Masters’'s Thesis

Strict separation between OS and
USB driver using a hypervisor

Johan Svensson

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Strict separation between OS and USB driver
using a hypervisor

Johan Svensson
johan.svensson692@gmail.com

Advenica AB
Stora Raby Byavig 88 Lund

Advisor: Martin Hell
Sebastian Nilsson

March 9, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

During 2014, an attack called the BadUSB attack surfaced. This attack allows the
attacker to reflash the firmware of a USB devices and make it perform malicious
tasks. Omne particularly interesting attack whose source code has been released
recently includes modifying a USB flash drive into also acting as a keyboard thus
enabling it to send malicious keystrokes.

This thesis presents a modified version of the BitVisor hypervisor along with other
possible protection mechanisms and evaluates their efficiency in protecting against
this specific kind of attack along with BadUSB attacks in general. In order to test
the hypervisor, the initial thought was to construct a BadUSB attack device using
the source code made available to the public. When no vulnerable devices were
found, emulation of the attack was tried instead. However, emulation did not work
either, thus the focus of the evaluation became strictly theoretical. The outcome
was that the hypervisor prototype was efficient in protecting against this specific
type of BadUSB attack but not against BadUSB attacks in general. The same
conclusions were also reached for the other protection mechanisms investigated
and evaluated in the thesis.

Table of Contents

1

Introduction

1.1 Goals e
1.2 Definitions and abbreviations

Background
2.1 USB - The Universal Serial Bus
2.1.1 The USB Communication flow
2.1.2 The USB protocol
213 USB enumeration
2.1.4 The USB host controller

2.2 Virtualization using a hypervisor
221 General issues in virtualization
2.2.2 Full virtualization
223 Paravirtualization

BadUSB

3.1 Autorun malware and Stuxnet
3.2 Reprogramming of USB firmware
3.3 TheBadUSBattack
3.4 Protection against BadUSB oL

3.4.1 Udev
3.4.2 GoodUSB
3.43 TMSUI

3.5 The hypervisor prototypeo oo
35.1 Using USB in virtualization
35.2 Choosing a software alternative
353 Design specification

3.6 Testing the hypervisor prototype
36.1 Building an attacking USB flash drive
3.6.2 Emulation of the attack

Results

41 The hypervisor prototype
41.1 Emulation of a BadUSB attack

i

w w

o o g o1

10
13
14
15
16

18
18
19
19
20
20
21
22
24
24
25
26
30
30
31

33
33
33

TABLE OF CONTENTS 1
4.2 Comparison of solutions 34
421 Udev 34

422 GoodUSB 35

423 TMSUI 35

424 The hypervisor prototype 36

5 Conclusions and Future Work 37
5.1 Suggestion for Future Work 37
References 39
A Appendix 41
Al USBPID Types. o oo it 41
A2 USB Descriptors o 42

Chapter 1

Introduction

Ever since computers became common in the workplace, and later in almost every
person’s home, there has always been a need to attach external devices such as key-
boards, mouses, speakers, and much more. These would be connected through se-
rial ports that came in many varieties using different contacts and transfer speeds.
Many of them also did not support plug-and-play which, for the user, was yet
another inconvenience.

In 1997, the first computers using the Universal Serial Bus (USB) came onto
the market. Even though USB at first had issues with its transfer speed, which
was later addressed in USB 1.1, USB solved many of the problems with other
serial ports. The transfer speeds are variable, the USB protocol supported plug-
and-play, and it was based strictly around a single type of contact. From that
point, USB has evolved from supporting everything from keyboard and mouses to
gadget devices such as USB-connected cup warmers and reading lamps.

During 2014, the concept of reflashing a USB chip’s firmware and using it as
an attack vector came into discussion. This knowledge, along with some creativity,
was put together into a concept called BadUSB which will be one of the main
focuses of this thesis. To shortly summarize, BadUSB involves reprogramming a
USB device e.g. a USB flash drive thus changing the firmware. By doing this it is
possible for an attacker to e.g. send malicious keystrokes, spoof DNS records. How
would one go about protecting against this? There already exist a few alternatives
that is capable of protecting against BadUSB to a certain degree.

A concept that has not yet been tested is whether it is possible to use virtual-
ization to protect against BadUSB attacks. Since virtualization involves separating
the operating system (OS) from the hardware, and therefore the USB device itself,
this could potentially be possible to accomplish, even without modifying the OS
in any manner.

The concept will be tested by designing and implementing a hypervisor pro-
totype with protection against BadUSB along with a device that can perform a
specific form of BadUSB attack, sending malicious keystrokes while functioning
normally. However since, there were no vulnerable devices available and due to
time constraints, the testing itself was abandoned and the focus of this reported
is strictly theoretical.

Introduction 3

1.1 Goals

The overall goal of this thesis is to investigate BadUSB attacks and whether a hy-
pervisor, through separation of the USB stack from the rest of the OS, can protect
against all, or a subset of, BadUSB attacks.

To do this, virtualization techniques, more specifically paravirtualization and
full virtualization, among with open-source alternatives utilizing these techniques
will be investigated. Furthermore, the investigated open-source alternatives will be
used as a starting point for a hypervisor prototype, capable of protecting against
BadUSB attacks, which is then designed and implemented.

The original goal was for the hypervisor prototype to be tested with and
without the protection activated and the results then compared to other types
of protections, more specifically TMSUI, GoodUSB, and Udev. However, due to
difficulties in testing the hypervisor prototype, later detailed in the report, a the-
oretical analysis was performed instead.

1.2 Definitions and abbreviations

OS Operating System
USB Universal Serial Bus

Udev The device manager of the Linux kernel.

Attack vector - A path or means that can be used by an attacker to e.g.
infected a computer.

DNS Spoofing - The act of spoofing i.e. adding a false DNS record thus
making the requester visit e.g. a mock-up website.

UHCI Universal Hardware Controller Interface - a USB chipset standard
that supports USB 1.X

EHCI Enhanced Hardware Controller Interface - a USB chipset standard
that supports USB 1.X and USB 2.0

XHCI Extensible Hardware Controller Interface - a USB chipset standard
that supports USB 1.X, USB 2.0 and USB 3.0

URB USB Request Block - a data structure used to describe a request /reply
sent by either a USB host or controller.

IOMMU Input/Output Memory Management Unit - a type of hardware
unit that connects a DM A-capable I/O bus to the main memory.

DMA Direct Memory Access - a technique where a device on the mother-
board can access the computer’s memory without getting the CPU involved.

qHD Queue Head Descriptor - A data structure used in the host controller
to describe the head of a queue.

qTD Queue Element Transfer Descriptor - A data structure used in the host
controller to describe an element of a queue.

Introduction

Low-speed - A mode introduced in USB1.X supporting transfer speeds up
to 1.5 Mbps.

Full-speed - A mode introduced in USB1.X supporting transfer speeds up
to 12 Mbps.

High-speed - A mode introduced in USB2.0 supporting transfer speeds up
to 480 Mbps.

Frame/Microframe - Base unit of time used during USB communication.
Consist of 125 us in the USB 2.0 standard and 1 ms in the USB 1.X standard
[1, p. 36].

Chapter 2

Background

2.1 USB - The Universal Serial Bus

The first standard of the Universal Serial Bus, USB 1.0, was released in January of
1996. Since then, there have been another 4 major revisions/additions to the USB
standard. These are in order of release: USB 1.1(August 1998), USB 2.0 (April
2000), USB 3.0 (November 2008), and USB 3.1 (January 2013). Common for all
standards is the introduction of new (higher) transfer speeds. Additionally, each
standard is typically associated with a new type of host controller which is defined
in a separate standard. The host controller and parts of their inner workings will
be explained further in Section 2.1.4 but before these can be fully understood, the
USB communication protocol must be explained.

2.1.1 The USB Communication flow

The Universal Serial Bus in its most basic form consist of a host controller, later
described in Section 2.1.4, and one or more USB hubs that are connected in a
tiered-star topology. One of the hubs is physically built into the bus and is referred
to as the root hub. The hubs acts as concentrators i.e. they turn what would only
be a single port into multiple ports.

The port(s) typically consist of 4 lines, 2 for power and 2 for data transmission.
The communication itself is however split into logical channels called pipes [1, p.
33 - 34]. Each pipe corresponds to an endpoint on the device. Due to this, it is
quite common that the terms endpoint and pipe is used interchangeably since a
pipe always correspond to a single endpoint. Since different devices have different
requirements on the amount of data that is to be sent as well as the timing of the
data, there are 4 different endpoint categories.

Isochronous endpoint

Isochronous endpoints provide continuous and steady bandwidth. This is espe-
cially useful when transmitting data for e.g. voice or video. This endpoint cat-
egory provides error-detection but does not guarantee delivery. It does however
guarantee that an attempt at transmission will be made within a certain timeframe
[1, p. 21]. Since this kind of endpoint is not used in the solution, the workings of
isochronous endpoints will not be further detailed.

6 Background

Control endpoint

Control endpoints are used for status and command communication. These packets
are sent best effort i.e. the delivery is not guaranteed [1, p. 21]. One of the most
important uses for Control endpoints is USB enumeration, later detailed in Section
2.1.3.

Interrupt endpoint

The interrupt endpoint provide the functionality to transfer small amounts of data
within a certain timeframe. This is used for e.g. USB mouses and USB keyboards
[1, p. 21].

Bulk endpoint

Bulk endpoints provide the functionality to transfer large bursts of sequential data.
This is typically used for e.g. printers, scanners, and most notably to send data to
and from the flash memory in USB flash drives. It also provides reliability in that
it includes error-detection as well as a (limited) number of retries for resending.
Bulk data, however, does not guarantee that the data will be transmitted within a
certain time frame since it uses spare bandwidth when the bus is not busy sending
[1, p. 21].

Endpoints, Interfaces and Functions

Besides from the Default Control Pipe, also known as Endpoint zero, the end-
point(s) are organized into interfaces. Both the amount of available endpoints
and interfaces may vary for a device depending on its function, or configuration.
Exactly how the configuration of the device is done will be described further in
Section 2.1.3.

2.1.2 The USB protocol

The USB protocol is centered around transmitting data using packets. This is
done using a master/slave topology i.e. the attached USB device, the slave, send-
s/receives data when the USB host, the master, tells it to do so.

All data that is sent in either direction is always associated with (at least)
three packets: A Token packet that controls the direction of the data flow, a
Data packet containing the actual data and a Handshake packet that reports
the outcome/status of the transmission. These 3 stages can be used to divide a
majority of the available packets into the categories Token, Data and Handshake
[1, p. 196]. Sending a Token, a Data, and finally a Handshake packet is also
referred to as a bus transaction.

All packets follow a similar format although some packet might have addi-
tional fields. The common 3 fields in all packets are Synchronization, PID and
End-of-Packet (EOP). The Synchronization field is, as the name suggests, used
for synchronization. More specifically it is used to synchronize the device’s clock
with the clock of the host controller. When running in low- or full-speed mode

Background 7

this field is 8 bits while it is 32 bits in high-speed mode [1, p. 37].

The PID field is used to determine what kind of packet is being sent. All
available packet types can be seen in Table A.1, located in Appendix A.1. Finally,
there is also the End-of-Packet field which as the name may suggest marks the end
of the packet.

The Token category

Sync | PID | Addr | EndP | CRC5|EOP

Figure 2.1: Token Packet

The Token category consists of IN, OUT, SETUP, and SPLIT packets, the latter
of will be described in the next section. IN and OUT packets are used for flagging
incoming/outgoing transmissions. SETUP on the other hand is used to send
controls messages. This includes configuration of the device as well as probing for
information about the device. This will be more thoroughly explained in Section
2.1.3. As shown in Figure 2.1, Token packets also contain the address (Addr)
of the device, which endpoint (EndP) the data should go to along with an error
detection code, CRC5, used on the address field and the endpoint field [1, p. 199].

The Data category

SYNC|PID | DATA | CRC16 | EOP

Figure 2.2: Data Packet

Once the direction of the transmission has been established, the transmission con-
tinues with a packet of the Data category. The basic outline of these are always
the same, with the PID field being the only difference, as shown in Figure 2.2.

In its most basic form, only the DATA(O PID is used to send data. DATAI
is used by non-isochronous transactions when Data Toggle Synchronization is re-
quired. By alternating the PID between DATA(O and DATA1, it is possible to make
sure that the data arrives in the correct order [1, p. 232]. The other two PIDs,
MDATA and DATA2, are used in isochronous transactions while split-isochronous
transactions only use DATAZ2.

Split transactions are used when transmitting data to a device running at
a speed different from the hub it is connected to. A split transaction begins with
a special token called a SPLIT token which are used in Start-split transactions
(SSPLIT) and in Complete-split transaction (CSPLIT). Start-split transactions

8 Background

begin with a SPLIT token and is followed by the Token that the host controller
wants to send to the device. If the host controller is sending data, as is the case
when sending a SETUP or OUT token, the data is also sent directly after the
token [1, p. 441]. The hub will then respond with an ACK if the transaction was
received successfully.

The hub will now perform the transaction in the same manner as the host
controller would have done if it was connected directly to the device. The host
controller will during this time wait for the transaction to be completed. Once the
host controller thinks that the transaction should have been completed, it sends a
SPLIT token followed by the original Token. The hub will then respond with the
data, in case of a IN token, or simply with an ACK handshake if it was a SETUP
or an OUT token. The hub may also respond with 4 other handshake packets to
indicate an error of some kind:

e NYET - The hub has not received a response from the device yet [1, p. 476
- 479].

e NAK - The hub is unable to perform the operation due to lack of buffers
[1, p. 481] or the device is simply not ready to send yet.

e ERROR - The hub encountered a transaction error during an interrupt
transaction [1, p. 498].

e STALL - The device sent a STALL [1, p. 463, 507, 531] or 3 consecutive
transaction errors between the hub and the device have occurred during a
bulk or a control transactions [1, p. 477].

The Handshake category

SYNC | PID | EOP

Figure 2.3: Handshake Packet

The Handshake category consists of 5 kinds of packets that are used to com-
municate the outcome/status of the transmission. As shown in Figure 2.3 they
only consist of the three fields common for all packets i.e. they communicate their
message simply by being sent. The 5 available messages are:

e ACK - The packet was received successfully [1, p. 206].

e NAK - The device cannot communicate any data [1, p. 206]. This may be
due to several reasons e.g. there is no more data to send, the device is busy
processing data already in flight.

e STALL - The endpoint has encountered an error of some kind that the USB
host needs to address [1, p. 207].

Background 9

e NYET - Used in high-speed mode (USB 2.0+) either as a response to the
PING protocol or by a hub as a response to a non-completed full /low-speed
transaction [1, p. 207].

e ERR - Used in high-speed mode (USB 2.0+) for reporting an error in a
high-speed hub for a full/low speed bus [1, p. 207].

2.1.3 USB enumeration

Before an attached USB device can be used, the OS requires information about
the device e.g. what kind of device it is, what manufacturer made it. The process
of gathering this information is referred to as USB enumeration and is done so
that the correct driver can be loaded by the OS. In order to fully understand how
the USB enumeration process works, the usage of SETUP transactions must first
be explained.

The SETUP transaction

A SETUP-transaction begins with a SETUP-packet and is followed by a Data-
packet consisting of 8 bytes divided into 5 fields. These are:

1. bmRequestType (byte 0) - Used to determine the nature of the request e.g.
the direction of the data, what type of request, and who the recipient is.

2. bmRequest (byte 1) - Tells what specific kind of request is made. All possible
requests are listed in Table 2.1.

3. wValue (byte 2:3) - Depends on the kind of request.
4. wlndex (byte 4:5) - Depends on the kind of request.

5. wLength (byte 6:7) - The length of the data stage. If this field is O there is
no additional data in the response.

The response begins with the host sending an IN-packet followed by a DATAQ-
packet sent by the device. This packet will consist of the same header as in the
previous stage. Additionally it will also contain the data of length wLength that
was requested. Finally the data is, if the transaction is error-free, acknowledged
with an ACK -packet.

If the Maximum Packet Size is less than the size of the requested descrip-
tor, the IN transactions are repeated until the whole descriptor has been sent to
the host controller. The host controller will then acknowledge the descriptor by
sending a empty OUT transaction.

The USB enumeration process

The enumeration process begins when a device is plugged into a USB hub con-
nected to the host controller. The host controller learns about the newly attached
device through an interrupt endpoint that report the hub’s status [2, p. 31].

At this point, the host controller will issue a GET _PORT _STATUS request.
The information sent in this request gives the USB host controller information

10 Background

Table 2.1: USB Device Requests

bRequest wValue wlndex wLength

GET_CONFIGURATION Feature selection Interface endpoint 1

GET_DESCRIPTOR Desc Type and Index | 0 or Lang Index | Desc Length
GET_INTERFACE 0 Interface 1
GET_STATUS 0 Interface endpoint 2
SET _ADDRESS Device address 0 0
SET _CONFIGURATION | Configuration value 0 0
SET DESCRIPTOR 0 0 0
SET FEATURE Feature selector 0 0
SET_INTERFACE Alternate setting Interface 0
SYNCH_FRAME 0 Endpoint 2

whether the device can run in Full-speed or only in Low-speed [2, p. 31].

The host controller resets the port of the new device by issuing a SET PORT
FEATURE request to the hub. During the reset, the hub can detect whether High-
speed is supported. If this is the case, this mode is enabled [2, p. 31].

The host controller will now issue one or more GET PORT STATUS re-
quests until the device leaves the reset state [2, p. 31]. When this occurs, the
device can be communicated with using the default address 0. The host controller
will do an initial probe of the device by requesting its Device Descriptor. Using
the Device Descriptor, the host controller can find the Maximum Packet Size
[2, p. 32]. The port is then reset again.

The device is assigned a device number which in the future will be the content
of the Addr field until the device is detached or encounters an error forcing it to
reset. The assignment is done by sending a SET ADDRESS request (see Table
2.1) with the device address in the wValue field [2, p. 32].

When the device has been assigned an address, the probing and configuration
of the device can begin. The host will send a series of GET DESCRIPTOR re-
quests. The first request is typically for the Device Descriptor which will give some
initial information about the device (device class, vendor id, product id, etc.). If
there are available configurations and interfaces, these will typically also be probed
by requesting the Configuration and/or Interface Descriptors in the same way as
the Device Descriptor [2, p. 32].

After the probing is completed, a SET CONFIGURATION request contain-
ing the configuration number is issued [2, p. 32]. When this is completed, the
USB enumeration process is done and the device is ready to be used.

2.1.4 The USB host controller

The underlying hardware that actually sends and receives the packets to and from
the device is called the USB host controller. The software communicates with the
hardware using a register-level interface on top of the hardware.

During the development of USB, there has in total been 4 different kinds of
standards for interfaces that handle this communication. These 4 standards are,
in order of earliest to latest, OHCI (USB 1.1), UHCI (USB 1.X), EHCI(USB 2.0),

Background 11

XHCI (USB 3.X). The currently most used standards are EHCI and XHCI where
EHCI is still present in many computers and XHCI being introduced to many new
computers. A common design choice in many motherboards is to have multiple
host controllers, often one XHCI controller and one EHCI controller. This section
will however focus on the EHCI standard, since the XHCI standard will not be
used in this thesis.

The EHCI standard

The EHCI bus is, just like many other buses, found and identified by the software
using PCI configuration registers which are memory-mapped registers. These are
used to identify the USB host controller and its capabilities [4, p. 7]. Among the
different registers, one of the most relevant for understanding the EHCI standard
is the USBBASE-register. The USBBASE-register contains the base address of
the Host Controller Register Space. This is where the registers that concern the
actual operations of the USB host controller are located.

The first 20 bytes of this area of the memory are called the Host Controller
Capability Registers [4, p. 13]. These consist of a version number, structural
parameters (number of supported ports, port routing rules, port power control
etc), capability parameters (64 bit addressing capability, parameters regarding
schedules etc), and an optional field that helps the controller keep track of what
port is mapped to what companion host controller (in case there are more than
one).

In order to keep track of where the Operational registers begin, there is also a
field called CAPLENGTH that holds the offset to the Operational registers relative
to the USBBASE. The Operational registers can be divided into 9 different kinds
of registers which all are 32 bits.

Asynchronous transactions

31 30 2% 33 37 36 39 34 33 3T 30 30 19 18 17 18 15 14 13 12X 11 10 0% 04 07 08 05 04 03 02 00 00

Queus Head Horfzontal Link Pointer | 0 |'J'}'p|']'
RL |C| Max. packet length Hl |I:JF'S| EndPt [|L?I1:'."u.1: Address
|Purl MNumber | Huly Addr
Current qTD Poinler [i]
MNext qTD Pointer [
Alternate Next qTD Pointer MakCnt (T
dt Total Bytes in Transfer |M{ C_page | Cerr |L’[LII| Status
Buffer Pointer (Page 0) Current Offsel
Buffer Pointer (Page 1) Reserved | C-prog-mask
Buffer Pointer (Page 21 S-bytles |l-"rarm:']'ag
Buffer Pointer (Page 31 Reservied
Buffer Pointer (Page 4) Reserved

Figure 2.4: Queue Head Format

The asynchronous list is used for sending bulk transactions and control transac-
tions. These are represented using 2 vital data structures, Queue Heads (QH)

12 Background

Halted
OR
1Active AND |-bit {interrupt QH)

Fetch QH

IActive AND 'Halted

IActive
< Mext qTD

Active AND Halted

¥

Active
Execute

transaction

|Active
Active

¥

Write back
results

l

MNext QH

Figure 2.5: Asynchronous list state machine

and Queue Element Transfer Descriptors (qTD). Queue heads, as depicted in
Figure 2.4, consists mostly of fields used for addressing and the current status of
the link. Another important part of the QH is the overlay area, which consists of a
total of 6 buffer pointers. These are used as intermediate storage when performing
transactions stored in a qTD.

The qTD(s) are used for representing the transactions themselves [4, p. 71].
Each qTD contains 2 pointers that points to other qTDs in the queue (or itself
if the qTD is alone in the queue). Each qTD also contain 5 buffer pointers, each
pointing to a buffer used for storing data of each bus transaction. Finally, the TD
also contain status- and option information regarding the link e.g. PID, Interrupt
on Complete, Total Bytes to Transfer.

The asynchronous list itself consists of Queue heads linked together in a circu-
lar list. The current element of the list is pointed to by the ASYNCLISTADDR
register of the USB host controller’s Operational registers. How the list itself oper-
ates will not be described in much detail since it is not needed for understanding
the thesis.

The list is operated by fetching QHs from the list and looking at each QH’s
qTD(s), mainly at each qTD’s Active bit and Halted bit, as described in Figure
2.5. What is not shown in the Figure is how the traversal stops. In order to
make sure that the list is not traversed more than once, the Reclamation bit of the

Background 13

USBSTS register and the H-bit of each QH is used. Initially, the Reclamation
bit is set to 1. As the list is traversed and the head of the queue, having its H-bit
set to 1, is found the Reclamation bit is set to 0. Once this element is traversed
again the host controller determines the asynchronous list to be empty and stops
its traversal. It is also worth mentioning that if the Reclamation bit is set to 0
and a transaction is executed, the Reclamation bit will be set to 1 again.

The EHCI host controller also consists of more parts, e.g. the periodic list,
which are left out since these are of no relevance to the thesis. The asynchronous
list, however, is a vital part of the emulation implementation, as later described
in Section 3.6.2.

2.2 Virtualization using a hypervisor

The concept of virtualization in computing involves creating a virtual aspect of
a computer which may range everything from storage devices to entire hardware
platforms, the latter of which will be the focus of this section. The hardware plat-
form that is to be virtualized is the x86-platform which is the most common used
by personal computers today.

The virtualization is performed using a hypervisor. A hypervisor is, in its
most basic form, a minimalistic OS that enables one or more operating system(s),
also called guests, to run alongside one another. The task of the hypervisor is to
act as a scheduler for the CPU(s) i.e. deciding which guest gets to use the CPU
next along with controlling access to the hardware of the computer e.g. the main
memory, the USB host controller.

Hypervisors also come in two different types depending on when it starts ex-
ecution. The first kind, hosted hypervisors, are hypervisors that are hosted
by another OS while the second kind, native hypervisors, are hypervisors that
begin their execution before any other OS. The key difference between these two
types of hypervisors is the amount of control they have of the hardware. Since
the native hypervisors lay directly on top of the hardware it has more or less full
control over the hardware. By using a native hypervisor it is possible to create a
clear separation between the OS and the rest of the hardware which in turn is one
of the main goals of this thesis.

The most common native hypervisors in use today use 2 different techniques to
perform virtualization. These are full virtualization and paravirtualization.
To shortly summarize, paravirtualization addresses the problems of virtualization
by changing the guests’ kernels, thus taking a more software-based approach. Full
virtualization, on the other hand, has to allow the guest to run unaltered. Because
of this limitation, modern full virtualization solution often relies on hardware as-
sistance (hardware-assisted virtualization) to improve performance.

The two chosen open-source software alternatives, Xen and Bit Visor, (mainly)
uses paravirtualization and full virtualization respectively (Xen supports full vir-
tualization as well but performance is by far better when using paravirtualization).
This section will describe how both of these techniques go about solving the is-
sues of virtualization but before jumping into this, the common issues that all
virtualization solutions must address has to be put into context.

14 Background

2.2.1 General issues in virtualization

The goal of the virtualization solutions that will later be presented is to create
a virtual version of the x86 platform. What this means is that (almost) all as-
pects of the x86 platform needs to be emulated by the hypervisor to the guest.
Since the task of virtualizing an entire hardware platform is very extensive this
has been simplified into 3 aspects that are deemed to be the most important for
understanding how virtualization works. These aspects are privileged instruc-
tions, memory, and interrupts. Device I/0 is also a very important aspect
of virtualization, especially considering the goal of this thesis (since the USB host
controller is essentially a I/O device). This will however be explained later in
Section 3.5.1.

Privileged instruction

Privileged instructions are special instructions in the CPU’s instruction set that
require the CPU to be in a state where it has the appropriate permission to execute
the privileged instruction. On the x86 platform this feature is enabled when the
CPU is in protected mode. The other mode, where the feature is deactivated,
is called real mode.

When the CPU is in the protected mode, the processor may be at 4 different
privilege levels also called rings. These are numbered from 0 to 3 where 0 has the
most privilege and 3 has the least privilege.

In virtualization, this feature plays a very large role in causing the separation
between the guest OS and the hypervisor. By letting the hypervisor run in ring 0 it
is possible for the hypervisor to limit the amount of control that the guest has over
e.g. the main memory along with other hardware. However, it is not uncommon
that operating systems also use this feature so that an application runs in ring
3 while the kernel runs in ring 0. Because of this, the hypervisor must emulate
different privilege levels in some manner so that the OS can function normally.

Memory

Even when using virtualization memory is accessed in the same manner as it is
always done, by giving the CPU an instruction telling it to read and/or write to
a certain memory address. Example:

;Store the wvalue 5 at memory address 0z8000
MOVL $5, 0x8000

In order to understand the solutions fully, the basic mechanics of memory manage-
ment must first be explained. Basically all operating systems use virtual memory
i.e. it has a virtual memory space that maps to a physical memory space residing
in the actual RAM.

Since translating individual memory addresses are quite difficult, the mem-
ory is divided into chunks, also called pages, consisting of usually 4096 bytes. In
order to access the memory the CPU uses a MMU (Memory management unit)
whose task is to translate the virtual address entered by the CPU into an actual
physical address. Some implementations have the MMU built into the CPU but

Background 15

for simplicity it is assumed that this is not the case. Keeping track of the virtual
to physical mapping in memory is done using a page table. A page table is a
table containing mapping between a virtual page and a physical page.

This becomes an issue in virtualization since both the hypervisor and the
guest will want to use this functionality. To solve this, there needs to be a mech-
anism that does not allow the guest to access certain parts of the memory or
alternatively there needs to be a mechanism that keeps track of virtual addresses
relative to the hypervisor and guest respectively.

Interrupts

An interrupt is a mechanism used by both hardware and software to signal the
CPU that an event that needs attention has occurred. When an interrupt occurs,
the CPU suspends the current activities by stopping whatever it is doing, saving
its state (all registers of the CPU), and finally jumping to the interrupt handler,
a function that handles the interrupt.

The main issue with interrupts in virtualization is that the hypervisor needs
to control the interrupts. What this means in practice is that the hypervisor has to
have control over the IVT (Interrupt vector table), which controls which function
should handle which interrupt/error/exception. The hypervisor must also control
the enabling/disabling of interrupts by controlling the interrupt flag (IF) as well
as controlling interrupt masking (turning individual categories/types of interrupts
on/off).

2.2.2 Full virtualization

Full virtualization on the x86 platform was for a long time implemented but im-
practical to use, mainly due to performance factors. The first major step towards
full virtualization becoming a viable option was achieved in 2005 - 2006 when
hardware-assisted virtualization was introduced to the x86-platform through the
implementation of AMD-V for AMD processors and Intel VT-x for Intel proces-
sors. Both of these techniques were at their introduction not very groundbreaking
i.e. full virtualization did not become a viable option over night [5]. Over time
however, both of the techniques have evolved in making full virtualization a pos-
sibility performance-wise.

Privileged instructions

Before hardware-assisted virtualization became possible, a technique called binary
translation was used. Binary translation involves replacing all privileged instruc-
tions in the guest’s kernel, upon loading it into memory, with a corresponding
hypervisor call. This way, all privileged instructions are handled by the hypervi-
sor.

Binary translation was for a long time the only viable method to be used
in full virtualization until x86 processors supporting Intel VT /AMD-V (hardware-
assisted virtualization) came onto the market. The Intel VT solution to the issue of
privileged instructions is to treat the execution of these instructions as interrupts.

16 Background

When a privileged instruction occurs, the hardware saves the guest’s current con-
text/state in a Virtual Machine Control Structure so that it can later be restored
when the privileged instruction is done executing. Control is then handed over to
the hypervisor which then executes the privileged instruction and then hands the
control back to the guest [6].

Memory

In full virtualization, the concept used to address the issue of memory manage-
ment is called nested page tables. Nested page tables includes adding an extra
page table for each guest where a virtual address in the guest maps into a (still)
virtual address in the guest’s extra page table which is then in turn mapped to
the physical memory. The shadow page table(s) themselves are either managed by
the hypervisor or edited by the guest and then validated by the host depending
on the implementation [7].

From the beginning, this was strictly software-based which caused some issues
with performance. Since then, support for doing this in hardware has been added
to both Intel VT and AMD-V. When done in hardware, this is referred to as EPT
(Extended Page Table(s)) and when done in software it is referred to as shadow

paging.

Interrupts

Interrupts in full virtualization are usually handled using some sort of trap-and-
emulate scheme where the interrupts is intercepted by the hypervisor, handled,
and then sent virtualized to the guest.

In Intel VT, the problem is solved in exactly this manner. Control is handed
over to the hypervisor once an interrupt occurs. The hypervisor then handles the
interrupt and injects a wirtual interrupt into the guest once the guest resumes
execution [8]. Another aspect of the interrupt handling that must be addressed
is regarding the control of the interrupt flag (IF) and the control of masking/un-
masking interrupts. Both of these actions are considered to be privileged operations
i.e. the control is automatically given to the hypervisor when these events occur
thus the problem is handled.

2.2.3 Paravirtualization

Paravirtualization, virtualization involving changing the guest system in some
manner, was first used as early as 1972 in a virtualization OS made by IBM.
Since then, both commercial native hypervisors e.g. VMware and open-source
hypervisors e.g. Xen has adopted this concept. Since Xen is one of the most
widely used open-source solutions to x86 paravirtualization, with approximately
10 million users [15], many of the solutions to the issues of x86 virtualization will
be directly related to Xen.

Background 17

Privileged instructions

The paravirtualized solution to the issue of privileged instructions was for a long
time easier and more efficient than full virtualization. Since it is possible to modify
the kernel, all privileged instructions are replaced with a call to the hypervisor.
This was for a long time a much better solution to the issue than e.g. binary
translation and also for some time the hardware-assisted implementation. In re-
cent years this has however changed and nowadays the hardware-assisted imple-
mentation is in most cases slightly faster than the paravirtualized implementation

[9].

Memory

As discussed in the section about full virtualization, memory management which is
software-based uses a concept that is called shadow paging. In paravirtualization it
is also entirely possible to use shadow paging. However, since this has already been
explained it may be worth mentioning how Xen, one of the software alternatives
that will later be examined, deals with memory management [9].

Xen takes a completely different approach and grants the guests direct read
access to the hardware page tables. The updates the guest wishes to make are
instead batched, validated, and finally written to the page table by the hypervisor

[9]-

Interrupts

The solution to interrupts in paravirtualization is usually solved by using an event-
system that is integrated into the guest’s kernel. The specifics on how this is
designed and implemented can be found by the reader by e.g. looking at the
documentation of Xen [9)].

Chapter 3

BadUSB

The BadUSB attack was first presented by a group of German computer secu-
rity analysts at Blackhat USA 2014. The attack consists of reprogramming the
firmware of a USB device in order to make it perform malicious tasks [14]. The
attacks shown during the presentation include emulating a keyboard, DNS spoof-
ing by emulating a USB network adapter, and adding a virus to the boot sector
of a USB drive. Additionally, it was also proposed that it might be possible to
update BIOS and take control over it, inject viruses/malicious code into files on a
USB flash drive, etc.

In this thesis, there is a limitation to only one kind of BadUSB attack which
is an attack that involves reprogramming a USB flash drive into having an extra
keyboard interface which is used to send keystrokes for e.g. spawning a reverse-
shell or something similar. This chapter will in detail explain how this kind of
BadUSB attack works as well as possible means of protection/mitigation. A hy-
pervisor prototype that will provide some protection against, at least this kind of,
BadUSB attack will be designed using an open-source alternative and then imple-
mented. Both the attempt at building a BadUSB device along with the attempt
at emulating the attack will also be detailed.

3.1 Autorun malware and Stuxnet

Although the concept of reprogramming USB devices had not really been fully
considered, the use of a USB device as an attack vector is far from new. One
particularly interesting approach is exploitation of the Windows autorun feature.
The autorun feature enables an attacker to make executables run upon plugging
in the device. This enables the attacker to infect the computer with malware,
viruses, trojan, rootkits, etc. sometimes even without the user noticing it [10].
Once the computer is infected, it is not impossible that other USB flash drives
attached to the computer also become infected, thus spreading the virus further.

One notable example of a worm that utilized this, among other techniques,
to spread itself is the Stuxnet worm. Stuxnet surfaced in 2010 [11] and tar-
gets Windows systems with the purpose of infecting and controlling programmable
logic controllers (PLC). The specific kind of PLC it wanted to target was a type
of controller that controls some form of spinning e.g. pumps, centrifuges, etc. By
changing the rotational frequency and masking the sensor values, it could effec-

18

BadUSB 19

tively destroy the machine controlled by the PLC by increasing and decreasing its
rotational speed to speeds that it cannot manage [12]. Beside the autorun feature,
the Stuxnet worm also uses RPC (Remote Procedure Call) once it is inside the
facility in order to spread itself further throughout the network.

3.2 Reprogramming of USB firmware

Before BadUSB was presented, the idea of reprogramming USB devices had al-
ready been considered. The example that comes the closest to BadUSB can be
seen in a presentation from Shmoocon 2014 by Richard Harman [13]. The attack
involves using Phison MPALL, software used for recovery of Phison USB con-
trollers, to change settings of a Phison USB device. This can potentially be used
for reprogramming a USB flash drive in the same way as with BadUSB but instead
it was suggested how to produce secret partitions on the USB device.

3.3 The BadUSB attack

The BadUSB attack consists of two stages, reprogramming the device’s firmware
and attaching the USB device to a computer, thus making the attack execute. The
reprogramming of the firmware will later be detailed in Section 3.6.1. The second
stage of the attack can be summarized as [14]:

1. The device is detected and enumerated as described in the Section 2.1.3.

2. During the enumeration process, the device reports itself having a total of 6
endpoints, 1 for control/status (endpoint 0), 3 for transferring data to and
from the USB flash drive, and 2 for emulating a keyboard that can perform
the actual attack.

3. Once SET CONFIGURATION has been sent and acknowledged, the de-
vice can be used. By this time, the partition(s) on the USB flash drive can
be accessed by the OS and the malicious keystrokes are sent.

The Device Descriptor (Table A.2) sent will have its reported Device Class and
Device Subclass set to 0x00. By doing this, the device can report that it supports
multiple classes. This is then followed by the Configuration Descriptor (Table
A.3) consisting of 2 Interface Descriptors (Table A.4), one consisting of 3 endpoints
and the other one consisting of 2 endpoints, both shown in Figure 3.1. More
specifically, the first interface is the interface to the flash drive and the other
interface is the interface to the emulated keyboard used in the attack.

The flash drive’s interface consist of 3 endpoints where 2 endpoints are Bulk
endpoints, one going IN, and one going OUT. The final endpoint of the interface
is an Interrupt endpoint going in the IN direction. The emulated keyboard’s
interface consist of 2 endpoints, one being a Interrupt endpoint going IN as well
as a Control endpoint used as a dummy endpoint.

The setup described allows the USB flash drive to still function as a normal
USB flash drive yet being fully capable of performing the attack. It is worth
mentioning that this specific setup is not a requirement for the attack to work.

20 BadUSB

h 4

Control endpaint

Interface 1
Bulk endpoint
Configuration -
Descriptor "] | Bulk endpaint

Interrupt endpoint

Interface 2

Interrupt endpoint

h J

Control endpaint

Figure 3.1: BadUSB device configuration descriptor

One approach could be to simply make the USB flash drive only act as a keyboard
and perform the attack every time it is plugged in which would be more than
sufficient in order for the attack to work. The process of reprogramming the USB
device’s firmware and replacing it with a custom firmware will be discussed further
in Section 3.6.1.

3.4 Protection against BadUSB

Currently there exists 2 security schemes that have been specifically designed with
BadUSB in mind. In this section, both of these security schemes, GoodUSB and
TMSUI, will be explained. Since the target system is Linux, using Udev to filter
out malicious devices will also be examined to investigate whether it also can be
used to protect against BadUSB.

3.4.1 Udev

All devices that are attached to the computer, e.g. Hard drives, USB devices
etc. are all managed by device drivers that run in the kernel. Since some of
these devices might need to communicate with applications running in userspace,
outside of the kernel, any changes to the device(s)’ state has to be passed on.

Udev can be regarded as a layer that handles communication between the
kernel and userspace. This is mainly done by handling device node files. These
files are claimed by device drivers running in the kernel and may then be written
to and read from in order to pass information between userspace and the device
driver running in the kernel.

Udev can also be used for filtering out devices. When a USB device is plugged
in, Udev gets access to almost all of the information supplied by the device during
enumeration. By changing the configuration file(s) of Udev, it is possible to execute

BadUSB 21

a script upon a device being attached to the computer. This filter can also be
customized to filter out certain interfaces depending on their class. For the attack
used in this thesis, as described in Section 3.3, the best approach would be to have
a script execute when booting up the kernel. The script would set the kernel to
block all new HID devices from being attached and used (keyboards and mouses
belong to this category). When the computer is shut down, another script re-
enabling new HID devices would run so that the devices are allowed during boot.
An example of such a rule is:

ACTION== , ATTR{bInterfaceClass}== RUN+=

The rule states "If an interface with class 0x08 (HID interface) is found, write
a 0 to the file ‘authorized in the device’s corresponding sysfs folder”". Sysfs is a
virtual file system used by the Linux kernel to export various information about de-
vices attached to the system, including USB devices. The variable $DEVPATH
corresponds to the device’s path relative to the /sys directory e.g. /bus/usb/de-
vices/<device number>. Finally, writing a 0 to the file authorized in the device’s
corresponding folder will disable the device from being used.

This rule needs to be enabled once the actual mouse and keyboard has been
enumerated and can be used. The options is between enabling/disabling the rule
during boot/shut down or during login/logout. In order to make the implemen-
tation more fail-safe it is probably a better alternative to enable the rule after
login/disable the rule after logout. The rule may be put into a configuration file
e.g. usbblock.rules. Enabling the rule could then simply be done using the sed
command (stream editor) as such:

sed -1 /etc/udev/rules.d/usbblock.rules; udevadm
control --reload-rules

What the command does is essentially 2 actions. First, it finds all commenting
characters, the character "#" in this case, and removes it /replaces it with nothing.
Secondly, it forces the Udev service to reload its set of rules, thus enabling the rule
(since the rule is now uncommented). Disabling the rule is done as such:

sed -1 /etc/udev/rules.d/usbblock.rules;
udevadm control --reload-rules

This command does essentially the same actions but rather than replacing "#"
with nothing, it inserts a "#" character at the beginning of every line of the file.
Since there is only one line in the file, this means that the rule is now seen as
a comment thus making the rule not load when the set of rules are reloaded.
Worth noticing is that the idea and implementation for this came from a thread
on StackExchange [20].

3.4.2 GoodUSB

GoodUSB is a recently presented and implemented scheme [21]. It is imple-
mented for Linux and consists of 3 vital componenets: A graphical interface, an

22 BadUSB

emulated USB honeypot, and a policy engine, also called a mediator.

At the center of the design is the mediator. Its purpose is to decide whether
a device can be trusted or not. In order to do this, a graphical interface is used.
The mediator is connected to a modified Linux kernel. Using a netlink, the me-
diator gets access to the information supplied by the device during enumeration.
This information is then shown to the user in using the graphical interface. The
user will then select a profile from a list. Each profile describes a kind of device
and what interfaces it should support, presented in a simple fashion so that even
the most uninitiated users can understand. Using the user feedback together with
the information received during enumeration, the mediator can decide whether
the device can be trusted or not [21].

If the device can be trusted, the mediator routes the USB traffic to the ac-
tual OS and the device, as usually. In the case the mediator decides that the
device cannot be trusted, it is instead redirected to the emulated USB honeypot.
The USB honeypot is a virtual machine (VM) running using KVM, Kernel-
based Virtual Machine. KVM is a module/kernel extension that is capable of
turning a regular Linuz kernel into a hypervisor with the use of hardware-assisted
virtualization based on Intel VT and/or AMD-V [22]. Within the VM, a USB
host controller, is emulated using QEMU, a hosted hypervisor which is capable
of emulating hardware [23]. Using the VM along with the emulated USB host
controller the mediator can safely redirect insecure devices to the emulated USB
host controller and monitor them, in an attempt to profile them so that these
devices can be identified easier in the future.

3.43 TMSUI

Administrators

Authorization
Server
Authorize ry
¥
UsB @ Setup
Authenticate ¥

h 4

Protected Object

Figure 3.2: Overview of TMSUI

TMSUI, Trust Managment Scheme of USB storage devices for Industrial control
systems, is a proposed scheme [25] that can be used to protect terminals connected
to industrial control systems (ICS) from a wide variety of attacks ranging e.g.

BadUSB 23

Stuxnet, BadUSB. The system consists of an Authentication Server, one or more
administrators, and protected objects (PO) e.g. terminals, all depicted in Figure
3.2.

The Authentication Server

The authentication server (AS) is a centralized server that is responsible for keep-
ing track of a lot of the data related to protected objects and administrators.

Besides generating public parameters, it is also used by administrators to
generate their authorization key consisting of an asymmetric key pair computed
using an unspecified key derivation function. The key is derived using the public
parameters, the master key seed generated by the AS, and the hash of the ad-
ministrator’s password. This key is then encrypted using a randomly generated
key. The generated key is then encrypted using a randomly generated key based
on a PRNG (Pseudo Random Number Generator) with the master key seed and
hash of the administrator’s password as input. The result of the encryption is
referred to as the administrator’s blob, which is saved by the AS until it is needed
for authorization [25].

Protected Objects

Protected objects are terminals that are in need of protection since they serve
a vital function e.g. they are connected to an industrial controller. All PO are
required to have a TCM (Trusted Cryptography Module) chip. This chip, capa-
ble of performing cryptographic operations, stores an asymmetric key pair. The
identity will then consist of a public key exported from the TCM along with other
information about the PO, e.g. its function, location. This information is what
will identify the PO in a later stage.

Authorization of a device

A device is authorized by an administrator. This process begins with the adminis-
trator plugging the device into the AS. The device is scanned for anomalies using
e.g. antivirus software. If the anti-virus software does not come up with anything
dangerous, the device is given a unique identifier derived from its e.g. manufac-
turer, type, usage, etc.

The identifier is searched for in the Revocation list, located in the AS. Given
that the device can not be found on the Revocation list, the AS will decrypt the
administrators authorization key using the storage key derived in Section 3.4.3.

The administrator will then decide which PO the device will be granted ac-
cess to. The public key of the PO along with the expiration timestamp and the
device’s identifier are then hashed into a digest. This digest along with the pub-
lic parameters of AS are then used as input to a function generating a signature
using the administrator’s private authorization key. A quadruple consisting of the
expiration date, the public key of the PO, the ID of the authorizing admin, and
the generated signature, usually denoted as o, is then written to the USB device
as a read-only and hidden document /file.

24 BadUSB

Authentication of a device

When a device is plugged in to a PO, the process begins with the PO extracting
the identifier of the device along with the public key of the PO the device is
authorized for. The PO will first see if the device has been revoked by the AS. If
the device is not revoked and the expiration date has not yet passed, the validity
of the signature will be computed.

The validity of the signature is computed by essentially repeating the process
described earlier but rather using the administrator’s public key. That is, the
digest is computed using the expiration date, the public key of the administrator,
and the identifier of the device. Verification is then be performed by using the
signing function’s corresponding verification function with input consisting of:

1. The administrator’s public authorization key
2. The signature generated during authorization, o
3. The public parameters supplied by the AS

If the verification is successful the device is granted access.

3.5 The hypervisor prototype

With the previously explained protection mechanisms against BadUSB in mind, a
hypervisor prototype capable of protecting against BadUSB will now be designed
and implemented. The only protection mechanism, that in any way seems viable
and can be implemented, is to use some kind of device filtering.

Just as GoodUSB is capable of filtering out devices by looking at the infor-
mation provided by both the device and what the user expects the device to do, it
is possible to implement something similar in a hypervisor. In the case of the hy-
pervisor, it is however not a viable option to get information from the user mainly
due to trust. The goal of the hypervisor is to create a protection scheme based
on separation between OS and USB. If the hypervisor design was to introduce a
mechanism that break the separation, the whole core idea of the thesis would be
pointless.

3.5.1 Using USB in virtualization

USB is as described earlier a kind of bus that uses memory-mapped registers to
communicate with the OS and its applications. For the sake of simplicity, it will
be assumed that the USB host controller in question is integrated into the moth-
erboard i.e. it is not externally connected, even though roughly the same principle
would apply.

The USB host controller does use interrupts, although it is intended for very
specific purposes e.g. to communicate that a very important packet has arrived.
In the general case, the USB host controller is polling-driven i.e. the USB host
controller driver running in the OS checks the registers of the USB host controller
periodically, to detect changes from the last polling.

The registers of the USB host controller are memory-mapped i.e. the USB

BadUSB 25

host controller and the software shares a part of the memory which they use to
communicate. In the normal case where only the OS is running the OS would
read and write to the part of the memory without any interference. In many im-
plementations of USB host drivers in virtualization software, this is also the case.
The hypervisor’s USB host driver would simply let all the data pass through to
one or more guests without interfering with the data [24]. These kind of drivers
are referred to as passthrough drivers.

Since the chosen approach to protect against BadUSB is filtering of devices, it
is no longer possible to simply let the data pass between the guest OS and the USB
host controller freely. It is required to introduce a mechanism that can intercept
data coming from the USB host controller. Using the intercepted data, it should
then be possible to determine whether a device has ill intent and block access to
the guest.

This can be done it two different ways. One option is to let the guest have
access to the original memory-mapped registers of the USB host controller and to
have the hypervisor simply observe what is happening. When BadUSB device is
attached and detected, the hypervisor would then intervene and block the device.

The second option would be to use a variant of nested page table, as described
in Section 2.2. Instead of letting the memory-mapped registers be fully visible to
the guest, it is also possible to create a shadow buffer which would essentially be
a copy of the original memory-mapped registers. The hypervisor would then go
through all information coming from the USB host controller, filter the informa-
tion, and then copy all that it thinks is appropriate to the guest’s shadow buffer.
With this concept in mind, the software alternatives will now be examined.

3.5.2 Choosing a software alternative

Before a hypervisor prototype capable of protecting against BadUSB can be con-
structed, an open-source hypervisor must be chosen as a base for the prototype
since implementing a hypervisor from scratch is very time consuming. The two
open-source alternatives that will be examined is Xen, which is to a large extent
based around paravirtualization, and BitVisor, which uses full virtualization and
uses hardware-assisted virtualization (Intel VT).

Xen

Xen was created as a research project at Cambridge University in the late 1990s
consisting only of its hypervisor. In 2002, the Xen hypervisor became open-source
and in the fall of 2003, the first public release of Xen was announced. During the
first decade of the millenia, Xen gained a lot of support from e.g. Red Hat, Novell
and Sun which greatly helped the improvement of Xen [16].

Xen relies heavily around paravirtualization, even though full virtualization
relying on hardware-assisted virtualization is supported. As described earlier,
modifications of the kernel is required in order to run paravirtualized hypervi-
sors. For Xen, there exists modified kernels for Linux, NetBSD, FreeBSD, and
OpenSolaris [17]. Xen has 2 modes where it relies heavily on paravirtualization.
These are PV, which only uses paravirtualization, and PVH, which uses some

26 BadUSB

hardware-assistance features; more specifically hardware implementations for priv-
ileged instructions and nested page tables [17].

USB in Xen can be done in 2 different ways. A guest in Xen, referred to
as domU (domain unprivileged), may either use the PVUSB interface or an
emulation-based approach involving QEMU. In the case of PVUSB the interface
consists of a front-end and a back-end interface where the back-end is required in
dom0, the host, and the front-end is required for domU. The front-end and the
back-end use a special protocol, specifically made for PVUSB, to commmunicate
[18].

The other option, using QEMU, runs in dom0 and exposes an emulated host
controller to the guest running in domU. Worth mentioning is also that in order
to use this approach, it is necessary to use HVM i.e. full virtualization using
hardware-assistance e.g. Intel VT.

Even though none of the techniques involves the use of a single driver but
rather a few essential components, the techniques can still be considered to be
passhrough drivers, as previously described in 3.5.1.

Bitvisor

BitVisor is a hypervisor which was created as a part of the SecureVM project
in Japan. Its purpose is to prevent information leakage from desktop/laptop PCs
by applying security policies to the guest OS. The design goal was mainly to have
a slim and fast hypervisor which could apply security policies to the guest OS
without loosing too much performance.

BitVisor is implemented to use full virtualization using hardware-assisted vir-
tualization through Intel VT for the x86 platform. It relies heavily on these fea-
tures for e.g. execution of privileged instructions as described in Section 2.2.2. One
very important aspect of the implementation relates to how memory management
is handled.

Since BitVisor is designed to, among other features, be able to enforce encryp-
tion on hard drives and on USB flash drives it does, unlike many other hypervisors,
have a para-passthrough driver. A para-passthrough driver is a USB host con-
troller driver that is capable of keeping track of the state of the USB host controller
and its attached devices, and when necessary, intervene. This is implemented us-
ing the concept of a shadow buffer, just as described in Section 3.5.1.

From what was explained in Section 3.5.1 it is more than reasonable to con-
sider BitVisor as the best candidate since it already has some of the necessary
mechanisms required to perform device filtering, as previously suggested. It was
mainly because of this that BitVisor was chosen as the base to build the prototype
from.

3.5.3 Design specification

With the BitVisor hypervisor as a base, the hypervisor prototype can now be
implemented. In order to understand the prototype design, a few concepts of
BitVisor has to be explained.

BitVisor uses a para-passthrough USB host controller driver. The driver will

BadUSB 27

Device) Hypervisor Guest
Enumeration

F Y

h

Fy

» Enumeration

Fy

SET_CONFIG
{intercepted)
SET_CONFIG response

v

Figure 3.3: Hypervisor's operational model

keep track of the state of attached USB devices and intercept the data sent be-
tween the device and the OS. During the enumeration process, the hypervisor will
gather information about the device. It will look at all of the descriptors sent
(Device Descriptors, Interface Descriptors, etc.) and use data structures to create
a representation of a device and its capabilities.

As decided in the previous section, implementing a device filter is probably
the best solution. The most simple filter would only filter to the class given in
the Device Descriptor which will be set to 0x00. This is however not sufficient
since this filter is far too simple and would result in too many false positives. The
other option is to filter on the combination on interfaces, more specifically the
combination of a HID interface and a Mass Storage interface. If the hypervisor is
to be modified so that it can detect the disallowed combination, it is necessary to
understand how all of the data structures relate.

The 4 types of descriptors, Device Descriptors, Configuration Descrip-
tors, Interface Descriptors, and Endpoint Descriptors, are all stored in the
hypervisor in the form of a data structure, referred to as usb_ device, which de-
scribes the device.

28 BadUSB

struct usb_device {
struct usb_device *next, *prev;

struct usb_bus *bus;

struct usb_device_descriptor descriptor;
struct usb_config_descriptor *config;

void *dev; /* unused */
spinlock_t lock_dev; /# device address lock */
u8 devnum;

/* driver internal use */

u64 portno;

struct usb_device *parent; /* for HUB cascade */
struct usb_host *host;

u8 bStatus;

/* specific device handler 4if registered */
struct usb_device_handle *handle;

struct uhci_hook x*hook; /* FIXME %/
int hooknum;
u8 speed;

struct usb_config_descriptor cdesc;
size_t 1l_ddesc, 1l_cdesc;

u8 serial[256];

u8 serial_len;

u8 ignore;

}s

The usb_ device data structure contains a device descriptor and a configuration
descriptor which are allocated directly into the data structure. The interface
descriptor(s) are however allocated separately and pointed to by a pointer in the
configuration descriptor. When a new interface descriptor is to be allocated, a
variant of realloc, which reallocates a memory segment into a new memory segment
of a different size, is used to make room for the new interface descriptor. What
this means for the implementation is that the interface descriptors will be written
in memory in a sequence, thus making it easy to read all interface descriptors
by simply reading the number of interfaces used by the configuration and casting
pointer(s), incrementing the size of an interface descriptor for each pointer cast.
The interface descriptors held by the hypervisor have their information filled
in by the hypervisor performing its own enumeration process, as shown in Figure
3.3. This process begins with allocation of all data structures and then performed

BadUSB 29

in the same manner as described in Section 2.1.3.

With all of the gathered information, it is now possible do determine whether
the new device is potentially malicious. Once a disallowed device has been found,
it must be blocked. The blocking itself is implemented by adding an extra field to
the usb_device data structure called ignore. When a device is determined to be a
potential BadUSB device, this field is set to non-zero which in turn will trigger the
blocking mechanism. The blocking mechanism involves blocking all actions that
the device may perform. This is implemented using 2 lines of code which checks
the value of the ignore field and, if it is non-zero, the function call is not allowed to
complete. One example of this is the usb_ control_msg, as shown below. Certain
parts, e.g. related to UHCI and debug printing, have been left out. Example:

static inline int _usb_control_msg(...)
{

struct usb_request_block *urb;

struct usb_ctrl_setup csetup;

u64 start;

int ret;

start = get_time();

csetup.bRequestType = requesttype;

csetup.bRequest = request;
csetup.wValue = value;
csetup.wIndex = index;
csetup.wlength = size;

/* If the ignore bit 4is set we tignore the device. */
if (dev->device->ignore)
return -1;

urb = dev->host->op->
submit_control (dev->host, dev->device, ep, pktsz,
&csetup, NULL, NULL, O /* mo IOC */);
if (!'urb)
return -1;

ret = _usb_async_receive(dev, urb, bytes, size, start,
timeout * 1000) ;

dev->host->op->deactivate_urb(dev->host, urb);

return ret;

}

The method shown above is used for injecting a control transaction into the asyn-
chronous list. This method is mainly used during enumeration. The lines below
are similarly added to all other methods used by the hypervisor’s USB host con-

30 BadUSB

troller driver, which in turn results in the blocking of the device when the ignore
field is set to non-zero, as later seen in Section 4.1.

if (dev->device->ignore)
return -1;

3.6 Testing the hypervisor prototype

In order to be confident in that the hypervisor actually protects the guest OS as
was first theorized, a USB device that can perform the BadUSB attack is required.
To construct such a device, requires a USB flash drive that uses a specific chipset
called Phison PS2251-03. The reason for this is not because the chipset has
any particular vulnerability but rather that there already exists software [19] that
can be used for reprogramming this particular chipset and making it perform the
attack.

3.6.1 Building an attacking USB flash drive

Finding a vulnerable device with the specific chipset Phison PS2251-03 proved
more difficult than first though. A few devices were bought and tested. Of all
the devices listed as vulnerable only a few of them were available for purchase in
Sweden. The devices that were bought were SanDisk Ultra 16Gb, DataTraveler
G4 8Gb, and DataTraveler G4 16Gb. 0,The chipset of the devices’ firmware were
checked using ChipFasy, a free program that can read a variety of information
about USB devices and display it in a convenient manner. By using this program,
it was concluded that none of the devices available had the correct chipset.

The list of vulnerable devices was found on an information page in the GitHub
repository where the code for the attack is available [19]. Other users have also
had the same issue of finding vulnerable devices. To summarize the reports/dis-
cussions, it seems as if most of the manufacturers have turned their back on the
PS2251-03 chipset and chosen to use PS2251-07 instead. Whether this is an easy
way to mitigate the potential damage the old chipset could do to their customers
or a way for the manufacturers to reduce costs, if it happens to be so that the
PS2251-07 chipset is cheaper, is hard to know.

Naturally, more products from a wider variety of sellers could have been
bought but judging from the discussions/reports on GitHub regarding other pur-
chases it did not seem worth the time and resources to pursue further. Even though
no vulnerable USB flash drive could be found, it is worth briefly mentioning how
reflashing a vulnerable device would be done:

1. Extract the firmware from the USB flash drive and inject the payload
into the firmware. Another alternative is to compile the reverse-engineered
firmware.

2. In order to reflash, the USB flash drive has to be in boot-mode. This can be
done either by sending commands to the chip or by using short-circuiting
pin 2 and 3 on the USB chip. The second method is less convenient since it

BadUSB 31

USE host Hardware

Alternative 1
[|
Hypervisor
ISE host
driver « Emulator

Alternative 2

USE stack/

subsystem Guest OS5

Figure 3.4: Emulation vs. using a real device

would require the attacker to open the USB flash drive and seal it again in
order to perform the attack undetected.

3. When the USB flash drive is in boot-mode, a burner image is sent to the
chip. This image is loaded into memory and the chip awaits a new firmware
image.

4. The reprogrammed firmware image is sent to the chip and the chip is re-
flashed. The chip is then restarted by resetting the USB port.

5. The USB flash drive will now perform the USB-attack every time it is
plugged in into a computer.

The burner image was found on a Russian website specializing in reprogramming
USB controller chips and the software for flashing, including the firmware, is avail-
able at GitHub [19].

Since it proved to be harder than expected to create a USB device capable
of a BadUSB attack, emulation was to be used instead so that the hypervisor
prototype could be tested.

3.6.2 Emulation of the attack

Before looking into specifics on how the BadUSB attack would be implemented, it
is first necessary to establish the core components necessary to make the emulation
work. As illustrated in Figure 3.4, there are basically 2 alternative approaches that
can be implemented with the major difference being whether the result of the test
can be seen in the guest.

Both solutions are based around modyifing the asynchronous queue man-
aged by the para-passthrough driver running as a part of the hypervisor. The

32 BadUSB

synchronous queue, as previously described in Section 2.1.4, will contain Queue
Head (s) which in turn link to one or more Queue Element Transfer Descrip-
tors (qTD), both previously described in Section 2.1.4. The core idea behind both
emulation designs is to allocate and inject a QH along with a few qTDs.

In the first alternative, the goal with this is to make the guest believe that a
new device has been attached. Once the guest believes there is a new device, it
will begin enumeration and from there the emulator simply has to intercept and
inject the response data.

The second alternative is more oriented towards restricting the emulation to
only include the hypervisor itself i.e. the guest is never aware that the attack is
ongoing. The biggest consequence of this approach is that it is harder to make a
reference test since the results are not obviously visible in the guest.

Since the overall goal of the thesis is to test whether the hypervisor through
filtering can actually stop the attack, implementing a full emulation of the entire
attack was chosen. How this was done will now be detailed.

The initialisation (starting) of the emulation is implemented as a function
inside the hypervisor which can be accessed through a hypercall, a call directly to
the hypervisor, coming from the guest. Hypercalls are already implemented in the
hypervisor and is used mainly for debugging. By adding a new hypervisor call, it
is possible to start the emulation from the hypervisor using a simple program that
runs from the guest.

The emulation process begins with the creation of a USB Request Block
(URB), a data structure used by the EHCI USB host controller driver to repre-
sent transactions. From there, a QH is allocated along with a SETUP qTD
and an OUT qTD. Both of these ¢TDs are to be used for placing a (fake)
SET ADDRESS request within the asynchronous queue. The thought behind
this is use the hook process implemented in the hypervisor which looks at incom-
ing and outgoing data before it is passed to or from the guest. When the fake
SET ADDRESS request is found, the function for enumeration of a new device is
called in the hypervisor. With this in combination with installing a custom-made
hook that only looks at the address of the emulated device, it is possible to inject
data before anything is passed to the guest. This way, it will seem to the guest as
if there is an actual device present and it will be handled in a normal manner.

Chapter 4

Results

4.1 The hypervisor prototype

Implementation of the hypervisor prototype was one of the easiest parts of the
entire thesis. Before implementing the interface filter, another filter was imple-
mented to test the blocking mechanism.

The filter first implemented involved blocking Mass Storage Devices i.e. USB
devices reporting their device class code as 0x08. A small test was then conducted
by simply inserting a USB flash drive into the computer running the hypervisor
prototype along with a guest running Linux. The goals were to examine whether
the blocking mechanism worked properly i.e. the device was inaccessible for the
0OS, and that the implementation did not affect performance too much. The rate
of performance inhibition was tested in the most simple manner available, by
performing simple tasks e.g. opening a web browser, etc. This basic test was
performed both before, during, and after the USB flash drive had been plugged
in. From what could be gathered from just observing the response time of the
guest OS, the implementation’s effect on the guest OS’s performance seemed to be
minimal, thus the conclusion could be drawn that the blocking mechanism could
be used.

4.1.1 Emulation of a BadUSB attack

The emulation part of the implementation was probably one of the most difficult
parts of the entire thesis, mainly due to it not being expected from the beginning.

As stated in the section discussing the design of the emulation, Section 3.6.2,
the chosen alternative was to implement the attack to propagate all the way to
the guest. Building the response handler proved quite easy since all the response
data could be found in the GitHub repository [19]. There was also the issue of as-
signing the device an address number which would already be taken. The solution
to this was to simply assign a static address number to the device. By observing
the numbers allocated by the guest’s USB stack, it was set to 8 since the numbers
are allocated by looking at the first free device number in sequence starting from
1 (since 0 is used for the SET ADDRESS request).

Even though some of the obstacles were overcome, the emulation was never
completed to a state where it would work properly. The issues were mostly related

33

34 Results

to the inner workings of the hypervisor not being completely understood, which
can be attributed to this part of the thesis being unexpected and also a bit too
complicated to finish.

One issue with the chosen approach was the synchronization of the guest and
the hypervisor. Since the goal was to make the attack be performed in the guest,
the approach of injecting a SET ADDRESS request into the hypervisor proved
to not be sufficient. In the regular case of a physical device being attached, it
would be the guest that assigns an address to the device and not the hypervisor,
thus the guest would never recognise that the device is connected.

This realisation made the implementation far more complicated. If the orig-
inal goal was to be met, with the attack propagating all the way to the guest,
the guest would have to be the initiator of the emulation. From the beginning,
the USB subsystem of the Linux kernel was examined to investigate whether this
maybe could be solved from userspace. The conclusion was that in order for the
emulation to be started from the guest it would be necessary to modify the Linux
kernel. Understanding the kernel to a point where it can be modified to the extent
necessary, so that emulation can be performed, was considered out-of-scope for
this project. Because of this, the idea of emulating the attack was abandoned. In
hindsight, it would have been better to just implement the other approach, where
the emulation is restricted to only take place inside the hypervisor. However, due
to this major setback, the comparison of solutions will be strictly theoretical.

4.2 Comparison of solutions

In order to compare the alternative solutions to the hypervisor solution, a definition
of what makes a solution good is first needed. Naturally this is no easy task
since the intended user of the solution may have different requirements and also
prioritizes these requirements in different ways. Because of this, a few requirements
that surely will be prioritized differently depending on the user have been chosen.
These are:

1. Human interaction - Does the solution require the end-user to interact in
some way?

2. Ease of use - How easy is the solution to use for the end-user?

3. Level of confidence - How often does the solution give false negatives/false
positives? If there is human interaction, what is the risk of human error?

4. Integrity of the firmware - Can the integrity of the firmware be trusted?

With these criteria in mind, the hypervisor prototype along with the other de-
scribed alternatives from Section 3.4 will be examined.

421 Udev

Filtering by configuring Udev is a reasonably simple method that, at least for some
BadUSB attacks, provide the OS with a certain degree of protection. The Udev
filtering method does not require any human interaction for the end-user. Likewise,

Results 35

deploying the solution to an organization, e.g. a large company, is fairly simple.
Regarding the level of confidence in the solution, and filtering in general, it relies
heavily on the reported information. In this specific case of the BadUSB attack
there is a clear anomaly, since there are 2 odd interfaces, that can be observed only
from the information provided by the device. This is however not the general case
for BadUSB. One example of a BadUSB attack that cannot be filtered is the case
where a USB flash drive is changed to only act as a keyboard with one single (HID)
interface. This is mainly because a single HID interface consisting of a keyboard
is very common which means that there is no real anomaly to filter on. Another
issue is that there is no check for the integrity of the firmware. Altogether it is
however a quite effective method especially considering how simple it is to deploy
and use.

422 GoodUSB

Overall, the GoodUSB solution matches most of the criteria described at the be-
ginning of this section. The interface shown to the user is fairly simple to grasp and
the risk of an attack getting through undetected is quite low. Since the solution
uses human interaction to address the problem, the solution can be considered to
address the integrity of the firmware somewhat, with the human interaction being
the only drawback. This enables e.g. a corrupt employee to knowingly let the
device perform its attack by giving it the permission to do so. The risk of such
an attack being successful can be considered fairly high, especially if the attack
involves a USB device pretending to be another kind of device e.g. a USB flash
drive pretending to be a USB keyboard. Besides from that, there is also a concern
that the profiles used by the software to identify USB devices might sometimes be
a bit too restrictive and block legit devices i.e. it might produce false-positives.

4.2.3 TMSUI

Even though the TMSUI scheme was designed with the ICS systems in mind, it
can still be considered for use in a regular environment e.g. within a company.
The TMSUI scheme also fulfils most of the criteria defined earlier. The scheme
is essentially based around manually controlling and detecting a compromised de-
vice before allowing it into the system. This can in some sense be considered to
establish some trust in the firmware. Also, even though the act of granting ac-
cess is manual, the authentication of a device is automated. Because of this, the
solution can be deemed to be semi-automated. Additionally, the solution might
also be considered to be quite simple to use, with the only real hassle being that
administrators have to authorize the devices before use.

The important question regarding this method is whether all allowed devices
can be trusted after they have been granted access. When the device is plugged
into the AS, it is quite clear that the device is not compromised but after this
process it is quite impossible to know where the device has been. From what can
be gathered from the description of the TMSUI, there exists no mechanism that
properly addresses this. This can naturally be addressed by the organization using
the scheme by having special security protocol that e.g. a device cannot leave the

36 Results

building until it has been plugged into the PO it was approved for, or something
similar.

Another troubling aspect is the use of a TCM. Even though the use of a TCM
is a good choice security-wise, it has some drawbacks regarding the costs. Natu-
rally, the Trusted Platform approach would be better but it is not a necessity
for the scheme to function properly.

4.2.4 The hypervisor prototype

Since it was never possible to construct a BadUSB device, nor implement emula-
tion of an attack, it is still uncertain whether the hypervisor prototype actually
provides protection against the BadUSB keyboard emulation attack as well as
BadUSB attacks in general.

Similarly to the Udev solution, the hypervisor prototype uses filtering to pro-
tect against BadUSB. Just as with Udev there is a difficulty in filtering out devices
that do not send information containing a clear anomaly. Regarding the ease of
use, the hypervisor prototype is fairly simple to deploy in a larger company and
requires little to none interaction from the user. The biggest drawback is probably
performance-wise. Even though no real comparison was made, it is fair to assume
that the hypervisor prototype has a larger impact on performance since it involves
a lot more complex operations.

Chapter 5

Conclusions and Future Work

Even though the hypervisor prototype should, in theory, provide the guest OS with
some protection against the specific attack as described in Section 3, the problem
persists. It was never tested, but it is fair to assume that the hypervisor itself does
not provide any protection against other attacks since the filtering is too specific.

None of the solutions presented in the previous chapter was able to fulfil all of
the criteria, even though some were very close. From what could be gathered the
most realistic solution in a real life scenario would probably be GoodUSB since it
can protect against many kind of attacks, at least attacks that could be thought
of for now.

However, if the evaluation should be very strict, i.e. any unfulfilled criteria is
deemed as insecure, none of the solutions are satisfactory. This is mainly due to
the fact that the core issue, that of the integrity and authenticity of the device’s
firmware, is never sufficiently addressed.

This leaves one difficult question unanswered: How would a system with per-
fect security against BadUSB attacks be designed? As previously, mentioned the
core issue of the BadUSB attack is that there is no way of knowing whether it is
possible to trust the information coming from the device, thus making the BadUSB
attack very hard to detect. One very simple, yet effective, solution is to simply
disable firmware reflashing to all USB devices. This does however contradict the
whole idea of having firmware updates for e.g. recovering a damaged device or to
update the firmware due to any other reason.

Another interesting approach would be to introduce some form of firmware
signing scheme. This does however require significant additions/modifications to
the USB devices that are to be used along with modification of computers/termi-
nals e.g. in the form of special drivers.

5.1 Suggestion for Future Work

BadUSB is an attack that still has a lot of potential to do damage, especially
if someone were to invest time and resources into developing an exploit based
around it. In the future it would be very interesting to investigate design and
implementing a software signing scheme for USB devices. In this section a brief
description of a signing scheme that might address the problem will be detailed.

The setup is based around storing a public-private key pair on the USB device.

37

38 Conclusions and Future Work

Device Host controller

_ GET_STRING(0XFE)

GET_STRING(OXFE)

SET_STRING(0XFC)

-+

SET_STRING(OXFC)

(Wait for the device to
complete its
calculations)

GET_STRING(0xFC}

GET_STRING(0XFC} |

Figure 5.1: Suggestion for a verification scheme for USB devices

The host controller will require a special driver in order to be able to handle
the device, since new steps are added to enumeration. The extra steps involves
first sending a GET _STRING of a custom index containing the public key of
the device. The host will generate a short string which is either encrypted or
unencrypted. This is sent to the device by sending a SET _STRING request with
another custom-index, containing the generated string. The string is then signed
or encrypted, depending on which approach is chosen. The host may then retrieve
the plaintext/signature by sending another GET STRING with the same index
as the earlier SET STRING request. Using the contents of this request the host
can then finally determine if the signature/plaintext is valid. This process is also
described in Figure 5.1.

References

[1]

2]

3]

4]

[5]

[6]

7]
18]
19]
[10]

[11]

Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, Phillips Universial
Serial Bus Specification rev 2.0, April 27, 2000

Robert Murphy, USB 101: An introduction To the Universal Serial Bus 2.0,
n.d, [Online], Available: http://www.cypress.com/file/134171/download

Howard, John S, et al. Enhanced Host Controller Interface Specifi-
cation for Universal Serial Bus, March 12, 2002, [Online], Available:
http://www.intel.com/content/dam/www/public/us/en/documents/
technical-specifications/ehci-specification-for-usb.pdf [Ac-
cessed: Jan. 4, 2016]

Howard, John S, et al. Enhanced Host Controller Interface Specifi-
cation for Universal Serial Bus, March 12, 2002, [Online], Available:
http://www.intel.com/content/dam/www/public/us/en/documents/

technical-specifications/ehci-specification-for-usb.pdf [Ac-

cessed: Jan. 4, 2016]

Adams, Keith, and Ole Agesen. "A comparison of software and hardware
techniques for x86 virtualization." ACM Sigplan Notices 41.11 (2006): 2-13.

Robert Murphy, Understanding Full Virtualization Paravirutalization, and
Hardware Assist, n.d, [Online|, Available: https://www.vmware.com/files/
pdf/VMware_paravirtualization.pdf

Johan De Gelas, Hardware Virtualization: the Nuts and Bolts, March 17,
2008, [Online|, Available: http://www.anandtech.com/show/2480/10

Uhlig, Rich, et al. Intel virtualization technology Computer 38.5 (2005): 48-
56.

Barham, Paul, et al. Xen and the art of virtualization. ACM SIGOPS Oper-
ating Systems Review 37.5 (2003): 164-177

Thomas, Vinoo, Prashanth Ramagopal, and Rahul Mohandas. The rise of
autorun-based malware. McAfee Avert Labs., McAfee Inc (2009).

Falliere, Nicolas, Liam O. Murchu, and Eric Chien. W82. stuznet dossier.
White paper, Symantec Corp., Security Response 5 (2011), p. 6

39

40

References

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

Farwell, James P., and Rafal Rohozinski. Stuznet and the future of cyber war-.,
Survival, vol.53. no 1, pp.23-40, 2011

Richard Harman, Controlling USB Flash Drives: Expose of Hidden Features,
2014, [Online] Available: https://www.youtube.com/watch?v=7TRqANUhVn14
[Accessed: Jan. 27, 2016]

Nohl. Karsten,Kriffler. Sacha,Lell. Jakob, BadUSB - On accessories
that turn ewvil, https://srlabs.de/blog/wp-content/uploads/2014/07/
SRLabs-BadUSB-BlackHat-v1.pdf

Unknown author, Why The Xen Project?, n.d., [Online] Available http://
www.xenproject.org/users/why-the-xen-project.html [Accessed: Feb.
19, 2016]

Unknown author, Xen Project Hlstory, n.d., [Online] Available: http://wuw.
xenproject.org/about/history.html [Accessed: Jan. 5, 2016]

Unknown author, Xen Project Software Overview, n.d., [Online] Avail-
able: http://wiki.xen.org/wiki/Xen_Project_Software_Overview [Ac-
cessed: Jan. 4, 2016]

Unknown author, Xen USB Passthrough, n.d., [Online] Available http:
//wiki.xenproject.org/wiki/Xen_USB_Passthrough [Accessed: Feb. 19,
2016]

Caudill, Adam, BadUSB source, n.d., [Online] Available: https://github.
com/adamcaudill/Psychson [Accessed: Jan. 4, 2016]

Unknown author, How to prevent BadUSB attacks on Linux desktop?,
Aug. 9, 2014, [Online] Available: http://security.stackexchange.com/
questions/64524/how-to-prevent-badusb-attacks-on-linux-desktop
[Accessed: Feb. 22, 2016]

Tian, Dave, Bates, Adam, Butler, Kevin Defending Against Malicious USB
Firmware with GoodUSB, Proceedings of the 31st Annual Computer Security
Applications Conference, Pages 261-270. ACM, 2015.

Unknown author, Kernel Virtual Machine, n.d., [Online] Available: http:
//www.linux-kvm.org/page/Main_Page [Accessed: Feb. 22, 2016]

Unknown author, QEMU/Devices, n.d., [Online] Available: https://en.
wikibooks.org/wiki/QEMU/Devices [Accessed: Feb. 22, 2016]

Abramson, Darren, et al. Intel Virtualization Technology for Directed 1/0
Intel technology journal 10.3 (2006).

B. Yang, D. Feng, Y. Qin, Y. Zhang, and W. Wang. TMSUI: A Trust Manage-
ment Scheme of USB Storage Devices for Industrial Control Systems. Cryp-
tology ePrint Archive, Report 2015/022, 2015

Shinagawa, Takahiro, et al. Bitvisor: a thin hypervisor for enforcing i/o device
security. " Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments. ACM, 2009.

Appendix A

Appendix

A.1 USB PID Types

Table A.1: USB packet types

Type Name Description

Data DATAQO | Even-numbered data packet.

Data DATA1 | Odd-numbered data packet.

Data DATA2 | Used when doing high-bandwidth data transfers (USB
2.0+).

Data MDATA | Used when doing high-bandwidth data transfers (USB
2.0+).

Handshake ERR Split transaction error (USB 2.0+).

Handshake ACK Data packet accepted.

Handshake NAK Retransmit, packet not accepted.

Handshake | NYET | Data is not ready yet.

Handshake | STALL | Fatal error, transfer is impossible. Begin error recovery.

Special PRE Low bandwidth preamble.

Token IN Used by the host to prepare the device for transmitting
packets using a DATAx packet.

Token OouT Used by the host to prepare the device it for receiving
packets using a DATAx packet.

Token PING Check if device can accept data (USB 2.0+).

Token SETUP | Address for host-to-device control transfer

Token SOF Start of frame marker which is sent every ms.

Token SPLIT | High-bandwidth split transaction, introduced in USB
2.0+.

41

42

Appendix

A.2 USB Descriptors

Table A.2: Device Descriptor

Field Value Description
bLength 0x12 The length of the descriptor in bytes.
bDescriptorType 0x01 Set to 0z01.
bcdUSB 0x0002 | USB version
bDeviceClass 0x00 Device class
bDeviceSubClass 0x00 Device subclass
bDeviceProtocol 0x00 Protocol code.
bMaxPacketSize 0x40 Maximum packet size
idVendor 0xFE13 | 2 bytes describing the device’s vendor.
idProduct 0x0152 | 2 bytes describing the vendor’s device.
bcdDevice 0x1001 | Release number of the device.
iManufacturer 0x0000 | Index of the manufacturer’s string descriptor.
iProduct 0x00 Index of the product’s string descriptor.
iSerialNumber 0x00 Index of device’s serial number.
bNumConfigurations 0x01 No. possible configurations.
Table A.3: Configuration Descriptor
Field Value Description
bLength 0x09 The length of the descriptor in bytes.
bDescriptorType Constant | 0x02 for Configuration Descriptor.
wTotalLength Number | Total length of the data returned.
bNumlInterfaces Number | Number of interfaces used by the configuration.
bConfigurationValue | Number | What number that should be sent in wValue as part of
a SET CONFIGURATION -request.
iConfiguration Index Index of the configuration’s string descriptor.
bmAttributes Bitmap | Bit 7 - Must be set to 1
Bit 6 - Is self-powered
Bit 5 - Supports remote wake-up
Bit 4:0 - Must be set to 0
bMaxPower Number | Maximum power consumption expressed in 2 mA units.

Appendix

43

Table A.4: Interface Descriptor

Field Value Description
bLength 0x09 The length of the descriptor in bytes.
bDescriptorType Constant | 0x04 for Interface Descriptor.
bInterfaceNumber | Number | The interface’s number/index.
bAlternateSetting | Number | Value for alternate setting.
bNumEndpoints Number | The number of endpoints used by this interface.
bInterfaceClass Class Class code of the interface.
bInterfaceSubClass | SubClass | Subclass code of the interface.
bInterfaceProtocol | Protocol | Protocol code of the interface.
iInterface Index Index of the interface’s String Descriptor.

LUN

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2016-486

http://www.eit.Ith.se

