
C
o

n
tro

llin
g

 a Tu
rtle

B
o

t 2 th
ro

u
g

h
 a w

eb
 in

terface

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Controlling a TurtleBot 2 through
a web interface

Jorge Alas
Anders Holm

Series of Bachelor’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-522

http://www.eit.lth.se

Jo
rg

e A
la

s &
 A

n
d

e
rs H

o
lm

Bachelor’s Thesis

1	
	

Controlling a TurtleBot 2 through
a web interface

By

Jorge Alas and Anders Holm

Department of Electrical and Information Technology
Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

2	
	

Sammanfattning
 Omegapoint AB förvärvade en TurtleBot 2 för att utforska en av

de mer populära open source robotarna på marknaden. Omegapoint
ville ha en webbapplikation, skriven speciellt för dem, för att styra
TurtleBot 2 för användning i Omegapoint kontorsmiljö. Ett av de
viktigaste hänsynstagandet vid utformningen av programmet var att
det skulle vara körbart och användbart inte bara på stationära datorer
och bärbara datorer utan även på smartphones och surfplattor. Ett
mycket liknande projekt är coffee bot från http://learn.turtlebot.com/,
vilket bygger på samma princip, och styr TurtleBot 2 från en
webbapplikation. TurtleBot är en open source robot byggd i
samarbete med de ursprungliga skaparna av Robot Operating System
(ROS). Ett pythonskript, coffee_bot.py, används för att hantera
kommunikationen mellan databasen och roboten. Webbplatsen har
utvecklats med HTML, JavaScript och CSS. En databas har skapats
där koordinaterna från webbsidan förvaras. Pythonskriptet
coffee_bot.py, loopar och kontrollerar om databasen har nya poster.
De flesta av de planerade funktionerna är implementerade och har
klarat tester på flera enheter och anses därför färdiga och fullt
fungerande.

Nyckelord: TurtleBot, Robot Operating System, HTML,

JavaScript, CSS, Python

	

3	
	

Abstract
 Omegapoint AB acquired a TurtleBot 2 to explore one of the

more popular open source robots on the market. Omegapoint wanted
a web application, written specifically for them, to control the
TurtleBot 2 for use in the Omegapoint office environment. One of the
main things taken into consideration when designing the application
was that it had to be runnable and usable not only on stationary
computers and laptops but also on smartphones and tablets. One very
similar project is the coffee bot from http://learn.turtlebot.com/
building on the same principle, controlling the TurtleBot 2 from a
web application. The TurtleBot is an open source robot built in
collaboration with the original makers of the Robot Operating System
(ROS). A python script, coffee_bot.py, is used to handle the
communication between the database and the robot. The web site was
developed with HTML, JavaScript and CSS. A database was created
where the coordinates from the web page were stored. The python
script, coffee_bot.py, would loop and check that database for new
entries. Most of the planned features are implemented and have
passed testing on several devices and are thus considered done and
fully working.

Keywords: TurtleBot, Robot Operating System, HTML,
JavaScript, CSS, Python

4	
	

Acknowledgments

We would like to thank Omegapoint for providing the TurtleBot 2
and coming up with such interesting project idea. Big thanks to Mats
Lilja för all the useful help and engaging discussions and thanks to
Christian Nyberg for being our examiner.

Jorge Alas and Anders Holm

	

5	
	

Contents
Sammanfattning	 ..	 2	

Abstract	 ...	 3	

Acknowledgments	 ...	 4	

1.	 Introduction	 ...	 9	

	 Background	 ...	 9	 1.1.

	 Purpose	 ...	 9	 1.2.

	 Goal	 ...	 9	 1.3.

	 Problem	 ...	 10	 1.4.

1.4.1.	 What	 already	 available	 functionality	 can	 be	 used	 in	 this	
project?	 10	

1.4.2.	 How	 can	 location	 information	 be	 presented	 through	 the	 web	
application	 in	 a	 way	 that	 makes	 a	 user	 able	 to	 control	 the	 TurtleBot?
	 10	

1.4.3.	 How	 can	 coordinates	 be	 passed	 from	 a	 web	 application	 in	 a	
way	 that	 the	 TurtleBot	 can	 map	 them	 to	 its	 internal	 navigation	
system?	 10	

	 Design	 scope	 ...	 10	 1.5.

2.	 Method	 ..	 11	

	 Planning	 and	 designing	 interaction	 with	 the	 TurtleBot	 	 12	 2.1.

2.1.1.	 Form	 ...	 12	

2.1.2.	 Manner	 of	 behavior	 ...	 12	

2.1.3.	 Function	 ...	 12	

	 Designing	 the	 application	 ...	 13	 2.2.

2.2.1.	 Approach	 ..	 13	

2.2.2.	 Scope	 ..	 13	

2.2.3.	 Feedback	 ..	 13	

6	
	

2.2.4.	 Feedforward	 ...	 14	

2.2.5.	 Fitts’s	 Law	 ..	 14	

2.2.6.	 Standards	 ...	 14	

	 Sending	 coordinates	 to	 the	 TurtleBot	 ...	 15	 2.3.

	 Work	 flow	 and	 dependencies	 ...	 15	 2.4.

	 Source	 criticism	 ...	 18	 2.5.

2.5.1.	 Online	 examples	 ..	 18	

2.5.2.	 Lynda	 ..	 18	

2.5.3.	 Online	 documentation	 ...	 19	

2.5.4.	 WC3School	 ...	 19	

2.5.5.	 Designing	 for	 interaction	 2nd	 ed.	 -‐	 Creating	 Innovative	
Applications	 and	 Devices	 ...	 19	

2.5.6.	 TurtleBot	 tutorial	 sites	 and	 ros.org	 ..	 19	

	 Related	 Work	 ..	 19	 2.6.

2.6.1.	 Coffee	 bot	 ..	 19	

3.	 Technical	 background	 ..	 21	

3.1.1.	 TurtleBot	 ..	 21	

3.1.2.	 ROS	 ...	 22	

3.1.3.	 Programming	 languages	 ..	 22	

3.1.4.	 Web	 server	 ...	 29	

4.	 Result	 ...	 30	

	 TurtleBot	 software	 ..	 30	 4.1.

4.1.1.	 Starting	 the	 TurtleBot	 ..	 30	

4.1.2.	 Navigation	 ..	 30	

4.1.3.	 Creating	 a	 map	 ...	 31	

4.1.4.	 Coffee_bot.py	 ..	 33	

7	
	

4.1.5.	 TurtleBot	 server	 ...	 35	

4.1.6.	 Modifications	 of	 coffee_bot.py	 and	 coffee_queue.php	 	 36	

4.1.7.	 Turtlepower	 ...	 37	

	 Application	 ..	 38	 4.2.

4.2.1.	 Home	 ..	 38	

4.2.2.	 Location	 List	 ...	 39	

4.2.3.	 Route	 List	 ...	 39	

4.2.4.	 Order	 ..	 40	

4.2.5.	 Power	 ...	 41	

4.2.6.	 About	 ...	 41	

4.2.7.	 Continue	 ...	 42	

4.2.8.	 Header	 ...	 42	

5.	 Conclusion	 ..	 44	

	 Application	 Functionality	 ..	 44	 5.1.

	 Application	 Design	 ..	 44	 5.2.

	 Robot	 Functionality	 ...	 45	 5.3.

	 Problem	 Statements	 ...	 45	 5.4.

5.4.1.	 What	 already	 available	 functionality	 can	 be	 used	 in	 this	
project?	 45	

5.4.2.	 How	 can	 location	 information	 be	 presented	 through	 the	 web	
application	 in	 a	 way	 that	 makes	 a	 user	 able	 to	 control	 the	 TurtleBot?
	 46	

5.4.3.	 How	 can	 coordinates	 be	 passed	 from	 a	 web	 application	 in	 a	
way	 that	 the	 TurtleBot	 can	 map	 them	 to	 its	 internal	 navigation	
system?	 46	

6.	 Terminology	 ...	 47	

References	 ...	 48	

8	
	

Appendix	 A:	 Web	 site	 screen	 shots	 ...	 52	

Home	 View	 ..	 52	

Laptop	 ...	 52	

Smartphone	 ...	 52	

Exapanded	 routes	 list	 ..	 53	

Remove	 confirmation	 popup	 ..	 53	

Continue	 error	 popup	 ...	 54	

Power	 54	

Appendix	 B:	 TurtleBot	 specification	 sheet	 ..	 55	

	

9	
	

1. Introduction

 Background 1.1.
Omegapoint AB was founded in 2002 with a vision of creating

the leading IT consulting firm in Sweden. As part of Omegapoint’s
focus on competence and expertise combined with the desire to keep
up with an ever-changing market, the company on occasion acquire
products that might be of interest either to their current field of
operation or to possible future fields of operation.

Robotics is a rapidly growing field with practical purposes
ranging from domestic and commercial to military use. Omegapoint
acquired a TurtleBot 2 (Ros.org, 2016) to explore one of the more
popular open source robots on the market. TurtleBot 2 is an open
robotics platform designed for education and research on state of the
art robotics (Ros.org, 2016).

Omegapoint wants a web application, written specifically for
them, to control the TurtleBot 2 for use in the Omegapoint office
environment. Although there already are many applications and
programs written for the TurtleBot 2, this thesis will be concerned
with tailoring an application specifically for Omegapoint.

 Purpose 1.2.
This bachelor’s thesis aims to develop a web application for

controlling a TurtleBot 2 in Omegapoint's office environment.

 Goal 1.3.
Set up a framework for a web application. This includes a

database, a web server and the basic classes needed to communicate
with the robot.

Develop a web application with functionality for controlling a
TurtleBot 2 in the Omegapoint office in Malmö.

10	
	

 Problem 1.4.
The basic functionality of the web application that would control

the TurtleBot was the basis for the project. The following three
questions (1.4.1, 1.4.2, 1.4.3) were phrased to address problems
regarding that basic functionality.

1.4.1. What already available functionality can be used in
this project?

Some functionality for the TurtleBot is available online (Ros.org,
2016). Part of this project will be to find that functionality and
include it in the application.

1.4.2. How can location information be presented through
the web application in a way that makes a user able
to control the TurtleBot?

The TurtleBot will be controlled through the sending of location
specific coordinates. The initial purpose of the web application will
be to handle the coordinates and pass them on to the TurtleBot.

At a later stage the location information should be presented in a
way that is comprehensible to the employees of Omegapoint.

1.4.3. How can coordinates be passed from a web
application in a way that the TurtleBot can map
them to its internal navigation system?

The interpretation and translation to a TurtleBot 2 readable format
of the coordinates is also included in the project.

 Design scope 1.5.
The web application will be runnable in Chrome version

50.0.2661.102 m and Firefox version 35.0.1. Only critical
functionality not available online will be developed. Additional
functionality to the TurtleBot 2 will not be implemented.

11	
	

2. Method
The workflow of the project was divided into iterations, with one

iteration spanning over approximately one week. The three main parts
of one iteration were developing, testing and report writing. Each
iteration ended with an oral evaluation and decisions regarding the
content of the next iteration.

As new objectives arose they were added to a project specific
trello board (Trello.com, 2016). There were no expressed limitations
on how much work that could be in progress at any given time except
for the limitations of the iterations. As the content of each iteration
was decided, the workload of the iteration was implicitly decided.
There were no defined roles within the project.

The work method was loosely based on the agile method Kanban.
According to Henrik Kniberg and Mattias Skarin in Kanban and
Scrum - making the most of both (Kniberg and Skarin, 2010), Kanban
can be summarized in the following way:

• Visualize the workflow o Split the work into pieces,
write each item on a card and put on the wall. o Use named columns
to illustrate where each item is in the workflow.

• Limit Work In Progress (WIP) – assign explicit limits to
how many items may be in progress at each workflow state.

• Measure the lead time (average time to complete one
item, sometimes called “cycle time”), optimize the process to make
lead time as small and predictable as possible.

The workflow was visualized through trello and the work in
progress was limited through the limiting of content per iteration. The
lead time was not measured in the project but as the workload of each
iteration was decided, the content of the previous iteration was taken
into account, so that each iteration did not contain more work than the
team could handle.

12	
	

 Planning and designing interaction with the 2.1.
TurtleBot

When planning interaction with a robot there are three main
things that are needed to take into consideration.

Form: Appearance and physical characteristics.
Manner of behavior: How it goes about its activities, handles

interaction with its environment and how social it is.
Function: How it communicates and what “senses” does it use to

communicate. (Saffer, 2010, p.200)
Two of these points were left pretty much untouched since it felt

like the current solution was good enough.

2.1.1. Form
The TurtleBot was already built and there was no real need to

change its physical appearance to improve its ability to execute its
choirs.

2.1.2. Manner of behavior
A little work had to be done to make sure the TurtleBot was

docking to its charging station correctly when needed and with the
monitoring of its battery status.

But the main things like collisions and other working environment
problems are already handled at a “good enough” level. Improving
this was estimated to be too time consuming in relation with the
expected performance gain.

2.1.3. Function
This is where the main part of the work was put into. The robot

has some sensors and the ability to emit sound. But considering the
user wouldn't always be close to the TurtleBot when communicating,
developing the ability to communicate through gestures and sound
was never really an option. Instead an application was built to handle
both the input to and the output from the TurtleBot.

13	
	

Even though some interaction is possible using the buttons
installed in the TurtleBots base the same functionality is accessible
through the application since using the physical may be inconvenient.

 Designing the application 2.2.

2.2.1. Approach
When designing the application there was a lot to take into

consideration, like the availability of the customer and the limited
resources (time). For this reason the approach used for the interaction
design was a “genius design” or “rapid expert design” where the
designers use previous experience and intuition to create a design
they think is best suited for the user and the product. The user is
usually not involved during the development process but is
sometimes incorporated at later stages to confirm the design works as
the designer intended. One of the benefits of this approach is that it
can be less time consuming than the other approaches and in this case
gives a good enough design in a product where the interaction design
is not the most critical component. (Saffer, 2010, p.43)

Some elements of the “activity centered design” approach were
also present in the design on the application. Where tasks and
activities were selected as critical for the project. (Saffer, 2010, p.35)

2.2.2. Scope
One of the main things taken into consideration when designing

the application was that it had to be runnable and usable not only on
stationary computers and laptops but also on smartphones and tablets.
None or very little effort was put into satisfying the needs of users
with color blindness, users with other disabilities, robots and screen
readers.

2.2.3. Feedback
During test runs it was discovered that there was a need to

improve the feedback when interacting with the application. Ideally
every keypress should give some kind of feedback and anything
loading more than 1 second should be noticed with a loading bar or

14	
	

some kind of indicator that the application is working (Saffer, 2010,
p.131). In this case it was decided that most of the feedback could be
done with popups for information and confirmation.

With popups the application is able to communicate a good
amount of information to assure the user that the correct action is
being processed. The popups were designed to visually melt in with
the rest of the application so they don't feel like a disturbing object.

2.2.4. Feedforward
Telling the user what will happen before performing action with

plain text or other media (Saffer, 2010, p.133) was planned to be
implemented throughout the application but got discarded because of
time limitations.

2.2.5. Fitts’s Law
When placing and sizing buttons in the different views some

consideration has been taken to Fitts’s law to ease the navigation,
especially when navigating on touch screens. Fitts’s law claims that
the time it takes to rapidly move to a target area is a logarithmic
function of the ratio between the distance to the target and the width
of the target. The law is applied to web design to make the user's
cursor movements more efficient. (Saffer, 2010, p.134)

2.2.6. Standards
There are good reason for following interface standard. Using the

same layout as other common applications lets the user use previous
experience when interacting with the application. Having to commit
time to learn or relearn how to navigate the application may give the
user a negative user experience. Of course violating standards is
acceptable if there is a superior alternative. (Saffer, 2010, p.134)

The application tried to stick to standards as much as possible as
there was no gain in breaking them. Having the header bar on top
with a clickable icon on the top left corner and the placement of text
and buttons on the popups are examples of pretty standardized
layouts.

15	
	

 Sending coordinates to the TurtleBot 2.3.
In the beginning of the project, before it was decided that the

coffee_bot.py script should be used, the project team wrote another
python script that would take coordinates as parameters and send the
robot to the corresponding location. Another python script from Mark
Silliman’s public GitHub repository was used as a base when writing
the new script (go_to_specific_point_on_map.py). (GitHub, 2016)

The resulting script would take the two coordinates as command
line arguments and it worked well when running it from the Ubuntu
terminal. A rudimentary homepage was also developed, which also
would take two coordinates as user input and pass them along to the
command line script. The script would not send the robot to the
corresponding location however. The web server did not have the
permissions needed to run the python file with the necessary library
imports. To get around that problem a database was created where the
coordinates from the web page were stored. The python script would
then loop and check that same database for new entries.

The coffee_bot.py script already had this functionality along with
other functionality that would fit well into the project. That other
functionality included keeping track of the battery levels of the
Kobuki base and the onboard laptop, automatically going to the
docking station to charge, and waiting for user input before driving
from one location to the next.

 Work flow and dependencies 2.4.
To get an overview of the critical phases, a work flow and

dependencies diagram was made. The diagram can be seen in Figure
1 as well as a short description of each phase on page 16 and 17.

16	
	

Figure 1 - Work flow and dependencies

17	
	

• Setup Web app basic functionality & presentation
Rough planning of the web application, A Home page,
navigation elements, mobile adaptability

• Web app functionality for saving and loading locations
Functionality to save coordinates for a location, List saved
locations, Remove locations etc. as well as Creating routes,
listing them, deleting them etc.

• Web app Functionality for ordering BotButler assistance
Functionality to call the Botbutler to a requested location or to
go a specific route

• Application DB
Tables for, locations, routes etc.

• DB merge
Merge of the two databases. The new database stores locations
routes etc. and handles the botbutlers order queue.

• QUEUE order DB
Tracks the Botbutlers orders, used to communicate
coordinates to the Botbutler.

• Temporary test app
Very simple application with functionality to manually send
coordinates to the robot.

• Fieldtest 1
Test of the Coffee_bot.py script, mainly to confirm the
TurtleBot 2 is working as expected and forming a deeper
understanding of what is necessary to fulfill our requirements.

• Fieldtest 2
Test the collaboration between the web application, the
merged database, the new script and the TurtleBot 2.

• coffee_bot.py
Review and testing of the code. Learn where modifications
need to be made.

• modified_coffee_bot.py - Modification of coffee_bot.py

18	
	

Modification of coffee_bot.py to work with new merged
database and with additional functionality.

• Access TurtleBot 2
Since we are not the only ones working with the TurtleBot 2,
getting access and setting up the TurtleBot 2 required some
work

• Setup Gazebo - TurtleBot simulator
Gazebo was the program used to simulate the TurtleBot 2
when it was not available

• Additional non critical functionality
Some work on application functionality and writing additional
software for the TurtleBot

• Refining application UI and site navigation
 Work on UI and navigation. New navigation bar etc.

• Final testing
Final testing and observation of of the entire project.

 Source criticism 2.5.

2.5.1. Online examples
The information gathered from forums or examples online had to

be thoroughly tested before being applied to the project therefore
credibility of the source was less important. When researching
solutions at forums eg. stackoverflow, comments, the posters
reputation and upvotes weighed in if the presented solution would be
considered to further research and testing to minimize time wasted on
unsuccessful tests.

2.5.2. Lynda
Lynda.com was used to learn some of the necessary tools like,

HTML, Bootstrap, CSS, Python etc. Lynda is a well-established
company that offers online education for subscribers. Lynda is since
2005 owned by Linked In and is considered a very trustworthy source
where the content is relatively up to date.

19	
	

2.5.3. Online documentation
Most of the documentation and references has been from the

official sites developing or maintaining the tools.

2.5.4. WC3School
Wc3School was used as a reference when developing the

application. The site is well established and has a good reputation.
But most of the resources were validated by tests before
implementation into the application

2.5.5. Designing for interaction 2nd ed. - Creating
Innovative Applications and Devices

Book written by Dan Saffer principal at the San Francisco based
product design consultancy Kicker Studio. The book has been used as
literature in Courses like Introduction to Interaction Design
(DA157A) given at Malmö högskola and is therefore considered
verified and trustworthy.

2.5.6. TurtleBot tutorial sites and ros.org
The official tutorial site for the TurtleBot, learn.turtlebot.com, and

the linked repositories along with the homepage and wikis for the
Robot Operating System are all part of an open source community.
Although parts of the resources provided might be in a development
stage these sources were considered trustworthy for the purposes of
this project.

 Related Work 2.6.

2.6.1. Coffee bot
One very similar project is the coffee bot from

http://learn.turtlebot.com/ building on the same principle, controlling
the TurtleBot 2 from a web application. The coffee bot is able to send
the TurtleBot 2 to a specific location using coordinates given from
RViz. The coffee bot has to a certain degree been the foundation that

20	
	

this project has built upon, it has also been a great project to learn and
understand the fundamentals of how the TurtleBot 2 works.

Some of the coffee bots open source code has been reused and
modified to work in the Botbutler, while other parts such as the web
application had to be written from scratch to better fulfill the
requirements on the Botbutler project.

21	
	

3. Technical background
3.1.1. TurtleBot

The TurtleBot is an open source robot built in collaboration with
the original makers of ROS, with a focus on education and early-stage
development. The TurtleBot consists of a mobile base, a 3D sensor
(Kinect), a laptop computer, and the TurtleBot mounting hardware kit
as can be seen in Figure 2.

Figure 2 - The TurtleBot 2

On the ROS homepage (Wiki.ros.org, 2016) the following can be

read regarding the TurtleBot:
“TurtleBot combines popular off-the-shelf robot components like

the iRobot Create, Yujin Robot's Kobuki, Microsoft's Kinect and
Asus' Xtion Pro into an integrated development platform for ROS
applications.”

The operating system on the laptop that sits on the TurtleBot used
in this project, is Ubuntu 14.04. The Robot Operating System (ROS)
and the TurtleBot packages were pre-installed on the image file used

22	
	

to install Ubuntu. The image file was found on the ROS homepage
(Wiki.ros.org, 2016).

For more information on the technical specifications of the
TurtleBot, see Appendix B.

3.1.2. ROS
The Robot Operating System (ROS) was originally developed by

the Stanford Artificial Intelligence Laboratory. In 2007, Willow
Garage, a robotics research institute, provided major contributions
and created well-tested implementations. ROS is a framework for
writing robot software. It consists of a collection of tools and libraries
that were created with an intent of simplifying the task of creating
complex and robust robot behaviour across many different robotic
platforms. ROS runs on Linux, is written in C++ and Python, and
provides operating system-like functionality. (Ros.org, 2016)

Examples of what the Robot Operating System provides includes
hardware abstraction, device drivers, libraries, visualizers, message-
passing, and package management. ROS is licensed under an open
source, BSD license. (Wiki.ros.org, 2016)

3.1.3. Programming languages

C++
The program used to start and stop the programs on the TurtleBot

was written in C++. That programming language was used because
the members of the project have programmed with C++ before and
felt comfortable using it. The program was written specifically for
this project and the need for portability was considered negligible.

Python
The program that is used to handle the communication between

the database and the robot, coffee_bot.py, was downloaded from
Mark Silliman’s GitHub page (Silliman, 2016). It was written in
Python which is a widely used interpreted language (Python.org,
2016) with libraries for ROS and TurtleBot (Wiki.ros.org, 2016). The

23	
	

coffee_bot.py script contains a lot of the functionality needed and was
therefore incorporated in the project.

HTML
HyperText Markup Language commonly used to create web

pages. HTML is cosidered a cornerstone when making web pages
together with CSS and javascript. (W3schools.com, 2016)

With previous experience it was known that this would get the job
done and that there was no need to research other alternatives. HTML
5 was the version used as it was the latest stable version at the time of
the development and no reason to explore other releases was
considered necessary.

Online courses at lynda.com were taken to get further
understanding of the tool.

jQuery
For the javascript jQuery was used. jQuery is a common

javascript library that works on multiple browser and handles the
client side scripting for events, animations, navigating the HTML
document etc. (jquery.org, 2016)

jQuery 2.1.4 was used since it was the version recommended by
the bootstrap when the development was initialized. Other
alternatives such as AngularJS was considered but got discarded
because no needs for other functionality emerged. Online courses at
lynda.com were taken to get futher understanding of the tool.

CSS
Cascading style sheets is a style sheet language, and is together

with HTML and Javascript one of the cornerstones used or most web
pages. CSS describes how the HTML document is to be presented by
the web browser. (W3schools.com, 2016)

Online courses at lynda.com were taken to get further
understanding of the tool.

24	
	

Ajax
When writing the web application there were parts where

communication between the client and the server was needed but
reloading the page was undesired or would even negate other already
implemented functionality. Using Ajax (Asynchronous JavaScript +
XML) seemed like a good approach to achieve this.

Ajax introduces an Ajax engine between the client and the server.
The client speaks with the engine and the engine communicates with
the server on behalf of the client.

As seen in Figure 3 the user uses JavaScript to communicate with
the engine locally and delegates the remote communication to the
engine.

Not refreshing the page, thus not having to request the entire page
from the server has other nice side effects such as increasing the
bandwidth efficiency by just transferring essential data and not the
entire html document.

That way the user can asynchronously interact with the
application without having to wait for the server to process its
requests.

Figure 3 - Ajax web application model

25	
	

As seen in Figure 4, in a classic web application the user would

have to wait for the server to process its requests while in the Ajax
model the user can interact with the application while the server is
processing its requests. (Garrett and Garrett, 2005)

Bootstrap
While planning the design of the application one of the

requirements were that the application would work well on devices
with smaller displays such as smartphones as well as on normal sized
desktop displays. It was known that at least to some point this was

Figure 4 - Asynchronous Ajax web model

26	
	

achievable through bootstrap. This lead to further researching of the
bootstrap framework before deciding to use it as a tool for the
implementation of the application. Some online courses were taken at
lynda.com to get acquaintanced with how to use the framework and
some of its best practices. Bootstrap 3.3.5 was used at first since it
was the latest stable version when the implementation started and it
proved to be a powerful tool for the front end implementation.

At later stages of the implementation there was some desired

functionality that was not achievable through Bootstrap 3.3.5. Further
research showed that this was available through Bootstrap 4.0.0
alpha-2. This was not a stable version and some functionality from
3.3.5 had been removed from Bootstrap 4.0.0 alpha-2. But after some
consideration the decision was made to move on with Bootrstrap
4.0.0 alpha-2 even though some of the existing code had to be
rewritten. (Mark Otto, 2016)

Bootstrap is an open source front end framework, a collection of
HTML and CSS based templates for forms buttons navigation and
much more as well as optional java script plugins. It is also
compatible with most of the modern browsers including Firefox,
Chrome and Safari.

Online courses at lynda.com were taken to get further
understanding of the tool.

Database
When implementing the database MYSQL was used, mainly

because we have previous experience using it and thus know it is
capable of fulfilling the requirements planned for the database.
MYSQL is a relational database management system. A relational
database is based on the relational model of data. The data is stored in
tables where each row is an instance of data and each column being
its attributes. If two or more tables interact they have a logical
relationship. (Docs.oracle.com, 2016)

A diagram of the database can be seen in Figure 5.

27	
	

Figure 5 - Diagram of the database

MYSQL in PHP
There was a necessity to interact with the database through the

application and since MYSQL was being used for the database the
requirement was to be able to use MYSQL in PHP. The three main
APIs for this purpose turned out to be PHP-MYSQL extension, PHP-
MYSQLi extension and PDO.

The decision to go with PHP-MYSQLi was based on that the
current database uses MYSQL 5.6.17 and neither PHP-MYSQL

28	
	

extension or PDO fully supports all of its features. There was also no
intention so switch database during for the foreseeable future of the
applications lifecycle.

PHP-MYSQL extension

This is the predecessor to the PHP-MYSQLi extension and is
intended for use with MYSQL 4.1.3 and older. Thus this seemed a
little outdated.

PHP-MYSQLi extension

PHP-MYSQL improved extension is intended for use with
MYSQL 4.1.3 and newer to fully take advantage of new features in
these versions. The most important enhancements from the
predecessor PHP-MYSQL extension are:

• Object-oriented Interface
• Support for prepared statements
• Support for multiple statements
• Support for transactions
• Enhanced debugging capabilities
• Embedded server support
As well as the object oriented interface the procedural interface

from its predecessor is also available.

PHP-MYSQLi extension

This extension is included in PHP5 and newer.

PDO

PHP Data Objects is a database layer that provides a consistent
API for the application regardless of the type of database server the
application connects to. This makes it easy if there for any reason is a
need to switch database from one type to another. One disadvantage
is that it does not fully support all the functionality that PHP-
MYSQLi offers eg. multiple statements (Php.net, 2016)

29	
	

3.1.4. Web server
The web server used in this project was Apache 2.4.7. Apache is

the world's most popular Web server software according to their own
homepage. (Apache.org, 2016)

30	
	

4. Result

 TurtleBot software 4.1.

4.1.1. Starting the TurtleBot
To start the TurtleBot, the turtlebot_bringup package is used as

seen in Figure 6. The turtlebot_bringup package has to be run on the
on-board computer which is connected to the Kobuki base.

Figure 6 - Starting the TurtleBot

The turtlebot_bringup package provides roslaunch scripts for
starting the TurtleBot base functionality. The base launch file, called
‘minimal.launch’, starts the basic node (kobuki_node), the
laptop_battery_monitor, the robot_state_publisher, the
diagnostic_aggregator, and the robot_pose_ekf. It also includes
app_manager.launch which starts the TurtleBot app managers and
loads the TurtleBot app list. (Wiki.ros.org, 2016)

4.1.2. Navigation
The TurtleBot relies on Adaptive Monte Carlo Localization

(AMCL) for its navigation. AMCL is an algorithm used to localize a
robot in a known map. To estimate the robot’s pose (position and
orientation), the algorithm begins with requiring an initial external
estimation of the robot’s position and orientation on the map. The
robot then uses its sensor data to compare the input with the estimated
pose on the map. As the robot moves and receives new input data to
evaluate, the accuracy of the pose estimation increases.
(Se.mathworks.com, 2016)

The turtlebot_navigation package (Wiki.ros.org, 2016) takes an
amcl launch file and a map file as parameters on startup as seen in
Figure 7.

31	
	

Figure 7 - Starting turtlebot_navigation

The launch file is included in the TurtleBot packages that are
installed during the initial setup of the TurtleBot software on the
onboard computer. To set the estimated initial pose, the amcl launch
file can be edited. As seen in Figure 8 on line 17, 18 and 19 the
default x and y values have been set, as well as an angular value to set
the TurtleBot’s orientation.

Figure 8 - Editing the turtlebot_navigation launch file

The values entered in the launch file can be obtained from starting
RViz with turtlebot_navigation running. Rviz (ROS Visualization) is
a 3D visualizer for displaying sensor data and state information from
ROS. Live representations of sensor values can also be displayed.
This includes camera data, infrared distance measurements, sonar
data, and more. (Sdk.rethinkrobotics.com, 2016)

4.1.3. Creating a map
The map file required for amcl is also created using RViz and

turtlebot_navigation along with turtlebot_teleop (Wiki.ros.org, 2016).
The turtlebot_navigation is started with a mapping launch file as
argument and RViz, being a visualization program, is mostly used to
follow the progress of the map creation process. The mapping launch
file, “gmapping_demo.launch”, is included in the TurtleBot packages
installed during the initial setup of the TurtleBot software. When
turtlebot_navigation has been started with the gmapping launch file, it
is necessary to make the TurtleBot move in the area over which the

32	
	

map is to be created. This can be achieved by using the
turtlebot_teleop package. The turtlebot_teleop package provides
launch files for teleoperation with different input devices. For the
purposes of this project, the keyboard_teleop.launch file was used. A
running instance of turtlebot_teleop with the keyboard_teleop.launch
file can be seen in Figure 9.

Figure 9 - Controlling the TurtelBot with a keyboard and turtlebot_teleop

When the TurtleBot has moved over the entire area over which
the map is to be created, the map file can be saved to the onboard
computer. This is accomplished using the map_server in combination
with the map_saver utilities as seen in Figure 10. The “map_server
provides the map_server ROS Node, which offers map data as a ROS
Service. It also provides the map_saver command-line utility, which
allows dynamically generated maps to be saved to file.”
(Wiki.ros.org, 2016)

Figure 10 - Saving a map

33	
	

Two map files are created with the extensions .pgm and .yaml as
seen in Figure 11. The .yaml file is written in YAML which “is a
human-friendly, cross language, Unicode based data serialization
language” (Netpbm.sourceforge.net, 2016). It contains, among other
things, information on where to find the .pgm file. "PGM" is an
acronym derived from "Portable Gray Map". A PGM image
represents a grayscale graphic image and is a lowest common
denominator grayscale file format. (Netpbm.sourceforge.net, 2016)

4.1.4. Coffee_bot.py
The python script coffee_bot.py was written by Mark Silliman

and is publicly available on GitHub (GitHub, 2016). Mark Silliman is
one of the main contributors to learn.turtlebot.com, which is the
official tutorial site for the TurtleBot. In one of the tutorials the reader
is encouraged to download the coffee_bot.py script.

Early on in the project it was decided to try to find and use
prewritten code and incorporate it in the project. The general
functionality of the coffee_bot.py script is to get coordinates from a

Figure 11 - The .yaml file to the left and the .pgm file to the right

34	
	

database and, by using ROS and TurtleBot specific python libraries,
send the TurtleBot to those coordinates.

The coffee_bot.py script makes use of the “rospy” library to
control the TurtleBot. “rospy is a pure Python client library for ROS.
The rospy client API enables Python programmers to quickly
interface with ROS Topics, Services, and Parameters.” (Wiki.ros.org,
2016) The coffee_bot.py script also makes use of some TurtleBot
specific libraries to handle information sent from the kobuki base
regarding power system events, auto docking actions and general
sensor states.

The power system events are used to keep track of the power state
of the kobuki base, to decide whether the robot should continue
driving or go back to the docking station and charge the battery.

Auto docking
The auto docking actions are used to enable the functionality of

the kobuki_auto_docking package (Wiki.ros.org, 2016). When the
coffee_bot.py script receives the information that the power is low
and the robot needs to charge, it first sends it to some hard coded
coordinates. The coordinates represent a pose approximately one
meter away from the docking station. When the TurtleBot reaches the
coordinates, the kobuki auto docking tool tries to dock to the docking
station and returns a statement regarding if it succeeded or not. The
auto docking tool makes use of infrared emitters and receivers on the
Kobuki base and on the docking station to steer the robot onto the
docking station.

The auto docking tool needs to be started separately for the auto
docking to work. Figure 12 shows how the auto docking tool is used.

Figure 12 - Starting the auto docking tool

35	
	

The script

	

Figure 13 - The main function of coffee_bot.py

The main function of coffee_bot.py, seen in Figure 13, contains a
while loop which call the deliver_coffee() function. The
deliver_coffee() function handles all the major functionality of the
script. The function is divided into if statements that all contain some
part of the principal functionality, like the “if(self.INeedPower())”
statement for example. All the if statements return “true” when they
have executed and the while loop in the main function loops again.

The python script reads values from a MySQL database through
GET requests to a PHP file. The PHP file along with helper files are
also publicly available on Mark Silliman’s GitHub page (Silliman,
2016).

4.1.5. TurtleBot server
The files provided by Mark Silliman in the folder “turtlebot-

server” (Silliman, 2016) consists of three PHP files and one readme
file. The files “config.php” and “db.php” are written for the
configuration and setup of a MySQL database. The database used in
this project utilizes the table “QUEUE” that is set up by the db.php
file but the setup and the configuration of the project database
happens elsewhere, as described on page 14.

The file “coffee_queue.php” is what mediates the connection
between the python script (coffee_bot.py) and the database. The PHP
file contains functions such as push() and pop(), along with some
other functions to handle the “QUEUE” table in the database. The
python script sends GET requests and the “coffee_queue.php” file
reads and returns database values or writes to the database depending
on the request.

36	
	

4.1.6. Modifications of coffee_bot.py and
coffee_queue.php

To add functionality, some modifications were made to the
coffee_bot.py script. When the TurtleBot has arrived at a destination
it will stay there until the “B0” button on the Kobuki base is pressed.
To make it continue driving also when a button on the homepage is
pressed the additions in Figure 14 were made.

Figure 14 - Modifying what it takes to make the TurtleBot continue driving
after reaching a destination

The code on line 87, 88 and 89 in Figure 14 was added. The code
on line 87 will send a GET request to coffee_queue.php and store the
return value in the variable “value”. If the button on the homepage
has been pressed the boolean variable
“cannot_move_until_b0_is_pressed” will be set to false and the robot
will continue to the next destination. To make this work, the additions
to coffee_queue.php that can be seen in Figure 15 and 16 were made.

Figure 15 - coffee_queue.php receiving a GET request

Figure 16 - Returning the result retrieved from the database

37	
	

The button on the homepage sets a value in the database. That
value is read from the python script and if the value is set the
TurtleBot will continue driving. To make the button on the homepage
only able to set the database value if the TurtleBot is at a destination,
the addition on line 131 in Figure 17 was made to the python script. A
GET request is sent to a PHP file that will set a database value when
the TurtleBot has reached its goal. That value enables functionality on
the homepage to set the other database value, which will tell the
TurtleBot to continue on its path.

Figure 17 - Setting the database value to "location reached"

4.1.7. Turtlepower
To be able to communicate with the TurtleBot through the

homepage the robot first had to be started, then the navigation had to
be turned on, and the auto docking tool, and then the coffee_bot.py
script had to run. This could be achieved by opening terminal
windows and executing the commands seen in Figure 18.

Figure 18 - Startup sequence. Each in a new terminal window.

To simplify the process of starting the TurtleBot, a shell script
was created. The shell script runs each command in a new terminal
window and waits ten seconds between each command. Each
command is dependent on the previous command running and
therefore the wait, sleep(10), was inserted.

38	
	

To be able to start, restart and stop the TurtleBot from the
homepage a small program was written in C++. The program checks
for three different files in a specific location. The files will contain
either the words “stop”, “start” or “restart”. Depending on the content
of the files the program will either kill the processes started by the
shell script, run the shell script that starts the robot, or both.

 Application 4.2.

Figure 19 - Site map

4.2.1. Home
The home view is designed to be the starting point of the

application and it is possible to return to the home view with a single
from any of the other application views. On the home view there are 6
buttons, 5 of them directs the user to another view and the 6th has
functionality added to it but does not change the view.
Buttons:

1. Location List seen in Figure 20
2. Route List seen in Figure 21
3. Order seen in Figure 22
4. Power seen in Figure 23

39	
	

5. About seen in Figure 24
6. Continue seen in Figure 25

The appearance of the home view may vary depending on the
device the user is using.

4.2.2. Location List
Clicking on the first button in the home view opens up the

Location List view. From this view all stored locations are presented
in alphabetical order. There are 2 buttons for each location, the first
button Figure 26 will show the ‘X’ and ‘Y’ coordinates for that
location and the second button Figure 27 will remove the stored
location. Before the location is removed a confirmation popup will
show to avoid removing locations by accident. If the location is
removed it will disappear from the list.

There is a button on the top Figure 28, clicking this will direct the
user to the Add Location view.

Add Location
From the Locaton List view the user can navigate to the Add

Location view. Here the user can add New Locations to the Location
List by filling out the 3 fields, Location Name, X and Y then clicking
the button Figure 29. A successful addition will be confirmed by a
popup and if the addition is unsuccessful the popup will state what
the problem is.

Acquiring the X and Y coordinates has to be done through RViz
because the functionality to acquire coordinates through the
application is not fully working yet.

4.2.3. Route List
Clicking on the second button in the home view opens up the

Location List view. From this view all the stored routes are presented
by name in the order they were created with the oldest at the top and
the newest at the bottom. Clicking on a route will expand it, showing
all the locations included in the route. The locations are shown in the
order they are intended to be visited in. Clicking on a route will also
show a button Figure 27, clicking this will remove the expanded route

40	
	

from the route list. Before the route is removed a confirmation popup
will show to avoid removing routes by accident. If the route is
removed it will disappear from the list.

There is a button on the top Figure 30, clicking this will direct the
user to the Add Route view.

Add Route
From the Route List view the user can navigate to the Add Route

view. Here the user can create new routes by selecting a location in
the left box and clicking the ‘>’ button, the location will then be
moved to the right box. The right box represents the new route with
locations in it in the order they will be visited with the first location at
the top. To remove a location from the route being created select the
location and click ‘<’. The ‘>>’ and ‘<<’ buttons will add all and
remove all locations from the new route. Fill in a name in the Route
name box and click the button Figure 29. A successful addition will
be confirmed by a popup and if the addition is unsuccessful the popup
will state what the problem is.

Adding the same location several times to the route is not possible
in the current iteration.

4.2.4. Order
Clicking the third button on the home view will open up the Order

view. From this view the user can queue an order for the TurtleBot to
move to a stored location or to move through a route stopping at all
its locations in the right order.

To queue a location click on the first button Figure 31 and a list of
all the stored locations will show, then select the desired destination.
A confirmation popup will show before the order is queued to avoid
accidental orders.

To queue a route click on the second button Figure 32 and a list of
all the stored routes will show, then select the desired route. A
confirmation popup will show before the order is queued to avoid
accidental orders.

41	
	

4.2.5. Power
Clicking on the fourth button on the home view will open up the

power view. From this view the user can start, stop or restart the
BotButler process by clicking on one of the three buttons.

The first (Figure 33) will start the Botbutler process on the
TurtleBot.

The second (Figure 34) will stop the Botbutler process on the
TurtleBot.

The third (Figure 35) will restart the Botbutler process on the
TurtleBot.

There may be a small delay on up to 1 second for the action to
start.

4.2.6. About
Clicking on the fifth button on the home view will open up the

navigation view. Here the user can read about the project and other
useful information. There are 2 buttons directing the user to the
Scheduling view and the acquire graphical coordinates view. This
views have been placed in the About view because they are not yet
fully implemented.

Acquire Graphical Coordinates
Clicking on the first button in the about view will open up the

acquire graphical coordinates view. Here a picture of the map
generated by the TurtleBot is presented and the user is able to click
anywhere on the map and the coordinates for that specific location
will be generated.

This functionality is not fully implemented since the coordinates
generated are not perfectly matched with coordinates generated from
RViz.

Scheduling
Clicking on the second button in the about view will open up the

scheduling view. Here the user can set up a schedule for the TurtleBot
to go to a location or go through a route at any given time and day.

42	
	

This functionality is not fully implemented since the time and day
is not stored on or executed by the TurtleBot.

4.2.7. Continue
The sixth button on the home view will not change the view but

will make the TurtleBot move to its next order. Before the TurtleBot
moves to its next order a popup will show for confirmation. If the
TurtleBot has not reached its destination yet the popup will tell the
user to wait for the TurtleBot to reach its destination first.

4.2.8. Header
At the top of every view there is a navigation bar that will open up

the home view.

43	
	

Figure 20 - Location list

Figure 21 - Route list

Figure 22 - Order

Figure 23 - Power

Figure 24 - About

Figure 25 - Continue

Figure 26 - Informaiton

Figure 27 - Remove

Figure 28 – New location

Figure 29 - Send

Figure 30 - Create new route

Figure 31 - Go to location

Figure 32 - Go to a route

Figure 33 - Start

Figure 34 - Stop

Figure 35 - Restart

44	
	

5. Conclusion

 Application Functionality 5.1.
Most of the planned features are implemented and have passed

testing on several devices and are thus considered done and fully
working. This functionality was the most prioritized and is sufficient
to control the TurtleBot from the application as requested. However
the feature to create a route could need some rework as some of its
functionality might have a few bugs even though it is working and
currently considered as done.

There are two features (acquire graphical coordinates and
scheduling) that never got fully implemented but got included in the
application anyway (temporarily available through the About view)
because they had passed the concept stage and started implementation
already. Because of time limitation the implementation of these
features had to be aborted. These were never highly prioritized
features but would were classed as “nice to have”.

 Application Design 5.2.
The design also got to suffer some the time limitations however

maybe not as much as the functionality. Overall the design process
was mainly driven by the developers taking inspiration from previous
experience other applications and examples. The main motivation to
this approach was that it would greatly reduce the implementation
times because of the reduced time consumptions of the decision
process. This felt like a successful approach especially since the
development did not occur with close access to the users. During the
development it was considered more valuable to have access to the
TurtleBot than to develop close to the customer.

The design of the interface and the interaction with the application
has the clean and simple feeling that was planned. The design lacks
some testing from users outside of the development team and
consequently some additional rework has to be accounted for in
future iterations.

45	
	

More explanatory text or feedforward is one of things that never
got implemented solely because of time restraints. Some
improvements to navigation such as heading back to the homepage
after ordering the TurtleBot to go somewhere would have been
desirable but were also discarded because of the time restraints. The
main thing the design is lacking is testing from a 3rd party user that
might give insight to additional flaws in the design. However the
application has been tested and feels comfortable in several different
screen resolutions

Some unnecessary and nonfunctional buttons in the Route List
view also never got removed after the decision was made that that
specific functionality was redundant, these were placed out mainly
because some of the design was being based on speculation.

 Robot Functionality 5.3.
The functionality of the robot is mostly handled through

coffee_bot.py. The project team added a few modifications to make it
better fit into the project. The original developer of the coffe_bot.py
script had more experience with developing for the TurtleBot than the
project members. Since it had the functionality that was needed for
the project it was decided to use that script and focus on learning web
development instead of learning ROS and Python development.

 Problem Statements 5.4.

5.4.1. What already available functionality can be used in
this project?

The tutorial site at learn.turtlebot.com had a lot of the
functionality that was needed in the project. The python script that
handled the communication between the web site and the TurtleBot
was an essential part of the required functionality.

The web site was developed with bootstrap (Mark Otto, 2016),
which is an HTML, JavaScript and CSS framework.

46	
	

The functionality for getting coordinates when clicking on the
map in the Acquire Graphical Coordinates view was downloaded
from Emanuele Feronato’s homepage (Emanuele Feronato, 2006).

5.4.2. How can location information be presented through
the web application in a way that makes a user able
to control the TurtleBot?

The web application was developed in a way so that when a
location is added, it is up to the user to give it a name that is
understandable. When adding locations the user have to know the
coordinates of the location to be added. The functionality for finding
coordinates were supposed to be in the Acquire Graphical
Coordinates view, which was not completely developed. This means
that the user will have to know how to use the TurtleBot tools,
especially RViz, to find the coordinates and to be able to add a new
location.

5.4.3. How can coordinates be passed from a web
application in a way that the TurtleBot can map
them to its internal navigation system?

The library “rospy” used in Mark Sillman’s python script,
coffee_bot.py, contains a class called MoveBaseGoal() (Docs.ros.org,
2016) which takes coordinates as arguments and sends the TurtleBot
to the corresponding location. The process of sending them from the
web application involves the use of a database where the coordinates
are stored.
	

47	
	

6. Terminology

App The developed application
Application The developed application
BotButler The entire project, including the application and the
 TurtleBot software
Coordinates Values instructing the TurtleBot 2 where to go
Customer The people at Omegapoint giving the assignment
Developers The two students, Jorge Alas and Anders Holm working
 on the project
Designers see developers.
Order Instructions to the TurtleBot 2 to go to a specific

location
RViz Software used for creating maps and gathering

coordinates.
TurtleBot see TutleBot 2
TurtleBot 2 the Robot used during the project
User Workers at the Omegapoint offices
View A single page on the web application

	

48	
	

References
Apache.org. (2016). Welcome to The Apache Software Foundation!.
[online] Available at: http://www.apache.org/ [Accessed 11 May
2016].

Docs.oracle.com. (2016). A Relational Database Overview (The
Java™ Tutorials > JDBC(TM) Database Access > JDBC
Introduction). [online] Available at:
https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html
[Accessed 9 Jun. 2016].

Docs.ros.org. (2016). move_base_msgs:
move_base_msgs::msg::_MoveBaseGoal::MoveBaseGoal Class
Reference. [online] Available at:
http://docs.ros.org/diamondback/api/move_base_msgs/html/classmov
e__base__msgs_1_1msg_1_1__MoveBaseGoal_1_1MoveBaseGoal.
html [Accessed 20 May 2016].

Emanuele Feronato. (2006). Click image and get coordinates with
Javascript. [online] Available at:
http://www.emanueleferonato.com/2006/09/02/click-image-and-get-
coordinates-with-javascript/ [Accessed 20 Mar 2016].

Garrett, J. and Garrett, J. (2005). Ajax: A New Approach to Web
Applications | Adaptive Path. [online] Adaptivepath.org. Available at:
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
[Accessed 2 Feb. 2016].

GitHub. (2016). markwsilliman/turtlebot. [online] Available at:
https://github.com/markwsilliman/turtlebot/blob/master/coffee_bot.py
[Accessed 15 May 2016].

49	
	

GitHub. (2016). markwsilliman/turtlebot-server. [online] Available
at: https://github.com/markwsilliman/turtlebot-server/ [Accessed 15
May 2016].

jquery.org, j. (2016). jQuery. [online] Jquery.com. Available at:
https://jquery.com [Accessed 22 Apr 2016].

Kniberg, H. and Skarin, M. (2010). Kanban and Scrum. [S.l.]:
C4Media, Inc.

Mark Otto, a. (2016). Bootstrap · The world's most popular mobile-
first and responsive front-end framework.. [online] Getbootstrap.com.
Available at: http://getbootstrap.com/ [Accessed 19 Apr 2016].

Mark Otto, a. (2016). Migrating to v4 · Bootstrap. [online] V4-
alpha.getbootstrap.com. Available at: http://v4-
alpha.getbootstrap.com/migration/ [Accessed 19 Apr. 2016].

Netpbm.sourceforge.net. (2016). PGM Format Specification. [online]
Available at: http://netpbm.sourceforge.net/doc/pgm.html [Accessed
17 May 2016].

Python.org. (2016). Welcome to Python.org. [online] Available at:
https://www.python.org/about/ [Accessed 12 May 2016].

Php.net. (2016). PHP: Overview - Manual. [online] Available at:
http://www.php.net/manual/en/mysqli.overview.php [Accessed 25
Apr 2016].

Ros.org. (2016). ROS.org | About ROS. [online] Available at:
http://www.ros.org/about-ros/ [Accessed 12 May 2016].

50	
	

Saffer, D. (2010). Designing for interaction : creating innovative
applications and devices.

Sdk.rethinkrobotics.com. (2016). Rviz - sdk-wiki. [online] Available
at: http://sdk.rethinkrobotics.com/wiki/Rviz [Accessed 16 May 2016].

Se.mathworks.com. (2016). Localize TurtleBot using Monte Carlo
Localization - MATLAB & Simulink Example. [online] Available at:
http://se.mathworks.com/help/robotics/examples/localize-turtlebot-
using-monte-carlo-localization.html [Accessed 14 May 2016].

Silliman, M. (2016). markwsilliman (Mark Silliman). [online]
GitHub. Available at: https://github.com/markwsilliman [Accessed 12
Feb 2016].

Trello.com. (2016). Trello. [online] Available at: https://trello.com/
[Accessed 12 May 2016].

W3schools.com. (2016). CSS Tutorial. [online] Available at:
http://www.w3schools.com/css/ [Accessed 9 Jun. 2016].

W3schools.com. (2016). Introduction to HTML. [online] Available
at: http://www.w3schools.com/html/html_intro.asp [Accessed 9 Jun.
2016].

Wiki.ros.org. (2016). Documentation - ROS Wiki. [online] Available
at: http://wiki.ros.org/ [Accessed 14 Apr 2016].

Wiki.ros.org. (2016). kobuki_auto_docking - ROS Wiki. [online]
Available at: http://wiki.ros.org/kobuki_auto_docking [Accessed 5
May 2016].

51	
	

Wiki.ros.org. (2016). map_server - ROS Wiki. [online] Available at:
http://wiki.ros.org/map_server [Accessed 2 May 2016].

Wiki.ros.org. (2016). Robots/TurtleBot - ROS Wiki. [online]
Available at: http://wiki.ros.org/Robots/TurtleBot [Accessed 16 Apr
2016].

Wiki.ros.org. (2016). rospy - ROS Wiki. [online] Available at:
http://wiki.ros.org/rospy [Accessed 22 Apr 2016].

Wiki.ros.org. (2016). turtlebot/Tutorials/indigo/Turtlebot Installation
- ROS Wiki. [online] Available at:
http://wiki.ros.org/turtlebot/Tutorials/indigo/Turtlebot Installation
[Accessed 20 Mar 2016].

Wiki.ros.org. (2016). turtlebot_bringup - ROS Wiki. [online]
Available at: http://wiki.ros.org/turtlebot_bringup [Accessed 20 May
2016].

Wiki.ros.org. (2016). turtlebot_navigation - ROS Wiki. [online]
Available at: http://wiki.ros.org/turtlebot_navigation [Accessed 12
May 2016].

Wiki.ros.org. (2016). turtlebot_teleop - ROS Wiki. [online] Available
at: http://wiki.ros.org/turtlebot_teleop [Accessed 16 May 2016].

52	
	

Appendix A: Web site screen shots

Home View

Laptop

Smartphone

53	
	

Exapanded routes list

Remove confirmation popup

54	
	

Continue error popup

Power

55	
	

Appendix B: TurtleBot specification sheet

C
o

n
tro

llin
g

 a Tu
rtle

B
o

t 2 th
ro

u
g

h
 a w

eb
 in

terface

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Controlling a TurtleBot 2 through
a web interface

Jorge Alas
Anders Holm

Series of Bachelor’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-522

http://www.eit.lth.se

Jo
rg

e A
la

s &
 A

n
d

e
rs H

o
lm

Bachelor’s Thesis

