1270

Table 5.1: Complexity camparison for 4-QAM in 4*4 MIMO channel
between different algorithms, Total CPU time

Instead of measuring the number of flops that consumed by each algorithm,
we use an easier way of comparison: to use command profile in Matlab to get the
self time of each algorithm with different combinations, where their total CPU
time is shown in Table 5.1. Since it has 10000 frames, to create 10000 channels
itself takes huge part in time consuming, another element which occupies the most
of the time is LLL algorithm. Apart from that, the linear detectors’ selftimes
and linear detectors’ selftimes which are combined with LLL algorithm consumes
loads of time, the total CPU (Central Processing Unit) time is shown in Table
5.1. Depend on how highly the channels are correlated, the algorithms’ CPU
time performance vary from each other while they have LTE channels instead of
Rayleigh channels.

1. With or without LR, MMSE expends more time than ZF;

2. For both ZF and MMSE, the ones with LR depletes way more time than
the ones without;
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3. The most time consuming method among all the combinations is MMSE-
LLL, and the one with best performance is MMSE, but MMSE-LLL depletes
longer time than ZF-LLL;

4. Above all, ML consumes the highest amount of time with the optimal per-
formance. The CPU time of ML is 1161s, while the other detection methods
demand much less time if the channels are without correlation; when they’re
with high correlation factor, ML consumes less time than linear detection
methods. The sub-optimal performance is MMSE-LLL, so it’s a trade-off.



Chapter 6
Conclusions

In this thesis, two different types of channel models are studied: Rayleigh fading
channels and Kronecker model. For both channels, ML’s BER performance is
superior to all other kinds of methods, including ZF, MMSE, ZF-LLL and MMSE-
LLL, where the BER performances can be summarized as:

ML > MMSE − LLL > ZF − LLL > MMSE > ZF. (6.1)

For Rayleigh fading channels, the linear detection methods achieved their sub-
optimal solution at MMSE in 4×4 MIMO for 4-QAM, 16-QAM and 64-QAM; the
higher the modulation order is, the worse BER performance can be observed, which
means 4-QAM obtains the best performance among 4-QAM, 16-QAM and 64-
QAM. When it comes to linear detection methods combined with LR, with reduced
basises in 6×6 MIMO, where the performances are highly improved compared with
pure linear detectors, MMSE-LLL achieves better performance than ZF-LLL,

For Kronecker model, the same performance rule applies:

ML > MMSE − LLL > ZF − LLL > MMSE > ZF. (6.2)

Only 2×2 MIMO and 4×4 MIMO are considered in this thesis, where four
different coefficient factors are introduced. In 2×2 MIMO, 4-QAM signals’ perfor-
mance is better than the ones in 16-QAM; but the coefficient factors don’t have
much impact on the performances, so all in all, the MMSE-LLL brings out the
sub-optimal solution in this case. While in 4×4 MIMO, the channels are very
sensetive to the coefficient factors. The larger coefficient factor, the worse BER
performance will be observed, so the one with no correlation brings in the best per-
formance among all four factors, where in no correlated channels, the MMSE-LLL
obtains the closest performance to ML.

Consequently, MMSE-LLL with 4-QAM symbols, in 6×6 MIMO Rayleigh fad-
ing channels, has the sub-optimal performance compared with ML.
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Chapter 7
Future Work

As we mentioned before in [8], 4 basic ways will be introduced to reduce bases:
Minkowski Minima bases, LLL-reduced bases, HKZ-reduced bases and optimally
reduced bases. It is hard to accompolish ideal results from the Minkowski method,
even though it’s perfectly defined, but not applicable.

In this paper, there is one improved method which can give us a much shorter
basis than HKZ and LLL. It is a suitable method where optimal short basis is
required. This method aims to achieve the shortest nonzero lattice vector by a
transformed basis which combine the shortest nonzero lattice with another basis.

Another common method to qualify the basis is if the matrix condition number
is smaller. But in the future, linear independent number can taken into consider-
ation, if it is close to one, which can give us better performance than the matrix
condition number. Another evidence which can prove that the shorter basis vector
is more orthogonal than other methods, the determinant value of this lattice basis
will not change.

But still due to its high computational cost, some future studies that have to
be done to deal with unimodular matrix transformation and linear independent
number on applications [8].

One addition way to get improved results is to apply BKZ Algorithm, which is
considered as the leading technique in LR area. In [36], experimental results with
the application of BKZ are studied with the resource offered by the NTL library.
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AppendixA
Appendix A

A.1 Complex Lenstra–Lenstra–Lovász Algorithm

Here is the swapping process for complex symbols:

˙hk−1 = hk (A.1)

ḣk = hk−1 (A.2)

˙Hk−1 = Hk+ | μk,k−1 |2 Hk−1 (A.3)

˙μk,k−1 = μk,k−1

(Hk−1

˙Hk−1

)
(A.4)

Ḣk =

(Hk−1

˙Hk−1

)
Hk (A.5)

˙μi,k−1 = μi,k−1 ˙μk,k−1 + μi,k
Hk

˙Hk−1

, k < i ≤ n (A.6)

˙μi,k = μi,k−1 − μi,kμk,k−1, k < i ≤ n (A.7)

˙μk−1,j = μk,j , 1 ≤ j ≤ k − 2 (A.8)

˙μk,j = μk−1,j , 1 ≤ j ≤ k − 2 (A.9)

which is way complicated than the method we offered
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A.2 Demodulation Algorithm for 64-QAM

The modulation method for 4-QAM, 16-QAM and 64-QAM are alike. By replacing
the bits for real and imaginary parts with r = im = r = [−3 : 2 : 3];, the 16-QAM
signals are be obtained; similarly, 64-QAM can be obtained by replacing the bits
for real and imaginary parts with r = im = [−7 : 2 : 7].

However, it varies a bit for the demodulation methods of different QAMs. In
principle, the general method to decode the received signals is by rounding it to
the closest coordinate value, which will give it an output of bits. In the following
section, let’s take a look at demodulation methods for both 4-QAM and 64-QAM
to find out the distinctions between them.
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Algorithm 9 Demodulation for 64-QAM - [bits] = Demod 64-
QAM(Shat,MT )

1: Symbollength = length(Shat)
2: temp = [ ]
3: r = [−7 : 2 : 7] %get all possible coordinate values
4: im = [−7 : 2 : 7]
5: s_dem = 2 ∗ floor(s_hat/2) + 1;
6: s_dem(find(s_dem > max(r))) = max(r);
7: s_dem(find(s_dem < min(r))) = min(r);
8: s_dem = s_dem.′;
9: for i = 1 : symbollength do

10: if s_dem(i) == 7; then
11: temp = [temp; 101]; % if coordinate value=7, output is 101
12: else if s_dem(i) == 5; then
13: temp = [temp; 100]; % if coordinate value=5, output is 100
14: else if s_dem(i) == 3; then
15: temp = [temp; 110]; % if coordinate value=3, output is 110
16: else if s_dem(i) == 1; then
17: temp = [temp; 111]; % if coordinate value=1, output is 111
18: else if s_dem(i) == −1; then
19: temp = [temp; 010]; % if coordinate value=-1, output is 010
20: else if s_dem(i) == −3; then
21: temp = [temp; 011]; % if coordinate value=-3, output is 011
22: else if s_dem(i) == −5; then
23: temp = [temp; 001]; % if coordinate value=-5, output is 001
24: else if s_dem(i) == −7; then
25: temp = [temp; 000]; % if coordinate value=-7, output is 000
26: end if
27: end for
28: bits_hat_temp = temp;
29: bits_temp_Re = bits_hat_temp(1 : symbollength/2, :);
30: bits_temp_Im = bits_hat_temp(symbollength/2 + 1 : end, :);
31: bits_temp = [bits_temp_Rebits_temp_Im];
32: bits_out = reshape(bits_temp.′, 6 ∗Mt, 1)′;
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