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Abstract

As the data rate requirements are increasing rapidly, so is the need to design
better bandwidth e�cient digital communication systems. Higher band-
width e�ciency can be achieved by di�erent methods, but in this thesis
we procured it by increasing the data rates beyond the Nyquist rate while
keeping the bandwidth constant. This approach of increasing the data rate
beyond the Nyquist rate is called faster than Nyquist signaling or simply
FTN. In FTN the transmitted data symbols in time domain are disturbed by
the controlled amount of interference from the neighboring symbols known
as the intersymbol interference (ISI). This technique of intentionally send-
ing the data sequence a�ected by the controlled amount of ISI was �rst put
forth by James Mazo in 1975. Since then the research in the �eld of FTN
has been extended in many directions.

The LTE-uplink system is based on single carrier transmission and can
be extended to the faster than Nyquist signaling to achieve better band-
width e�ciency. The aim of this thesis is to implement the FTN on an
LTE-uplink like system model and compare it with the traditional LTE-
uplink system. The performance of the systems is compared on the basis of
bit error rates (BER) and spectral e�ciency. The mathematical model for
the FTN signaling have been derived according to the `Ungerboeck model'
and `Forney model' for the Nyquist based systems. Moreover two separate
cases are presented, the uncoded FTN and coded FTN. In the uncoded
case, for the optimal detection (ML detection) of the received FTN signal
sequence we used a sphere decoder. In the coded case, we have used a LDPC
encoder of code rate Rc = 1

2 at the transmitter side and a soft-input-soft-
output MMSE equalizer cascaded with an iterative LDPC decoder at the
receiver side.
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Chapter1

Introduction

1.1 Background

Digital communication systems of the present day are all architecturally
based on a landmark theory given by Claude Shannon [1] in 1948, famously
known as Information theory. Information theory has been serving as the
basis of architectural design in almost every digital communication sys-
tem since the early 70's. Advancements in digital hardware according to
Moore's law pushed the practical implementation of Information theory.

The idea of converting source information into digital bits, process them
and convert them back to continuous signals just before transmission, with-
out any loss of generality, was a revolutionary idea which stimulated the
development in this �eld to a new height. For example, the shift from 1st
generation (AMPS) to 2nd generation (GSM) mobile communication sys-
tems noticed a huge jump in spectral e�ciency from .001 bit/sec/Hz/Cell
to .17 bit/sec/Hz/Cell [29].

A strictly bandlimited nature of physical channels extends the signals
in the time domain which leads to inter-symbol interference (ISI). For the
ISI free reception of the signals the waveforms representing the symbols
shall be orthogonal to each other at every time instance and the waveforms
satisfying this property are known as ideal Nyquist pulses. Harry Nyquist,
while working in Bell labs, published a benchmark paper Certain Topics in
Transmission Theory [2]. Nyquist provided a criteria for the waveforms to
be ideal Nyquist. This is also known as the Nyquist criterion. The Nyquist
criterion served as the base of communication system design for a long time,
which was based on the waveforms representing uncoded symbols. Later
Shannon extended the Nyquist criteria for the coded data symbols as well.

Most of the communication systems of the present day are based on the

1



2 Introduction

Nyquist criterion and trying to approach Shannon's capacity limit. There
still persists a challenge to reliably communicate information via digital
communication channel models with highest possible rate, i.e., to reach ca-
pacity. There is a possibility to increasing the spectral e�ciency by discard-
ing the Nyquist orthogonality criterion. That is by sending the transmit
pulse at a rate faster than the Nyquist rate. The history of faster than
Nyquist (FTN) signaling started when James Mazo published [3] in 1975.
Mazo accelerated sinc pulses beyond the Nyquist rate and found some as-
tonishing results.

1.2 Thesis goals

This master's thesis is an attempt to understand and exploit the underlying
basic principles of digital communication and their applications in the area
of FTN signaling. The main goals of this thesis are as following:

• Derive the discrete time mathematical model for the FTN signaling.

• Compare the Nyquist based LTE-uplink transmission scheme with the
FTN based approach.

• Study the trade-o�s for implementing FTN signaling on LTE-uplink
system model.

1.3 Channel capacity & bandwidth e�ciency for an AWGN

channel and faster than Nyquist approach

Shannon gave the fundamental equation to calculate the maximum amount
of information an AWGN channel can carry with arbitrarily low error prob-
ability. He named it channel capacity C, and is measured in bits/sec. Ca-
pacity is the ultimate limit, and he stated that it is possible to approach ca-
pacity with sophisticated coding schemes. However it is impossible to carry
information at a rate above capacity with low error probability. Recently,
channel coding schemes like LPDC and turbo codes have impressively ap-
proached capacity. If the bandwidth is limited to W in Hz, power is limited
to P in Watts and the noise power spectral density is N0 in Watts/Hz, then
the channel capacity C for an additive white Gaussian noise channel is given
by,

C = W log2

(
1 +

P

N0W

)
. (1.1)

The capacity C increases monotonically with W and reaches its highest
value of P

N0
log2 e as W → ∞. Eq. (1.1) provides the upper bound for the
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rate of reliable communication R, such that R ≤ C. Therefore, data rate R
is given by,

R ≤W log2

(
1 +

P

N0W

)
. (1.2)

If a long code is chosen randomly at a rate R then there exists a de-
coder such that communication can be carried out at a relatively small error
probability approaching to zero. Another term, Eb

N0
is more important and

used quite often in practice to compare the performance of di�erent com-
munication systems, where, Eb is de�ned as the energy per information bit.
The relation between Eb

N0
and spectral e�ciency η in bits/(s−Hz) is quite

trivial and can be easily derived from eq. (1.2). By substituting η = R
W and

P = EbR in eq. (1.2), we get,

R

W
≤ log2

(
1 +

EbR

N0W

)
,

η ≤ log2

(
1 +

ηEb

N0

)
,

Eb

N0
≥ 2η − 1

η
.

If
{

Eb
N0

}
min

is the minimum value of Eb
N0
, then we can write the above

equality as,
Eb

N0
≥
{

Eb

N0

}
min

=
2η − 1

η
, (1.3)

where
{

Eb
N0

}
min

decreases monotonically with decreasing η and approaches

loge2 (-1.59 dB) as η→0, which is also known as the ultimate Shannon limit
on Eb

N0
for any η. However, there is a requirement on η to be as large as

possible for a smallest possible value of
{

Eb
N0

}
min

, but both of these require-

ments cannot hold at the same time. Therefore, there is a trade-o� between
these two important parameters depending upon the application type.

Transmission schemes can be roughly divided into two regions based on
spectral e�ciency η: Power limited for η < 2 and Bandwidth limited for
η > 2. The redundancy needed for coding in the Power limited region is
mainly achieved by increasing the bandwidth W while keeping the signal
constellation constant. For a binary coding scheme, the maximum coded
symbol rate can approach the Nyquist limit of 2W coded−symbols/second,
in that case, the maximum transmission rate becomes R = Rc × 2W for a
code rate Rc ≤ 1. As η = R

W , attains the value η ≤ 2 bits/s/Hz and reaches
its maximum value of 2 for Rc = 1, i.e., the uncoded case. Thus, binary
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coding schemes can never be used for bandwidth limited systems. Trellis-
coded modulation by Gottfried Ungerboeck [7] was the breakthrough in the
�eld of practical coding for bandwidth limited systems. Ungerboeck realized
that the needed redundancy for coding can be achieved by increasing the
constellation size, M, while keeping W constant, such that η = 2Rc log2 M
bits/s/Hz for Rc ≤ 1.

The research in the �eld of channel coding has paved the path for the
channel capacity approaching coding schemes. Turbo codes and LDPC
codes both belong to a class of iterative a posteriori probability (APP) al-
gorithms. The decoder at the receiver side using these algorithms is also
known as Sum Product algorithm [5][6] decoder. An excellent survey on
the topic of channel capacity has been given by Costello and Forney in
[4]. Nevertheless all of these codes were developed by keeping an orthogo-
nal/memoryless modulation assumption in mind.

Discarding the memoryless assumption at the modulation part opens
up another dimension for increasing spectral e�ciency η. The spectral e�-
ciency, η = R

W , can be increased either by decreasing the W while keeping
the transmission rate R constant, or by increasing the transmission rate, R
while keeping the M and W same. The former can be achieved by trans-
mitting the signal with correlated symbols at the same rate called Partial
response signaling [23]. The latter can be achieved by simply increasing
the transmission rate R beyond Nyquist rate, called faster than Nyquist [3]
transmission. Both methods introduce memory to the modulation part
which causes an inevitable ISI.

The optimum reception of memory based correlated signal is already
known in literature. Forney [8] and Kobayashi [7] proposed the maxi-
mum likelihood sequence estimation to detect correlated signals. Both used
the Viterbi algorithm which was originally proposed to decode convolution
codes. However, an inability of Viterbi algorithm to perform well for larger
channel memory is well known. Therefore we have to look for other options
for the optimal reception of FTN signals while approaching Shannon's ca-
pacity.



Chapter2
Signals and Systems

Most of the communication systems of the present day work mainly on
digital information and use analog waveforms to communicate digital infor-
mation from one place to another. Some of the examples are digital radio,
digital TV, local area network, home electronic devices and mobile tele-
phones.

All of the communication systems are designed keeping some constraints
in mind. Parameters like signal power, bandwidth/spectral e�ciency, bit
error probability and complexity are a few. In this chapter we will talk
about the representation of signals, how they are actually transmitted from
transmitter and received back at receiver respectively.

Source Channel

Information 
Source

Demodula-
tor

ChannelModulator

Decoder

Information  
User

Source

Encoder

Channel

un
uns(t) r(t)

Discrete Channel

Figure 2.1: Block diagram of digital communication system

The system model shown in Fig. 2.1 gives a brief idea about how the
information is communicated between transmitter and receiver. The trans-

5



6 Signals and Systems

mitter and receiver pair are separated by a channel in the Fig. 2.1. The
transmitter pass the signal s(t) to the channel which is the medium of sepa-
ration, some of the examples are optical �ber, wave guide, wireless medium
or magnetic strips in CD's. The distorted and noisy signal r(t) is received
at the other end called the receiver. The receiver tries to revert back all the
changes done by the channel and make a guess about the transmitted signal.

2.1 Transmitter

The main job of the transmitter is to represent the input bit sequence as
a sequence of analog waveforms. Actually, the transmitter is fragmented
into di�erent parts designed for special tasks. In principle, any informa-
tion source can be represented by a sequence of binary digits with a source
encoder. At the same time a source decoder shall reproduce a replica of
information at the receiver side. In this thesis we will presume that the
information we dealt with is already in binary form, equiprobable and in-
dependent, that is we discard any further discussion about source encoder
and source decoder.

The channel encoder and modulator are cascaded in such a way that
they reproduce the input binary bits at the output of channel decoder by
a suitable modeling of channel waveforms. The classical approach is to
consider a memoryless modulation such that an information symbol un at
time n is mapped to the waveform s(t) and the channel encoder provides the
su�cient redundancy to encounter the disturbances caused by the channel.
It has been known from a long time now that the memory in the received
signal r(t) can be exploited by the channel decoder to make reliable decision
about the information bits provided demodulator can extract a su�cient set
of statistics about the sent information.

s(t)vnin Const. 
Mapper

Source 
Encoder

Modulat
-or

un

w(t)

r(t)
Channel 
Encoder

Figure 2.2: Digital transmitter followed by an AWGN channel
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Fig. 2.2 shows the typical digital transmitter in the presence of an
AWGN channel. Where in is a binary information bit sequence coming
from a source encoder at a rate Rb passing through the channel encoder
of code rate Rc. The output is an encoded bit sequence vn at a new rate
of Rb

Rc
. These encoded bits are then mapped according to a constellation

mapper A ∈ {a0, a1, . . . , aM−1} producing a sequence of independent and
identically distributed (i.i.d) encoded data symbols un. The encoder is
chosen such that the output coded symbols are equiprobable and the cho-
sen alphabet A is balanced, produces random symbols of unit energy, i.e.,∑M−1

m=0 am = 0, p(am) = 1
M and

∑M−1
m=0

|am|2
M = 1.

These equiprobable i.i.d data symbols then need to be converted to
continuous waveforms before transmitting. From the basics of Fourier series
we know that any continuous band-limited function x(t) (

∫∞
−∞ |x(t)|2dt <

∞) can be expanded by an L2 orthogonal basis {φ1(t), φ2(t), . . .}, such that,

x(t) =
∑
n

xnφn(t). (2.1)

Or in other words, for �nite energy series (
∑

n |xn|2 <∞), there always
exists an L2 function x(t) which satis�es eq. (2.1). This is exactly our
requirement at the modulator. A series of real or complex data symbols are
required to be mapped into a waveform.

2.1.1 Modulation

Pulse amplitude modulation (PAM) is probably the simplest among all
types of modulation schemes. Let s(t) be a baseband transmission, given
by,

s(t) =
∑
n

unp(t− nTs). (2.2)

The equiprobable i.i.d data symbols un (real in case of PAM) are ex-
tracted from an alphabet A = {a0, a1, . . . , aM−1}, subsequently mapped
to a Ts spaced basis pulse p(t). We refer to M as the modulation order
and K = log2 M are the maximum number of bits a data symbol can carry.
For example, binary PAM carries one coded bit per data symbol, since
K = log2 2 = 1. Similarly, 4-PAM carries 2 coded-bits/symbol and 16-PAM
carries 4 coded-bits/symbol respectively. The modulation schemes where
K > 1 are called multilevel modulation. The symbol rate (or baud rate) of
the data transmission is given by Rs = 1

Ts
, the baud rate is the maximum

number of uncoded/coded data symbols transmitted in one second.
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How are we going to decide on the choice of basis pulse p(t)? To an-
swer this question we need to understand the Nyquist Criterion of ISI free
transmission explained in the next section.

2.1.2 Demodulation

Let the received baseband signal be r(t) =
∑

n unp(t − nTs), observe that
we are ignoring any impairments normally observed between transmitter
and receiver at this point of time. To retrieve back the data symbols, r(t)
is passed through a �lter with impulse response q(t) followed by a sampler
at a rate mTs.

The �lter q(t) output is given by,

y(t) =

∫ ∞
−∞

r(τ)q(t− τ)dτ. (2.3)

Here, q(t) is chosen such that y(mTs) = un,

y(t) =

∫ ∞
−∞

∞∑
n=0

unp(τ − nTs)q(t − τ)dτ ,

=

∞∑
n=0

un

∫ ∞
−∞

p(τ − nTs)q(t − τ)dτ ,

=
∞∑
n=0

ung(t − nTs),

where, g(t) = p(t) ∗ q(t) =
∫∞
−∞ p(τ)q(t − τ)dτ , (∗) is the convolution

operator. Now for perfect reception, i.e., ISI free reception, y(mTs) = un

for every sampling interval t = mTs, which is only possible if the pulse g(t)
satis�es eq. (2.4),

g(mTs − nTs) =

{
1 n = m

0 n 6= m.
(2.4)

The pulses of type de�ned in eq. (2.4) are known as Nyquist pulses. Any
pulse g(t) is considered as an ideal Nyquist with time interval Ts if and only
if G(f) = F{g(t)}, (F = Fourier transform), satis�es the Nyquist criterion
which is de�ned as,

1

Ts

∞∑
n=−∞

|G(f +
n

Ts
)|rect(fTs) = rect(fTs), (2.5)
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for,

rect(t) =

{
1 −1

2 ≤ t ≤
1
2

0 elsewhere.

The Nyquist pulse g(t) which satis�es zero ISI at sampling interval is
ought to have valid Nyquist criterion for G(f) in frequency domain and vice
versa. From eq. (2.4) and eq. (2.5) we can say that the transmitted and
received �lter waveforms shall produce an orthonormal e�ect. Therefore we
need to �nd the set of pulses whose combined e�ect is orthonormal with
the time-shift Ts to avoid ISI.

The basis pulse �lter p(t) and receiver �lter q(t) are cascaded to each
other to produce an ideal Nyquist pulse. As the receiver �lter q(t) must
be matched to p(t) to produce an ideal Nyquist pulse e�ect, it is usually
referred to as a matched �lter. The most important thing here is that the
pulse that satis�es the Nyquist criterion should be strictly bandlimited and
time limited as well, which is not possible according to a basic principle of
mathematics, which says that restriction in one domain causes inevitable
extension in another domain. We will focus on strictly bandlimited pulses
G(f) and truncate the pulse in time domain, just before transmitting, to
�t the latter condition.

From eq. (2.5), rect(fT) is the �rst theoretical choice for G(f) to satisfy
Nyquist criterion. Unfortunately the sharp frequency response of rect(fT)
increases the �lter order and makes practical implementation very di�cult.
Therefore other practical choices shall be looked for.

The minimum bandwidth required for a pulse g(t) orthogonal to every
time shift Ts is WN = 1

2Ts
. The actual bandwidth W associated with g(t) is

always greater that WN, W > WN such that G(f)=0 for −W < f < W and
W = WN is possible only if G(f)=rect(fTs). Most practical pulses which
satisfy the Nyquist criterion have a symmetry in G(f) around W such that;
G(W + ∆) = G(W −∆)[9]. The Root Raised Cosine (RRC) is another class
of Nyquist pulses which satis�es Nyquist criterion with a roll-o� factor β.
The name RRC comes from the fact that, the function has a square root
raised cosine shape in the frequency domain. In frequency domain the RRC
pulses can be given by,

|G(f)|2 =


T, |f | ≥ 1−β

2T

T cos2(πT2β ), 1−β
2T < |f | ≥ 1+β

2T

0, |f | > 1+β
2T .

(2.6)
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The function de�ned in eq. (2.6) decays with a rate of 1
t3

in time do-
main in comparison to the decay rate of 1

t for rect(f T). This fast rate
of decay in the time domain makes the frequency response less sharp and
hence decreases the order of the �lter. This is responsible for the practical
implementation of the root raised cosine basis pulse. The practical imple-
mentation to satisfy Nyquist criteria consumes β% more bandwidth for the
signaling rate 1

Ts
. Fig. 2.3 shown below represents the root raised cosine

pulses in the time domain and frequency domain with di�erent roll-o� fac-
tors. As the rollo� factor increases the pulse in the time domain decays
more quickly but in the frequency domain it utilizes more bandwidth. The
rollo� factor β = 0 represents a sinc pulse.

−8 −6 −4 −2 0 2 4 6 8

−0.2

0

0.2

0.4

0.6

0.8

1

t/T

p(
t)

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

fT

|P
(f

)|2 /T

 

 

β=0.1

β=0.2

β=0.3

β=0.1

β=0.2

β=0.3

Figure 2.3: Root raised cosine pulses satis�es Nyquist ISI criteria

with roll-o� factor β

2.1.3 Baseband to Pass-band conversion

Till now we have discussed the ISI free baseband implementation of the
transmitted signal. In reality there is an assigned bandwidth associated
with the transmission type. For example LTE transmission in Sweden is
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centered on the bands of 800/1800/2600 MHz. So, there is a need of up
conversion from baseband to the allotted bandwidth before transmission. As
the main objective is to shift frequency from [0,W] to fc−W ≤ fc ≤ fc +W,
it can be easily done by s(t) exp2πifct ↔ S(f − fc) where S(f) = F{s(t)}.

In practice, the baseband to carrier modulated passband conversion is
done as,

sP(t) = s(t)[e2πifct + e−2πifct],

sP(t) = 2s(t) cos (2πifct),

in frequency domain,

SP(f) = S(f − fc) + S(f + fc).

In PAM the baseband signal S(f) consumes positive bandwidthW but in
the passband SP(f) covers double than the baseband case i.e. 2W, whereas
the number of symbols it carries is same, both in baseband and passband.
There is wastage of W in double sided PAM transmission. One solution to
this problem is to consider only one side band in the passband signal while
transmission, the other band can be easily retrieve, as S(f) = S(−f) called
single side band PAM. Another solution is to use the quadrature dimension
as well. Modulation schemes which use both real and quadrature dimen-
sions are called Quadrature Amplitude Modulation (QAM). In QAM, s(t)
is complex.

The carrier modulated QAM signal can be written as,

sP(t) = s(t)e2πifct + s∗(t)e−2πifct,

where, (.)∗ is the complex conjugate operation. Another way of writing the
above equation is,

sP(t) = 2<
{

s(t)e2πifct
}
. (2.7)
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SP(f)

f

f

S(f)

-fc+W-fc-W fc-W

W-W

fc-fc fc+W

0

0

Figure 2.4: Baseband and Passband representation of signal

In QAM the constellation points are complex,
A = {a0 + ia′0, a1 + ia′1, ..., aM−1 + ia′M−1}. The constellation points are ar-
ranged symmetrically about the origin forming a square grid. Baseband to
passband conversion and demodulation processes are all same in PAM and
QAM. QAM is nothing but PAM in both the dimensions.

2.1.4 Conservation of Distance

The distance between signal points is a very important parameter used
in many applications. The Minimum Euclidean Distance Receiver is one of
many examples [10]. For basis pulse p(t) with orthonormal shifts, the dis-
tance between two baseband signals u(t) =

∑
n unp(t − nTs) and u′(t) =∑

n u′np(t− nTs) can be found out by,

(∫ ∞
−∞
|u(t)− u′(t)|2dt

) 1
2

=

(∑
n

|un − u′n|2
) 1

2

. (2.8)

Similarly, the distance between passband signals up(t) and u′p(t) can be
given by,(∫ ∞
−∞
|up(t)− u′p(t)|2dt

) 1
2

=
(∫∞
−∞ |2<

{
u(t)e2πifct

}
− 2<

{
u′(t)e2πifct

}
|2dt

) 1
2
,

=

(∫ ∞
−∞
|2<{[u(t)− u′(t)]e2πifct}|2dt

) 1
2

,
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taking out the complex exponential and comparing with eq. (2.8), we get,

(∫ ∞
−∞
|up(t)− u′p(t)|2dt

) 1
2

= 2

(∑
n

|un − u′n|2
) 1

2

. (2.9)

By comparing eq. (2.8) and eq. (2.9) we get,(∫ ∞
−∞
|up(t)− u′p(t)|2dt

) 1
2

= 2

(∫ ∞
−∞
|u(t)− u′(t)|2dt

) 1
2

. (2.10)

We can see from eq. (2.10) that the distance between signals in baseband
and passband form is preserved apart from the scaling factor of 2. This is
the reason why we always analyze and investigate in the baseband only and
implement the same result for the passband. In this thesis the signals are
always baseband limited.

2.2 Memoryless channel model

Till now we have seen how to modulate and demodulate the signal, but
we ignored all the limiting factors between transmitter and receiver. Noise
is the fundamental limitation to communicate over physical channels. The
communication channel that adds white Gaussian noise to the transmitted
signal is called AWGN channel.

The AWGN channel model is given by,

r(t) = s(t) + w(t). (2.11)

In continuous domain at the receiver side, r(t) is received as ISI free
transmitted signal s(t) with additive Gaussian noise w(t). In this model
we are assuming that attenuation by the channel, time delay and carrier
phase distortion have already been taken care o�. Noise w(t) is modeled as
a random process, �rst because it is a priori unknown; secondly because it
is known to behave in some statistical way. Particularly, the noise w(t) has
a power spectral density of N0

2 at all frequencies.

As explained in Section 2.1.2, the received signal r(t) is passed through
a unit energy matched �lter and a sampler. At the output of sampler we
get,

y(m) =
∑
n

ung

(
mTs − nTs

Ts

)
+ wm .
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At Each epoch mTs, the noise wm is modeled as Gaussian random vari-
able withN (0, N0

2 ), i.e., mean µ = 0 and variance σ2 = N0
2 and data symbols

are equiprobable i.i.d. expanded by the Nyquist pulse g(t). Therefore the
discrete model can be rewritten as,

y = u + w, (2.12)

where, u and w are vectors containing data symbols and noise samples
respectively.

2.3 Detection of ISI free received signal

After receiving the noise corrupted signal, it is time to make a decision
about the transmitted signal. At �rst glance, making a correct decision
from corrupted received signal looks quite ambiguous. But in reality correct
decision is made with quite a precision. Note that here we are considering
the ISI free case which means that each symbol is corrupted by noise only,
whereas there is no e�ect from the neighboring signals (recall eq. (2.11)).

2.3.1 MAP detector

The MAP detector makes a decision on each of un by observing the received
sample yn and mapping the decision to ûn. The rule for maximizing the
probability of correct decision is to choose ûn to be a ∈ A for which p(a|y)
is maximized. This rule of maximizing the probability of correct decision is
also known as Maximum a posteriori (MAP) rule. The MAP rule is given
by,

ûn = arg max
a∈A

p(a|y) (MAPrule), (2.13)

since, the noise we considered is white Gaussian noise, therefore eq. (2.13)
becomes,

ûn = arg max
a∈A

p(a|yn) (MAPrule). (2.14)

The arg maxa∈A means the value of argument a that maximizing the
function. This rule gives the optimal solution and a receiver that achieves
the lowest possible symbol error probability. We can rewrite the posterior
probability in terms of a priori probability with the help of identity shown
below,

p(a|yn)p(yn) = p(yn|a)p(a),

p(a|yn) =
p(yn|a)p(a)

p(yn)
.
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Where p(a) = 1
M∀ a ∈ A, for equiprobable i.i.d. signal constellation.

Therefore, the MAP rule can also be written as,

ûn = a if p(yn |a)p(a)
p(yn)

≥ p(yn |ã)p(ã)
p(yn )

.

As p(a) = p(ã) = 1
M ∀ a, ã ∈ A, we can cancel the terms p(a) and p(ã)

and also p(yn) from the inequality. Therefore,

ûn = a if p(yn |a) ≥ p(yn |ã) ∀ a, ã ∈ A.

Hence with equiprobable i.i.d. symbols, the MAP decision rule becomes
equivalent to the maximum likelihood decision rule (ML).

2.3.2 Minimum Euclidean Distance detector

For an AWGN channel,

p(yn |a) = pw(yn − a), (2.15)

pw is the probability density function (pdf) of Gaussian noise. Hence, the
MAP rule for an AWGN channel can be written as,

ûn = a if e
−|yn−a|2

N0 p(a) ≥ e
−|yn−ã|2

N0 p(ã) ∀ a, ã ∈ A. (2.16)

By taking log on both sides we get,

ûn = a if
−|yn − a|2

N0
+ log (p(a)) ≥ −|yn − ã|2

N0
+ log(p(ã)) ∀ a, ã ∈ A.

Now, multiply by -1 on both sides of inequality, we then get,

ûn = a if
|yn − a|2

N0
− log (p(a)) ≤ |yn − ã|2

N0
− log(p(ã)) ∀ a, ã ∈ A.

For equiprobable i.i.d. data symbols, we can write,

ûn = a if |yn − a|2 ≤ |yn − ã|2 ∀ a, ã ∈ A. (2.17)

Therefore, we can say that, MAP detector for an AWGN channel is also
a minimum Euclidean distance detector.
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2.3.3 Probability of error for memoryless AWGN channel

The probability of error for an AWGN channel is bounded by,

Pe = (M− 1) Q

[
dmin

2σ

]
, (2.18)

where M is modulation order, dmin is minimum Euclidean distance and

σ =
√

N0
2 is the standard deviation of the discrete-time noise.

2.4 Channel with memory

The links between earth and deep space are often modeled as instances of
the discrete memoryless channel (DMC) which was discussed in the previ-
ous section, whereas communication on earth or below ionosphere, due to
multipath components apart from additive interference also su�ers interfer-
ence of multiplicative nature. Therefore the signal model given in eq. (2.11)
doesn't hold anymore.

The received signal r(t) in the presence of channel h(t) can be written
as,

r(t) = h(t) ∗ s(t) + w(t), (2.19)

where channel is modeled as a �nite impulse response h(t) of length L, such
that, h(t) takes non-zero values for only 0 < t < (L− 1)Ts. By substituting
s(t) =

∑
n unp(t− nTs) in eq. (2.19), gives,

r(t) = h(t) ∗
∑
n

unp(t − nTs) + w(t),

=
∑
n

un (h(t) ∗ p(t − nTs)) + w(t).

After passing r(t) through a match �lter q(t) = p∗(−t) and recalling the
demodulation section, we get,

y(t) =
∑
n

un (h(t) ∗ g(t − nTs)) + n(t) {g(t) = NyquistPulse},

(2.20)
where n(t)=w(t)∗q(t) and for a unit energy q(t), E{n[l]n∗[m]} = σ2nδ[l−m].
For a �nite memory L and orthogonal basis function φ(t),
h(t) =

∑L
l=0 hlφ(t − lTs) and n(t) =

∑
m nmφ(t −mTs), the eq. (2.20) be-
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comes,

y(t) =
∑
n

un

(
L∑

l=0

hlφ(t − lTs) ∗ g(t − nTs)

)
+
∑
m

nmφ(t −mTs),

y(mTs) =
L∑

l=0

hlum−l + nm ,

ym =
L∑

l=0

hlum−l + nm ,

here, ym is the set of su�cient statistics for estimating the sent symbols
um . In vector form,

y = Hu + n. (2.21)

In eq. (2.21), matrix H is the Toeplitz matrix of size (N + L)×N, u is an
(N× 1) signal vector and n is an (N× 1) vector containing Gaussian noise
samples. Eq. (2.21) is the discrete AWGN time model for channels with
memory. At every sampling interval there is interference from neighboring
samples as well apart from the noise. Also, y forms a set of su�cient statis-
tics for estimating u. The matched �lter considered in the above derivation
was only matched with the basis pulse p(t) such that q(t) = p∗(−t) not with
the combination of basis pulse p(t) and channel h(t) where it would have
been q(t) = c∗(−t) for c(t) = h(t) ∗ p(t). With the approach we adopted
the noise samples remained white.

2.5 Detection of received signal with ISI

2.5.1 MLSE decoding

The Maximum-Likelihood sequence estimation (MLSE) rule is given by,

û = arg max
a

P(r(t)|a) ∀ a ∈ AN. (2.22)

Like before, it can be easily shown that maximizing P(r(t)|a) is equiva-
lent to minimizing the Euclidean distance. Therefore,

û = arg max
a

(∫ ∞
−∞
|r(t)− h(t) ∗ s(t)|2dt

)
∀ a ∈ AN, (2.23)

in the discrete domain, i.e., after matched �lter and sampling, it can be
written as,

û = arg max
a

(
N+L+1∑
n=0

|yn −
L∑

l=0

hlan−l |2}

)
∀ a ∈ A. (2.24)
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In eq. (2.23), û and a are the entire estimated sequence and trial se-
quence respectively. Since the decision has been made on the entire se-
quence the decision rule is known as Maximum-likelihood sequence estima-
tion. For a modulation order M there can be MN di�erent trial sequences
(a) which makes the computational complexity of order O(MN). Fortu-
nately the Viterbi algorithm can be used for such ISI sequence estimation
problem with a reduced complexity from the order of exponential in N to
exponential in the channel memory L i.e., O(NML). For the �rst time For-
ney introduces the application of VA in the reception of ISI signals of the
form eq. (2.21), later Ungerboeck proved the same thing in the presence
of colored noise [8][11]. In the Viterbi algorithm the minimum distance se-
quence is equivalent to the recursively �nding the highest accumulated path
metric at each trellis stage.

Although complexity has been decreased, still it needs a lot of computa-
tions for either a large cardinality of the alphabet M, or signi�cantly larger
memory in the channel part, theoretically which is in�nite in length. There
are other sub-optimal choices available such as the linear Zero-forcing equal-
izer and the MMSE equalizer and non-linear feedback equalizer [25]. These
are relatively less complex and can be cascaded with the optimal channel
decoder. Since 1993 [24], important advances have been made in the �eld
of turbo equalization. One of such examples is [12] where a MAP based
MMSE equalizer have been developed. A joint iterative MAP equalization
cascaded with MAP decoding is the state of art technology of present time,
which impressively approached the Shannon's capacity limit. We have used
an iterative SISO Minimum Mean Squared Error equalization using a pri-
ori information cascaded with an LDPC decoder to improve on the overall
performance of the faster than Nyquist system.

2.5.2 MAP decoding

The MAP decoding of eq. (2.21) type of signal model is considered here.
The MAP sequence decoder gives,

â = arg maxaP(a|y) = arg maxaP(y|a)P(a).

For independent data symbols the a priori probability is P(a) =
∏

n p(yn |
a) and P(y|a) =

∏
n p(yn |a), where,

∏
n p(yn |a) = e

−1
N0
||yn−

∑L
l=0 hlan−l ||2 (Note: The constant term has been

ignored here).
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Therefore, ân = arg maxan
∏

n py|a(yn |a)
∏

n p(an) provides the MAP
decoder output at each epoch. Also it provides soft output for each symbol
in terms of Log APP (a posteriori probability) ratios,

L(an |y) , log
p(an = 0|y)

p(an = 1|y)
= log

∑
a:an=0 p(a|y)∑
a:an=1 p(a|y)

. (2.25)

The eq. (2.25) can be divided into two parts, for n 6= n ′,

L(an |y) = log

∑
a:an=0 P(y|a)P(a)∑
a:an=1 P(y|a)P(a)

= log

∑
a:an=0 P(y|a)

∏
n′ p(a′n)∑

a:an=1 P(y|a)
∏
n′ p(a′n)

+L(an).

(2.26)
The left hand side of the sum in eq. (2.26) represent the information

about an contained in y (the channel output) and in symbols an
′ other

than an itself. If we could somehow manage to get these an
′ information

prior to the calculation, we can leverage this information to reduce the ISI.
This is the approach taken by the MMSE based soft equalizer. The Turbo
MMSE soft equalizer takes the extrinsic information (a priori information)
from the output of channel decoder and provides the soft outputs from
equalizer to the channel decoder.
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Chapter3
Faster than Nyquist signaling, Background

and Motivation

For ISI free transmission over an AWGN channel of baseband bandwidth
W, it requires the received samples at the receiver side y(mTs) = um +
wm ∀ m ∈ N, with a baud rate of 1

Ts
. The positive Nyquist baseband

bandwidth associated with the signal interval Ts is WN = 1
2Ts

, while the
actual baseband bandwidth W shall hold the inequality, W ≥WN, to satisfy
Nyquist criterion, W = WN for sinc pulses only. If we increase the baud rate
1
τTs

(τ < 1) without increasing the bandwidth W such that the inequality
W ≥WN doesn't hold anymore, then there will be an inevitable ISI at the
receiver side. This method of transmitting the signal sequence at a baud
rate 1

τTs
(τ < 1) without increasing the required bandwidth to avoid ISI is

called faster than Nyquist signaling. The faster than Nyquist signaling is
also known by the acronym FTN signaling.

3.1 FTN signals

The transmitted FTN signal sequence is formed by,

s(t) =

∞∑
k=0

ukp(t − kτTs) τ ≤ 1,

where uk is a sequence of equiprobable i.i.d. data symbols randomly drawn
from an alphabet A. The basis pulse p(t) is an unit energy pulse and or-
thogonal for every symbol time shift Ts. Now there exists an integer n such
that

∫
p(t)p(t−nτTs) 6= 0. Therefore, there is an inevitable ISI with a baud

rate of 1
τTs

also known as the FTN signaling rate.

Fig. 3.1 illustrates this phenomenon of losing orthogonality for τ = 0.8
in comparison to the Nyquist case with τ = 1. There we took symbols {+1,-
1,+1,-1} and modulated this symbol sequence with a RRC pulse forming a

21
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signal sequence of type s(t).

The concept of faster than Nyquist signaling was �rst put forth by James
Mazo in 1975 [3], for binary information carried by sinc pulses. He accel-
erated the sinc pulses with a rate 1

τ and discovered that the minimum Eu-
clidean distance d2

min does not alter for 0.802 ≤ τ . It was a surprising result
that could carry at maximum 1

0.802 ≈ 25% more bits in the same bandwidth
without increasing the symbol error probability. In FTN the signal is sent
every τTs seconds in comparison to every Ts seconds in the Nyquist case
and as a result of this an inevitable ISI occurs. The cost of increased data
rate has to be paid o� as complexity of FTN system. The complexity lies
at the receiver side where the receiver has to take care of the additional ISI
as well.
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Figure 3.1: Illustration of FTN signaling

Research in the �eld of FTN after Mazo continued on the minimum dis-
tance computations in [13],[14], while some considered it not very promising
[17]. In 2003, Liveris and Georghiades investigated the structures of error
events for binary FTN and used iterative equalization, turbo decoding and
constrained coding techniques to gain more data rates [18]. Later, Rusek
and Anderson investigated the information rates related with FTN and they
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proved that in many cases the information rates in FTN increases in com-
parison to the Nyquist case. The increase is due to the excess bandwidth
roll o� factor β, a smoothing factor to satisfy Nyquist criterion [19], [20].
The less complex M-BCJR algorithm has been investigated in [21] for FTN
receivers. Constrained capacities for FTN systems were derived in [22] and
they proved that FTN achieves higher capacities than the Nyquist based or-
thogonal modulation schemes with an excess bandwidth to satisfy Nyquist
criterion. Also multidimensional FTN was proposed in [23], where FTN
was extended to the frequency domain as well.

In the next section, we derive the discrete AWGN mathematical model
for faster than Nyquist signaling. We will take a unit energy pulse and
modulate the data symbols at a rate faster than the admissible Nyquist
rate for zero ISI.

3.2 FTN system model

In this section we will derive the basic mathematical model for FTN systems.
This model will be used in the next chapter to investigate FTN signaling
for LTE-uplink type system models. A block diagram of system model for
the FTN signaling is represented in Fig. 3.2, shown below.

mτT

y 𝑚 =  𝑘=0
N−1u𝑘 gϕ 𝑡 − 𝑚 + η(m)p(t) h(t)

w(t)

ϕ* (-t)

ϕ(t)

u𝑘 r(𝑡)s(t)

Figure 3.2: System model for FTN signaling

The equiprobable i.i.d. coded/uncoded data symbols uk drawn from an
alphabet A are modulated with a pulse p(t) with symbol time τTs forming
a transmitted FTN signal sequence s(t) which is limited to bandwidth W.
s(t) can be written as,

s(t) =

∞∑
k=0

ukp(t− kτTs), τ < 1. (3.1)

Now the channel which has been modeled as �nite impulse response
h(t) such that H(f)=F{h(t)} and bandlimited to W, H(f) will act as a
low pass �lter for transmitted signal u(t) such that P(f )H(f ) = P(f ). The
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transmitted signal s(t) after passing through a channel of impulse response
h(t) and an AWGN channel is given by,

r(t) =
∞∑
k=0

ukp(t − kτTs) ∗ h(t) + w(t),

=

∫ ∞
−∞

(
L∑

l=0

hlφ(τ̂ − lTs)

∞∑
k=0

ukp(t − kτTs − τ̂)

)
dτ̂ + w(t),

=
∞∑
k=0

L∑
l=0

ukhlp(t − kτTs − lTs) + w(t), for φ(t) ∗ p(t) = p(t),

we can write it like,

r(t) =
∞∑
k=0

ukϕ(t − kτTs) + w(t), for ϕ(t) =
L∑

l=0

hlp(t − lTs). (3.2)

Eq. (3.2) represents the received signal sequence r(t). The received sig-
nal r(t) can be viewed as the sequence of data symbols uk linearly modulated
with a pulse ϕ(t) at a rate of 1

τTs
in the presence of an AWGN channel.

Now at the receiver side, as already seen in chapter 2, there exists a matched
�lter to ϕ(t) followed by a sampler. The output of sampler provides a set
of su�cient statistics to estimate uk.

The matched �lter output is given by,

y(t) =

∫ ∞
−∞

r(τ̂)ϕ∗(−t − τ̂)dτ̂ . (3.3)

Sampling eq. (3.3) by a sampler at rate mτTs, provides the below output,

y(m) =
N−1∑
k=0

ukgϕ(k −m) + η(m), (3.4)

where gϕ(t) = ϕ(t) ∗ϕ∗(−t), means that gϕ denotes the τTs sampled auto-
correlation of function ϕ(t). Let's derive gϕ for the received signal sequence
r(t) represented in eq (3.2).

gϕ(m) =

∫ ∞
−∞

ϕ(t+mτTs)ϕ(t)dt,

=

∫ ∞
−∞

L∑
m=0

L∑
n=0

hmhnp(t− lTs +mτTs)p(t− nTs),

=
L∑

m=0

L∑
n=0

hmhng

(
m+

n

τ
− l

τ

)
, for g(t) = p(t) ∗ p∗(−t).
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Eq (3.4) is also known as Ungerboeck observation Model with colored
noise samples [11], the variance of noise samples can be written as E{η(l)η∗

(m)} = N0
2 gϕ(l −m).

Matrix notation

In matrix notation eq. (3.4) can be written as,

y = Gu + η, (3.5)

where y,u and η are vectors of length N× 1 and G is an N×N Toeplitz
matrix containing {gϕ[0], gϕ[1], .., gϕ[N− 1]}. As many algorithms require
the noise to be statistically independent, therefore the Ungerboeck observa-
tion Model is not valid as it contained the colored noise samples. The White
Noise model is also known as the Forney Model [8]. The Forney model can
be derived by passing the output of eq (3.4) through a whitening �lter. It
can be given as,

xn =
N−1∑
m=0

f(n −m)um + wn , (3.6)

where f(n) is a causal ISI sequence such that f(n)∗f∗(−n) = gϕ(n) and wn

is white Gaussian noise with variance E{w(l)w∗(m)} = gϕ(0)N0
2 δ(l − m)

[28].
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Chapter4
FTN implementation on an LTE-uplink like

system model

Size-N
DFT

CP D/A
Size-B
IFFT

s(t)

0
{u0,u2,…,uN-1}

N-1

Figure 4.1: Typical LTE-uplink transmitter

A typical LTE-uplink transmitter is shown in Fig. 4.1. The block diagram
looks like an OFDM transmitter except for the DFT part and is also known
as OFDM based DFT precoded transmitter. A block of size N modulated
(coded or uncoded) symbols from an alphabet A pass through a DFT.
The DFT converts the symbols into the frequency domain, where they are
mapped to the assigned subcarriers. As frequency mapping depends only
upon the size-N DFT block therefore the size of N impacts the transmit-
ted signal bandwidth directly. The frequency mapped symbols are then
returned to the time domain by a size-B inverse DFT block such that B>N.
The DFT followed by IDFT, provides the signal with the properties of 'sin-
gle carrier' transmission. The cyclic pre�x (CP) is added to each time do-
main block comes out of the IDFT. The CP should be at least the length of
channel memory, Lcp ≥ L to completely overcome the channel impairments.
Practically it is done by copying the last Lcp samples to the beginning of
the block of size B. At last a D/A conversion is done before transmitting
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the signal. If fs is the sampling frequency of the D/A conversion then the
bandwidth of the transmitted signal becomes W = N

B×fs.

The receiver reverts the changes done by the transmitter and channel on
the transmitted block and tries to estimate the transmitted symbols by ob-
serving the received signal sequence. A typical LTE receiver consists of an
A/D conversion, a size-B DFT, frequency domain equalization and �nally
a size-N IDFT. In practice, the LTE-uplink uses a turbo encoder to encode
the transmitted signal, the turbo encoder consists of a parallel concatenated
convolutional code (PCCC) with two recursive convolutional coders and an
interleaver. It uses a soft-input/soft-output turbo decoder [25] to decode
the received signal. In this thesis, we have used an LDPC encoder at the
transmitter side and an iterative SISO MMSE equalizer cascaded with an
LDPC decoder at the receiver end.

The rest of the chapter is divided into two main parts. Implementation
of faster than Nyquist on LTE-uplink like system models for the uncoded
and coded case, respectively.

4.1 Uncoded FTN and its detection

Size-N
DFT

uk

ϕ(t)

ϕ* (-t)
Size-B
DFT p(t) h(t)

White 
Filter

DetectorL-1

w(t)

 𝐮𝑘

0

Figure 4.2: Uncoded FTN signaling system model

The transmitter for the baseband single carrier faster than Nyquist signal-
ing is shown in Fig. 4.2. Here we have taken a di�erent approach than the
conventional FTN system explained in the previous chapter. The equiprob-
able i.i.d data symbols sequence u = [u0,u1, . . . ,uN−1] of length N, is drawn
from an alphabet A. A DFT operation is performed on this data block u, to
convert it into frequency domain followed by a higher order IFFT operation
such that only L frequency domain data samples are forwarded, L<N. By
eliminating N-L frequency samples increases the data rate by N-L

N
% than
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the conventional Nyquist case or it can be interpreted as consuming N-L

L
%

less bandwidth to send same amount of data at the expense of inducing un-
avoidable intersymbol interference. After IFFT operation, digital to analog
conversion is performed on the sequence to yield a transmit baseband signal.

Let s be an B×1 complex vector after IFFT such that s = Fu, where
F is an B×N matrix responsible for DFT operation, N-L frequency compo-
nents deletion followed by an IFFT operation. Let us derive an expression
for the matrix F.

Let FB be the Fourier matrix of size B×B de�ned as,

[FB]kl =
1√
B

e−i
2π
B
(k−1)(l−1); 1 ≤ k , l ≤ B, (4.1)

let Z be a matrix of size B×N de�ned as,

Z =

(
IL 0L×N−L

0B−L×N

)
for L < N < B, (4.2)

then, F is given by,

F =
N

L
FH
BZFN. (4.3)

Where, subscript (.)H is the Hermitian transpose, IL is an identity ma-
trix of size L×L and 0L is a square matrix of size L×L containing all zeros.
Deletion of N-L frequency points decreases the rank of the matrix F to L
in comparison to Nyquist case of rank N matrix. The loss of rank is due to
deletion of N-L independent rows from the DFT matrix can also be viewed
as a loss of orthogonality. Therefore the setup explained above can also be
viewed as FTN.

The FTN data sequence s then pass through a channel and �nally re-
ceived at the other end. As usual, matched �lter followed by a sampler at
the rate mτT. We considered Forney model, i.e., a whitening �lter cascaded
after the sampler. To extract back the data symbols, we needed to make
decision on the received symbols at each epoch. We have considered the
sphere decoder for this purpose.

4.1.1 MLSE based sphere decoder

The input sequence y to the decoder can be written as,

y = Hu + w, (4.4)
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where H = DF is an B × N matrix, D is an B×B channel matrix, y is the
received vector of size B×1 and w is an B×1 vector, w=[w1,w2, ...,wB−1]

T

consists of complex white Gaussian noise samples such that each of the real
and complex part follow wm ∈ N (0, N0

2 ). The channel matrix D represents
the combined e�ect by the medium between transmitter and receiver. We
considered an assumption that at the receiver side we have full knowledge
of the channel, practically which can be easily done by the pilot signals.

The MLSE rule given in eq. (2.23) can be written here as,

û = arg minũ

{
|y −Hũ|2

}
, (4.5)

where û and ũ are the estimated and trial sequences respectively. For
a modulation alphabet of size M, the complexity of eq. (4.5) is of order
O(MN). We used a sphere decoder with relatively less complexity for esti-
mating the sequence u [26].

Sphere decoding algorithm

The sphere decoding algorithm involves the search only over those lat-
tice points that lie in the sphere of distance d from the received signal y.
Therefore complexity of the algorithm depends upon the search radius d.
The algorithm involves the QR decomposition of the matrix HB×N, such
that,

H = Q

[
R

0B−N×N

]
, (4.6)

where, Q = [Q1 Q2] is an B×B orthogonal matrix with Q1 and Q2 repre-
senting �rst B and last N-B orthonormal columns and R is an N×N upper
triangular matrix. Now for a distance d, a point Hu lies inside the sphere
centered around y if and only if,

d2 ≥ ||y −Hu||2.

By substituting H from eq. (4.6), we get,

d2≥
∣∣∣∣∣∣∣∣y − [Q1 Q2]

[
R
0

]
u

∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣[Q∗1Q∗2
]
y −

[
R
0

]
u

∣∣∣∣∣∣∣∣2 = ||Q∗1y − Ru||2 + ||Q∗2y||
2,

we can write,
d2 − ||Q∗2y||2 ≥ ||Q∗1y − Ru||2. (4.7)
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Let d′2 = d2 − ||Q∗2y||2 and x = Q∗1y, rewriting eq. (4.7),

d′
2 ≥ ||x− Ru||2,

d′
2 ≥

m∑
i=1

xi −
m∑

j=1

ri ,juj

2

, (4.8)

where ri,j denotes the (i , j ) entries from the upper triangular matrix R. Due
to the upper triangular matrix R, we can expand the eq. (4.8) as,

d′
2 ≥ (xm− rm,mum)2 + (xm−1− rm−1,mum− rm−1,m−1um−1)

2 + . . . . (4.9)

The �rst term on the right side of equality depends only upon um and
the second term on um,um−1 and so on. Therefore the necessary condition
for Hy to lie inside the sphere of radius d is, d′2 ≥ (xm− rm,mum)2. Or the
condition on um can be written as,⌈

−d′ + xm
rm,m

⌉
≤ um ≤

⌊
d′ + xm

rm,m

⌋
, (4.10)

where d.e and b.c denotes the rounding o� by the nearest largest and smallest
integers respectively. Similarly, for every um satisfying eq (4.10), there exist
a um−1 such that,⌈−d′m−1 + xm−1|m

rm−1,m−1

⌉
≤ um−1 ≤

⌊−d′m−1 + xm−1|m

rm−1,m−1

⌋
, (4.11)

for, (d′m−1)
2 = d′2 − (xm − rm,mum)2 and xm−1|m − rm−1,mum. In a similar

way one can reach the bottom of the search tree, i.e., u1. Therefore, instead
of searching all the lattice points the search has con�ned within the sphere
of distance d, decreasing the complexity of Maximum likelihood detector.

The sphere decoding algorithm [26] is jotted down in the steps written
below.

Algorithm

Input: Q = [Q1 Q2], R, y, z = Q∗1y, d.

1. Set k = m, (d′m)2 = d2 − ||Q2
∗y||2, xm|m+1 = xm .

2. (Bounds for uk ) set UB(uk )=
⌊
d′k+xk|k+1

rk,k

⌋
, uk =

⌈
d′k+xk|k+1

rk,k

⌉
-1.

3. (Increase uk ), uk = uk + 1. If uk ≤ UB(uk ) go to 5; else, move to 4.
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4. (Increase k), k = k + 1; if k = m + 1 terminate algorithm, else go
to 3.

5. (Decrease k) if k=1, go to 6; else k = k − 1,
xk |k+1 = xk−

∑m
j=k+1 rk ,juj , (d

′
k )2 = (d′k+1 )2−(xk+1 |k+2 − rk+1 ,k+1uk+1 )2,

go to step 2.
6. Solution found. Save u and its distances from y,

(d′m)2 − (d′1)
2 + (x1 − r1,1u1)

2, go to step 3.

The sphere decoder provides the estimated sequence û. We compared
the data symbol sequence u of length N=6 with di�erent cases for the value
of L. Where L was chosen as 6, 5 and 4 for three di�erent cases, L = 6 is
the Nyquist case for comparison and L =5, 4 are the FTN cases. A sub-
optimal MMSE based receiver has also been included for comparing the
results. Fig. 4.3 represents the simulation results for the bit error rates vs
Eb
N0
.
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Figure 4.3: BER vs Eb

N0
curves for di�erent cases. The diamond car-

rying curves represent the sub-optimal MMSE based decoding

and the rest represents sphere decoding.
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The Nyquist based optimal sphere decoding performed the best followed
by the Nyquist based sub-optimal MMSE decoding overlapping with the
FTN based optimal sphere decoding with L=5, i.e., ≈ 17% faster than the
Nyquist rate. Then comes the FTN based optimal sphere decoding with
L=4, i.e, ≈ 34% faster than the Nyquist rate. The FTN based MMSE
decoding failed to perform. For Pb = 10−5, Nyquist based sphere decoding
requires Eb

N0
≈ 10.5 dB, both Nyquist based MMSE decoding and FTN (with

L=5) sphere decoding requires Eb
N0
≈ 12.5 dB and FTN (with L=4) sphere

decoding requires Eb
N0
≈ 15.5 dB.

4.1.2 Capacity and Spectral e�ciency

The capacity of discrete time signals with ISI is considered here. Assume
input and output relation according to the Forney signal model, given by,

y = Hu + w, (4.12)

where y is the received signal vector of size B×1, H is the channel matrix of
size B×N, u is the equiprobable i.i.d input symbol vector of size N×1 and
w is a size B×1 vector containing complex white Gaussian noise samples.
The capacity calculation is the mathematical problem to compute mutual
information I(u;y) between input u and output y.

The constrained capacity [28] (where the constraint is that the mutual
information is evaluated for a given discrete PAM/QAM discrete constella-
tion rather than the Gaussian.) for the discrete time ISI Gaussian channel
can be given by,

CDT =
1

N
I (y;u),

=
1

N
[H(y)−H(r|u)],

=
1

N
[H(y)−H(w)],

where H(·) is de�ned as the di�erential entropy function. Further, CDT is
given by,

CDT =
1

N
[H(y)−H(w)] = −E[log2 (p(y))]− [log2(πeN0)]× B. (4.13)

Where CDT has the units bits/sec. The simulation results for the ca-
pacity calculation are shown in Fig. 4.4.
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The capacity of the Nyquist system with N=L=6 outperforms the ca-
pacities of FTN systems with L=5 and L=4 respectively for all the values
of P

N0
, where P = EbR for bit rate R. However after P

N0
=14 dB all the ca-

pacity curves merge to the highest possible value of 12 bits/sec, i.e., the
capacity cap. Now, what comes next is spectral e�ciency, i.e., the number
of transmitted bitots/sec in a unit frequency use.
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Figure 4.4: Uncoded FTN capacity vs P
N0

, spectral e�ciency vs Eb

N0

The spectral e�ciency of FTN systems outperforms the Nyquist system
both for L=5 and L=4. We have derived the spectral e�ciency directly from
the capacity curve, such that, spectral e�ciency= capacity

bandwidth . The bandwidth
for the considered systems is equal to their respective value of L. Similarly,
for the fair comparison the x-axis taken is Eb

N0
derived from dividing P

N0
by

C. The bottom part of Fig. 4.4 shows this comparison for Nyquist system
versus FTN systems. Spectral e�ciency is the true parameter for comparing
communication systems as it includes the data rate per unit of bandwidth.
The FTN system may fall behind in the case of capacity as it was consuming
less bandwidth in comparison to the Nyquist system.
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4.2 Coded FTN and its detection

LDPC 
Encoder

Fig. 4.2
MAP 

Equalizer

LDPC
Decoder

L
Lext Lext

L

Global 
Iterations

Local LDPC 
Iterations

Figure 4.5: LDPC based FTN system model

A coded FTN system is shown in Fig. 4.5. The transmitter consists of an
LDPC encoder of code rate Rc = 1/2 producing an encoded bit sequence
x of length Kv log2 M, after passing through the constellation mapper yield
a coded symbol sequence v of length Kv. The block containing Fig. 4.2
represents the entire uncoded transceiver starting from the DFT block till
the whitening �lter at the receiver side.

Let's de�ne x as a vector of length Kv log2 M containing encoded bits,
x is divided into blocks of length log2 M to map the every log2 M encoded
bits in to M-ary symbol.

x , [x1,x2, . . . ,xKv ],

xk , [xk ,1, xk ,2, . . . , xk ,log2 M] for xk,j ∈ [0, 1].

The constellation mapper maps xk to a symbol vk from M-ary symbol
alphabet A. Let's de�ne coded symbol sequence v , [v1, v2, . . . , vKv ], the
sequence v is divided into small blocks of length N and each block is pass
through FTN system explained in the previous section. It is a scenario
where multiple coded blocks are being sent through FTN system. Here, v
can be viewed as,

v = [u1,u2, . . . ,uKv
N

],

where,

un = [v1+(n−1)N; v2+(n−1)N; . . . ; vnN] for n ∈ [1,
Kv

N
].
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The discrete AWGN model can be written as,

rn = Hnun + wn , (4.14)

where rn forms a set of su�cient statistics to estimate un.

4.2.1 Decoding

Let L(xk ,j ) be the a prior information which is being feed to the SISOMMSE
equalizer by the LDPC decoder. For the �rst global iteration L(xk ,j ) = 0.
A SISO MMSE equalizer computes the a posteriori probabilities L(xl ,j |rn).

L(xk ,j |rn) = log
P(xk,j=0|rn )
P(xk,j=1|rn ) = log

∑
x:xk,j=0 p(rn |x)P(x)∑
x:xk,j=1 p(rn |x)P(x)

.

Now, the SISO MMSE equalizer �rst computes the estimates of sent
symbols ũn from the MMSE based linear �lter and then a posteriori prob-
abilities L(xk ,j |ũn) based on the estimated symbols.

L(xk ,j |ũn) = log
P(xk,j=0|ũn )
P(xk,j=1|ũn )

= log

∑
x:xk,j=0 p(ũn |x)P(x)∑
x:xk,j=1 p(ũn |x)P(x) ,

by breaking the above equation into two parts,

L(xk ,j |ũn) = log

∑
x:xk,j=0 p(ũn |x)

∏
j ′ 6=j P(xk ′ j ′ )∑

x:xk,j=1 p(ũn |x)
∏

j ′ 6=j P(xk ′ j ′ )
+ L(xk ,j ). (4.15)

Therefore a posteriori probabilities L(xk ,j |rn) about the received signal
is calculated from the estimated L(xk ,j |ũn). L(xk ,j |ũn) is calculated by the
sum of LLR's, externally fed Lext and Le which is the right part of eq. (4.9)
and is independent of Lext. Calculated L(xk ,j |ũn) is then fed to the LDPC
decoder with subtracted Lext. LDPC decoder produces a posteriori LLR
L(xl ,j ) which are feed back to the MMSE equalizer improving the decision
on rn. Finally after a pre decided number of iterations we get the estimated
bit sequence x̂.

We have compared the Nyquist system for block length N=6 with the
two cases of FTN systems having L=5 and L=4, i.e., deleting one and
two frequency symbols respectively. The modulation considered is QPSK.
Fig. 4.6 shows the BER vs Eb

N0
comparison between the Nyquist and FTN

cases.
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Figure 4.6: BER vs Eb

N0
performance comparison between the coded

Nyquist and coded FTN cases. The modulation scheme is

QPSK.

The Nyquist case performed best with the left most curve, FTN with
L=5 is the curve shown in the middle and far right is the FTN system
with L=4. FTN with L=5 witnessed an increase in the data rates up to
(6− 5)/6×Rc × log2 M ≈ 17% and (6− 4)/6×Rc × log2 M ≈ 33% increase
in rate for L=4 case, while keeping the bandwidth W constant. For a BER
of 10−5, the Nyquist system requires an Eb

N0
≈ 1.6 dB, whereas the FTN

system with L=5 requires an Eb
N0
≈ 2.4 dB. The FTN system with L=4

needs an Eb
N0
≈ 5.8 dB. FTN system with L=5 requires 0.8 dB more Eb

N0
in

comparison to the Nyquist system while there is a need of 4.2 dB more Eb
N0

for L=4 case. This result was quite expected as with the FTN an additional
ISI occurs resulting in more errors at the receiver side. Fig. 4.7 shows the
comparison of spectral e�ciency of the Nyquist system and FTN systems.
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Figure 4.7: Spec. e�. vs Eb

N0
for a BER of order 10−5.

With an LDPC encoder with code rate Rc = 1
2 , the spectral e�ciency

of the Nyquist system with QPSK modulation is 1, similarly FTN cases
with L=5 and L=4 with QPSK modulation can carry 1.2 bits/sec/Hz and
1.5 bits/sec/Hz respectively. The FTN systems performed better than the
Nyquist system but they require more Eb

N0
as can be seen in Fig. 4.7. There-

fore to gain additional spectral e�ciency one has to pay in the form of Eb
N0

even in the case of FTN.



Chapter5
Conclusion and Future Work

The faster than Nyquist signaling is an alternate way of increasing data
rate without the expense of bandwidth or transition to higher modulation
order. We have successfully modelled the faster than Nyquist signaling on
LTE-uplink like system models. In this thesis we chose an alternate way of
implementing FTN by deleting some frequency symbols and try to recover
them at the receiver side. The results we got were not very promising, we
were expecting better results for the BER performances. One thing to be
noted is that the value of N and L we chose were very small, for example
when L =5 for N = 6 there is a direct ≈ 17% increase in data rate which
is quite a big value. By choosing larger and more practical values of N and
comparing the system with di�erent L's, so that there won't be an abrupt
increase in data rate. This can be a point to look after in the future studies.
Also, the conventional way of implementing FTN by increasing the rate of
pulse shaping �lter is another possibility in future studies.

In the coded case our receiver was not completely optimal, since we
used a sub-optimal MMSE based SISO equalizer. Using a optimal equalizer
cascaded with an LDPC decoder can further improve our results. Since this
work is a preliminary study, this option could be exploited in the future.
The FTN signaling is already extended in the frequency domain in [23].
Therefore, multi-dimensional FTN in the LTE-uplink like system models is
also a possible case of study.

39
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