
In
ve

stig
atin

g
 O

p
en

 So
u

rce A
ltern

ative
s fo

r an
 Ele

ctro
n

ic Id
en

tity System

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Investigating Open Source
Alternatives for an Electronic
Identity System

Per Ahlbom
Martin Richter

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-499

http://www.eit.lth.se

P
e

r A
h

lb
o

m
 &

 M
a

rtin
 R

ich
te

r

Master’s Thesis

Investigating Open Source Alternatives for an
Electronic Identity System

Per Ahlbom & Martin Richter
ada10pah@student.lu.se, adi10mri@student.lu.se

Department of Electrical and Information Technology
Lund University

Advisor: Martin Hell

May 18, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

Electronic IDs enable people, companies and organizations to sign documents and
authenticate online. Considering the potential losses, the security in an eID system
is crucial. The eID system in Sweden today, BankID, is closed source and uses
proprietary standards. In our thesis we have investigated if open standard and
open source can be an alternative. First we reviewed the research about security
in open source contra closed source. The research was not conclusive and one can
not conclude that either of them provide more security. We show that using open
source is a possibility, by implementing a proof-of-concept eID solution utilizing the
framework SAML 2.0 and the protocol FIDO U2F. They are both open standards
and there are several open implementations of SAML 2.0 and libraries for FIDO
U2F to use. To verify that FIDO is a suitable protocol we looked at other possible
two factor authentication solutions, such as OATH-HOTP and OATH-TOTP. The
thesis also reviews some potential attacks against our system and we discuss how
to mitigate them.

i

ii

Acknowledgements

We would like to thank our supervisor Martin Hell for guiding us with content and
giving us new ideas when we had none. We would also like to thank our reviewers
for going through the thesis and helping us improve it. Last but not least, we
thank Ludivine for her help improving the language.

iii

iv

Table of Contents

1 Introduction 1
1.1 Purpose and goals . 1
1.2 Delimitations . 2
1.3 Outline . 2

2 Background 3
2.1 Electronic identity . 3
2.2 Federated Identity . 3
2.3 Linus’ law vs. security through obscurity 4
2.4 Two factor authentication . 6
2.5 SAML 2.0 . 7
2.6 FIDO . 9
2.7 OATH-HOTP and OATH-TOTP . 14

3 Electronic ID systems 19
3.1 BankID . 19
3.2 Swedish eID federation . 20

4 Our implementation 23
4.1 Infrastructure . 23
4.2 Distribution and issuing . 26
4.3 Authentication . 28

5 Attacks on the implementation 31
5.1 Phishing . 31
5.2 Man-in-the-browser . 32
5.3 Denial of service . 35
5.4 SQL injection . 37

6 Analysis 41
6.1 Open Source secure enough? . 41
6.2 FIDO . 42
6.3 OATH analysis . 44
6.4 Comparison FIDO & OATH . 45

v

6.5 SAML 2.0 analysis . 47

7 Discussion 49
7.1 Goal: evaluate the security of open source protocols 49
7.2 Goal: implement a proof-of-concept 49
7.3 Goal: evaluate security of our implementation 50
7.4 Future work . 51

8 Conclusion 53

vi

List of Figures

1.1 Overview of the new federation . 2

2.1 Overview of SAML Web Browser SSO POST 8
2.2 Overview of FIDO in the federation. Used with permission from FIDO

Alliance. 10
2.3 Overview of the HOTP algorithm 16
2.4 Overview of the OATH−HOTP proposed protocol 17

3.1 Federation infrastructure . 21

4.1 Our infrastructure . 24
4.2 FIDO bridge . 25
4.3 Registration process . 27
4.4 Authentication process . 29

vii

viii

Acronyms and Abbreviations

2FA Two Factor Authentication

CSRF Cross Site Request Forgery

eID Electronic Identity

FIDO Fast Identity Online

HOTP HMAC-Based One-Time Password

IdP Identity Provider

LDAP Lightweight Directory Access Protocol

MITB Man-in-the-Browser

MITM Man-in-the-Middle

OATH Initiative for Open Authentication

OTP One-Time Password

SP Service Provider

SSL Secure Sockets Layer

SSO Single Sign On

TLS Transport Layer Security

TOTP Time-Based One-Time Password

U2F Universal 2nd Factor

UAF Universal Authentication Framework

WAR Web application ARchive

DoS Denial of service

DDoS Distributed denial of service

CDN Content delivery network

CAPTCHA Completely Automated Public Turing test to tell Computers and
Humans Apart

ix

x

Chapter 1
Introduction

More and more services that require users to prove their true identity and to sign
contracts are transitioning to the Internet. The different types of services include
banking, tax and legal services. As these services involve legal contracts, the au-
thenticity of the electronic identity (eID) is crucial. The services that require
authentication need to be certain that the identity service is secure and cannot be
tampered with. It is also important that no user’s eID falls into the hands of a
third party. As of today in Sweden, BankID almost has the monopoly of the eID
service. BankID runs on proprietary code which can be a problem because one can
not look into how the security features are implemented. The Swedish eID board
is launching a new eID federation where this problem will be partly addressed.
The communication between the different parties in the federation will be based
on the open framework SAML 2.0. Compared to traditional authentication, once
a user joins a federation, it can authenticate towards several Service Providers
without creating several accounts. This thesis evaluates different open source pro-
tocols for authentication to be used in the new federation. By using open source
for the authentication, the whole system would be open source. The protocols
we will investigate for authentication are FIDO U2F, FIDO UAF, OATH-HOTP
and OATH-TOTP. Furthermore, we will implement a proof-of-concept application
using FIDO for the authentication and Shibboleth for the implementation of the
SAML 2.0 protocol. Figure 1.1 shows a scheme of the different parties in the fed-
eration and how authentication is done. When a user wants to access a resource at
the Service Providers, it authenticates to the Identity Provider that communicates
with the Service Provider and confirms that the user is authenticated. This thesis
will focus on the authentication at the Identity Provider when using open source
protocols.

1.1 Purpose and goals

• Evaluate the security of open source protocols for potential use in the new
Swedish eID federation.

• Implement proof-of-concept application using Shibboleth and FIDO.

• Evaluate the security of our implementation.

1

2 Introduction

Figure 1.1: Overview of the new federation

1.2 Delimitations

This thesis will focus on investigating the security of a few selected open source
protocols as well as investigating their suitability to use in the new Swedish eID
federation. The infrastructure of the federation will be reviewed briefly but the
focus of this thesis is the protocols/techniques concerning authentication. The
analysis will focus on a few critical attacks and how our proof-of-concept and cho-
sen protocols handles these attacks rather than a brief analysis of several attacks.

1.3 Outline

There are 8 chapters in this thesis, which are:

1. Introduction: contains goals and a brief background.

2. Background: introduces and defines the different protocols, frameworks and
concepts relevant for the thesis.

3. Electronic ID systems: reviews existing eID solutions and the proposed
Swedish eID federation.

4. Our implementation: presents our solution and how it integrates with other
software used.

5. Attacks on the implementation: evaluates different attacks on our system
and how we protect against them.

6. Analysis: goes through the results and draws conclusion about open source
and the different protocols.

7. Discussion: reviews our goals and how they were met.

8. Conclusion: a short summary of the thesis and the results.

Chapter 2
Background

This chapter will describe different techniques, concepts and protocols that are
relevant for this thesis. Concepts and definitions, such as eID, federated identity
and two factor authentication are explained. Previous research on the topic of
open source security is reviewed and summarized in the section "Linus’ law". The
frameworks/protocols SAML, FIDO & OATH are described in this chapter and
later investigated from a security perspective in the analysis.

2.1 Electronic identity

The information society of the European commission [1] defines an electronic iden-
tity as "a means for people to prove electronically that they are who they say they
are and thus gain access to services. The identity allows an entity (citizen, busi-
ness, administration) to be distinguished from any other". In this report we use
the term electronic identity or eID for the concept of authenticating a real person
or company online.

2.2 Federated Identity

Federated Identity is defined by Madsen [2] as "linking a person’s electronic iden-
tity and attributes, stored across multiple distinct identity management systems".
Shibboleth uses a similar definition and states that [3] "when a group of Identity
and Service Providers agree to work together, this group is called a federation".
Federated identity management involves having a common set of practices for a
group of Service Providers (SPs) and Identity Providers (IdPs). These practices
include trusting each other, technical frameworks, rules, regulations et cetera. For
a SP, using a federation means that they can outsource the identity management
to an IdP.

This is related to Single Sign On (SSO), in which a single user’s authentication or
token is trusted by different services or organizations. SSO is a subset of federated
identity management, as it is an implementation of a federated identity system.
Often, there is a central authority that can admit new SPs or IdPs into the feder-
ation and also exclude them. Later on, we will explain how the Swedish eID board
has chosen to set up their eID federation. Using a federation or SSO solution

3

4 Background

does not only make it easier for the user but can also improve security. A study
by Herley [4] showed that having multiple SPs with isolated identity management
leads to users choosing weak and/or reusing passwords. If a user has one or few
IdPs instead, they are more prone to choose stronger passwords.

There are several frameworks that can be used to implement identity federations,
for example SAML, Liberty Identity Federation Framework and OAuth. SAML
2.0 will be explained more in detail in Section 2.5. SSO is an implementation
of federated identity. SSO is usually deployed within an organization, while an
identity federation typically spans over several organizations. In both cases the
technology is the same. Some examples of SSO are Kerberos, Microsoft Outlook
account and Facebook connect. Shibboleth is a SSO framework that implements
the SAML 2.0 framework. This will be explained further in this chapter and the
security will be reviewed in the analysis.

2.3 Linus’ law vs. security through obscurity

In this report we use the definition of a vulnerability as "a bug that can be used
by an attacker to gain access to the system". The definition comes from the
"Common Vulnerability and Exposure" (CVE) [5], which is "a dictionary of pub-
licly known information security vulnerabilities and exposures", provided by the
MITRE Corporation. The National Institute of Standards and Technology (NIST)
adapts the CVE standard in the National Vulnerability Database [6]. NIST is an
American governmental organization under the Department of Commerce. The
not-for-profit MITRE also provides the Common Weakness Enumeration that we
use for defining attacks. Most research on software security use the CVE standard
as well as the same definition of a vulnerability.

This section summarizes research that has been done on the topic of open source
security. It covers empirical studies of vulnerabilities in open source software, com-
pared to vulnerabilities in closed source software. Some arguments for and against
the security open source are raised and later discussed in the analysis.

Linus’ law states that [7] "given enough eyeballs, all bugs are shallow". The
law is named after Linus Torvalds, the creator of the Linux kernel. This law ad-
vocates the use of open source software. On the other hand, another argument is
that "keeping the source code closed prevents the attacker from having easy access
to information that may be helpful to successfully launch an attack" [8]. Hiding
the source code and having a secret design is commonly referred to as security
through obscurity. Opinions on open source are often highly biased. Companies
using proprietary code claim that hiding the code is important to prevent attack-
ers. Meanwhile, open source advocates estimate that bugs are patched much faster
when several people can review the code [9]. This section will go through research
on the topic of open source security. In the analysis we will discuss how this affects
our proposed system and why it is an important aspect.

Background 5

In order to find out if open source systems are more or less secure than closed
source systems, one has to define what security is. This is very difficult to define,
as one has to consider the amount of vulnerabilities in a software, their severity, as
well as how fast they are patched. Schryen & Kudo [10] propose a method on how
to measure security in open and closed source software. They propose weighting
vulnerabilities. The weighting takes into account the number of vulnerabilities in
a software, how easily they are exploited, the severity of the vulnerabilities, time
between detection and deletion of vulnerability and how many bugs are unpatched.

In an empirical study, Schryen [11] compares published vulnerabilities in 8 open
source and 9 closed source software packages, using the metrics from previous re-
search. They analyzed e-mail clients, web browsers, web servers, office software,
operating systems and database management systems. The results show that the
mean time between vulnerability disclosures, i.e. how often a bug is found, was
lower for the open source e-mail clients & web browsers. For the other software
systems, there was no statistically significant difference in mean time between
vulnerability disclosure. A low mean time between vulnerability disclosures indi-
cates that there are more bugs in the system. In another study by Schryen [12],
he makes a comprehensive study on the patching behaviour for open and closed
source software. This study takes into account the severity of the vulnerabilities
using the common vulnerability scoring system (CVSS) [13], as well as whether if
a patch is provided. The study does not show any significant statistical difference
in overall patching behaviour for open source and closed source. However, it does
indicate that closed source vendors prioritize severe vulnerabilities higher. The
study also indicates that there is a greater spread for closed source code vendors,
which means that the best as well as the worst patching behaviour was found
among closed source software.

In a large scale exploratory analysis of software vulnerability life cycles [14],
Shahzad, Shafiq & Lio analyze vulnerability data for 8 vendors: Microsoft, Ap-
ple, Sun Oracle, Linux, Mozilla, Redhat and Google. The methodology for this
study and how data was chosen is very similar to the research of Schryen, but it
uses a larger set of data. The result of the research also differs as Shahzad et.al.
conclude that open source vendors are slower at providing patches. It also criti-
cises Schryen’s study for using a smaller set of data and not considering the time
between disclosure and vendor providing a patch. Schryen argues that the time
between public disclosure and when a patch is provided is not reliable. This is
because the time gap between the actual disclosure of a vulnerability (on the web
or in mailing lists, for example) and its consideration in the "Assigned" phase of
the MITRE CVE workflow is unreliable.

Hoepman & Jacobs [8] argue in a less statistical study that when a bug is found
on closed source code, the attacker will manage to exploit the vulnerability longer,
as patching is done faster for open source. They also point out that having the
source code open will result in a higher exposure initially, but that over time the
security will increase, as more people are able to find vulnerabilities and either
report or patch them.

6 Background

Another study by Schryen [15] does not prove that the security is significantly
better or worse in open source software or closed source software. He argues that
it is rather the policy of the vendor that will influence the software’s security.
This theory is also supported by Anderson [9] who has looked at the asymmetry
between open source and closed source software. For example, if a new type of
theoretic attack is found, it is easy to scan open source code to see if it is vulner-
able or not. It is more difficult to check whether or not the attack applies to a
closed source software, which puts more responsibility on the vendor. Anderson’s
paper concludes that there is no security difference in theory. He states that "the
attack and the defence are helped equally. Whether systems are open or closed
makes no difference in the long run."

2.4 Two factor authentication

Password based authentication is the most common authentication method online.
There are several possible attacks to password based systems, such as brute-force
attacks, dictionary attacks, as well as offline attacks such as rainbow attacks. A
study by Burnett [16] shows how poorly users choose their passwords. For exam-
ple, "qwerty" and "123456" were shown to be among the most common passwords.
Florencio & Herley [17] studied the password habits of half a million users. They
looked at how many passwords an average user has, how often they type them and
how often a user re-uses a password on different sites. The results showed that
users often use the same password for multiple accounts. Having the same pass-
word for different accounts leads to a single point of failure, as one account being
compromised would allow an attacker to gain access to all of a user’s accounts. It
is possible to set a minimum length and require a mix of characters, which will
defend against the basic attacks. However, this will not protect against phishing
or keylogging attacks. Having a password based authentication system, requires
that the service properly stores and manages the passwords as well as the user.

Considering the problems with password based authentication systems, using only
a password does not provide adequate security for the purpose of electronic ID.
An alternative to username password authentication is two factor authentication
(2FA). This is an authentication mechanism where the user is required to provide
two credentials to prove their identity. These credentials can be of three different
kinds: knowledge factor (what a user knows), ownership factor (what a user owns)
and inherence factor (what a user is) [18]. An example of knowledge factor is a
password. An example of ownership factor is a USB key or a credit card and an
example of inherence factor is biometric information such as a fingerprint. By
using two credentials, the potential security threat of a weak password diminishes
[19]. For an eID system, the security is more important than for example an ac-
count on a forum. If a forum account is hacked, an attacker can post as the user.
However, if a person’s eID is hacked it can lead to devastating financial losses and
legal problems. All eID systems (that we found) use two factor authentication.
In the report "Authentication in an internet banking environment", the Federal

Background 7

Financial Institutions Examination Council considers single-factor authentication
to not provide adequate security for financial transaction, and recommends using
multi-factor authentication instead [20]. Since 2FA provides more security than a
simple username password system, using 2FA is a requirement in our IdP solution.

2.5 SAML 2.0

Security Assertion Markup Language (SAML) is a framework for sending authen-
tication and authorization data between parties. It is based on XML to represent
the information. SAML 2.0 is the third SAML specification. It was developed by
Organization for the Advancement of Structured Information Standard (OASIS).
The Framework was developed to provide a SSO solution where users only need
to authenticate against one IdP in order to gain access to different SPs.

The authentication can be initiated by an IdP or a SP. The IdP starts the au-
thentication process when the user is redirected from the IdP to the SP. An exam-
ple of that would be a hotel website redirecting the user to a taxi rental service.
In the redirect request, an authorization token is added to the request. When
the user wants to access a protected resource, the SP redirects the user to an
IdP. The user authenticates themselves at the IdP which generates an access to-
ken. It is used as a credential at the SP to get access. After the authentication
is finished, the user is redirected to the SP where they supply the access token [21].

Information about the user from the IdP is sent as an assertion. An assertion
is a package with security consideration from the IdP. It can contain information
of when the user was authenticated, attributes about the user and what resources
they can access [22].

The SAML 2.0 framework is large and covers many user scenarios. To address
this, SAML 2.0 uses profiles. A profile specifies how the communication between
the IdP, user and SP works. Other organisations can set up their own profiles.
The new Swedish eID federation uses the Kantara Initiative eGovernment Imple-
mentation Profile of SAML 2.0. This profile is based on the Web Browser SSO
Profile, which is defined in the SAML 2.0 specification. This profile specifies how
the authentication is initiated and how the messages are sent between the SP and
the IdP. In this profile, the user’s browser works as a relay between the SP and
the IdP. TLS is the recommended transport protocol between the different parties.
The authentication process is initiated by the SP, which is illustrated in Figure
2.1. UA in Figure 2.1 is an automated script running in the browser which is
responsible for redirecting. The script is called when the user wants to access a
protected resource, as illustrated in step 1 in Figure 2.1. The SP sends a redirect
request to the user, which redirects the user to the IdP, shown as step 2 and 3 in
Figure 2.1. To identify the connection the, SP stores a relaystate of authentication
request. When the response is returned, the relaystate is used to redirect the user
to the right resource. This relaystate is also sent with the request. When the IdP
receives the authentication request, it initiates the authentication process. The

8 Background

Figure 2.1: Overview of SAML Web Browser SSO POST

user authenticates against the IdP, as shown in steps 4 and 5 in Figure 2.1. If the
authentication was a success, the IdP builds the response which is signed with a
private key. The IdP builds a HTML form where the response is added as a B64
encoded string, as illustrated in step 6 in Figure 2.1. The form also contains the
relaystate from the SP. After the form is created it is returned to browser. The
browser can call a JavaScript function, which posts the form to the SP as shown in
step 7 in Figure 2.1. When the SP receives the posted form, it checks the response
signature and the valid time frame. If these attributes are valid then the response
is valid. The SP then restores the state which the relaystate was bound to, and
the user is redirected to the requested resource, as demonstrated in the last step
in Figure 2.1 [21].

2.5.1 Security in SAML 2.0 Web Browser SSO Profile

To provide assurance that the responses from the IdP are valid, SAML 2.0 needs
to ensure confidentiality, integrity and authenticity. This is done with TLS and
digital signatures. The SAML 2.0 security consideration states some different
attack scenarios [23]:

• Stolen Assertion

• Forged Assertion

• Replay

Background 9

• Man in the middle

If an assertion is stolen the attacker could impersonate the user and gain access.
To protect from this attack it is required that confidentially is provided. This
is done with the use of TLS. The assertion is only valid a certain amount time,
which should be as short as possible. In a forged assertion attack, the attacker
forges or alters the assertion. To avoid this the assertion is signed. If the signature
is false then the assertion is invalid. A replay attack is avoided using the same
technique as for the stolen assertion. In a man in the middle attack, the attacker
impersonates the user at a new SP using a stolen assertion. This attack is mitigated
by the SP, which checks that the request for the assertion was made by itself. This
information is stored in the assertion which is signed by the IdP.

2.5.2 Shibboleth

Shibboleth is a consortium that develops products made for SAML framework
deployments. Their products include SAML Discovery Service, SAML SP, SAML
IdP, SAML Metadata aggregator for direct deployment, and low level SAML li-
braries in C++ & Java. We chose to use the SP and IdP from Shibboleth as they
are recommended by the Swedish E-identification Board because of the complexity
of the SAML protocols.

Shibboleth SP integrates with popular web servers such as Apache and Microsoft
IIS. The service is added to the web server as an add-on. It then provides authen-
tication to the websites and web resources deployed on the web server. This means
that the websites can be written in any language. If a web resource wants to utilize
the SP, the web server is configured to perform authentication when that resource
is accessed. The IdP is written in Java and deployed in a Java servlet container. It
supports several password authentication protocols such as LDAP, Kerberos and
servlet container. You can also add your own authentication protocols written in
Java. The officially supported servlet containers are Apache Tomcat 8 and the
Jetty version 9.2 or 9.3. The discovery services can either be installed with the SP
or as a standalone system. The discovery services enable the user to choose what
IdP they use for identification [3].

2.6 FIDO

FIDO Alliance is a non-profit organization. It is an industry consortium with
members such as Google, PayPal, Microsoft, VISA, American Express and In-
tel. It was founded in order to "address the lack of interoperability among strong
authentication devices as well as the problems users face with creating and re-
membering multiple usernames and passwords" [24]. FIDO is meant to simplify
and strengthen authentication online. As of January 2016, there are two published
protocols: Universal Authentication Framework (UAF) and Universal 2nd Factor
(U2F). There is also a third protocol that is submitted to W3C to become a stan-
dard, which is called FIDO 2.0 WEB API.

10 Background

Figure 2.2 shows where FIDO is used in the overall architecture of an identity
system. The federated relying party websites are the SPs (for example banks).
The FIDO authenticators can either be embedded in the user device (in UAF)
or can be a separate FIDO token that is connected to the user device (in U2F).
The FIDO protocols are public key cryptosystems that use a challenge response

Figure 2.2: Overview of FIDO in the federation. Used with permis-
sion from FIDO Alliance.

protocol for authentication. They are open protocols and published implementa-
tions and libraries are open source. The key pairs are unique between the device
and the server. This provides anonymity to the user, because the different FIDO
server can not link the other keys to the device. As FIDO is a relatively new
authentication technique, we wanted to investigate the possibilities of using it in
an eID system. Another reason FIDO was chosen is because it supports two factor
authentication, a requirement for our proposed solution.

2.6.1 Universal 2nd Factor

U2F uses a physical device, also called token. This token is connected to the client
device. As of October 2015, most devices are connected by USB, but the protocol
supports NFC and Bluetooth as well. In U2F, the user first authenticates using
their password to the IdP and is then prompted to authenticate using the token.
U2F uses the physical token to strengthen the password authentication. The token
is responsible for managing the keys [25]. The FIDO U2F infrastructure contains

Background 11

three parties, which are the FIDO token, FIDO Client and the relying party. As
mentioned before, the FIDO token is a hardware device that signs the challenge
from the server. The FIDO Client is usually a web browser which is responsible
for handling the request to the FIDO token. The relying party is the server which
is responsible for authenticating the user.

To provide protection against man-in-the-middle and phishing attacks, the FIDO
Client packages information about the server. This is called client data. When
the server receives the response, it checks that the client data is correct and that
the request came from the server. The Client data contains:

• Challenge: the challenge from the relying party.

• Origin: the web origin that the FIDO client sees such as transport protocol
and the domain names.

• Channel ID (Optional): used if the communication is secured by the Channel
ID protocol.

To inform the token what key it should use, the relying party sends a key handle
during the authentication request. The server also identifies itself in the request
with an application id (AppID). This is the same as the web origin of the server.
The steps for registration and authentication using U2F are described in detail
below [26].

1. The user first logs on to the web service with username and password, and
is redirected to the token registration page.

2. A JavaScript is called to start the registration. The JavaScript requests a
RegistrationRequest from the server.

3. The RegistrationRequest contains a challenge and an AppID.

4. The JavaScript then calls the registration process in the FIDO Client with
the info from the server.

5. The FIDO Client then computes the Client Data and packages the informa-
tion. The information is packaged as two hashes: one over the Client Data
which becomes the challenge and one over the AppId.

6. A request is then sent to all FIDO compliant devices attached to the user’s
device with the information.

7. The end user chooses a device by activating it, for example by clicking on
it.

8. The activated device signs the challenge and returns the response containing:

(a) The public key.

(b) A key handle.

(c) An Attestation certificate. This validates that the key was produced
by an authorized manufacturer.

(d) The signed challenge.

12 Background

9. The FIDO Client then packs the response to the server. The response
contains the raw response from the FIDO token and the Client data.

10. The package is then returned to the JavaScript which sends it to the server.

11. When the server receives the response, it verifies that it is correct. If it is
correct, the key handle and the public key are bound to the user account.

After the user has registered the token, it can be used to generate the signature
for authentication. The signature process consists of the following steps:

1. The user first logs on to the service using the original credentials (username
and password).

2. The user is then redirected by the web service to the second stage of au-
thentication. A JavaScript on this page calls the server and requests the key
handle that the user has registered as well as a challenge.

3. The browser asks if the user wants to authenticate (this option can be re-
membered).

4. If the user wants to authenticate, the JavaScript calls the FIDO client’s
authentication function with the parameters from the server.

5. The FIDO client computes two hashes, one over the Client data and one over
the AppID. Both parameters are hashed with the SHA-256 hash algorithm.

(a) The hashed client data is called challenge.
(b) The hashed AppID is called application data.

6. The FIDO client then sends the two hashes with the key handle to the
different tokens.

7. The user activates one of the tokens. The token checks the key handles to
see if it can sign the challenge. If the key handle was created by the token,
it signs the challenge and the AppID data. The token then returns the
signature to the FIDO client.

8. The FIDO client function packs the signature, the client data and the key
handle.

9. The FIDO client returns the information to the calling JavaScript.

10. The JavaScript function sends the information to the server.

11. The server validates the data and if it is correct it grants the user access.

2.6.2 Universal Authentication Framework

The UAF registration and authentication process has many similarities to the U2F
process for registration and authentication. The biggest difference compared to
U2F is that it replaces the password, whereas U2F strengthens password authenti-
cation. This means that the user needs a way to authenticate to the device. FIDO
proposes several ways to authenticate. Some of the proposed ways are fingerprint,
face recognition and pin code. The different ways to authenticate provide different

Background 13

levels of security. The server can chose which type of authentication it will allow
to gain access to the service. This information is sent to the FIDO client during
registration and is called polices. The different methods are presented to the user
and the user chooses the one they prefer.

Given that UAF devices have a screen, the protocol can be used to sign trans-
action information. U2F tokens lack this feature as they do not have a screen.
In the UAF protocol, the server can send messages to the device which the UAF
client can show to the user in a secure manner. The user can then verify the
information and sign it by authenticating to the UAF device.

2.6.3 FIDO Security

As mentioned before, FIDO was developed to strengthen the security of authenti-
cation and make it simpler. This is done by minimizing the use or importance of
passwords. As mentioned in Section 2.4, using only a password does not provide
enough protection. To provide security during transport, FIDO requires the use
of TLS. The transport technique should provide a way to authenticate the server.
This information is then used during authentication [27].

In the FIDO specification, the FIDO alliance mentions different attacks which the
new protocols protect against. We have chosen to describe three major attacks
against the system: man-in-the-middle, phishing and cloning a token.

Man-in-the-middle-attack

Both FIDO protocols have strong protection against man-in-the-middle attacks.
To accomplish this, the FIDO protocols have server verification during the au-
thentication and registration process. During authentication and registration, the
server provides its identity two times. The first time is during the request message
with the AppID information. The FIDO client then verifies that the web origin
of the server is the same as the AppID. If these two values match, no man-in-the-
middle is present. This is because the server has been verified during the setup
phase of TLS using a certificate. If an attacker is present, they would have to
forward the request with an AppID of the legitimate server. This would make the
authentication fail as the web origin would be wrong or the attacker could not
provide a valid certificate for the origin [26].

A man-in-the-middle attack can be performed on web services that use FIDO
but it requires an advanced adversary. To perform the attack the adversary needs
to acquire valid certificate with the same web origin as the web service. This
certificate must also be signed by a trusted Certificate Authority. It is not the
FIDO protocol per se that is bypassed but the TLS infrastructure. The integrity
and confidentiality between the server and the user is broken. This have other
larger consequences than just FIDO is broken. The attacker can then control all
the communications between the browser and the server. This will bypass the
protection in FIDO but the bar is high.

14 Background

Phishing attack

A phishing attack on a FIDO system is difficult because of how the protocols are
designed. Phishing is a valid attack when the goal is to obtain static password or
credit card information. The information can be used by the attacker until the
user makes an active decision to change or block them.

Both FIDO protocols are by design protected against this. This is because during
every authentication, the user needs to sign a challenge from the real server. The
phishing attack must then be performed in real time and the phisher must provide
the origin and a valid certificate of the targeted server.

Cloned authenticator

By cloning a device, the attacker is in possession of a device that can be used
to perform authentications. The sever can not distinguish the real authenticator
from the cloned one. The specifications of both protocols specify that the keys
should be stored in secure hardware [26]. To further protect against consequences
of cloning, both UAF and U2F have a counter which is incremented for every
authentication. This value is sent to the server with the response. If the counter
value sent in the response is smaller than the stored counter value at the server,
the device is cloned. The server then informs the user that the device is cloned
and blocks the user [27].

2.7 OATH-HOTP and OATH-TOTP

The HOTP (HMAC-Based One-Time Password) and TOTP (Time-Based One-
Time Password) algorithms provide methods for generating one time passwords
(OTP). The HOTP algorithm was developed to provide an easy way for two fac-
tor authentication. As two factor authentication was a requirement, we chose to
investigate OATH and its suitability to be used in an eID federation. The devel-
opers of OATH argued that previous authentication system had poor adaptation
because they were expensive and hard to integrate, which led to low adaptation.
HOTP and TOTP want to solve this with an open standard that is cheap and
easy to implement in hardware and software. This is done using HMAC-SHA1,
which is widely used and easy to implement. This provides a simple way to add
two factor authentication to a system. TOTP is used by Facebook and Google to
provide two factor authentication. They both use a software implementation of
the algorithm. Google has developed its own authenticator app whereas Facebook
uses third party apps [28].

OTP can enhance the authentication security in the following way: the user’s
OTP client generates a passcode. The generator can either be a hardware token
or a software running on a device. The code is entered when the user provides
their credentials. The OTP can be used as the only secret during authentication
or in combination with a regular password. When the server receives the password
from the client, it generates its own OTP and verifies that they are the same. If

Background 15

the verification is successful, the user is authenticated.

The two algorithms use the same formula to calculate the OTP value but different
seeds. The algorithm is based on HMAC-SHA1 where the output is truncated to
make it easier to read for humans. HOTP was the first version of the algorithm,
it uses a counter as the seed to generate OTPs. TOTP uses time steps derived
from UNIX time as the seed for the OTP generation. During the development of
the algorithm, six different requirements were defined:

1. The algorithm must be sequence- or counter-based.

2. The algorithm should not be costly to implement in hardware.

3. The algorithm must work with tokens that do not support any numeric
input, but may also be used with more sophisticated devices such as secure
PIN-pads.

4. The value displayed on the token must be easily read by the user. The
HOTP value must be at least 6 digits.

5. There must be user-friendly mechanisms available to resynchronize the coun-
ter/clock.

6. The algorithm must use a strong shared secret. The length of the shared
secret must be at least 128 bits. The recommended length is 160 bits.

To calculate the OTP, these values are needed:

• (HOTP) A counter C that is input to the function, which is incremented
for each authentication. This counter must be synchronized between the
HOTP generator and the validator.

• (TOTP) A time step T which is calculated in UNIX time.

• A shared secret K between the client and the server. The key needs to be
unique for each generator.

• A Digit D which says how may number digits the HOTP value contains.

Figure 2.3 shows the different steps in the algorithm. The two algorithms are not
complete protocols but the specification proposes some recommendations for how
a protocol could work. The different steps are described in Figure 2.4. In the
first step, the user authenticates against the server with something they know, for
instance a password. In step two, the OTP value is sent and validated. If it fails,
the user needs to send a new value. This is done a certain number of times. If this
also fails, the user’s account gets locked [29].

2.7.1 OATH−HOTP

This algorithm uses a counter to generate the HOTP value. A user can generate
HOTP values that are not used to authenticate the user. This leads to desynchro-
nization between the user token and the server. To solve this, the HOTP has a
synchronization parameter called s. If step 3 in Figure 2.4 fails, the server tries to
resynchronize s times by increasing the counter [29].

16 Background

Figure 2.3: Overview of the HOTP algorithm

2.7.2 OATH−TOTP

The Algorithm is based on the HOTP algorithm but uses a time based counter to
calculate the value. It can also use the more secure algorithms HMAC-SHA-256
or HMAC-SHA-512. As the algorithm uses time steps as generator value, it limits
the time when the OTP can be used. The parameters to calculate the time step
are:

• X which determines the step size. 30 is the default value.

• T0 Is the start value in UNIX time when the generation of values started.
0 is the default value meaning that the number generation started at Unix

Background 17

Figure 2.4: Overview of the OATH−HOTP proposed protocol

time zero.

The formula to calculate the time step is:

T =
⌊ (CurrentUnixtime− T0)

X

⌋
(2.1)

T is used instead of C, like in the HOTP algorithm. To compensate for time fluc-
tuation in the different devices, the algorithm supports a window around the time
step. The window should be as short as possible. The specification recommends
to only allow the next time step [30].

18 Background

Chapter 3
Electronic ID systems

As mentioned before, BankID has a near monopoly on electronic IDs in Sweden,
with a market share of 87% for all potential digital signatures in Sweden as of De-
cember 2015 [31]. The remaining 13% consists of mostly SP specific authentication
and signature methods. The only other non-SP specific eID provider, Telia, has
stopped issuing new eIDs for individuals [32]. This chapter describes how BankID
and the new eID federation work.

3.1 BankID

BankID is developed and maintained by Finansiell ID-Teknik BID AB, which is
owned by seven of the largest banks in Sweden [33]. It is a closed source code
software, which makes it difficult to find out exactly how the protocol works and
how the system is built. There are three forms of BankID: card BankID, desktop
BankID and mobile BankID. Mobile BankID accounts for the vast majority of
all signatures and authentications, and will therefore be the focus of this report.
The local authentication differs slightly, e.g. when using BankID on a card, the
user needs to connect it to the computer using a USB card reader. With mobile
BankID it is enough to have the smartphone or tablet connected to the internet.
Some reverse engineering has been done on the application mobile BankID [34].
A description of how some parts of BankID work can also be derived from the the
BankID Relying Party guidelines [35].

BankID works like a federation but with only one IdP. Different SPs, such as
banks, governmental agencies and other services can join the federation. BankID
is issued by most banks in Sweden, including SEB, Swedbank, Handelsbanken and
Nordea. The exact issuing process varies. For mobile BankID, a one time code
is obtained either from a bank office or through a bank’s online portal. The one
time code is used to install the certificate on to the device (smartphone or tablet).
When installing the certificate, the user chooses a PIN code of at least 6 digits.
After installing the certificate, it is not possible to move it to another device or to
change the PIN code. If a user wants a new PIN code, they have to uninstall the
certificate and re-install it, going through the issuing process again. As it is not
possible to move it to another device, the user will have to install a new certifi-
cate. This indicates that the private key is hard-coded into the device during setup.

19

20 Electronic ID systems

When authenticating with mobile BankID, the user can access the SP either
through the device with BankID or through another device. When asked to log on,
the user types in their personal identity number. The SP then sends an authentica-
tion request to BankID. The SP prompts the user to open the BankID application.
When the user opens the application, the application retrieves the request from
BankID. This request contains information about which SP the user is authenti-
cating themselves to. After the user authenticates using the PIN code, the device
then sends an authentication confirmation (token of some sort) to BankID that in
turn forwards it to the SP. After the SP has received the confirmation, the user
is authenticated and logged in. Signing transactions follow the same procedure
as authentication with the addition that the SP can choose a text that the user
sees in the application before signing. The text displayed can for example be "2
transactions from SEB, total amount 1 000 SEK". This text prevents man-in-the-
middle-attacks, as a potential attacker can’t make a user sign another transaction.

It is possible to revoke a certificate without having access to it, by contacting
the issuing bank. This security measure is similar to how credit cards that have
been lost can be blocked. This is an efficient way to prevent ID thefts if the device
is lost or compromised. If more than one authentication/signature is requested,
all requests will be canceled. The application also has a maximum of four wrong
PIN codes entered within a certain time limit, which prevents brute force attacks.

BankID is updated regularly but no bugs detected are posted publically. In our
e-mail correspondence with BankID, they confirmed that they do regular pene-
tration tests and security analysis. Furthermore, they have independent, external
security analysis done at lease once a year and with every major deployment. How-
ever, these reports are classified for security reasons.

There is a Norwegian BankID, which is a different system sharing the same name.
More success has been made reverse engineering the Norwegian version [36] than
the Swedish one. There is also a published paper on weaknesses [37] for the Nor-
wegian system. As this report focuses on existing and new eID systems in Sweden,
no analysis is done for the Norwegian BankID.

3.2 Swedish eID federation

As mentioned, the Swedish eID board is in progress of launching a new infras-
tructure for electronic identification and signing (as of July 2015). Up until now,
the private sector has been responsible for providing eID services, granted that
they followed the guidelines and security levels. With the new infrastructure, an
eID federation is created. This federation, under the control of the Swedish eID
board, is responsible for rules, regulations as well as some technical infrastructure
[38]. The infrastructure is open source and the communication is based on the
open standard SAML 2.0. The federation has a central XML file with information
about all the parties and their certificates. This XML file is signed by the eID

Electronic ID systems 21

board’s certificate. Having a central authority managing who can join the federa-
tion will make it easier for new IdPs to connect, as they only need to connect to
the federation and not to each individual SP. As seen in Figure 3.1, a user connects

Figure 3.1: Federation infrastructure

to the SP and gets redirected to the chosen IdP using the Discovery Service (DS).
The IdP then authenticates the user and sends an identity assertion to the SP,
proving to the SP that the user is authenticated. The Swedish eID board provides
a DS so the user can choose which IdP to use, no matter what SP it is connecting
to [39]. To become an IdP, the organisation needs a way to register and authenti-
cate users. These two processes needs to be evaluated by the Swedish eID board.
If the processes are approved the organisation connects to the federation and can
start generating ID certificate. IdPs are not responsible for providing signatures.
Instead there is a Signing Authority that provide this service. When a user wants
to sign a document, the Signing Authority redirects to IdP where the user authen-
ticates. The Signing Authority then signs the document. With this solution, the
IdPs do not need to be certificate-based.

Furthermore, there will be an Attribute Authority (AA). The AA can be used
if a SP wants more information about a user, for example their phone number,
provided that this information is stored with the corresponding eID. The commu-
nication between parties in the federation is based on the two SAML 2.0 profiles
"Kantara Initiative eGovernment Implementation Profile of SAML V2.0" and "De-
ployment Profile for the Swedish eID Framework". By having the infrastructure
open source, it is possible for people to review the code and settings used. How-
ever, how the IdP chooses to authenticate the user is up to each IdP and there is
no requirement that this should be done using open source solutions. How the user
is registered to the IdP is not defined by the Swedish eID federation. Each method
of registration is evaluated when the IdP applies for IdP status. The registration
process must ensure the authenticity of the user. If this cannot be granted, then

22 Electronic ID systems

ID theft is possible.

Chapter 4
Our implementation

This chapter addresses our application both from a technical perspective and a
functional perspective. The section about the infrastructure describes how the
application is implemented, the different parts and how they interact. This chap-
ter includes technical description, issuing, registration of a device, authentication
and signing. This chapter also explains how a user interacts with the system, the
communication in the system and what parties are involved. The authentication
feature is fully implemented while the others are simulated in order to get a full
cycle, from an issued eID until it is made invalid (either because of expiration or
revocation).

In this chapter one can find the different system parts explained. The security
analysis for different attacks can be found in Chapter 5. Finally, the implementa-
tion is discussed and reviewed in Chapter 7.

4.1 Infrastructure

To implement our system we have used several tools and libraries. The SP and
the IdP run on a Linux server with the CentOS as operating system. For the web
server, we use the Apache HTTP server. The Apache server is responsible for all
communication with the user, as described in Figure 4.1. The communication with
the user is done over TLS. Shibboleth’s SP integrates natively with the Apache
web server as a plug-in. The integrated SP provides access management to our
protected resources in the proof-of-concept implementation.

The IdP from Shibboleth is written in Java and can be deployed in a web container
as a Web Application Archive (WAR) file. We chose to use the web container Tom-
cat from the Apache foundation. A web container is responsible for managing Java
servlets. Java servlets is a Java technology which provides dynamic web service.
The dynamic content is generated by the Java classes and methods. Web contain-
ers are responsible for redirecting the web request to the right servlet. It is also
responsible for managing the servlet’s life cycle and the access rights to it. Java
servlets are packed in a WAR. These WARs contain all information that is needed
to run the web application. We chose to use the Tomcat container because it is
officially supported by the Shibboleth IdP.

23

24 Our implementation

Tomcat also integrates easily with the Apache HTTP server. The Tomcat server
talks with the Apache server over the AJP protocol. AJP stands for Apache JServ
Protocol and is a binary protocol which provides a proxy between the Apache
HTTP server and an application server. The application server is in our case the
Tomcat server. Requests to the Tomcat server are redirected by the Apache server
from the rest of the Internet. Any response from Tomcat is returned to the Apache
server, which sends the response back to the user who requested the web resource.
The Tomcat runs on the same server and the communication between the Apache
server is done over localhost. Figure 4.1 illustrates the connection between the
Tomcat server and the Apache server.

Figure 4.1: Our infrastructure

To store information about our user we use MariaDB, a SQL database based on
MySQL. The database was forked from MySQL and is developed by developers
from MySQL who quit after Oracle acquired Sun in 2009 [40]. MariaDB is compat-
ible with many MySQL commands. In the database we store the user credentials.
The information we store are the users’ personal identity number, password and
the registered FIDO keys. To protect the passwords, we use a unique salt for each
password and compute a hash. The computed hash is then stored in the database.

Our implementation 25

Figure 4.2: FIDO bridge

Our IdP system is based on two web applications, the FIDO WAR and the IdP
WAR, as shown in Figure 4.1. First of all, we use the IdP from Shibboleth that
handles all the authentication requests from the SP. The IdP is configured to sup-
port the authentication from our FIDO implementation. To connect the IdP and
the FIDO application, we have a service running inside the IdP application that
acts as a bridge. This bridge is responsible for handling the authentication request
between the FIDO application and the IdP application.

Figure 4.2 shows how the user is redirected between the different parties: IdP
application, bridge and FIDO application. When the IdP application wants to
authenticate a user, they are redirected to the bridge which saves a conversation
state. It is used by the IdP application to identify that the user has been authen-
ticated. After the conversation state is set, the user is redirected to the FIDO
application. The FIDO application then authenticates the user. This process is
described in Section 4.3. When the FIDO application has authenticated the user
it puts a token in the database and redirects the user back to the bridge. This
token contains the conversation state and the personal identity number of the user.
The bridge verifies that authentication has occurred by verifying the saved token
in the database. If the token exists and is correct, the bridge notifies the IdP
application that the authentication has occurred. To generate FIDO authentica-

26 Our implementation

tion and registration requests we use a library written by Yubicon. This library
is also responsible for verifying the responses from the user. Yubicon is one of the
organisations that created the U2F protocol. It also manufactures U2F compliant
tokens.

4.2 Distribution and issuing

As a complement to our technical implementation, we propose a scheme for how
the distribution, issuing and revoking FIDO devices could work. One idea with
FIDO is that the user should be able to choose which vendor and device to use.
Therefore, the distribution process proposed does not include the acquiring of the
FIDO device.

The distribution of the eID will only concern how the user registers a FIDO device.
As long as a FIDO device is approved by the alliance, it is considered safe, the
user can therefore get the device from the vendor of their choice. The steps before
a user can authenticate using FIDO are explained below.

1. The user applies at the IdP with personal identity number.

2. A one time code valid for a limited time is sent to the closest post office.

3. The user gets a note in the mailbox (to the address associated with the
personal identity number) that they need to visit the closest post office. At
the post office, the user identifies themselves using ID and receives the letter
with the code.

4. The user goes to the IdP’s website and registers their FIDO token using the
one time code. It will only be possible to use the code to register a FIDO
device with the correct personal identity number. This process is described
in Section 4.2.1: registration of a device.

5. The user can now use the FIDO token to authenticate at the IdP. The IdP
then grants the user access to all SPs in the federation.

With this system, a potential attacker would need to have the ID as well as access
to the user’s physical mailbox. The IdP will be responsible for storing the public
key together with the personal identity number. In case of a lost key, it is possi-
ble to revoke a token by contacting the IdP. If a U2F token is lost and found by
someone else, they will not be able to link the token to a personal identity number.

The eID credentials are valid a limited time, for example five years. Before expi-
ration, the user must renew the key pair. This is done at the IdP where a new
FIDO registration process occurs. The user can use the old device but the key
pair of the account has to be regenerated.

4.2.1 Registration of a device

To register at the IdP, the user first performs the steps described in Section 4.2.
When the user has received the registration code, they can register at the registra-

Our implementation 27

Figure 4.3: Registration process

tion page. Figure 4.3 illustrates the different parties in the registration process and
their communication. The user performs the following steps during registration:

1. First the user enters their personal identity number, password and the one
time registration code.

2. The information is sent to the server, which verifies that it is correct.

3. If it is correct, a new user account is created and the information is saved
in the database.

4. The user is redirected to the FIDO token registration web page.

5. The browser sends a registrations request to the FIDO service.

6. The server responds with a registration request containing a challenge.

7. When the browser receives the request it starts the FIDO registration pro-
cess, which is explained in detail in Section 2.6.1.

8. The response from the FIDO token is then returned to the FIDO service.

9. The FIDO service verifies the response. If it is correct, the FIDO token is
registered to the user account.

10. The user can now use the key to authenticate at the IdP.

28 Our implementation

4.3 Authentication

The authentication in the FIDO application is done in two stages. Figure 4.4
describes how the different parties communicate. To authenticate against the
FIDO service the user follows the following steps:

1. The user gets redirected to FIDO service from the bridge between the FIDO
service and the IdP service.

2. The redirect contains the conversation state which is used to identify the
authentication.

3. The user enters their personal identity number and the password into to the
browser.

4. The browser then sends the conversation state, the personal identity number
and the password to the FIDO service.

5. The FIDO service saves the personal identity number and conversation state
and verifies the password.

6. If the password is correct, the user is redirected to the FIDO authentication
page.

7. The browser requests to authenticate and the FIDO server responds with
an authentication request.

8. When the browser receives the request, it starts the authentication process,
which is explained in detail in Section 2.6.1.

9. The response from the FIDO key is then returned to the FIDO service.

10. The FIDO service verifies the response. If it is correct, the user is authen-
ticated.

11. The FIDO service saves the personal identity number and conversation as
a token in the database. The user is then redirected back to the bridge.

12. The bridge verifies that the user is authenticated by checking the token.

4.3.1 Signing

As described in Section 3.2, the signing process is done by the signing authority.
The signing process have the following steps:

1. The user is redirected from the SP with the document it wants to sign to
the signing authority.

2. The signing authority present the information the user should sign.

3. If the user approves it is redirected to the IdP.

4. At the IdP the user performs the authentication and the attestation is gen-
erated by the IdP.

5. The user is returned to the signing authority that verifies the attestation.

Our implementation 29

Figure 4.4: Authentication process

6. If the attestation is correct the document is signed.

7. The user is then redirected back to SP with the signed document.

30 Our implementation

Chapter 5
Attacks on the implementation

This chapter describes four attacks that could be carried out on our proof of
concept implementation for how the Swedish eID federation could work. Each
attack is described in general, then how it could be applied to our system and
lastly how our system mitigates the attack. The attacks were chosen based on how
common they are and how severe the damages would be to our system if successful.
To asses this, we looked at the Open Web Application Security Project’s (OWASP)
top 10 [41] and the CWE’s list of 25 most common attacks [42]. This lead us to
choose the following attacks: phishing, Man-in-the-Browser, SQL injection and
Denial of Service.

5.1 Phishing

Phishing is an attack where the user is tricked into providing confidential informa-
tion about themselves. The confidential information is usually a password, credit
card number or personal identity number. To phish the confidential information,
the fraudster mimics trustworthy websites and emails that are sent to the user.
Jakobsson [43] describes three stages of a phishing attack:

1. In the first step, called the lure, the fraudster spams the user with emails.
In these emails there is a link to the fake website that the phisher controls.
The emails state some facts that encourage the user to follow the URL. A
simple example would be the need for the user to verify that their credit
card is still valid.

2. The second step is a mock website that mimics the original website. The
mimic website should be so alike the original that it fools the user to enter
its confidential information.

3. In the last step, the phisher uses the information that has been phished to
perform some malicious activity. An example would be that the attacker
uses credit card details to make a purchase.

The security software company Kaspersky Lab publishes yearly reports about
phishing attacks against their users. These reports give a comprehensive overview
of which businesses that are attacked, where the attacks come from and the tar-
geted countries. In 2015, the primary targets were online finance companies with

31

32 Attacks on the implementation

34 percent of all recorded attacks, followed by Internet portals with 32 percent.
Internet portals are companies like Google and Yahoo, where the attacker gains
access to many different features from only one account. Russian citizens are the
most targeted with 17 percent of all attacks targeting them [44]. In 2014 the
main targets were Internet portals with 41 percent of all phishing attacks while 29
percent of the attacks targeted online finance companies [44]. Phishing is a very
serious attack with many successful attacks. In a white paper by Kaspersky Lab,
they show that during 2012 37.3 million users were affected by phishing attacks
[45].

5.1.1 Applied to our system

An attacker can have different goals with a phishing attack. The most basic attack
would be phishing the user for their personal identity number. This number can
be used to perform other types of fraud, such as identity theft. Because of FIDO’s
design, a successful phishing attack, meaning getting hold of login credentials,
would not give access to the victim’s account. In an advanced phishing attack, the
attacker would have the possibility to perform a real time attack and get access
to the account once. To perform this attack, the phishing must be combined
with a man-in-the-browser. This set up is described further in Section 5.2, when
describing the man-in-the-browser attack.

5.1.2 Mitigation

As stated before, there can be different goals with a phishing attack. The case
when the attacker only wants to phish the credentials is a standard phishing attack.
Such an attack is mitigated with blacklisting of sites and educating users about
the risks of phishing. Other solutions have been proposed by Rachna Dhamija [46]
in a research paper. One of them is to move the authentication from the original
web site to a trusted login window. To make this window hard to impersonate for
the phisher, the login window displays a picture unique to each user. The user
only enters their credentials when the window with the picture is shown. This
makes it hard for the phisher to recreate a login screen which fools the user to
enter their credentials by mistake. FIDO is by design protected from phishing in
the second step of the authentication. This is explained more in detail in Section
2.6.3 about security in FIDO.

5.2 Man-in-the-browser

Man-in-the-browser (MITB) is an attack where the attackers inserts a Trojan in
the user’s browser. This is a Man-in-the-Middle (MITM) attack where the at-
tacker resides in the browser. The Trojan intercepts, reads and modifies data in
the browser. Since the data is decrypted before it reaches the Trojan, TLS does not
offer any protection for the data. To perform its operations, the Trojan exploits
external features like browser plugins, add-ons and user scripts [47]. The add-ons
are installed either through malware or in rare cases through the browser add-on
distribution center. Add-ons run with high privilege and can access many of the

Attacks on the implementation 33

browser’s features. One of the privileges is access to the DOM tree. The Trojan
uses this feature to modify which elements the user sees and which elements gets
posted using the HTTP command POST. An example would be a user accessing a
bank website to perform a bank transaction. The Trojan then modifies the DOM
tree so that the fraudster’s account information is used instead. The information
that the user entered is stored to be used when the server responds. When the
server responds with the confirmation, the Trojan alters the response back to the
information entered by the user. This gives the illusion that the right transaction
occurred.

Another threat would be that the Trojan attacks the AJAX functions in the web
browser. To achieve this, the Trojan changes the XMLHttpRequest object in the
browser. This is possible as objects are created by cloning other objects. By alter-
ing the XMLHttpRequest send function through adding malicious code, all future
XMLHttpRequests will run the malicious code inserted [48]. An example of how
the code is changed is shown below. The Trojan can also get all the passwords
and usernames that are entered in the browser as it has access to the DOM tree
[47].

XMLHttpRequest.prototype.originalSend = XMLHttpRequest.
prototype.send;

var evilSend = function(data) {
// Modify the data here
this.originalSend(data);

};
XMLHttpRequest.prototype.send = evilSend;

An example of a MITB Trojan is Zeus [49]. This malware is capable of performing
many different tasks. It was designed to attack banking sites. When the Trojan has
infected the system, it intercepts and modifies information that is sent to and from
the browser. The codebase for the Trojan is published online. This has resulted in
the publication of many different software based on Trojan code [49]. The Trojan
has a low detection rate making it hard to find for virus protection software [50].
In 2009, Zeus and Zeus based trojans were estimated to have infected 3.5 million
devices [51]. With the use of machine learning techniques, Mohaisen and Alrawi
propose different techniques to identify the Zeus Trojan [49].

5.2.1 Applied to our system

Our system and the FIDO protocol can be vulnerable to this type of attack. This
is because the FIDO protocol relies on the browser being secure. If the attacker
can install an add-on in the web browser that controls the communication be-
tween the browser and the FIDO token, it can bypass the origin check. Without
the origin check, U2F’s MITM protection is removed. A MITB attack on its own
will not damage our system, it is rather used as a tool to perform other attacks.
A successful MITB attack will enable an attacker to perform real time phishing
attacks against the system. In a real time phishing attack, the intention is not to
obtain the credentials but to get the user to authenticate and give the attacker
access to the account during the attack.

34 Attacks on the implementation

To perform the MITB attack on our system, the attacker would need to install
a malicious add-on that can send sign requests with an alternative origin to the
FIDO token. When the malicious site wants the user to sign a request the add-on
is called to perform a signing. The add-on would then set the origin to whatever
the attacker wants it to be. The add-on would be installed like any other type
of malware. The attack would be divided in several steps. In the first step, the
malware is downloaded. It then collects all the information needed to perform
the attack and sends an e-mail to the intended target. The e-mail contains a link
to a malicious site where the user is prompted to authenticate. A JavaScript on
the mock site would use the malicious add-on to authenticate. The following list
describes the attack in more detail:

1. The user visits a site that is infected with malware.

(a) A script on the website identifies an application that can be exploited.

(b) The script exploits the application to download and install a malicious
add-on.

2. The malicious add-on monitors if the user authenticates to the IdP using a
U2F token.

3. If the user authenticates the malicious add-on starts to record e-mail address
that can be used to send phishing mails.

4. The attacker sends a phishing e-mail encouraging the user to authenticate
with the FIDO token on the phishing site.

5. On the phishing site, the user is prompted to authenticate. The server that
runs the phishing site requests a login on the site it wants access to. It
forwards the FIDO request to the user.

6. The malicious add-on captures the request and forwards its own code that
performs the communication with the token. This code sets the origin of
the intended target so the MITM protection is bypassed.

7. When the malicious add-on returns the signed U2F request, the browser
forwards it to the malicious server. The malicious server then uses the
request to get access to the the targeted server and can perform its task on
it.

8. If the malicious server needs the user to perform another task, it prompts
the user to authenticate once more. When the malicious server is done, it
redirects the user to a site where it confirms that the authentication was
successful.

5.2.2 Mitigation

The attack above is difficult to mitigate from if Channel ID is not used and the
browser is susceptible to MITB attacks. To secure the browser from this kind of
attack, the add-ons used in the browser must be tested extensively so they do not

Attacks on the implementation 35

perform any malicious activities. The browser needs to verify that add-ons are safe
at any given time. Modern browser have this feature as the add-ons are checked
by the browser vendor and signed. When the add-on is loaded, its signature is
verified to make sure it is safe. The user must also explicitly approve of the add-on
when it is installed. This solution provides good protection against the MITB at-
tack. Even though the protection is good, it is not one hundred percent effective.
There have been cases where malicious add-ons have been published in the Chrome
Web Store [52]. These add-ons passed Google’s inspection and were installed from
Chrome Web Store on user’s computers. One of the add-ons targeted Facebook,
where the malicious add-on could perform many actions. A common action was
to post information from the user’s account, but it could also message the user’s
friends through the Facebook messaging function.

Another solution is to use a hardened web browser. The hardened browser is
statically compiled, cannot run any add-ons and its binaries are protected. This
provides more protection than the first example because it is nearly impossible to
run malicious code in the browser. There are some hardened browsers available
today but these are not widely used. As the hardened browser needs to be stati-
cally compiled, this feature cannot be turned on and off on command.

In the documentation, the FIDO alliance proposes a solution where the communi-
cation with the FIDO token is done in the OS kernel [53]. The OS can then make
sure that the communication with the FIDO token goes through the OS, which
disables all other direct communication. Since the communication is done through
the OS, all attacks that alter the origin are stopped.

5.3 Denial of service

In a denial of service (DoS) attack, the attacker’s goal is to disrupt the service so
that other users can’t access it. There are many different types of DoS attacks:

• Attack on the Network device: the device software or hardware is attacked
resulting in a crash in the device.

• Attack on the OS: the attacker exploits how the OS implements protocols
to crash the system.

• Attack on the Application: the attacker either exploits a bug in the applica-
tion to crash it or triggers extensive calculations in the application making
it inaccessible.

• Data flooding attack: the network is flooded with dummy packages to con-
gest the network.

• Attack on protocol features: the attacker exploits weaknesses in the protocol
to perform a DoS attack.

Flooding the system is the most common DoS attack. The flooding either uses all
the bandwidth or allocates all the resources on the device, making it impossible
to connect to the device. Flooding attacks are often in a distributed form with

36 Attacks on the implementation

many attackers. This is called a distributed denial of service attack or DDoS. In a
DDoS attack, the attacker utilizes many unknowing zombie computers to perform
the attack. This is accomplished with the use of a Trojan that infects the user’s
computer and take orders from the command and control server. The attacker
uses the botnet to flood the target with bogus requests [54]. These botnets can
contain thousands of attackers. Recent real world attacks have been on the Sony
PlayStation network [55] and targeting the largest newspapers in Sweden [56]. In
the PlayStation network case the attack lasted several days. In the attacks on
newspapers, legitimate users could not access the website and could not use the
service.

5.3.1 Applied to our system

Our system is as weak as any other system to DoS attacks. No web service is
safe against DoS attacks. The most suitable DoS attack against our system would
be a DDoS. A DDoS attack that knocks out the IdP server would have severe
consequence, as many users would not be able to use their eIDs. Two examples
that can be used against our system are DDoS flooding and amplification attacks.
These attacks would congest the network and utilize too much processing power
at the server, making the network drop legitimate packets. This will stop the
legitimate users form accessing SPs.

5.3.2 Mitigation

As mentioned previously, protecting the system against DoS attacks is difficult.
This is because an attacker can use many different techniques to perform a DoS
attack. Douligeris [54] proposes many different techniques to advert DoS attacks.
The first step is to disable non-essential services that are running on the server
which are connected to the Internet, as these services can be exploited to perform
the attack. Other techniques that are proposed include detection and filtering
where the systems detects the attack sources and block them. Filtering techniques
like Ingress filtering and Egress filtering check that only valid IP addresses enter
and leave the network. This protects against spoofed addresses.

One can also use a multiple server solution. In this scenario the several slave
servers share the same content and a master that delegates the workload. This
minimizes the load on each station. This makes it harder for an attacker to bring
down the service as they will have to bring down several servers. The network can
also increase the bandwidth of critical systems. This limits the effect if the net-
work is flooded. To increase the protection one gets from load balancing one can
use content delivery networks (CDN). These networks are designed to distribute
the content of the web service on different places to reduce latency and increase
capacity under load. These features can be used to protect against DDoS attacks.
Zakaria Al-Qudah proposes a way to utilize CDN to protect against DDoS attacks
[57]. In March 2013, the CDN CloudFlare mitigated an attack which generated a
mean traffic of 75Gbit using DNS amplification [58]. To protect our system from
DDoS is difficult but there are techniques that mitigate the attacks as explained.

Attacks on the implementation 37

A deployment of an authentication system should consider every possible solution
to protect against DDoS attacks. Our system does not have any DoS mitigation
implemented as it is only a proof-of-concept.

5.4 SQL injection

SQL injection is a class of attacks that create malicious SQL statements which per-
form operations on a database. CWE’s list of the most dangerous software errors
in 2011 ranks SQL injection on top [42]. There has been many incidents where the
consequences were severe. In an attack in 2010, the company Neo Beat based in
Japan and their business partners were attacked. The hackers downloaded credit
card information for 30,000 customers [59]. Another major attack was an attack
against Yahoo in 2012. In this attack nearly 443,000 accounts where compromised
including the passwords which were stored in plain text [60]. The website Rock-
You also suffered an attack in 2009 where 30 million plain text passwords and
usernames were leaked [61]. In an attack against the Swedish site bloggtoppen in
2011, 94000 hashed password and usernames were leaked[62].

Halfond [63] describes 10 goals for SQL injection attacks. The most important
goals for us include retrieving information about the database in order to perform
other SQL injection attacks, extracting data, modifying data, adding data and
bypassing authentication. In the case of extracting data, the attacker is often
interested in information concerning the users. This information can be e-mail
addresses, credit card information, passwords and/or other personal information.

An attacker can use different ways to inject code on the SQL server. Halfond
[63] describes four different ways to inject the SQL statements:

1. Injection through user input fields.

2. Injection through cookies. Only possible if cookie information is used to
build the statements.

3. Injection through server variables stored in communication headers. These
variables are used when traffic is logged.

4. Second-order injection. The attacker stores the injection in the database.
For example in the user name column. An example of input would be admin
’--. When the database executes another statement that uses the stored
information, the injection attack is performed.

There are many different types of SQL injection attacks. Some attack types
are tautologies, union queries, illegal/logically incorrect queries and piggy-backed
queries. In a tautology attack, the attacker changes the database call to always
evaluate to true. This attack can be used to bypass authentication in order to
extract data. In the example below, a statement is built using the input from the
input fields "username" and "password" to authenticate a user. The statement is
then sent to the database which fetches information stored in the table "USERS".
If the username and the password match the information stored in a row, that row
is returned and the authentication process is complete.

38 Attacks on the implementation

--The statement is built with this string concatenation.
--This pseudocode describes hows server
--builds the request to the SQL database
SELECT * FROM users WHERE

login="+user_input_name+" AND pass="+
user_input_password+"

--In a normal case the variables ’ value would be
user_input_name = admin
user_input_password = password1234

--Resulting in a string that is sent to server:
SELECT * FROM users WHERE

login="admin" AND pass="password1234"

--This would return a result set with information
--from the admin row in the user table

Instead of entering a password, the attacker performs a tautology injection in the
password input field. This will cause the statement to always evaluate to true and
return that row.

-- attacker input would be
user_input_name = admin
user_input_password = " OR 1=1 --

--this is the executed statement where from the attacker
SELECT accounts FROM users WHERE

login="admin" AND pass="" OR 1=1 --
--This would render the same result as the proper
--statement without the attacker knowing the password.

Since the statement evaluates to true even though the password is not correct, the
admin row is returned. As the row is returned, the authentication is successful.
This injection always returns a row if the entered username exists. In other words,
the attack will be successful.

When attackers perform illegal/logically incorrect queries attacks, the goal is to
extract information about the tables and the SQL server. This will give the at-
tacker insight on the way the tables are constructed. Using this information, the
attacker can launch other attacks, for instance to extract data. With piggyback-
ing, the attacker adds extra commands to the request to perform many different
types of attacks. These attacks are dependent on the server supporting several
statements in the same query. An example of this attack would be a denial of
service where the attacker drops one of the tables.

--The statement is built whit this string concatenation
SELECT accounts FROM users WHERE

login="+user_input_name+" AND pass="+
user_input_password+"

-- attacker input
user_input_name = doe

Attacks on the implementation 39

user_input_password = "; drop table users --"
--the executed statement
SELECT accounts FROM users WHERE

login="doe" AND pass=""; DROP table users --"

When the server receives this request, it executes the first request before the
query delimiter (;) and then the DROP table statement. The consequence of this
injection attack is that the table "users" is dropped. This causes denial of service
to the rest of the users. If the table does not have a back up the data is lost
forever.

5.4.1 Applied to our system and mitigation

Applied and mitigation is together in this attack because it is simpler to explain
the connection between them in this attack. Since our code base is small and the
SQL queries are simple, it is easy to mitigate SQL injection attacks. Our requests
are protected in two ways: by prepared statements and by logic on the web server.
In the following naive implementation the code uses no protection against SQL
injections.

public boolean checkUser(User u, Password p) {
Connection con = null;
con = db.getConnection ();
Statement stmt = con.createStatement ()
String query = "select * from Users where pNbr = "+u.getPnbr

+";"
ResultSet rs = stmt.executeQuery(query);
if(rs.next()){

String salt = rs.getString("salt");
stmt = "select * from Users where pNbr = "+u.getPnbr+"and
passWord="+Utilities.generateHash(salt , p)+";"
rs = stmt.executeQuery(query);
if(rs.next()){

return true;
}else{

return false;
}

}else{
return false;

}

The implementation would be vulnerable to a simple input that is saved in User u
attribute pNbr. The input requires a valid personal identity number that is reg-
istered in the database for instance 0000001111. The injection value would then
look like this 0000001111";--. This would return true from the function and the
attacker would bypass the first step in the authentication process. In this case the
only thing that the attacker needs is the FIDO key to complete the process.

The following implementation is used in our system, and offers security against
attacks on the authentication process.

40 Attacks on the implementation

public boolean checkUser(User u, Password p) {
Connection con = null;
con = db.getConnection ();
String query = "select * from Users where pNbr = ?";
PreparedStatement stmt = con.prepareStatement(query);
stmt.setString(1, u.getPnbr ());
ResultSet rs = stmt.executeQuery ();
if(rs.next()){

String salt = rs.getString("salt");
String username = rs.getString("pNbr");
String storedPassword = rs.getString("passWord");
return storedPassword.equals(Utilities.generateHash(salt ,

p))
&& username.equals(u.getPnbr ());

}else {
return false;

}

By checking the username and the password from the returned statement, any
SQL injection problem is resolved. The system also uses prepared statements
which protect against SQL injections. Using prepared statements means that they
are sent to the server first and are compiled without the data. This is used to
speed up requests that use the same query statement. But this can also be used
to secure the request to the database. As the query is already compiled, the data
can’t change the logic of the query. Without these protections, a SQL injection
would be possible.

Chapter 6
Analysis

This chapter aims at analyzing the security of the protocols and frameworks used
in our prototype. The security is analyzed for each protocol and framework in-
dividually, by reviewing relevant security research and published attacks. Apart
from security reviews on the used techniques, a security analysis on the OATH
protocols is also included. This analysis is then used when comparing the security
between OATH and FIDO and motivating why FIDO was chosen. The chapter
also contains an analysis of the way using open source affects the software secu-
rity. How using open source affects an eID system and the non-security related
questions will be discussed in Chapter 7.

6.1 Open Source secure enough?

BankID runs on proprietary code and exactly how the protocol works is secret.
This makes it difficult for someone without access to the source code to make a
comprehensive security analysis of it. For that reason, this thesis looks into the
security of open source software in general in order to find out if open source could
be secure enough for an eID system. Previous research comparing the security
between open and closed source has mostly concerned operating systems, office
software, e-mail clients, web servers, web browsers and database management sys-
tems. Even if there is no specific research on authentication systems, the results
are coherent over different systems. Therefore it is a reasonable assumption that
a deep analysis of authentication systems would yield the same result.

The research on the issue of open source security does not provide a definite
answer on what is more secure. As demonstrated in Section 2.3, some research
shows that closed source yields better security and other research shows that there
is no difference in security. There has been limited research done on the topic and
few vendors and software have been deeply analyzed, which makes it hard to say
that one is more secure than the other. As some research indicates, it is rather
the policy of the vendor and how they work with bugs, development processes and
so on that influences how secure the software is. As the level of security depends
on the policies of the vendor, it is important to use open source properly if one
decides to use it. Good policies, from a security perspective, is a vendor who has
regular security reviews, a well functioning bug reporting system and regularly

41

42 Analysis

updates the software to fix bugs. If the code is not reviewed by more than a few
people, there is a risk that potential attackers will have an advantage.

Already in 1883, Kerchkhoff’s principle was formed where he argued that secure
military systems [64]: "must not require secrecy and can be stolen by the enemy
without causing trouble". This is widely recognized in academia for cryptography
algorithms and we believe this should be applied to software systems as well. The
National Institute of Standards and Technology (NIST) has the same opinion and
has openness as one of its main principles for software security. They state [65]:
"system security should not depend on the secrecy of the implementation or its
components". Open source should always be considered an option and the results
of previous research [11] [15] [9] combined with above reflections shows that open
source code should not be considered less secure than closed source code.

One can also argue that having the software open source is not just a question of
security. When having a system for the citizens, it should be as open and transpar-
ent as possible. Hoepman & Jacobs [8] compare the trust issue with a locksmith.
Would you rather trust a locksmith that shows how he works or one who does
it all in secret? If one can see the process, the security relies exclusively on the
complexity of the key, which is how it should be. It is important that users trust
the federation, and having it open source makes it more trustworthy. The topic of
trusting the federation is reviewed further in Chapter 7.

6.2 FIDO

This section will analyze the security of FIDO. It will look into: a trust attack on
FIDO, the security reference of FIDO, security differences between UAF & U2F
and why we chose U2F.

In a study from 2015, Loutfi & Jøsang [66] look at the trust requirements that
FIDO deals with. Trust is defined by McKnight [67] as: "the extent to which one
party is willing to depend on the other party in a given situation with a feeling
of relative security, even though negative consequences are possible". When a SP
has its own authentication service, it is called isolated identity management. Then
there is a trust requirement that the SP handles the privacy with care and that
the user takes adequate precautions with their credentials. Some trust require-
ments when using FIDO include the user having to trust the FIDO device and
that the manufacturer will not intentionally or unintentionally break the unlinka-
bility property.

The paper by Loutfi & Jøsang points out that using FIDO introduces many new
trust requirements. However, several of the requirements introduced are not unique
to FIDO and will be present in any federated identity service. By using FIDO in a
federated identity service, the trust requirements between the SP and the user are
not related to FIDO, as the SP will not implement the FIDO protocol and only
forward the user to the IdP. The trust requirements towards the manufacturer

Analysis 43

are important as U2F uses a physical device that can be supplied from different
vendors. However, as all FIDO tokens are identified to which batch they belong, it
is possible for the protocol to make the compromised tokens invalid, which would
counter any security breach in hardware. A compromised hardware would then
lead to a user being forced to get a new token.

Another feature that will be available with the federation is that one can de-
cide how reliable a mode of authentication is and give the privileges thereafter.
This will enable a simple authentication process (for example a fingerprint) to give
a user access to check the account balance. A more complicated authentication
process (for example a fingerprint and password) would be required in order to
sign transactions. This will not replace the trust requirements but will make it
easier for the federation and/or user to decide what devices are to be trusted and
to which extent.

Loutfi & Jøsang raise some valid concerns that FIDO has received little challenge
from the security community. They also conclude that FIDO does not eliminate
trust requirements and rather move them or introduce new ones between different
parties, such as trust requirements for the hardware manufacturers and the FIDO
consortium. By using FIDO in a federated identity service, there will inherently
be many trust requirements. However, these will not be unique to FIDO and will
be present no matter what technique or protocol that is used for authentication.

FIDO has published a security analysis [27], called "security reference" that covers
both UAF and U2F. It is edited by security experts from PayPal and Nok Nok
Labs. The analysis has also been reviewed and contributed to by the independent
security company iSECPartners. The security reference first states 15 security
goals, such as security goal 2 (SG-2): "Credential Guessing Resilience: Provide
robust protection against eavesdroppers". It also contains security measures, for
example security measure 2 (SM-2): "Unique Authentication Keys: Cryptographic
authentication key is specific and unique to the tuple of (FIDO Authenticator,
User, Relying Party)". Finally, the report makes security assumptions, for exam-
ple that the used algorithms and key sizes are adequate and not broken.

There is a threat analysis covering several attacks, including phishing and three
kinds of MITM-attacks. By looking at the security measures, the reference shows
how FIDO mitigates against the attacks. For example a real time MITM attack
is not possible as the protocol uses channel binding (SM-12) and will detect the
MITM in the TLS channel by comparing the channel binding information provided
by the client and the channel binding information retrieved locally by the server.
The security reference makes a comprehensive analysis of how FIDO is affected or
not by several attacks. In Chapter 5, some of the attacks in the FIDO security
reference are also reviewed but with regards to the way they impact our system.

Both UAF and U2F fulfill the requirements for two factor authentication. They
both rely on the ownership factor, as the user either needs to have the device with
UAF embedded or the U2F token. For the second factor, U2F uses the knowledge

44 Analysis

factor (with a password), while UAF has not defined which factor to use. With
U2F, it would be possible to add the inherence factor by making the tokens bio-
metric scanners. Instead of clicking on the device like today, the user would scan
their fingerprint in order to unlock the device. This would make the authentica-
tion very secure as an attacker would need to get access to the device, know the
password and be able to clone the fingerprint. Another difference between UAF
and U2F is how they can sign transactions. As mentioned in Chapter 2.6, UAF is
able to sign transactions while U2F is not due to the lack of screen. However, for
our solution, this is not a problem as all signatures within the federation will be
handled by the Signing Authority, as described in Section 3.2.

As the security differences between UAF and U2F are minor, we chose to use
U2F in our implementation because of its availability. For a national eID system
to work, it is important that a user can easily join and use it. U2F only requires
a user to buy a U2F token and register it, while UAF requires a FIDO compliant
device. [26]

One of the biggest drawbacks of FIDO is its relative novelty. It has not yet
undergone deep security analysis from neither the open source community nor
from academia. However, the published security analysis shows protection against
many attacks. By using it in a federated identity system, one can add features
such as blocking devices. We propose a solution for blocking a device in Chapter
4. It is also worth noting that FIDO is gaining support from big companies, such
as Google and PayPal. Wide support as well as companies that have incentives
for keeping the protocol secure will ensure that the protocol will be maintained.
In Chapter 6.4, we analyze the security differences between FIDO and OATH and
motivate why FIDO was chosen.

6.3 OATH analysis

The two different algorithms OATH-HOTP and OATH-TOTP, described in Sec-
tion 2.7, propose methods to generate secure one time passwords. The two different
RFCs define the specifications and how to implement a secure authentication pro-
tocol using OTPs. RFC 4226 contains a security analysis of the algorithm that
generates the OTP. This analysis concludes that the truncation of the output from
the algorithm does not provide any information that could be used to restore the
secret key. Furthermore, it shows that the most effective way to perform an attack
against the algorithm is to use brute force [29]. As mentioned before, two factor
authentication is recommended to use for authentication for financial and govern-
mental services. The two different algorithms can be used to achieve two factor
authentication. Often, two factor authentication protocols use the possession fac-
tor and the knowledge factor as described in Section 2.4. Facebook and Google
use OATH-TOTP with these two factors [28]. They are easy to develop both in
hardware and software. The possession property comes from owning the device
and only the owner having access to it. It would be possible to have a biometric
authentication in order to access the token or software. A biometric authentica-

Analysis 45

tion would most likely be more expensive than just the knowledge factor, such as
a password. The software may also run on a device that has the possibility to
perform biometric authentication.

OTP offers better protection against phishing attacks than static passwords [68],
which can be used until they are changed. In a scenario where the attacker phishes
passwords and the HOTP algorithm is used, they could authenticate once. With
TOTP, the OTP can only be used during the valid time slot [69]. In a study,
Schneier [70] shows that a time limited OTP is not enough to protect against
phishing attacks. In a scenario where the attacker sets up an operation which uses
the password in real-time, the phishing protection can be bypassed [71].

One way to combat this is to use CAPTCHA, which stands for Completely Au-
tomated Public Turing test to tell Computers and Humans Apart [72]. It is used
to protect against computers performing automated operations. Leung proposes
a solution called Extended CAPTCHA Input System [71]. Extended CAPTCHA
can be used for stronger phishing protection as well as MITM protection. In this
protocol, the OTP code is entered using a CAPTCHA input system. The input
system is downloaded from the site with a preshared key. This key will be used
to encrypt the input from the user. The input system is an application running
inside the web browser and can be written for Flash. It provides graphical win-
dows where the user can click on graphic numbers. The numbers are difficult for
a computer to identify but easy for humans. After the application has loaded, the
user inputs their OTP by clicking on the numbers with the mouse. Each click
is recorded as a coordinate and time stamp. When the user has entered all the
numbers, they are encrypted using the preshared key and sent to the server. To
prevent the application from being relayed, the frame that contains the numbers
is moved randomly when the application starts. This will record the coordinates
in the user’s browser, making them invalid for the attacker when they try to au-
thenticate. To perform an attack, the attacker must stream their own application
as a video. This requires large amount of bandwidth and computing power, mak-
ing it an unfeasible attack. This protection may not hold forever because of the
increasing power in modern computers.

As stated in RFC 6238, a short lived OTP is more secure than non-time based
OTP [30]. In HOTP, a password is valid until it is used or any password generated
after it is used. Given that the TOTP is only valid a short time, it provides greater
phishing attack protection than HOTP. TOTP does require a more advanced OTP
generator as it has to be synchronized. This feature also makes HOTP the more
secure algorithm of the two. In Section 6.4, the OATH algorithms will be compared
with FIDO both from availability and security perspectives.

6.4 Comparison FIDO & OATH

This section analyses the strengths and weaknesses of FIDO compared to OATH.
This comparison also serves as the motivation why FIDO was chosen for our im-

46 Analysis

plementation. First the criteria that we focused on are described, followed by the
comparison and a conclusion.

Both protocols provide two factor authentication and are built on open standards
without license fees. These two features were requirements for the authentication
system we wanted to use. The OATH algorithm has been used over ten years and
has not been broken yet. FIDO UF2 has existed two years. To evaluate the best
solution for our system, we chose the following criteria:

• Strong protection against replay attacks.

• Strong protection against phishing attacks.

• Strong protection against man-in-the-middle attacks.

• Availability and deployment.

6.4.1 Comparison

Both FIDO and OATH have built-in protection against replay attacks. They solve
the problem differently. In OATH the protection comes from the fact that the OTP
is only valid for one authentication. After the password is used, the OTP becomes
invalid. In a FIDO scenario the challenge provides the protection. A signed chal-
lenge is only valid until it has been received by the server. In this case there is no
difference between FIDO and OATH.

As mentioned in Section 6.3, the phishing protection in OATH is good but it
can be bypassed with a real time phishing attack. This can be mitigated with the
use of Extended CAPTCHA Input System. FIDO has a strong protection against
phishing built into the protocol. To accomplish this, FIDO verifies the server
during authentication. This also provides protection against real time phishing
attacks. As FIDO has stronger protection against phishing than OATH without
the use of other systems, we conclude that FIDO is better.

FIDO also has the strongest MITM protection. This is because of the server
verification during authentication. OATH does not have this feature. This could
be mitigated with the use of Extended CAPTCHA Input System to receive similar
protection. As with phishing attacks, we think FIDO has the strongest protection
as the protocol by design protects against them.

The criteria availability and deployment is not about security but rather about
usability and convenience for the user. OATH is a well-tested technology which is
widely used to provide two factor authentication. Deploying a system that utilizing
OATH is easy as there exists several server side solutions providing OATH authen-
tication. As mentioned previously, one can use existing solutions for hardware and
software tokens. The easiest solution to deploy is a software based system, where
the key is generated on the user’s device. Often in these systems, the key gen-
eration process does not take place in tamper resistant environments, making an
attack on the device possible. Using a hardware solution is more secure but more

Analysis 47

costly to implement as one needs to buy tokens for every user. In the FIDO case,
the user must buy a U2F token. Deployment for FIDO is as costly as OATH with
hardware tokens.

The tokens for both FIDO and OATH can be bought online. There are many
libraries that can be used to integrate FIDO authentication on the server side. As
of April 2016, U2F is only supported in Chrome but support in Firefox is under
development. OATH on the other hand is supported everywhere a password can
be inputted. Both FIDO and OATH are easy to deploy but FIDO is easier for
the end user. FIDO still suffers from limited browser support which makes OATH
better from availability perspective. However, as the use of FIDO spreads, the
availability will increase.

6.4.2 Conclusion

Both FIDO and OATH provide strong authentication processes that are difficult to
break. One strong argument for using FIDO is that companies using OATH today
are founders of the FIDO Alliance. This indicates that they do not think OATH is
good enough for authentication. FIDO also provides stronger protection against
phishing and MITM attacks by design. OATH can add this protection by using
Extended CAPTCHA input system. This will introduce other attack vectors, as it
relies on the use of third party software running in the browser to execute its code.
Attackers could exploit this software to gain access to the system. Based on what
we found, the security of Extended CAPTCHA input system is only evaluated
in the author’s paper. It also seems like there are no real world implementation
of the process. OATH’s greatest strength is that it is well tested and easy to
implement. There are no published attacks against the OATH key generation
techniques. FIDO’s biggest weakness is that it is rather new. The specification
was finalised and published on December 9th 2014. Because of it being relatively
new, the protocol has not been reviewed by many academic security researchers.
We think that FIDO is more suitable for authentication in an eID federation. This
is based on all the security features that are built-in the FIDO protocol as well as
the ease of using it.

6.5 SAML 2.0 analysis

SAML 2.0 is an extensive framework, which enables a developer to make several
design decisions within the specification. This puts a great responsibility on the
developer as they need to know what implications the different choices have on the
security. Because of the complexity, there are several published attacks on differ-
ent implementations. In a paper that evaluates the security of SSO in general and
SAML in particular, the authors discovered flaws in the implementation of SAML
[73]. In the attack, the authors showed that it was possible to steal the users’
cookies and get access to the user’s Google resources. This attack exploits the fact
that the relaystate often is an URL, which makes is possible to inject malicious
code in. As the relaystate is not sanitized, the attacker can perform a Cross-Site
Scripting attack. This is used to steal the cookie of the user, which grants greater

48 Analysis

access than what the service was authenticated for. To evade the attack the solu-
tion was to sanitize the input. This removes the possibility to perform a Cross-Site
Scripting attack.

In another paper [74], the authors investigate the implementation of XML sig-
nature method that is used in SAML 2.0. The XML signature method is more
complex than older techniques like PKCS#7 [74]. In PKCS#7, the signed hash
over the document is added to the end of the document. With a XML signature,
the position of the signature is not specified, instead it can be placed differently
inside the XML structure. This leads to that different versions of a document be-
ing evaluated to the same thing. In the study, the authors found that they could
bypass the security of many SAML 2.0 implementations and authenticate as any
user at the SP. The attacker utilizes a flaw for how the signature of the assertion
is checked. In the attack, an old valid signature for another assertion is used to
fool the software that the assertion is valid. The assertion gives the attacker full
access to the target’s resources. These two attacks show that SAML 2.0 can be
vulnerable to attacks because of its complexity. This threat has been resolved
when the authors contacted the developers and helped them solve the problem.

The federation has chosen to base the system on SAML 2.0, which is widely used.
Keeping a technical infrastructure up to date is not the main purpose of the
Swedish eID board and using a well spread technique is a good idea. By doing so,
the board will only have to keep it updated and not create the updates themselves.
In order to keep the system secure, it is crucial that patches are applied when they
are available. It is important to either provide incentives and/or requirements so
the SPs and IdPs update their systems. This can be done with legal requirements
where the SP and IdP will take the financial risk if an attack leads to losses due to
lack of updating. Another solution could be that the system can force the updates
in order to stay functional. The first method is very efficient and can be compared
to how credit card companies like VISA handle this problem. If a merchant does
not support the use of the latest security (e.g. chip), they will be responsible for
any losses due to fraud.

To conclude, SAML is an extensive framework with many configuration options.
Having many options makes it customizable but also introduces many potential
errors. These potential errors have introduced bugs and it is important that the
federation updates the framework regularly.

Chapter 7
Discussion

This chapter focuses on our goals and discusses how they were achieved. We also
look at future research possibilities within our and similar topics.

7.1 Goal: evaluate the security of open source protocols

The first goal of the thesis was to evaluate if it would be suitable to use open
source software in a federated identity service. This goal was reached by looking
at research on the security of open source in Section 2.3 and analyzing the results
in Section 6.1. The research shows no conclusive answer to if open source or closed
source code provides the best security. As the topic of software security is rather
complex, it would be beneficial to use more methods, rather than just counting
the bugs, the severity and the patching behaviour.

Another important aspect is the democracy aspect for an eID system. Whether to
use open source software or not, should not just depend on the security itself but
also who needs to trust the system. For a system that is to be deployed nationally
and to be used by many citizens and governmental organizations, having it open
source makes it more trustworthy. Even though most people will not review the
code, it is important that they are able to do so if wanted. This can be compared
to how decisions are made by governments. Few people will follow the debates and
how the parliament votes in every question, but if needed, it would be possible for
an external stakeholder to examine that everything is done correctly.

It is worth noting that the launch of the Swedish eID federation has been post-
poned due to security concerns from governmental organizations [75], for example
the National Defence Radio Establishment (FRA in Swedish). These security re-
ports have not been published, which shows that even when a system is open, not
everything is open. We advocate having the whole system open to the public in
order to enable external parties and users to analyze the security.

7.2 Goal: implement a proof-of-concept

We have succeeded in creating a proof-of-concept that implements SAML and
FIDO. The proof-of-concept served as a testing environment where we could get

49

50 Discussion

hands-on experience with the security in the protocols and frameworks, for ex-
ample by implementing SQL injection protection. There are limitations in the
implementation as it is only a proof-of-concept, with possible improvements be-
ing:

• Better user interface.

• Better integration with the IdP.

• Fully implemented issuing process.

These features would make the authentication system fully functional. In order
to use the existing implementation, one needs to understand how it works to per-
form an authentication. A better user interface would guide the user through the
authentication, which would increase security. The FIDO service could also be
better integrated with the IdP service. As of now, the IdP and FIDO services are
written using two different libraries for HTTP requests. If the FIDO service would
instead utilize the same library as the IdP, the FIDO service could run inside the
IdP service. This would simplify the communication between the implementation
and the Shibboleth IdP.

Our proposed solution for distribution and issuing, as described in Section 4.2,
is one example of how it can be done. Another solution could be that one applies
at the tax office and receives the FIDO token in person. We think that our solution
will be easier for the users. It will have a fair balance between convenience and
security.

To verify our idea that open source can be used in an eID federation, we used
different open source software and open libraries in our implementation. This
makes the development easier as one can look at the library code during devel-
opment. Most of our problems with open source arose around its documentation,
especially the Shibboleth IdP documentation. The information in Shibboleth IdP
documentation was often scarce and we had to turn to the Shibboleth mailing lists
for help. This makes configuring the IdP software more difficult than it should be.
As we did not work with any closed source code we can not comment whether it
would be easier or not to work with. One would think that closed source is better
documented but this may not be the case. This gives open source an advantage
because one can look in the source code and draw conclusions from it.

7.3 Goal: evaluate security of our implementation

We reached the goal, which was to evaluate how well our implementation handles
different attacks. The analysis is informal and covers the attacks we consider most
critical to our system. If our system would fail to protect against these attacks,
the consequences would be severe.

As the implementation is a proof-of-concept implementation, further development
is needed before a complete security analysis can be done. This analysis should
not only cover our implementation but the whole IdP solution. An analysis of

Discussion 51

the whole solution is needed to verify the security when the different subsystems
interact. This analysis should be done by a third party to certify that the imple-
mentation is secure. A third party analysis would also have more weight than an
analysis of our own.

7.4 Future work

This thesis has focused on the authentication part of an electronic ID system. We
have done a brief analysis of SAML 2.0 but it would be interesting to analyze this
framework further. One could also do a comparison of the security in SAML 2.0
compared to OpenID Connect, another open framework.

Regarding the implementation, one possible next step could be a deeper integra-
tion towards the federation, for example by implementing the connection to the
signing authority. This would enable a deeper analysis of the security differences
between a certificate based signing process and a solution with a signing authority.
Another possible improvement for the application could be to add support for UAF
as it is a more flexible solution for the user. With an implementation of both UAF
and U2F, it would be possible to do a comprehensive study on security differences.

We have not done any security analysis on the current solution, BankID, as it
is closed source. But in order to draw a conclusion whether open source is suitable
for an eID system, one needs to compare the security of BankID and open source
solutions.

Another interesting topic that we have not reviewed is the security of open source
software that are delivered by a for-profit vendor. Some of our findings suggest
that the vendor has a great influence on the security. Would it be possible to get
the best of two worlds by combining the benefits of an open source community
and a strong vendor?

52 Discussion

Chapter 8
Conclusion

The goal of this thesis was to evaluate the potential use of open source for the
authentication in the new Swedish eID federation. By looking at different open
source frameworks and protocols, we could investigate their security. Furthermore,
we wanted to implement a proof-of-concept application for authentication. This
gave us hands-on experience working with the open protocols and enabled us to
do a more thorough security analysis.

The proof-of-concept application was implemented in Java using FIDO and SAML
libraries. It supports registering a FIDO U2F device as well as authentication. The
security of the application has been analyzed by looking at four potential attacks.
In the analysis we look at how the application is affected by the attacks and how
to mitigate them. The thesis also contains security analysis for SAML 2.0, FIDO,
OATH and open source software in general. There is no conclusive answer to if
open source software is more secure than closed source software. Further investi-
gation is needed in order to get a more definitive answer. However, our application
shows that it is possible to use open source in the Swedish eID federation. The
thesis also raises the issue of trust and how open source can provide openness and
trustworthiness, which are two important aspects of a national eID system.

53

54 Conclusion

Bibliography

[1] E. Commission. (2007). Electronic identities - a brief introduction,
[Online]. Available: http://ec.europa.eu/information_society/
activities/ict_psp/documents/eid_introduction.pdf (visited
on 08/19/2015).

[2] P Madsen, “Liberty alliance project white paper: Liberty id-wsf peo-
ple service-federated social identity, retrieved march 13, 2012 from
http://www. projectliberty. org/liberty/content/download/387/2720/file,”
Liberty_Federated_Social_Identity. pdf, 2005.

[3] Shibboleth. (2015). How shibboleth works, [Online]. Available: https:
//shibboleth.net/about/basic.html (visited on 07/21/2015).

[4] C. Herley, “More is not the answer,” IEEE Security & Privacy, no. 1,
pp. 14–19, 2014. [Online]. Available: http://research.microsoft.
com/pubs/208503/MoreIsNotTheAnswer.pdf.

[5] Common vulnerability and exposure. [Online]. Available: http://cve.
mitre.org/ (visited on 01/19/2016).

[6] National institute of technology. [Online]. Available: https://nvd.
nist.gov/ (visited on 01/19/2016).

[7] E. Raymond, The Cathedral & the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly Media, 2001,
isbn: 9780596553968. [Online]. Available: https://books.google.
se/books?id=F6qgFtLwpJgC.

[8] J.-H. Hoepman and B. Jacobs, “Increased security through open source,”
Commun. ACM, vol. 50, no. 1, pp. 79–83, Jan. 2007, issn: 0001-
0782. doi: 10.1145/1188913.1188921. [Online]. Available: http:
//doi.acm.org/10.1145/1188913.1188921.

55

http://ec.europa.eu/information_society/activities/ict_psp/documents/eid_introduction.pdf
http://ec.europa.eu/information_society/activities/ict_psp/documents/eid_introduction.pdf
https://shibboleth.net/about/basic.html
https://shibboleth.net/about/basic.html
http://research.microsoft.com/pubs/208503/MoreIsNotTheAnswer.pdf
http://research.microsoft.com/pubs/208503/MoreIsNotTheAnswer.pdf
http://cve.mitre.org/
http://cve.mitre.org/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://books.google.se/books?id=F6qgFtLwpJgC
https://books.google.se/books?id=F6qgFtLwpJgC
http://dx.doi.org/10.1145/1188913.1188921
http://doi.acm.org/10.1145/1188913.1188921
http://doi.acm.org/10.1145/1188913.1188921

56 BIBLIOGRAPHY

[9] R. Anderson, “Security in open versus closed systems, the dance of
boltzmann, coase and moore,” At Open Source Software Economics,
2002. [Online]. Available: http://www.cl.cam.ac.uk/~rja14/
Papers/toulouse.pdf.

[10] G. Schryen and R. Kadura, “Open source vs. closed source software:
Towards measuring security,” in Proceedings of the 2009 ACM Sym-
posium on Applied Computing, ser. SAC ’09, Honolulu, Hawaii: ACM,
2009, pp. 2016–2023, isbn: 978-1-60558-166-8. doi: 10.1145/1529282.
1529731. [Online]. Available: http : / / doi . acm . org / 10 . 1145 /
1529282.1529731.

[11] G. Schryen, “Security of open source and closed source software: An
empirical comparison of published vulnerabilities,” in 15th Americas
Conference on Information Systems, 2009. [Online]. Available: http:
//epub.uni-regensburg.de/21296/.

[12] G. Schryen, “A comprehensive and comparative analysis of the patch-
ing behavior of open source and closed source software vendors,” in
IT Security Incident Management and IT Forensics, 2009. IMF’09.
Fifth International Conference on, IEEE, 2009, pp. 153–168.

[13] K. Scarfone and P. Mell, “An analysis of cvss version 2 vulnerabil-
ity scoring,” in Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM ’09,
Washington, DC, USA: IEEE Computer Society, 2009, pp. 516–525,
isbn: 978-1-4244-4842-5. doi: 10.1109/ESEM.2009.5314220. [On-
line]. Available: http://dx.doi.org/10.1109/ESEM.2009.5314220.

[14] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in Proceedings of the
34th International Conference on Software Engineering, ser. ICSE ’12,
Zurich, Switzerland: IEEE Press, 2012, pp. 771–781, isbn: 978-1-4673-
1067-3. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2337223.2337314.

[15] G. Schryen, “Is open source security a myth?” Commun. ACM, vol.
54, no. 5, pp. 130–140, May 2011, issn: 0001-0782. doi: 10.1145/
1941487.1941516. [Online]. Available: http://doi.acm.org/10.
1145/1941487.1941516.

[16] M. Burnett, Perfect Password: Selection, Protection, Authentication.
Elsevier Science, 2006, isbn: 9780080489513. [Online]. Available: http:
//books.google.se/books?id=18PMr6ra0UQC.

http://www.cl.cam.ac.uk/~rja14/Papers/toulouse.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/toulouse.pdf
http://dx.doi.org/10.1145/1529282.1529731
http://dx.doi.org/10.1145/1529282.1529731
http://doi.acm.org/10.1145/1529282.1529731
http://doi.acm.org/10.1145/1529282.1529731
http://epub.uni-regensburg.de/21296/
http://epub.uni-regensburg.de/21296/
http://dx.doi.org/10.1109/ESEM.2009.5314220
http://dx.doi.org/10.1109/ESEM.2009.5314220
http://dl.acm.org/citation.cfm?id=2337223.2337314
http://dl.acm.org/citation.cfm?id=2337223.2337314
http://dx.doi.org/10.1145/1941487.1941516
http://dx.doi.org/10.1145/1941487.1941516
http://doi.acm.org/10.1145/1941487.1941516
http://doi.acm.org/10.1145/1941487.1941516
http://books.google.se/books?id=18PMr6ra0UQC
http://books.google.se/books?id=18PMr6ra0UQC

BIBLIOGRAPHY 57

[17] D. Florencio and C. Herley, “A large-scale study of web password
habits,” in Proceedings of the 16th international conference on World
Wide Web, ACM, 2007, pp. 657–666. [Online]. Available: http://www.
ra.ethz.ch/CDStore/www2007/www2007.org/papers/paper620.
pdf.

[18] B. Lakshmiraghavan, “Two-factor authentication,” English, in Pro
ASP.NET Web API Security, Apress, 2013, pp. 319–343, isbn: 978-
1-4302-5782-0. doi: 10.1007/978- 1- 4302- 5783- 7_14. [Online].
Available: http://dx.doi.org/10.1007/978-1-4302-5783-7_14.

[19] M. Mannan and P. C. van Oorschot, “Using a personal device to
strengthen password authentication from an untrusted computer,” in
Financial Cryptography and Data Security, Springer, 2007, pp. 88–
103.

[20] F. F. I. E. Council, “Authentication in an internet banking environ-
ment,” Tech. Rep., 2005. [Online]. Available: http://www.ffiec.
gov/pdf/authentication_guidance.pdf.

[21] “Security assertion markup language (saml) v2.0 technical overview,”
Mar. 2008. [Online]. Available: https : / / www . oasis - open . org /
committees/download.php/27819/sstc- saml- tech- overview-
2.0-cd-02.pdf.

[22] “Assertions and protocols for the oasis security assertio markup lan-
guage (saml) v2.0,” Dec. 2009. [Online]. Available: https://www.
oasis-open.org/committees/download.php/35711/sstc-saml-
core-errata-2.0-wd-06-diff.pdf.

[23] “Security and privacy considerations forthe oasis security assertion
markup language (saml) v2.0,” Mar. 2005. [Online]. Available: https:
/ / docs . oasis - open . org / security / saml / v2 . 0 / saml - sec -
consider-2.0-os.pdf.

[24] FIDO. (2015). About the fido alliance, [Online]. Available: https:
//fidoalliance.org/about/overview/ (visited on 05/12/2015).

[25] T. F. Alliance, “Fido 1.0 final specification have arrived,” Tech. Rep.,
Dec. 2014.

[26] FIDO, Universal 2nd factor (u2f) overview, 1.0, 2015-10-09, FIDO
Alliance, Oct. 2015. [Online]. Available: https : / / fidoalliance .
org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-overview-ps-
20141009.html.

[27] ——, (2015). Fido security reference, [Online]. Available: https://
fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-
20150514/fido-security-ref.html (visited on 04/05/2016).

http://www.ra.ethz.ch/CDStore/www2007/www2007.org/papers/paper620.pdf
http://www.ra.ethz.ch/CDStore/www2007/www2007.org/papers/paper620.pdf
http://www.ra.ethz.ch/CDStore/www2007/www2007.org/papers/paper620.pdf
http://dx.doi.org/10.1007/978-1-4302-5783-7_14
http://dx.doi.org/10.1007/978-1-4302-5783-7_14
http://www.ffiec.gov/pdf/authentication_guidance.pdf
http://www.ffiec.gov/pdf/authentication_guidance.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/35711/sstc-saml-core-errata-2.0-wd-06-diff.pdf
https://www.oasis-open.org/committees/download.php/35711/sstc-saml-core-errata-2.0-wd-06-diff.pdf
https://www.oasis-open.org/committees/download.php/35711/sstc-saml-core-errata-2.0-wd-06-diff.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
https://fidoalliance.org/about/overview/
https://fidoalliance.org/about/overview/
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-overview-ps-20141009.html
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-overview-ps-20141009.html
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-overview-ps-20141009.html
https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-security-ref.html
https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-security-ref.html
https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-security-ref.html

58 BIBLIOGRAPHY

[28] A. Wawro. (2013). How to set up two-factor authentication for face-
book, google, microsoft, and more, [Online]. Available: http://www.
pcworld.com/article/2036252/how- to- set- up- two- factor-
authentication- for- facebook- google- microsoft- and- more.
html (visited on 03/29/2016).

[29] B. M, F Hoornaert, D Naccache, and O Ranen, “Hotp: An hmac-
based one-time password algorithm,” Dec. 2005, RFC 4226. [Online].
Available: https://tools.ietf.org/html/rfc4226.

[30] D M’Raih, S Machani, M Pei, and J Rydell, “Totp: Time-based one-
time password algorithm,” May 2011, RFC 6238. [Online]. Available:
https://tools.ietf.org/html/rfc6238.

[31] F. ID-teknik. (2015). Bankid statistik, [Online]. Available: https :
//www.bankid.com/om-oss/statistik (visited on 01/17/2016).

[32] Telia. (2015). Telia e-legitimation, [Online]. Available: https://www.
telia.se/privat/bredband/tjanster/produkt/e-legitimation
(visited on 01/16/2016).

[33] BankID. (2015). Bankid about us, [Online]. Available: https://www.
bankid.com/om-oss (visited on 01/16/2016).

[34] S. Borell. (Aug. 2015). Bank-id-cava, [Online]. Available: http://
wiki.fribid.se/sidor/BankID-Cava.

[35] BankID. (Sep. 2015). Bankid relying party guide, [Online]. Available:
https://www.bankid.com/assets/bankid/rp/bankid-relying-
party-guidelines-v2.9.pdf (visited on 01/16/2016).

[36] M. Holm, Project title, https://github.com/judofyr/bankid-api, Apr.
2013.

[37] K. Gjøsteen, “Public key infrastructure: 5th european pki workshop:
Theory and practice,” in. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2008, ch. Weaknesses in BankID, a PKI-Substitute Deployed
by Norwegian Banks, pp. 196–206, isbn: 978-3-540-69485-4. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-69485-4_14.

[38] S. eID board. (2015). Advertisement of a new free system, [Online].
Available: http://www.elegnamnden.se/svenskelegitimation/
ansokantillvalfrihetssystem.4.10cbb69314111c2d94ba5be.html
(visited on 07/16/2015).

[39] ——, “Technical framework for swedish e-identification,” Oct. 2015.
[Online]. Available: http://www.elegnamnden.se/download/18.
77dbcb041438070e039d236/1432125895897/ELN-0600+-+Tekniskt+
ramverk+f\%C3\%B6r+Svensk+e- legitimation.pdf (visited on
01/19/2016).

http://www.pcworld.com/article/2036252/how-to-set-up-two-factor-authentication-for-facebook-google-microsoft-and-more.html
http://www.pcworld.com/article/2036252/how-to-set-up-two-factor-authentication-for-facebook-google-microsoft-and-more.html
http://www.pcworld.com/article/2036252/how-to-set-up-two-factor-authentication-for-facebook-google-microsoft-and-more.html
http://www.pcworld.com/article/2036252/how-to-set-up-two-factor-authentication-for-facebook-google-microsoft-and-more.html
https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/rfc6238
https://www.bankid.com/om-oss/statistik
https://www.bankid.com/om-oss/statistik
https://www.telia.se/privat/bredband/tjanster/produkt/e-legitimation
https://www.telia.se/privat/bredband/tjanster/produkt/e-legitimation
https://www.bankid.com/om-oss
https://www.bankid.com/om-oss
http://wiki.fribid.se/sidor/BankID-Cava
http://wiki.fribid.se/sidor/BankID-Cava
https://www.bankid.com/assets/bankid/rp/bankid-relying-party-guidelines-v2.9.pdf
https://www.bankid.com/assets/bankid/rp/bankid-relying-party-guidelines-v2.9.pdf
http://dx.doi.org/10.1007/978-3-540-69485-4_14
http://www.elegnamnden.se/svenskelegitimation/ansokantillvalfrihetssystem.4.10cbb69314111c2d94ba5be.html
http://www.elegnamnden.se/svenskelegitimation/ansokantillvalfrihetssystem.4.10cbb69314111c2d94ba5be.html
http://www.elegnamnden.se/download/18.77dbcb041438070e039d236/1432125895897/ELN-0600+-+Tekniskt+ramverk+f\%C3\%B6r+Svensk+e-legitimation.pdf
http://www.elegnamnden.se/download/18.77dbcb041438070e039d236/1432125895897/ELN-0600+-+Tekniskt+ramverk+f\%C3\%B6r+Svensk+e-legitimation.pdf
http://www.elegnamnden.se/download/18.77dbcb041438070e039d236/1432125895897/ELN-0600+-+Tekniskt+ramverk+f\%C3\%B6r+Svensk+e-legitimation.pdf

BIBLIOGRAPHY 59

[40] R. Pearce, “Dead database walking: Mysql’s creator on why the fu-
ture belongs to mariadb,” Mar. 2013. [Online]. Available: http://
www.computerworld.com.au/article/457551/dead_database_
walking_mysql_creator_why_future_belongs_mariadb/ (visited
on 04/11/2016).

[41] OWASP. (2015). Owasp top 10, [Online]. Available: https://www.
owasp.org/index.php/Category:OWASP_Top_Ten_Project (visited
on 04/10/2016).

[42] S. Christey. (2011). Sans top 25 most dangerous software errors, [On-
line]. Available: http://cwe.mitre.org/top25/ (visited on 01/11/2016).

[43] M. Jakobsson and S. Myers, Phishing and countermeasures: Under-
standing the increasing problem of electronic identity theft. JohnWiley
& Sons, 2006.

[44] N. D. D. G. Maria Vergelis Tatyana Shcherbakova. (2016). Kasper-
sky security bulletin. spam and phishing in 2015, [Online]. Avail-
able: https://securelist.com/analysis/kaspersky-security-
bulletin/73591/kaspersky-security-bulletin-spam-and-phishing-
in-2015/ (visited on 05/03/2016).

[45] K. Lab. (2013). The evolution of phishing attacks: 2011-2013, [Online].
Available: http://media.kaspersky.com/pdf/kaspersky_lab_ksn_
report_the_evolution_of_phishing_attacks_2011- 2013.pdf
(visited on 05/03/2016).

[46] R. Dhamija and J. D. Tygar, “The battle against phishing: Dynamic
security skins,” in Proceedings of the 2005 symposium on Usable pri-
vacy and security, ACM, 2005, pp. 77–88.

[47] P. Gühring, Concepts against man-in-the-browser attacks, 2006.

[48] S. Rauti and V. Leppänen, “Browser extension-based man-in-the-
browser attacks against ajax applications with countermeasures,” in
Proceedings of the 13th International Conference on Computer Sys-
tems and Technologies, ser. CompSysTech ’12, Ruse, Bulgaria: ACM,
2012, pp. 251–258, isbn: 978-1-4503-1193-9. doi: 10.1145/2383276.
2383314. [Online]. Available: http : / / doi . acm . org / 10 . 1145 /
2383276.2383314.

[49] A. Mohaisen and O. Alrawi, “Unveiling zeus: Automated classification
of malware samples,” in Proceedings of the 22nd international confer-
ence on World Wide Web companion, International World Wide Web
Conferences Steering Committee, 2013, pp. 829–832.

http://www.computerworld.com.au/article/457551/dead_database_walking_mysql_creator_why_future_belongs_mariadb/
http://www.computerworld.com.au/article/457551/dead_database_walking_mysql_creator_why_future_belongs_mariadb/
http://www.computerworld.com.au/article/457551/dead_database_walking_mysql_creator_why_future_belongs_mariadb/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://cwe.mitre.org/top25/
https://securelist.com/analysis/kaspersky-security-bulletin/73591/kaspersky-security-bulletin-spam-and-phishing-in-2015/
https://securelist.com/analysis/kaspersky-security-bulletin/73591/kaspersky-security-bulletin-spam-and-phishing-in-2015/
https://securelist.com/analysis/kaspersky-security-bulletin/73591/kaspersky-security-bulletin-spam-and-phishing-in-2015/
http://media.kaspersky.com/pdf/kaspersky_lab_ksn_report_the_evolution_of_phishing_attacks_2011-2013.pdf
http://media.kaspersky.com/pdf/kaspersky_lab_ksn_report_the_evolution_of_phishing_attacks_2011-2013.pdf
http://dx.doi.org/10.1145/2383276.2383314
http://dx.doi.org/10.1145/2383276.2383314
http://doi.acm.org/10.1145/2383276.2383314
http://doi.acm.org/10.1145/2383276.2383314

60 BIBLIOGRAPHY

[50] D. J. Kevin Stevens. (2010). Zeus banking trojan report, [Online].
Available: https://www.secureworks.com/research/zeus (visited
on 04/20/2016).

[51] D. Lawrence. (2015). The hunt for the financial industry’s most-
wanted hacker, [Online]. Available: http://www.bloomberg.com/
news/features/2015- 06- 18/the- hunt- for- the- financial-
industry-s-most-wanted-hacker (visited on 04/20/2016).

[52] F. Mercês. (2014). Uncovering malicious browser extensions in chrome
web store, [Online]. Available: http : / / blog . trendmicro . com /
trendlabs-security-intelligence/uncovering-malicious-browser-
extensions-in-chrome-web-store/ (visited on 05/04/2016).

[53] FIDO. (2015). Specifications overview, [Online]. Available: https://
fidoalliance.org/specifications/overview/ (visited on 05/28/2015).

[54] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mecha-
nisms: Classification and state-of-the-art,” Computer Networks, vol.
44, no. 5, pp. 643–666, 2004.

[55] J. S. Davis, “Sony psn downed; hacking group claims ddos attack,”
Jan. 2016. [Online]. Available: http://www.scmagazine.com/sony-
psn - downed - hacking - group - claims - ddos - attack / article /
463065/ (visited on 04/18/2016).

[56] P. Kudo, “Ny ddos-attack mot svenska medier,” Mar. 2016. [Online].
Available: www.svd.se/just- nu- misstankt- dos- attack- mot-
svenska-medier (visited on 04/18/2016).

[57] Z. Al-Qudah, B. Al-Duwairi, and O. Al-Khaleel, “Ddos protection as
a service: Hiding behind the giants,” International Journal of Com-
putational Science and Engineering, vol. 9, no. 4, pp. 292–300, 2014.

[58] M. Prince. (2013). The ddos that knocked spamhaus offline (and how
we mitigated it), [Online]. Available: https://blog.cloudflare.
com/the-ddos-that-knocked-spamhaus-offline-and-ho/ (visited
on 04/08/2016).

[59] T. J. Times. (2010). Hackers tap online supermarket databases, steal
customer info, [Online]. Available: http://www.japantimes.co.jp/
news/2010/08/15/national/hackers-tap-online-supermarket-
databases-steal-customer-info/#.VthHyNBF141 (visited on 03/03/2016).

[60] D. Goldman. (2012). Yahoo’s password hack shows that it failed se-
curity 101, [Online]. Available: http://money.cnn.com/2012/07/12/
technology/yahoo-hack/ (visited on 03/03/2016).

https://www.secureworks.com/research/zeus
http://www.bloomberg.com/news/features/2015-06-18/the-hunt-for-the-financial-industry-s-most-wanted-hacker
http://www.bloomberg.com/news/features/2015-06-18/the-hunt-for-the-financial-industry-s-most-wanted-hacker
http://www.bloomberg.com/news/features/2015-06-18/the-hunt-for-the-financial-industry-s-most-wanted-hacker
http://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-malicious-browser-extensions-in-chrome-web-store/
http://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-malicious-browser-extensions-in-chrome-web-store/
http://blog.trendmicro.com/trendlabs-security-intelligence/uncovering-malicious-browser-extensions-in-chrome-web-store/
https://fidoalliance.org/specifications/overview/
https://fidoalliance.org/specifications/overview/
http://www.scmagazine.com/sony-psn-downed-hacking-group-claims-ddos-attack/article/463065/
http://www.scmagazine.com/sony-psn-downed-hacking-group-claims-ddos-attack/article/463065/
http://www.scmagazine.com/sony-psn-downed-hacking-group-claims-ddos-attack/article/463065/
www.svd.se/just-nu-misstankt-dos-attack-mot-svenska-medier
www.svd.se/just-nu-misstankt-dos-attack-mot-svenska-medier
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
http://www.japantimes.co.jp/news/2010/08/15/national/hackers-tap-online-supermarket-databases-steal-customer-info/#.VthHyNBF141
http://www.japantimes.co.jp/news/2010/08/15/national/hackers-tap-online-supermarket-databases-steal-customer-info/#.VthHyNBF141
http://www.japantimes.co.jp/news/2010/08/15/national/hackers-tap-online-supermarket-databases-steal-customer-info/#.VthHyNBF141
http://money.cnn.com/2012/07/12/technology/yahoo-hack/
http://money.cnn.com/2012/07/12/technology/yahoo-hack/

BIBLIOGRAPHY 61

[61] J. Vijayan. (2009). Rockyou hack exposes names, passwords of 30m
accounts, [Online]. Available: http : / / www . computerworld . com /
article/2522045/security0/rockyou- hack- exposes- names--
passwords-of-30m-accounts.html (visited on 05/02/2016).

[62] L. Larsson. (2011). Lösenorden kommer från bloggtoppen.se, [Online].
Available: http://computersweden.idg.se/2.2683/1.412262/
losenorden-kommer-fran-bloggtoppense (visited on 05/02/2016).

[63] W. Halfond, J. Viegas, and A. Orso, “A classification of sql-injection
attacks and countermeasures,” in Proceedings of the IEEE Interna-
tional Symposium on Secure Software Engineering, IEEE, vol. 1, 2006,
pp. 13–15.

[64] A Kerckhoffs, “La cryptographie militaire (military cryptography), j,”
Sciences Militaires (J. Military Science, in French), 1883.

[65] K. Scarfone, Guide to General Server Security: Recommendations of
the National Institute of Standards and Technology. DIANE Publish-
ing Company, 2009, isbn: 9781437913507. [Online]. Available: https:
//books.google.se/books?id=EimzA3Fn12UC.

[66] I. Loutfi and A. Jøsang, “Fido trust requirements,” in Secure IT Sys-
tems, Springer, 2015, pp. 139–155.

[67] D. H. Mcknight and N. L. Chervany, “The meanings of trust,” Tech.
Rep., 1996.

[68] X. Ruan, “Intel identity protection technology: The robust, conve-
nient, and cost-effective way to deter identity theft,” in Platform Em-
bedded Security Technology Revealed, Springer, 2014, pp. 211–226.

[69] C.-Y. Huang, S.-P. Ma, and K.-T. Chen, “Using one-time passwords
to prevent password phishing attacks,” Apr. 2011. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/pii/
S1084804511000427.

[70] B. Schneier, “Two-factor authentication: Too little, too late.,” Com-
mun. ACM, vol. 48, no. 4, p. 136, 2005.

[71] L. C. Ming, “Captcha in security ecis: Depress phishing by captcha
with otp,” Jun. 2011. [Online]. Available: http://www.tandfonline.
com/doi/abs/10.1080/1023697X.2011.10668241.

[72] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, in. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, ch. CAPTCHA: Using
Hard AI Problems for Security, pp. 294–311, isbn: 978-3-540-39200-2.
[Online]. Available: http://dx.doi.org/10.1007/3-540-39200-
9_18.

http://www.computerworld.com/article/2522045/security0/rockyou-hack-exposes-names--passwords-of-30m-accounts.html
http://www.computerworld.com/article/2522045/security0/rockyou-hack-exposes-names--passwords-of-30m-accounts.html
http://www.computerworld.com/article/2522045/security0/rockyou-hack-exposes-names--passwords-of-30m-accounts.html
http://computersweden.idg.se/2.2683/1.412262/losenorden-kommer-fran-bloggtoppense
http://computersweden.idg.se/2.2683/1.412262/losenorden-kommer-fran-bloggtoppense
https://books.google.se/books?id=EimzA3Fn12UC
https://books.google.se/books?id=EimzA3Fn12UC
http://www.sciencedirect.com/science/article/pii/S1084804511000427
http://www.sciencedirect.com/science/article/pii/S1084804511000427
http://www.tandfonline.com/doi/abs/10.1080/1023697X.2011.10668241
http://www.tandfonline.com/doi/abs/10.1080/1023697X.2011.10668241
http://dx.doi.org/10.1007/3-540-39200-9_18
http://dx.doi.org/10.1007/3-540-39200-9_18

62 BIBLIOGRAPHY

[73] A. Armando, R. Carbone, L. Compagna, J. Cuellar, G. Pellegrino,
and A. Sorniotti, “From multiple credentials to browser-based single
sign-on: Are we more secure?” In Future Challenges in Security and
Privacy for Academia and Industry, Springer, 2011, pp. 68–79.

[74] J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann, and M. Jensen,
“On breaking saml: Be whoever you want to be,” in Presented as
part of the 21st USENIX Security Symposium (USENIX Security 12),
2012, pp. 397–412.

[75] P. Mattsson and T. Larsson. (2015). Fra condemns eid federation,
[Online]. Available: http://www.svt.se/nyheter/inrikes/fra-
domer-ut-gemensam-e-legitimation (visited on 04/28/2016).

http://www.svt.se/nyheter/inrikes/fra-domer-ut-gemensam-e-legitimation
http://www.svt.se/nyheter/inrikes/fra-domer-ut-gemensam-e-legitimation

In
ve

stig
atin

g
 O

p
en

 So
u

rce A
ltern

ative
s fo

r an
 Ele

ctro
n

ic Id
en

tity System

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Investigating Open Source
Alternatives for an Electronic
Identity System

Per Ahlbom
Martin Richter

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-499

http://www.eit.lth.se

P
e

r A
h

lb
o

m
 &

 M
a

rtin
 R

ich
te

r

Master’s Thesis

	Per Ahlbom_Martin Richter exjobb_output.pdf
	Introduction
	Purpose and goals
	Delimitations
	Outline

	Background
	Electronic identity
	Federated Identity
	Linus' law vs. security through obscurity
	Two factor authentication
	SAML 2.0
	FIDO
	OATHHOTP and OATHTOTP

	Electronic ID systems
	BankID
	Swedish eID federation

	Our implementation
	Infrastructure
	Distribution and issuing
	Authentication

	Attacks on the implementation
	Phishing
	Man-in-the-browser
	Denial of service
	SQL injection

	Analysis
	Open Source secure enough?
	FIDO
	OATH analysis
	Comparison FIDO & OATH
	SAML 2.0 analysis

	Discussion
	Goal: evaluate the security of open source protocols
	Goal: implement a proof-of-concept
	Goal: evaluate security of our implementation
	Future work

	Conclusion

