
Lo
w

-p
o

w
e

r M
icro

p
ro

ce
sso

r b
a

se
d

 o
n

 Sta
ck A

rch
ite

ctu
re

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, September 2015.

Low-power Microprocessor
based on Stack Architecture

Girish Aramanekoppa Subbarao

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-464

http://www.eit.lth.se

G
irish

 A
ram

an
e

ko
p

p
a Su

b
b

ara
o

Master’s Thesis

Department of Electrical and Information Technology

Master of Science Thesis

Low-power Microprocessor based on Stack
Architecture

Author:
Girish Aramanekoppa Subbarao

Supervisors:
Prof. Joachim Rodrigues

Prof. Anders Ardö

Lund 2015

©

The Department of Electrical and Information Technology
Lund University
Box 118, S-221 00 LUND
SWEDEN

This thesis is set in Computer Modern 10pt,
with the LATEX Documentation System

©Girish Aramanekoppa Subbarao 2015

Printed in E-huset Lund, Sweden.
Sep. 2015

Abstract

There are many applications of microprocessors in embedded applications, where
power efficiency becomes a critical requirement, e.g. wearable or mobile devices in
healthcare, space instrumentation and handheld devices. One of the methods of
achieving low power operation is by simplifying the device architecture.

RISC/CISC processors consume considerable power because of their complexity,
which is due to their multiplexer system connecting the register file to the func-
tional units and their instruction pipeline system. On the other hand, the Stack
machines are comparatively less complex due to their implied addressing to the top
two registers of the stack and smaller operation codes. This makes the instruction
and the address decoder circuit simple by eliminating the multiplex switches for
read and write ports of the register file. They are also optimized for procedure calls
because they operate on stack instead of register, which reduces the memory size.
All these factors make a stack machine power-efficient.

In this thesis project a Stack-based processor was designed in 65 nm CMOS technol-
ogy. The area of the processor was 0.16 mm2, which is very compact. The processor
consumed about 20 uW/MHz when powered by a 0.6 V supply and 85 uW/MHz
at 1.2 V. This is remarkably less than typical 250 to 450 uW/MHz consumed by
the commercial grade low-power microcontrollers. This device was tested up to a
speed of 50 MHz at 1.2 V and 20 MHz at 0.6 V.

Acknowledgement

I thank my thesis supervisors, Prof. Joachim Rodrigues and Prof. Anders Ardö
for their guidance, support and encouragement during the course of this project. I
would also like to thank Oskar Andersson for his help during the project.

I want to thank Hemant Prabhu for all the valuable discussions we had. I also
wish to thank Prof.Liang Liu for his encouragement and inspiration. I also thank
Rakesh Gangarajaiah, Ahmed Oudah and Jinan Shi for their help.

Finally, I want to specially thank my wife Jyoti, without whose support and en-
couragement, my Master course wouldn’t have been possible.

Girish Aramanekoppa Subbarao
Lund, Aug, 2015

vi

Contents

Abstract iii

Acknowledgements v

List of Tables ix

List of Figures xi

List of Acronyms xiv

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Outline . 2

2 Problem statement 3
2.1 Issues with RISC processors . 3
2.2 Proposed solution . 5

3 Hardware Architecture 7
3.1 Stack Processor Overview . 7
3.2 Processor Specification . 9
3.3 Processor Architecture . 10
3.4 Program . 21
3.5 Design improvement opportunities 22
3.6 Limitations . 25

4 IC Layout Design, Implementation and Simulation 27
4.1 Tools and Design flow . 27
4.2 Implementation . 31

viii CONTENTS

4.3 Gate count . 33
4.4 Power simulations . 33

5 Simulation results and Analysis 35
5.1 Simulation with different supply voltages 36
5.2 Simulation with different clock frequencies 39
5.3 Simulation with different transistor threshold voltages 39
5.4 Simulation at different corners . 41
5.5 Simulation with different instructions 41
5.6 Analysis . 42
5.7 Comparison . 44

6 Conclusion and Future work 47
6.1 Conclusion . 47
6.2 Future Work . 48

A Instruction set architecture 51
A.1 Instruction set . 51
A.2 Instruction codes . 53
A.3 Instruction bit map . 54

B Simuation results 55

C History of Stack machines 59

Bibliography 63

List of Tables

3.1 Stack processor specifications . 9

3.2 Stack processor instruction set . 9

3.3 Various states of Interrupt State Machine 11

3.4 Various states of Branching instruction 12

3.5 Various states of Return instruction 12

3.6 ALU operations . 18

3.7 Memory map . 18

3.8 Immediate data instruction positions 24

4.1 Timing report of synthesis . 29

4.2 Features of Stack processor IC . 31

4.3 Gate count . 33

5.1 Comparison table . 45

A.1 Instruction set . 51

A.2 Instruction codes . 53

A.3 Auxiliary codes . 53

A.4 Operation code bit map . 54

A.5 Operation code example . 54

B.1 Total power v/s Supply voltage (LPLVT) 55

B.2 Leakage and Switching power v/s Supply voltage at 1 MHz (LPLVT) 55

B.3 Power consumption by different modules v/s Supply voltage at 1
MHz (LPLVT) . 56

B.4 Different power components v/s Frequency at 0.6 V (LPLVT) 56

B.5 Power consumption by different transistor types at 0.6 V and 1 MHz 56

B.6 Power consumption at different corners at 1 MHz (LPHVT) 56

x LIST OF TABLES

B.7 Effect of instruction on different power components at 0.6 V and 1
MHz (LPLVT) . 56

B.8 Power consumption by different modules v/s Supply voltage at 0.6
V and 1 MHz (LPLVT) . 57

List of Figures

2.1 RISC Architecture . 4

3.1 Architecture of Stack machine . 8
3.2 Finite state machine for the control unit 10
3.3 Interrupt state of the FSM . 11
3.4 Decode state of the FSM . 13
3.5 Execute state of the FSM . 14
3.6 Examples of different instruction groups 15
3.7 Instruction execution cycle of stack processor 15
3.8 Control unit interface with the memory and return stack 16
3.9 Waveforms of microprocessor execution 16
3.10 Reset controller . 19
3.11 Waveforms of programming the microprocessor 19
3.12 Interrupt controller interface . 20
3.13 Example of a short program . 22
3.14 Snapshot of the data stack . 22
3.15 Examples of stack manipulation operations 23

4.1 Design flow . 28
4.2 IC Layout . 32
4.3 Power simulation sequence . 34

5.1 Different power components v/s Supply voltage 37
5.2 Power consumption by different modules v/s Supply voltage 38
5.3 Maximum frequency v/s Supply voltage 39
5.4 Total power consumption v/s Frequency 40
5.5 Total power consumption v/s Threshold voltage 41
5.6 Total power consumption at different corners 42

xii LIST OF FIGURES

5.7 Power components v/s Instructions 43
5.8 Power consumption by different modules v/s Instructions 43

List of Acronyms

CISC Complex Instruction Set Computer

CMOS Complementary Metal-Oxide-Semiconductor

CTS Clock Tree Synthesis

EDA Electronic Design Automation

FF Fast NMOS and Fast PMOS

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

IC Integrated Circuit

IO Input Output

ISR Interrupt Service Routine

LEF Layout Exchange Format

LIFO Last In First Out

LPHVT Low Power High Threshold Voltage

LPLVT Low Power Low Threshold Voltage

LPSVT Low Power Standard Threshold Voltage

NMOS N-type Metal-Oxide-Semiconductor

NOP No Operation

List of Acronyms xv

NOS Next element Of Stack

PC Program Counter

PMOS P-type Metal-Oxide-Semiconductor

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SDC Synopsys Design Constraints

SDF Standard Delay Format

SPEF Standard Parasitic Exchange Format

SS Slow NMOS and Slow PMOS

TOR Top element Of Return stack

TOS Top element Of Stack

VCD Value Change Dump

VHDL Very High Speed Integrated Circuit Hardware Description Language

WNS Worst Case Negative Slack

Chapter 1
Introduction

My name is Sherlock Holmes. It is
my business to know what other
people do not know.

Arthur Conan Doyle

1.1 Overview

With the advancement of technology and the demand for advance features, Micro-
processors are becoming increasingly complex and power hungry. There are many
applications of microprocessors in embedded applications with limited resources,
where power efficiency becomes a critical requirement, e.g. wearable or mobile de-
vices in healthcare, space instrumentation and handheld devices. Hence, the need
to develop an architecture, which focuses on power efficiency becomes important.
One of the most important keys to reduce power consumption of any device is to re-
duce its complexity i.e. make things simple. The Stack machines with their simple
architecture because of fewer numbers of transistors, are not only power efficient
but also fast. Though this architecture may not be suited for every application, it
can be targeted towards low power and real-time embedded applications.

The conventional RISC processors consume more power because of their complex-
ity. The complexity comes from the fact that multiplexer system is used to connect
the register file to the functional units. The complexity of such a system increases
with the number of registers and functional unit [1]. Another factor, which compli-
cates the hardware is the instruction pipeline system. The pipeline introduces the
extra hardware and also brings in the problems called hazards. These hazards have

2 Introduction

to be mitigated through techniques such as ”forwarding” [2]. All these hardware
results in the increased number of transistors, the wire length and the associated
parasitic elements, which contribute to high power consumption [1].

On the other hand, the Stack machines are less complex compared to the RISC
machines. Previous work on Stack machines highlight some of the reasons for their
power efficiency. Implied addressing to the top two registers of the stack makes
instruction and address decoder circuit simple and results in small operation codes
[3]. Thus, less memory is needed to store the program, which needs less power.
Multiplex switches are not required for read and write ports of the register file.
Transferring data between the top of the stack register and the ALU is performed
using the bus. So the energy is consumed only while data transfer occurs between
stack registers and ALU functional units [1]. Also, the Stack machines are opti-
mized for procedure calls because of very low penalty for the procedure calls [3].
Since, the Stack processors can be designed with fewer transistors, it results in not
only a power efficient, but also a faster and reliable device.

1.2 Thesis Outline

The remaining chapters in this thesis are organized as follows.

In chapter two, the problem related to low-power processor architecture is intro-
duced. The factors contributing to power consumption in RISC processor are anal-
ysed.

In chapter three, the proposed solution - the hardware architecture of the stack
machine is discussed. Various modules of the processor, memory organization, pro-
gram execution, instruction set architecture and programming are explained.

The IC layout of the stack processor, the design flow and the testing methodology
are described in chapter four. In Chapter five, the power simulations performed on
the IC are analysed. Chapter six concludes the report and discusses the future work.

Appendix A describes the instruction set architecture of the stack processor, ap-
pendix B tabulates the simulation results, while Appendix C gives a brief account
of the history of stack machines.

Chapter 2
Problem statement

Problems are not stop signs, they
are guidelines.

Robert H. Schuller

2.1 Issues with RISC processors

Microprocessors are becoming increasingly more complex resulting in consuming
a considerable amount of power. Early microprocessors were based on the CISC
architectures. These processors had complex hardware running moderately simple
software. This is because, several instructions with high semantic content were
capable of handling complex operations, thus simplifying the software that they
execute[4]. Later, the RISC architecture was designed to address several issues
with the CISC machines, mainly the throughput and performance [5]. The idea
of the RISC was to simplify instruction set and thereby the hardware and transfer
all the complexity to the software. Simplifying the instructions allowed them to
be pipelined and hence increasing the throughput. With the advancement of RISC
technology, these processors have ended up with complex hardware running com-
plex software.

The complexity of any device considerably contributes to its power consumption.
The complexity of RISC processors are mainly due to two factors - multiplexers
and instruction pipeline [1]. The figure 2.1 shows the architecture of a simple RISC
processor.

4 Problem statement

Image credit: en.wikibooks.org

Figure 2.1: RISC Architecture

2.1.1 Multiplexer

A register file is a set of registers used to store the data being operated upon by the
processor. The functional units in the RISC processors get their operands from the
register file [2]. The functional units read the operands from any of the registers
in the register file, through a multiplexer circuit. Most of the functions need two
operands and hence, two multiplexers are required at the input of the functional
unit. Since, the output of the functional unit is stored back in one of the registers
in the register file, another multiplexer is needed at the output. The size of the
multiplexer increases exponentially with the number of registers [1]. Also, the mul-
tiplexers are large circuits. So, they contribute a large number of transistors, the
interconnecting wires and the parasitic elements.

2.1.2 Instruction pipeline

One of the basic features of the RISC machines is the Instruction pipeline. This
is accomplished by introducing registers in between different stages of execution.
Besides, pipeline technique introduces conflicts called hazards. Some types of the
hazards have to be overcome using the hardware called the forwarding circuit [2].

2.2 Proposed solution 5

All these adds extra hardware to the processor circuit.

As can be seen, the hardware added by the multiplexer and the instruction pipeline
complicates the processor circuit and hence contributes to the power consumption.

2.2 Proposed solution

There has been a great amount of research in improving the power efficiency of mi-
croprocessors leading to the development of several techniques. This project takes
a slightly different approach to reduce the power consumption. One of the keys
to reduce power consumption is to reduce the number of components in a device.
Since, the power consumption is directly proportional to the component count,
simplifying the circuit naturally reduces the power consumption. But, reducing its
complexity would be a tedious task as the multiplexer and the instruction pipeline
are integral parts of a RISC processor.

Another approach would be to design or find a simplified architecture. One such
design is based on the Stack architecture. This architecture, not only eliminates
the multiplexer at both sides of the functional units, it also removes the need for
instruction pipeline. The architecture is discussed in detail chapter 3.

This project aims at verifying the assumption that the stack processor are power-
efficient compared to the RISC processors and are suitable for low-power applica-
tions.

6 Problem statement

Chapter 3
Hardware Architecture

Every solution to every problem is
simple. It’s the distance between
the two where the mystery lies.

Derek Landy

3.1 Stack Processor Overview

The Stack machines operate on a stack, rather than a register file as in the RISC
processors. The operands to the functional unit is always fed from the top register
or the top two registers of the stack. The result is always written back into the top
register of the stack [3]. Hence, when an instruction is executed, the top element
or the top two elements (depending on the type of instruction - unary or binary)
is replaced by the result of the operation. This type of architecture, shown in the
figure 3.1, has several advantages due to implied addressing, which are discussed
below:

• Implied addressing to the top two registers of the stack simplifies the register
address decoding as it eliminates the multiplexer at both sides of the func-
tional unit. This also means that the signals have to pass through a shorter
path and reduces the instruction execution time [1].

• Implied addressing also simplifies the instruction decoder circuit. Since, no
address information is required, the instructions do not need the address
fields. In contrast, the RISC processors should have register address fields to

8 Hardware Architecture

Figure 3.1: Architecture of Stack machine

read the operands and write back the result [3].

• Absence of address fields in the instructions shortens the instruction size.
Short sized instructions need fewer bits for encoding, which results in small
program size. Hence, the program memory size also reduces [3].

• There is no need to save the registers during the function call or servicing an
interrupt, unlike in RISC processors. This is because the processor is already
operating on a stack and hence, the calling function or an ISR has to just
push the existing stack elements to use the registers. This means that the

3.2 Processor Specification 9

function calls and the interrupts impose low clock cycle penalty, thus mak-
ing the Stack machine more suitable for such operations. This encourages a
modular program development [3].

• Low clock penalty for functions and ISRs also make Stack machine very de-
terministic and hence are more suitable for Real-Time applications [3].

3.2 Processor Specification

The specification of the stack processor designed in this project is summarised in
table 3.1.

Table 3.1: Stack processor specifications

Instructions 38 8-bit instructions

Data stack 33 x 32-bit (Stores data)

Return stack 16 x 16-bit (Stores address)

Program memory 512 bytes (128 x 32-bit words)

Interrupts 3 external and 1 internal

Execution 3-stages (Fetch, Decode & Execute)

The instruction set consists of 38 instructions, which is summarized in table 3.2.

Table 3.2: Stack processor instruction set

Instruction type Description

ALU

32-bit signed & unsigned

16-bit signed & unsigned immediate data

16-bit unsigned multiplication

Logical & Shift

Branch

Conditional & unconditional jumps

Function call

Return from function & interrupt

Data stack Data stack manipulation

Others
Software interrupt

Interrupt enable & disable

10 Hardware Architecture

3.3 Processor Architecture

The architecture of the stack processor shown in figure 3.1. The architecture con-
tains the minimum set of modules that are required to function as a microprocessor.
Various modules of the processor are explained in this section.

3.3.1 Control unit

The control unit is the heart of the processor. It decodes the instruction and issues
signals to the appropriate modules in the processor.

Finite State Machine (FSM)

Its function is based on a 3-state finite state machine (FSM). The three states are
Interrupt, Decode and Execute corresponding to three stages of the instruction
execution cycle. Upon reset, the control unit enters the FSM. The FSM executes
the interrupt state only if there is an interrupt signal from the interrupt controller.
Otherwise, it continuously executes the other two states. The simplified form of the
FSM is shown in figure 3.2. The figures 3.3, 3.4 and 3.5 show each state execution
in detail. Each state takes once clock cycle to execute.

Decode

Interrupt

Interrupt

Execute

No Interrupt

Figure 3.2: Finite state machine for the control unit

It takes four cycles to transfer the control to the ISR after the interrupt is acknowl-
edged. The interrupt state in turn implements a small interrupt state machine

3.3 Processor Architecture 11

Figure 3.3: Interrupt state of the FSM

consisting of four states intr_2 to intr_5. The state intr_0 indicates that the
processor has not received any interrupt and intr_1 indicates that the processor
has received an interrupt. The processor transits to state intr_2 once the interrupt
is acknowledged and the interrupt cycle begins. All the states of the interrupt cycle
are summarised in table 3.3.

Table 3.3: Various states of Interrupt State Machine

Interrupt
state

Function

intr 0 No interrupt

intr 1 Interrupt received

intr 2 Push PC into the Return stack & change PC to interrupt vector

intr 3 Wait for PC save in the Return stack and PC change

intr 4 Wait for Program to output new instruction word

intr 5 Initiate new instruction read & reset interrupt state to intr 0

In the decode state, the signals are issued to different modules of the processor
based on the instruction. In the execute state, the modules that receive signals

12 Hardware Architecture

produces the results.

If the instruction is a branching type such as jump, jump on a flag condition or a
function call, a small branching state machine is executed. It consists of four states
with decode and execute states executing two states each. It means that the decode
and execute states are executed two times for a branching instruction. The states
involving the branching process are shown in table 3.4.

Table 3.4: Various states of Branching instruction

Branching state Function

branch decode Change PC to branch address.

branch execute If there is no interrupt, wait for PC change and start in-
struction fetch. If interrupt not asserted, don’t fetch new
instruction.

address decode Wait for the new instruction fetch cycle to complete.

address execute Read newly fetched instruction from the branching address.

Similarly for a return from function or an ISR instruction execution, another small
return state machine is executed, consisting of six states. The decode and execute
states execute three states each, which implies that they are executed three times
for a return instruction execution. These states are described in table 3.5.

Table 3.5: Various states of Return instruction
Return state Function

return decode Pop the return address from the Return stack.

pop address Wait for the Return stack to pop out the address.

change pc Wait for the PC to change to the return address.

fetch instruction If no interrupt asserted, start instruction fetch. If interrupt
asserted, don’t fetch new instruction.

wait fetch Wait for new instruction fetch to complete.

read instruction Read the newly fetched instruction.

The figures 3.4 and 3.5 shows various states of the branching instructions. Both
the figures should be studied together to understand the state transitions as they
are spread between the decode and execute states.

Instruction execution

An instruction-fetch process in the control unit fetches the instruction word from
the memory. This process keeps track of the number of instructions remaining in

3.3 Processor Architecture 13

Figure 3.4: Decode state of the FSM

14 Hardware Architecture

Figure 3.5: Execute state of the FSM

the instruction word that are to be executed. It initiates instruction fetch from the
memory in advance in such a way that the next instruction fetch cycle overlaps with
the execution of the last instruction of the current instruction word. Though the
instruction size is 8-bit, some instructions which operate on immediate data and

3.3 Processor Architecture 15

jump instructions have 16-bit literal making them 24-bit or 3-byte instructions. As
a result, each fetch can load two or four instructions from the memory depending
upon the type of instructions. Figure 3.6 shows the examples of such instruction
groups.

Figure 3.6: Examples of different instruction groups

The fetch-decode-execute cycle is shown in figure 3.7. The execution cycle ap-
pears as a two-stage non-pipelined process, though internally it operates as a semi-
pipelined system. After the instruction word is fetched, one instruction is decoded
and executed at a time. Instruction decode and the instruction execution take one
clock cycle each. Hence, each instruction takes two clock cycles. During decode, the
instruction bit map is analysed to determine the function that is represented and
the signals are sent to the appropriate modules. In the execute cycle, the modules
that are signalled by the control unit operates to produce the result.

Figure 3.7: Instruction execution cycle of stack processor

The control unit interfacing with the memory and the return stack along with the
associated signals are shown in figure 3.8. The waveforms of various signals during
the program execution is shown in figure 3.9.

Braching execution

When the function-call instruction is executed, the current program counter (PC)
is pushed into the return stack and the PC is changed to the address of the calling
function. The return from the function is accomplished by retrieving the address

16 Hardware Architecture

Figure 3.8: Control unit interface with the memory and return stack

from the return stack and loading it into the PC, so that the execution continues
from the next address, where the function was last called.

The branching process, both conditional and unconditional are similar to the func-
tion call, except that the return to the calling point is not involved. The branching
process takes four clock cycles, while the return from the function or ISR takes six
clock cycles.

Clock

Reset

Mode

Current state Decode Execute Decode Execute Decode Execute Decode Execute Decode Execute

Program read

PC 0 1 2

Instruction 0x00000000 0x00341254 0x00CDAB54

TOS 0x00 0x1234

Figure 3.9: Waveforms of microprocessor execution

3.3 Processor Architecture 17

Interrupt execution

If an interrupt is signalled by the interrupt controller, then the control is transferred
to an interrupt state of the FSM. This state saves the PC in the return stack and
changes the PC to the interrupt vector. Then, the state changes to decode state
and execution continues normally. At the end of the ISR, the return instruction
retrieves the saved address of the program from the return stack, where the ISR
started executing, and continuous with the main program execution.

3.3.2 Data stack

The data stack is used to store the operands of the program. This is the coun-
terpart of registers in a RISC machine. It is an array of registers, with the top
two elements Top-element-Of-Stack (TOS) and Next-element-Of-Stack (NOS)

implemented as separate registers. This design will synthesize only one multiplexer,
instead of two. Also, the TOS being the destination register will eliminate another
multiplexer at the output of the ALU.

If the data stack overflows or underflows, a reset signal is generated, which resets
the processor.

3.3.3 Return stack

The return stack is used to store the return address, when the control jumps to
a different address due to a function call or execute an ISR. This is also an array
of registers, with the top element Top-element-of-Return-stack (TOR) imple-
mented as a separate register. Though not implemented in this design, TOR can
also be used as temporary storage or as a loop counter. Hence, this stack cannot
be directly accessed through any instruction, but accessed only indirectly.

If the return stack overflows or underflows, a reset signal is generated, which resets
the processor.

3.3.4 Arithmetic and Logic unit

The ALU takes (pops out) the operands from the top of the data stack and performs
the operation as signalled by the control unit. It pushes back the result into the
data stack. Hence, the top one or two elements (depending upon the instruction
type) of the data stack are replaced by the result after every ALU operation. The
operations performed by the ALU are summarised in table 3.6.

18 Hardware Architecture

Table 3.6: ALU operations

32-bit signed/unsigned addition

32-bit signed/unsigned subtraction

16-bit signed/unsigned immediate data addition

16-bit signed/unsigned immediate data subtraction

16-bit unsigned multiplication

Unsigned increment/decrement

Logical NOT, AND, OR, XOR

Logical and Arithmetic right/left shift

3.3.5 Program memory

Larger memory width decreases the memory bandwidth requirement as each in-
struction fetch loads greater number of instructions from the memory, but increases
the memory bus width and vice versa. Also, the larger memory width enables han-
dling of larger numbers. So, a trade-off between small and large memory width has
to be made to optimize memory organization. In this processor, where the instruc-
tion size is 8-bit, the memory size of 32-bit was chosen. The program memory was
implemented as an array of registers because of its small size. If the size of the
memory is large, then memory module has to be used. The memory map is shown
in table 3.7.

Table 3.7: Memory map

Address Description

0x00 Reset vector

0x70 Interrupt 0 vector

0x74 Interrupt 1 vector

0x78 Interrupt 2 vector

0x7C Software Interrupt vector

3.3.6 Reset controller

The reset controller issues two types of reset signals to the modules within the pro-
cessor - program reset and device reset. Figure 3.10 shows the reset system.
The type of reset signal that is released depends on the logic level of the input pin
mode when the processor is reset. If the processor is reset with mode pin at logic
high, the program reset is released. If the processor is reset with mode pin at logic
low, the device reset is released.

3.3 Processor Architecture 19

Memory

Processor
Modules

Device Reset

Program Reset

Reset
Controller

Mode

System Reset

Illegal Opcode

Data stack Underflow

Data stack Overflow

Return stack Underflow

Return stack Overflow

Figure 3.10: Reset controller

When the program reset is released, the address, program and memory-write-
enable pins are enabled. These pins are used to program the memory from the
external device. In this condition, the rest of the modules within the processor are
in the reset state. Figure 3.11 shows the waveforms of programming the micropro-
cessor.

Clock

Reset

Mode

Memory write enable

Address in 0x00 0x01 0x02 0x03

Program in 0x54 0x12 0x34 0x00

Figure 3.11: Waveforms of programming the microprocessor

When the device reset is released, all the modules within the processor come out
of the reset state and starts functioning. In this condition, the address, program and
memory-write-enable pins are disabled and the processor cannot be programmed.

The processor can be reset due to reasons other than toggling the reset pin. The
underflow or overflow of the data or return stack and illegal instruction can also
cause the processor reset. Figure 3.10 shows various sources of reset through the
reset controller.

20 Hardware Architecture

3.3.7 Interrupt controller

The interrupt controller interfaces the three external interrupts and one internal
(software) interrupt to the processor. The external interrupt is sensed when the
signal on any of the interrupt pins changes logic level from low to high. The internal
interrupt is sensed when the instruction SWI is executed. The interrupt service can
be enabled or disabled by executing the instructions EI and DI respectively. The
interrupts are disabled when the processor is reset and hence, have to enabled every
time the processor is reset, if they have to be serviced.

When the interrupt is enabled and any of the interrupts asserts, the interrupt con-
troller will signal the control unit by sending the interrupt number. The control
unit will then execute the interrupt as explained in section 3.3.1. Once the control
enters the ISR, the invoked interrupt has to be disabled; otherwise, the control will
enter into an infinite loop of entering into the ISR. In normal processors, this is
done by resetting the interrupt source bit in the interrupt control register. Since this
processor doesn’t have such registers, the interrupt disabling is done in hardware
by sending an acknowledgement from the control unit to the interrupt controller.
On receiving the interrupt acknowledgement, the interrupt controller disables the
invoked interrupt. The interface of the interrupt controller and various associated
signals are shown in figure 3.12.

Control
Unit

Interrupt
Controller

Intr Ack

Intr Number

Intr Enable

Intr Disable

Intr 0

Intr 1

Intr 2

SWI

Figure 3.12: Interrupt controller interface

Upon receiving an interrupt, the control unit changes PC to appropriate interrupt
vector as shown in table 3.7. The required ISR should be programmed at respective
the interrupt vectors. The size of the ISR for each interrupt is limited to 16 bytes
in this implementation.

3.4 Program 21

3.3.8 Output port

This project aims at determining the power efficiency of the processor core. The
input/output (IO) port is not a part of the core and also there is no standard way
of implementation. Hence, adding the IO port does not contribute towards the
project goal.

It is not possible to observe the result of any program execution because of the
absence of IO ports. Hence, a set of output pins is connected to the TOS register.
The result to be observed is stored in TOS, which appears on the pins. Since the
size of TOS is 32-bit, connecting the pins to all the bits of TOS is not economical.
Hence, only eight pins are connected to this register through a multiplexer. This
arrangement needs only ten pins in total (Eight pins for output and two pins for
multiplexer). Switching of multiplexer pins allows observation of all the four bytes
in TOS. If the result has more than one word, then they can be pushed into the
data stack. An ISR can be programmed to pop out the data stack on every trigger
of an external interrupt. This way, all the values can be observed at the output.

It should be noted that this output module is only used in place of an IO port and
should be removed when the actual ports are implemented.

3.4 Program

Since the operands on a stack are available in a Last-In-First-Out (LIFO) sequence,
the program uses a Reverse-Polish or a Post-fix notation. In this technique, the
operands precede the operators [3]. Every operation is done on the top two ele-
ments of the stack, e.g. (12 + 34) * 56 is represented as 56 34 12 + *. Figure
3.13 shows the program to evaluate this expression. The literals 56, 34 and 12 are
pushed into the data stack first. Then, the operation + is applied to the top two
elements of the stack, which are 56 and 34. These two literals are popped out of
the stack and the result, 46 is pushed in. Then the operation * is applied to the
top two stack elements, which are 46 and 12. Again, both of them are popped out
and the result, 2576 is pushed into the stack. Figure 3.14 shows the snapshots of
the data stack when these instructions are executed.

Apart from the normal instructions, the stack processor has to provide some extra
instructions to perform stack manipulations. Such operations, which are imple-
mented in this processor are PUSH, SWAP, DROP, OVER and DUP [3]. The instruction
PUSH pushes a literal into the stack, SWAP exchanges TOS and NOS, DROP pops
out TOS, OVER pushes NOS over TOS and DUP duplicates TOS, i.e. pushes TOS
on top of TOS. These operations are demonstrated in figure 3.15.

22 Hardware Architecture

Figure 3.13: Example of a short program

Figure 3.14: Snapshot of the data stack

The figure shows the instructions executed and the state of the stack after the
execution of each instruction. The instructions PUSH 0x78, PUSH 0x56, PUSH
0x34 and PUSH 0x12 pushes the literals 0x78, 0x56, 0x34 and 0x12 into the stack
in a LIFO sequence. The instruction SWAP swaps the top two literals 0x12 and
0x34, DROP pops out the top literal 0x34, OVER pushes the NOS literal 0x56 into
the stack and DUP pushes the TOS literal 0x56 again into the stack.

3.5 Design improvement opportunities

In the course of designing this processor, several compromises were made, in or-
der to simplify the architecture and complete the design in a limited time period.
Though the designed stack processor works according to the specification, there are
several opportunities for improvements. The compromises and the opportunities
for improvement of the processor are discussed in this section.

3.5 Design improvement opportunities 23

Figure 3.15: Examples of stack manipulation operations

3.5.1 ALU operations

Size of the literal

Immediate data operations perform addition or subtraction of a literal with TOS.
The literal is a 16-bit number, while TOS stores a 32-bit number. If the literal is
made 32-bit, then it has to be stored in the next instruction word because of its
size. This will need an extra fetch for the literal. If the immediate data instruction
is at the beginning of the instruction word or if there are more than one such
instruction, it not only wastes the memory, but also complicates decoding scheme.
This will also make the hardware complex. Hence, the literal size was limited to
16-bit. Table 3.8 demonstrates this fact.

Multiplication

The multiplication is performed on 16-bit unsigned numbers. This allows 32-bit
result to be conveniently placed in a single register. A 32-bit multiplication will
result in a 64-bit result, which needs two 32-bit registers to save. This argument
also holds good for the PUSHI instruction, which pushes a literal into the data stack.

3.5.2 Position of instructions

Position of immediate data instructions

Though the immediate instructions are 8-bit wide, they are always combined with
the literal of 16-bit wide, making them 24-bit instructions. A restriction is imposed
on their position in the instruction word to simplify fetching them together. These

24 Hardware Architecture

instructions can appear only on the first or the second byte position as shown in
table 3.8. In such conditions, the remaining one byte in that instruction word has
to be filled with NOP or any other instruction which doesn’t affect the program logic.

Table 3.8: Immediate data instruction positions

Byte 3 Byte 2 Byte 1 Byte 0

Opcode Literal
Immediate

data Opcode

Literal
Immediate

data Opcode
Opcode

If these instructions appear at the third or fourth position, then the literal spills to
next instruction word and makes fetching process complex.

Position of branching instructions

The branching instructions JMP, JZ, JNZ, JC, JNC, JNEG, RET and RETI also have
the restriction of being placed in the first or the second position of the instruction
word. The reason is the same as that for the immediate data operations.

It should be noted that the issues explained here and in section 3.5.1 to are due to
the type of memory organization chosen for the processor and not due to the stack
architecture.

3.5.3 Special purpose registers

Microprocessors have special purpose registers to control the peripherals and read
their status. The current implementation of the stack processor does not have these
registers. These registers also need instructions to read and write values into them.

3.5.4 Interrupts

Interrupt control and status registers

Interrupt control and status registers are also part of special purpose registers and
hence not present in this processor. A minimal support for control of interrupt
controller is provided in the form of the global interrupt enable and disable instruc-
tions IE and ID. Whenever there is an interrupt, on entering the corresponding ISR,
that particular interrupt has to be disabled in order to prevent infinite interrupt
re-entrance. The automatic interrupt disable on entering the ISR is done automat-
ically in hardware by the interrupt acknowledge signal sent from the control unit
to the interrupt controller. Figure 3.12 demonstrates this process.

3.6 Limitations 25

Interrupt priority and nesting

Interrupt priority is not implemented in this processor. Priority is resolved only
if more than one interrupt occurs during the same clock cycle. In such a case,
Interrupt 0 has the highest priority and Software interrupt has the lowest pri-
ority.

Interrupt nesting is also not implemented. This requires interrupt priority scheme
and also the flag register to be saved (by pushing into the stack), whenever an
ISR is interrupted by a higher priority interrupt. At present, if an interrupt occurs
during the execution of an ISR, it has to wait until the current interrupt service is
complete.

Interrupt latency

At present, the performance of this processor is not very good as far as the interrupt
latency is concerned. The interrupt latency has to be small and also deterministic.
In this processor, the interrupt is serviced after all the instructions of the current
instruction word are executed, which is a maximum of four instructions. Hence,
the number of clock cycles elapsed before the ISR starts executing varies depending
upon the instance at which interrupt arrives with respect to the instruction number
in the current instruction word that is being executed. The latency varies from 9
to 15 clock cycles.

Latency of return instruction

The return from the function or ISR takes six clock cycles as the return address
has to be retrieved and then change the PC.

3.5.5 Functions

Address of function

Since each instruction word has up to four instructions, the PC increment by one
effectively changes the byte address by 4. Hence, the starting address of the function
has to be a multiple of 4. The gaps in the program due to this limitation have to
be filled by the NOP instructions.

3.6 Limitations

Though the stack architecture appeals due to its simplicity, it has several limita-
tions.

26 Hardware Architecture

• There is a limit to the speed performance as any two consequential instruc-
tions always have dependence on the TOS register [1].

• It has a limited ability for parallel execution because of the sequential nature
of the stack [1].

• It is required to keep track of the stack as it might spill. This can be mitigated
by spilling the operands into the RAM [3].

• Iterative process is poorly performed as the index might be buried inside the
stack [6]. This can be overcome by providing separate index registers.

• Stack manipulation overhead. Extra operations are required to rearrange the
values in the stack [7].

• Compact instruction size and large operand pose challenge for efficient mem-
ory organization.

• The instruction pipelines, if implemented, might lead to hazards.

Chapter 4
IC Layout Design, Implementation
and Simulation

All code is guilty, until proven
innocent.

Anonymous

4.1 Tools and Design flow

The IC layout is the product of several EDA tools, which executes scripts describing
user-defined constraints. The process involves Behavioural simulation, RTL syn-
thesis, Place and route and Power simulation. Each of these stages are carried out
by different tools. Figure 4.1 shows the various steps in the IC design flow [8].

4.1.1 Behavioural simulation

The RTL coding for the Stack processor was done using VHDL. The behaviour
of the design was simulated using the HDL simulation tool Modelsim. This tool
compiles and executes the VHDL program and displays the waveforms. These are
ideal waveforms, which are used only for the functional analysis of the design. Var-
ious modules, which made up the processor and the whole processor design were
validated using several test benches, also written in VHDL. The test bench provides
the stimulus to the processor and reads the output of the processor.

28 IC Layout Design, Implementation and Simulation

Figure 4.1: Design flow

4.1.2 RTL Synthesis

The RTL code was synthesized using the synthesis tool Design compiler. RTL
synthesis creates a gate-level circuit based on the RTL model, which meets the
design constraints such as area, timings and power consumption. The constraints
are provided to the tool through a script file, which contains commands specific
to the tool. The tool synthesises the circuit using the standard cells, which are
by themselves transistor circuits providing a defined functionality such as logical

4.1 Tools and Design flow 29

operations, multiplexer, adder, flip-flop, buffer, etc. The standard cells are provided
in the form of libraries by the foundry. The synthesis outputs a Verilog gate-level
netlist, Standard Delay Format (SDF) description and Synopsys Design Constraints
(SDC) files. The various steps involved in synthesis are [8]:

• Analyze - Compile the VHDL models and check whether the VHDL codes
are synthesizable.

• Elaborate - Perform generic pre-synthesis of the analysed models. Inferred
registers (flip-flops and latches) are identified.

• Define the design environment such as operating conditions, wire load models
and system interface characteristics.

• Define design constraint such as clock, area and timing.

• Design mapping and optimization (Compilation) - Logic gates from the stan-
dard cell library are assigned to the generic gates in the elaborated design
such that the defined constraints are met.

• Generate Verilog netlist, SDF and SDC files for post-synthesis simulations.

• Generate various reports such as violated constraints, area, timing, critical
path and resource usage.

Timing constraint is one of the most important constraints that has to be met dur-
ing synthesis. For the circuit to operate correctly, the data at every node should
arrive before it is required at that node. The difference between the required time
and the arrival time of the data is known as the Slack. The slack defines the tim-
ing margin. A timing violation is indicated by a negative slack value. The timing
report, shown in table 4.1, generated for all the three designs of the stack processor
shows that this constraint has been met.

Table 4.1: Timing report of synthesis

Transistor type

Timing parameter LPLVT LPSVT LPHVT

Clock period (ns) 20.00 20.00 40.00

Data required time (ns) 19.54 19.52 39.12

Data arrival time (ns) -3.81 -4.62 -5.32

Slack (ns) 15.72 14.90 33.80

The high positive value of slack indicates that this design could be synthesised for
higher clock speed. However, this was not done for three reasons:

30 IC Layout Design, Implementation and Simulation

• Low-power processors are rarely used above 50 MHz.

• Lowering the supply voltage decreases the slack and hence decreases the fre-
quency of operation.

• This design was synthesised with fewer timing constraints. Hence, with actual
constraints the slack is expected to decrease.

The synthesis report indicated that the critical path is provided by the multiplier.
This is expected as it is the most complicated module between two registers.

Post-synthesis gate-level simulations were performed in Modelsim using the Ver-
ilog netlist with the same set of test benches that were used for behavioural simu-
lation. The standard cells were back-annotated with timing delays from the SDF
file. The behaviour of the post-synthesis model was found to confirm with that of
behavioural model.

4.1.3 Place and route

The tool Soc Encounter was used to perform the place and route of the Stack
processor integrated circuit. This tool takes several files as input:

• The Verilog gate-level netlist generated by the synthesis tool.

• Layout Exchange Format (LEF) files containing the information on the tech-
nological process such as metal and via layers, via generate rules and the cell
library.

• Library files containing information on cell timings such as delays, setup and
hold times.

• Design constraint file (SDC) generated by the synthesis tool, containing the
information about timing, area and power constraints.

• Pad configuration file defining the pads in the design.

• Power net names that defined in the LEF technology file.

The place and route process involves the following steps:

• Create a configuration file with all the input files listed earlier in this section.

• Floorplan the design, which defines the size of the layout.

• Place and route the memories (if used).

• Power planning, which involves adding the power rings and the power stripes.

4.2 Implementation 31

• Place the standard cells.

• Clock tree synthesis (CTS).

• Place the IO filler cells.

• Routing the power nets.

• Routing the design.

• Timing analysis.

• Fixing timing violations through pre-CTS, post-CTS and post-route opti-
mizations.

• Post-route Verilog netlist generation for post-layout simulations.

• Extract post-route timing data in the form SDF and SPEF files for post-layout
simulations.

The figure 4.2 shows the IC layout of the stack processor that was produced by the
place and route process. The features of the IC are shown in table 4.2.

The post-layout simulations were performed using Modelsim with the same set
of test benches that were used for behavioural and post-synthesis simulation. The
standard cells were back-annotated with timing information from the SDF and
SPEF files. The behaviour of the post-layout model was found to confirm with
that of behavioural and post-synthesis model.

Table 4.2: Features of Stack processor IC

Technology 65 nm CMOS

Dimension 400 um x 400 um

Area 0.16 mm2

Core utilization 0.58

WNS 23.4 ns

Critical path Multiplier

4.2 Implementation

In order to assess the power performance of the processor, separate layouts for the
processor were designed with three types of low-power transistors having different
threshold voltages. Transistors with lower threshold voltage switch faster than those

32 IC Layout Design, Implementation and Simulation

Figure 4.2: IC Layout

with higher threshold voltage [9]. But they have higher leakage current compared to
the higher threshold voltage transistors. Transistors with higher threshold voltage
exhibit opposite characteristics. The simulations on these different layouts provide
information, which helps make a trade-off between the microprocessor speed and
power efficiency, and design the processor with the required characteristics.

The processor IC was implemented using the STMicroelectronics 65 nm stan-
dard cell libraries - CORE65LPLVT, CORE65LPSVT and CORE65LPHVT. The
CORE65LPLVT provides the standard cells with transistors having low threshold

4.3 Gate count 33

voltage (about 0.3 V), while CORE65LPHVT provides the standard cells with tran-
sistors having high threshold voltage (about 0.6 V) and CORE65LPSVT is between
the two (about 0.5 V).

These libraries are available for various supply voltages ranging from 0.4 V to 1.35
V. Three voltages 0.6 V, 0.8 V and 1.2 V were chosen for testing. The IC layout
was done for 1.2 V supply voltage with all three types of standard cells. Then the
IC design was reopened with the standard cells of lower voltage for testing. This
method was chosen as it was quicker to design for 1.2 V compared to lower supply
voltages. Only the layout with LPHVT was done with pads, while the other two
layouts were without pads. This was done because of the non-availability of suitable
pads for LPSVT and LPLVT designs.

4.3 Gate count

The number of gates used in each layout was determined through Soc Encounter.
They are tabulated in table 4.3. Though all the layouts were based on the same
design, the number of gates varies because of the differences in the extent of opti-
mizations performed during place and routing. Each gate is equivalent to 2-input
NAND gate, which is typically made up of four transistors. Therefore, the transis-
tor count is four times the value shown in the table. This amounts to approximately
200,000 transistors.

Table 4.3: Gate count

Module
Gate count

LPHVT LPSVT LPLVT

ALU 5278 4530 4642

Control Unit 2113 1692 2147

Data Stack 8275 8151 8412

Return Stack 2195 2149 2243

Program memory 27936 30596 30744

Reset controller 27 24 26

Interrupt controller 86 84 117

Total 45910 47226 48330

4.4 Power simulations

The power simulations on the post-layout design was carried out using the tool
Primetime. The most effective way of testing a microprocessor is by executing

34 IC Layout Design, Implementation and Simulation

several types of programs which represent the actual scenario. Since, the time to
develop such programs was not available, a program which tested all the instruc-
tions, including the interrupt service, was developed. The same program was used
to perform testing on all the IC layouts designed with different transistors types.

The program was written in the assembly language of the processor using the post-
fix notation since a high-level language compiler was not available for this processor
at the time of testing.

The sequence of operations involving power simulation is shown in figure 4.3. Af-
ter the successful completion of the place and route of the processor design using
Soc Encounter, the Verilog netlist, the Standard Delay Format (SDF) and the
Standard Parasitic Exchange Format (SPEF) files were extracted from the tool.
The SDF file stores the timing data generated by the tool. The data contains in-
formation about various delay and timing parameters. The SPEF file stores the
information about chip parasitic elements.

VHDL

Test bench

Post-P&R

Verilog

netlist

Post-P&R

SDF data

Place & Route

(Soc Encounter)

Power

simulation

(Synopsys

Primetime)

Post-P&R

SPEF

data

Post-P&R Logic

simulation

(Mentor

Modelsim)

VCD

data

Simulation

report

Figure 4.3: Power simulation sequence

The simulation was run in Modelsim using the test-bench, the Verilog netlist and
the SDF data. This generated the VCD data, which contains the information about
the value changes on variables in a design.

The tool Primetime read the Verilog netlist, VCD, SDF and the SPEF files and
reported the power consumption for the given design. The report provides the
break-up of power for different components like leakage, internal and switching.
It also provides the power consumption by different modules in the IC. The same
procedure was repeated for all three processor designs. The power simulations were
performed at three different supply voltages of 0.6 V, 0.8 V and 1.2 V to analyse its
effect on the speed and the power consumption by the processor. The simulation
results are compiled and analysed in detail in chapter 5.

Chapter 5
Simulation results and Analysis

If you torture the data long
enough, it will confess.

Ronald Coase

Power simulations were performed on the IC designed separately with three dif-
ferent transistor types - LPHVT, LPSVT and LPLVT. This was done to analyse
the power performance of the Stack processor with different switching speeds and
leakage current.

The power consumption by the transistor is given by the equation [10]:

Total power = Static power + Internal power + Switching power

Pt = Pst + Pint + Pswi (5.1)

Pst = VDDIleakage (5.2)

Pint = VDDISC +

(
1

2

)
CinV

2
DDf (5.3)

Pswi =

(
1

2

)
CLV

2
DDf (5.4)

36 Simulation results and Analysis

where

V DD = Supply V oltage

I leakage = Leakage current

ISC = Short circuit current

C in = Internal cell capacitance

CL = Capacitive load at the cell output

f = Clock frequency

The leakage current Ileakage is due to the sub-threshold leakage current from source
to drain of the transistor and the reverse-biased diode between the diffusion layers
and substrate. The short-circuit Icurrent is due to the NMOS and PMOS transistors,
within the gate, conducting simultaneously during switching.

The static power is due to the leakage current, whereas the switching power is due
to the charging of the capacitive load at the output of the cell. The internal power
is due to the charging of cell internal load capacitor and the short-circuit current
through the NMOS and the PMOS transistors.

From the equations 5.1 - 5.4, it is evident that the power consumed by the transis-
tor depends on the supply voltage, leakage current, short-circuit current, capacitive
load and the clock frequency. Power consumption can be reduced by reducing any
one or more dependent parameter. While the supply voltage and the clock fre-
quency can be controlled externally, others are the characteristics of the transistor.

The power simulations were performed with different supply voltages, frequencies
and transistors with different threshold voltages. The results of the simulations are
discussed in the next few sections. Though most of the graphs show the performance
of LPLVT devices, the performance of the other two types are similar with different
numbers. The simulation results are tabulated in appendix B.

5.1 Simulation with different supply voltages

Power simulations were performed at three different supply voltages - 0.6 V, 0.8 V
and 1.2 V. The power consumed due to switching and leakage current, the power
consumed by the different modules of the processor and the maximum frequency
of operation for each supply voltage were analysed.

5.1 Simulation with different supply voltages 37

5.1.1 Dependence of different power components on the supply
voltage

The power simulations provide the information about the switching power and the
leakage power consumption separately. As can be seen in the graph 5.1, both the
switching power and the leakage power increases with the supply voltage.

5.1.2 Dependence of power consumption by different modules on
the supply voltage

The different modules of the processor consumes power depending upon the number
of transistors that it contains. The graph 5.2 shows the power consumed by each
module at different supply voltages. Program memory consumes the highest power
of all the modules as it is made up of registers. Since, the memory is accessed
regularly to fetch the instruction, it is expected to consume a significant amount of
power. This power can be reduced by using memory modules instead of registers.
Memory module usage is justified when larger memory is used as it has the overhead
of the address decoder logic circuit. Similarly the data stack, which is also made up
of registers, also consumes considerable power. The reset controller, which operates
only during reset, consumes the least amount of power.

0

25

50

75

100

125

150

0.6 0.8 1 1.2

P
o
w

e
r

c
o
m

p
o
n

e
n

ts
 (

u
W

)

Supply voltage (V)

Total Power Leakage power

Net switching power Normalized switching power

Figure 5.1: Different power components v/s Supply voltage

38 Simulation results and Analysis

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0.6 0.8 1 1.2

M
o
d
u
le

 p
o
w

e
r

c
o
n
s
u

m
p
ti
o
n
 (

u
W

)

Supply voltage (V)

Control unit Interrupt controller Data Stack

Return Stack Program memory ALU

Reset controller Clock Network

Figure 5.2: Power consumption by different modules v/s Supply voltage

5.1.3 Dependence of speed on the supply voltage

The slack is dependant upon the supply voltage. The slack increases as the supply
voltage decreases. Hence, the maximum clock frequency has to be reduced at lower
voltages. The graph 5.3 shows the maximum frequency that was attained at dif-
ferent voltages for different transistors. Though the frequency of LPLVT transistor
could have been increased by a few tens of megahertz, it was not done as the low
power microprocessors are rarely operated above 50 MHz. The maximum frequency
of the processor with HPLVT transistors was half of that of other types.

The low voltage operation, at 0.6 V, clearly shows the difference in maximum

5.2 Simulation with different clock frequencies 39

0

10

20

30

40

50

HVT SVT LVT

F
re

q
u

e
n
c
y
 (

M
H

z
)

Transistor type

0.6 V 1.1 V 1.2 V

Figure 5.3: Maximum frequency v/s Supply voltage

frequency of operation among the transistors with different threshold voltages. The
LPLVT design, with the minimum threshold of all three types, can be operated at
highest frequency, while the LPHVT design, with the maximum threshold could
only be operated seven times slower.

5.2 Simulation with different clock frequencies

The power consumption due to switching and leakage current at different frequen-
cies were analysed. The graph 5.4 shows the way different components of power
vary with the clock frequency. The net switching power and the internal power
increased linearly with the frequency with different slopes as expected. However,
the leakage power was constant for a given supply voltage (0.6 V), irrespective of
the frequency.

5.3 Simulation with different transistor threshold volt-
ages

The power consumption by the processors designed with transistors having differ-
ent threshold voltages was analysed. The three different power components vary
differently with the transistor threshold voltage. LPHVT transistors, with lowest

40 Simulation results and Analysis

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0 5 10 15 20

P
o
w

e
r

c
o
n

s
u
m

p
ti
o

n
 (

u
W

)

Frequency (MHz)

Net switching power Cell Internal Power Cell Leakage Power

Figure 5.4: Total power consumption v/s Frequency

leakage current consumes least static power, while LPLVT transistors consume the
highest static power. Net switching power is almost the same in all three cases as
the capacitive load at the output is same.

The internal power consumption is highest for the LPHVT transistor and least for
the LPLVT transistors. This component is dependent on both the short-circuit
current, the transition time of the input signals and the internal capacitive load.
Transistors with slow transition time dissipate excessive short-circuit power as both
PMOS and NMOS transistors are switched on for a longer period of time. The sum-
mation of all the power components shows that the least power is consumed by the
LPSVT transistors as they have the leakage power closer to LPHVT devices and
the internal power closer to that of LPLVT devices, thus possessing the advantages
of both types. All these behaviours are seen in the graph 5.5.

The processor with LPHVT transistors was designed with pads, while the rest was
designed without pads due to the non-availability of suitable pads. The power
consumption by the pads might slightly affect the readings.

5.4 Simulation at different corners 41

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

LPHVT LPSVT LPLVT

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

u
W

)

Transistor type

Net switching power Cell internal power

Cell leakage power Total power

Figure 5.5: Total power consumption v/s Threshold voltage

5.4 Simulation at different corners

The power consumption by the processor at two corners, i.e. with Slow-Slow (SS)
and Fast-Fast (FF) NMOS and PMOS transistors is seen in the graph 5.6. The
FF configuration consumes more power compared to SS, as it operates at supply
voltage of 1.3 V. Though the leakage current for FF corner is much lower compared
to SS due to higher operating temperature of 125°C, the higher switching power at
FF more than offsets the lower leakage power.

5.5 Simulation with different instructions

The effect of instruction type on the switching and the leakage power and on the
power consumption by different modules of the processor were analysed.

5.5.1 Effect of instructions on different power components

The power consumption is expected to vary with the type of instructions executed.
Programs with instructions, which access different modules in the processor, con-
sume more power as it has to switch several transistors. The program with only
the NOP (No Operation) instructions, doesn’t access any module other than the
control unit and hence consumes minimum power. This is seen in the graph 5.7.

42 Simulation results and Analysis

0.00

20.00

40.00

60.00

80.00

100.00

SS FF

P
o
w

e
r

c
o
n
s
u

m
p
ti
o
n

 (
u

W
)

Corners

Net switching power Cell internal power

Cell leakage power Total power

Figure 5.6: Total power consumption at different corners

5.5.2 Effect of instructions on power consumption by different
modules

As seen earlier, other than the program memory and the clock network, the modules
which consume considerable power are the data stack and the ALU. In the programs
that have intensive interrupt service or function calls, the return stack also adds to
the power consumption. The comparison of two programs - one with all types of
instructions and the other with only NOPs - demonstrates this fact. This is shown
in the graph 5.8.

5.6 Analysis

The power simulations, which were performed in the earlier sections help us to
design the processor with the required performance and power efficiency. There is
always a trade-off between the speed and the power efficiency. The LPLVT transis-
tors help build a faster processor, but consume higher power, while the processor
with LPSVT transistors is slower than that with LPLVT, but consume lesser power.
On the other hand, the processors with LPHVT transistors consume higher power
and also slowest. A better approach would be to build a processor with all types
of transistors, each being used according to its strength. The modules with lesser

5.6 Analysis 43

4.00

9.00

14.00

19.00

24.00

29.00

Only NOPs All instructions

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

u
W

)

Instruction type

Net switching power Cell internal power

Cell leakage power Total power

Figure 5.7: Power components v/s Instructions

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Control

unit

Interrupt

controller

Data

stack

Return

stack

Program

memory

ALU Reset

controller

Clock

network

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

u
W

)

Processor modules

Program with only NOP instructions Program with all instructions

Figure 5.8: Power consumption by different modules v/s Instructions

44 Simulation results and Analysis

switching can be built with LPHVT transistors while those with higher switching
can be built with either LPLVT or LPSVT transistors.

5.7 Comparison

There is always a need to benchmark the processor to assess its performance rela-
tive to other devices. Benchmarking needs a suite of programs, developed in high
level language such as C, to be executed on the target processor and performance
assessed. Since, the stack processor developed in this project doesn’t have a com-
piler developed yet, this benchmarking process couldn’t be carried out. Hence, a
general comparison of the power figures of this processor was made with a few se-
lected commercial processors.

Microcontrollers from some of the well-known vendors were selected for compari-
son. The power ratings of these devices were obtained from their data sheets and
tabulated in table 5.1. Care was taken to make a reasonable comparison:

• The entry-level devices from the low-power families of the controllers were
selected because, they have a bare minimum hardware and hence consume
very low power. It was thought that these devices would provide a fairly
good comparison with the stack processor, which also has basic hardware
modules.

• The power consumption at 1 MHz or power consumed per MHz for every
microcontroller (as available from the data sheets) was used for comparison.

Comparing the power figures of the Stack processor, whose power ratings range
from 80-100 uW/MHz at 1.2V and 20-30 uW/MHz at 0.6V, with those in the table
it can be seen that the Stack processors can be highly power efficient at the same
clock speed. Though the performance of the Stack processors may be slightly lesser
than the RISC processors due to the absence of a full fledged instruction pipeline,
it can be made up by increasing the clock frequency. The resulting increased power
consumption would still be considerably lower than that of RISC processors and
hence providing a significant power and performance advantage.

However, this comparison methodology has several drawbacks:

• The figures provided in the table were obtained by the vendors under different
circumstances, i.e. by executing different suites of programs, with different
compiler settings.

• Though the power figures are normalised in the table for comparison purpose,
they were measured at different voltages and frequencies.

5.7 Comparison 45

Table 5.1: Comparison table

Processor
Data
size

Power rating Power efficiency

PIC12F1571
(Microchip)

8-bit 30 A/MHz at 1.8V 54 W/MHz

STM8L101x1
(ST Microelectronics)

8-bit 150 A/MHz at 1.65V 247 W/MHz

MSP430C1101
(Texas Instruments)

16-bit 160 A at 1 MHz and 2.2 V 352 W/MHz

ATtiny4
(Atmel)

8-bit 200 A at 1 MHz and 1.8V 360 W/MHz

MAXQ613
(Maxim Integrated)

16-bit 271 A/MHz at 1.7V 460 W/MHz

• The microcontrollers used for comparison have a different set of peripherals
like timers, communication ports, IO pins, etc. and hence hardware of each
device is different.

• The data word size is not the same for all the devices.

Though this is not a fair method for power performance assessment, this just gives
an idea of where the implemented stack processor stands.

46 Simulation results and Analysis

Chapter 6
Conclusion and Future work

A conclusion is simply the place
where you got tired of thinking.

Dan Chaon

6.1 Conclusion

There is an increasing demand for power efficient microprocessors as they are an
integral part of mobile devices. The RISC processors are complex machines which
results in significant power consumption. The main factors, which contribute to
power consumption in a RISC processors are multiplexers on either side of the
register file and the instruction pipeline. The stack processor eliminates these two
circuits and considerably reduces the hardware and hence the power consumption.
The implied addressing removes the need for extra bits for register addresses and
hence results in smaller program size. Also, the stack architecture incurs very low
penalty for function calls and interrupts as the operations are always performed on
a stack instead of the register file.

A stack processor was designed to verify the theoretical understanding. The pro-
cessor was based on 65 nm CMOS technology. Separate layouts using three types of
transistors - LPLVT, LPSVT and LPHVT, were made based on the same architec-
ture to assess its speed and power performance. The testing was done with different
supply voltages of 0.6 V, 0.8 V and 1.2 V and at frequencies ranging from 1 to 50
MHz. Various components of power, such as switching, internal and leakage power
were analysed. Also, the power consumed by different modules of the processor
was determined. All the analysis was based on the behaviour, post-synthesis and

48 Conclusion and Future work

post-layout simulations using the EDA tools.

The simulations showed that, when powered by a 0.6 V supply voltage, the pro-
cessor based on the LPLVT transistors could run up to a speed of 20 MHz with a
power efficiency of about 20 uW/MHz, while that with LPHVT transistors ran up
to a speed of 3 MHz with a power efficiency of 30 uW/MHz. The performance of
LPSVT processor was closer to LPLVT, but at a lower speed. The LPHVT pro-
cessor was found to have considerably lower leakage power compared to other two,
while it consumed a much higher switching power. The gate count of the processor
ranged from 46K to 48K depending upon the type of transistors and optimization
used during place and routing.

A comparison of the power performance figures of few selected entry-level low power
processors was done with that of the stack processor. The stack processor showed
a remarkable power performance in this comparison. Benchmarking was not per-
formed for the stack processor due to the non-availability of C compiler. Though
not verified, stack processor is expected to suffer from a slight speed performance
loss due to the absence of an instruction pipeline. But this loss can be made up
by running the processor at a higher clock rate without significantly increasing the
power consumption.

Though the stack processor may not be suitable for every application, it can pro-
vide a power-efficient solution for certain application such as process control, data
acquisition and instrumentation.

6.2 Future Work

The stack processor developed in the thesis project has only basic modules of a pro-
cessor. It can be made more powerful by adding peripherals such as input/output
ports, peripherals such as timers, communication interface and sensor interface.

The current design uses a registers store the program. This is justified for low
memory size. When the processor has to run larger programs, then the registers
have to replaced by a memory module. It is more efficient in terms of size and
power for larger size.

Though the processor serves interrupts, it doesn’t recognize priority or allow inter-
rupt nesting. Also, the interrupt latency is quite high and varies between 9 to 15
cycles, depending upon the interrupt arrival with respect to the current instruction
that is executed. The Interrupt controller function has to be improved for a better
program execution.

6.2 Future Work 49

A power manager can also improve the power performance by switching the pe-
ripherals and memory on and off as required by the program and also by changing
the clock frequency.

50 Conclusion and Future work

Appendix A
Instruction set architecture

I call architecture frozen music.

Johann Wolfgang von Goethe

A.1 Instruction set

Table A.1: Instruction set

Sl.no Instruction type Instruction Description

1

ALU - Arithmetic

ADD Add TOS and NOS with sign

2 ADDI Add TOS and immediate literal with sign

3 ADDU Add TOS and NOS unsigned

4 ADDIU Add TOS and immediate literal unsigned

5 SUB Subtract NOS from TOS with sign

6 SUBU Subtract NOS from TOS unsigned

7 SUBI Subtract immediate literal from TOS with sign

8 SUBIU Subtract immediate literal from TOS unsigned

9 INC Increment TOS by 1

10 DEC Decrement TOS by 1

11 MUL Multiply TOS and NOS unsigned

12
ALU - Logic

NOT Invert TOS

13 AND Logic AND of TOS and NOS

Continued on next page

52 Instruction set architecture

Table A.1 – Instruction set

Sl.no Instruction type Instruction Description

14
ALU - Logic

OR Logic OR of TOS and NOS

15 XOR Logic XOR of TOS and NOS

16

ALU - Shift

SLL Logical Shift Left TOS

17 SRL Logical Shift Right TOS

18 SLA Arithmetic Shift Left TOS

19 SRA Arithmetic Shift Right TOS

20

Branch

JMP Unconditional jump

21 JZ Jump on Zero flag

22 JNZ Jump on no Zero flag

23 JC Jump on Carry flag

24 JNC Jump on no Carry flag

25 JNEG Jump on Negative sign flag

26 CALL Call function

27 RET Return from function

28 RETI Return from an ISR

29

Stack

PUSHI Push literal into the Data stack

30 DROP Pop TOS

31 DUP Duplicate TOS

32 SWAP Swap TOS and NOS

33 OVER Push NOS over TOS

34

Interrupt

IE Enable Interrupt

36 ID Disable Interrupt

37 SWI Software Interrupt

38 Others NOP No Operation

A.2 Instruction codes 53

A.2 Instruction codes

The instruction encoding scheme shown in table A.2 is based on a previous work
on stack processor [11].

Table A.2: Instruction codes

In
st

ru
c
ti

o
n

G
ro

u
p

c
o
d

e

111 110 101 100 011 010 001 000

In
st

ru
c
ti

o
n

F
u

n
c
ti

o
n

c
o
d

e

B
in

a
ry

Im
m

e
d

ia
te

U
n

a
ry

U
n

c
o
n

d
it

io
n

a
l

b
ra

n
ch

in
g

C
o
n

d
it

io
n

a
l

b
ra

n
ch

in
g

S
ta

ck

R
e
se

rv
e
d

fo
r

fu
tu

re
u

se

M
is

c
e
ll

a
n

e
o
u

s

000 ADD ADDI INC JMP JZ DROP NOP

001 ADDU ADDIU DEC CALL JNZ DUP

010 SUB SUBI NOT JC SWAP

011 SUBU SUBIU JNC OVER

100 AND SRL RET JNEG PUSHI IE

101 OR SLL RETI ID

110 XOR SRA SWI

111 MUL SLA

Table A.3: Auxiliary codes

Auxiliary codes (Bits 7 & 6) Instruction type

00 ALU, Miscellaneous operations

01 Immediate data operations

10 Unconditional branch operations

11 Conditional branch operations

54 Instruction set architecture

A.3 Instruction bit map

The opcode size is 8 bits, whose bit map is shown in table A.4. The bits 0 to 2 are
provided by the Function code and the bits 3 to 5 are provided by the Group code,
which are shown in table A.2. The bits 7 and 8 are provided by the auxiliary code as
shown in table A.3. The code for any given instruction is formed by concatenating
the auxiliary code, the group code and the function code as shown in table A.5.

Table A.4: Operation code bit map

Bit number 7 6 5 4 3 2 1 0

Description Auxiliary code Group code Function code

Table A.5: Operation code example

Instruction Auxiliary
code

Group
code

Function
code

Op code

ADD 00 111 000 00111000 (0x38)

SUBIU 01 110 011 01110011 (0x73)

RETI 10 100 101 10100101 (0xA5)

JC 11 011 010 11011010 (0xDE)

Appendix B
Simuation results

A mind is a simulation that
simulates itself.

Erol Ozan

The simulation results are tabulated in this section. Though the simulations were
performed on all three layouts, only one of them is produced here because the
results are similar. The graphs of all the simulations are discussed in chapter 5.

Table B.1: Total power v/s Supply voltage (LPLVT)

Voltage (V)
Power (uW)

@20 MHz @10 MHz @5 MHz @1 MHz

0.6 411.10 208.70 107.40 26.29

0.8 738.90 376.60 195.40 50.46

1.2 1757.00 910.60 487.40 148.80

Table B.2: Leakage and Switching power v/s Supply voltage at 1 MHz (LPLVT)

Voltage (V)
Total power

(uW)
Leakage

power (uW)
Switching

power (uW)

Normalized
switching
power (%)

0.6 26.29 6.02 20.27 23.95

0.8 50.46 14.23 36.23 42.80

1.2 148.82 64.18 84.64 100.00

56 Simuation results

Table B.3: Power consumption by different modules v/s Supply voltage at 1 MHz
(LPLVT)

V
o
lt

a
g
e

(V
)

Power (uW)

C
o
n
tr

o
l

U
n

it

In
te

rr
u

p
t

C
o
n
tr

o
ll

e
r

D
a
ta

S
ta

ck

R
e
tu

rn
S

ta
ck

P
ro

g
ra

m
m

e
m

o
ry

A
L

U

R
e
se

t
c
o
n
tr

o
ll

e
r

C
lo

ck
n

e
tw

o
rk

0.6 0.98 0.02 3.76 0.83 13.40 1.36 0.01 5.94

0.8 1.95 0.04 7.33 1.62 26.10 2.73 0.02 10.67

1.2 6.56 0.15 22.7 4.99 79.30 8.78 0.05 26.28

Table B.4: Different power components v/s Frequency at 0.6 V (LPLVT)

Frequency
(MHz)

Net switching
power (uW)

Cell internal
power (uW)

Cell leakage
power (uW)

1 5.80 14.47 6.02

20 116.00 289.40 6.02

Table B.5: Power consumption by different transistor types at 0.6 V and 1 MHz

Transistor
type

Net switching
power (uW)

Cell internal
power (uW)

Cell leakage
power (uW)

Total power
(uW)

LPHVT 5.76 23.92 0.46 30.14

LPSVT 5.42 14.50 0.93 20.85

LPLVT 5.80 14.47 6.02 26.29

Table B.6: Power consumption at different corners at 1 MHz (LPHVT)

Transistor
configuration

Net switching
power (uW)

Cell internal
power (uW)

Cell leakage
power (uW)

Total power
(uW)

SS 17.77 59.01 6.44 83.22

FF 22.49 73.54 0.91 96.94

Table B.7: Effect of instruction on different power components at 0.6 V and 1 MHz
(LPLVT)

Program Net switching
power (uW)

Cell internal
power (uW)

Cell leakage
power (uW)

Total power
(uW)

Only NOPs 4.49 13.54 6.02 24.05

All instructions 5.80 14.47 6.02 26.29

57

Table B.8: Power consumption by different modules v/s Supply voltage at 0.6 V
and 1 MHz (LPLVT)

Voltage (V) Power (uW)

C
o
n
tr

o
l

U
n

it

In
te

rr
u

p
t

C
o
n
tr

o
ll

e
r

D
a
ta

S
ta

ck

R
e
tu

rn
S

ta
ck

P
ro

g
ra

m
m

e
m

o
ry

A
L

U

R
e
se

t
c
o
n
tr

o
ll

e
r

C
lo

ck
n

e
tw

o
rk

Only NOPs 0.77 0.02 3.30 0.82 12.60 0.64 0.01 5.90

All instructions 0.98 0.02 3.76 0.83 13.40 1.36 0.01 5.94

58 Simuation results

Appendix C
History of Stack machines

Study the past if you would divine
the future.

Confucius

Stack computer is one of the first computers that were produced. It is quite im-
portant to understand their evolution in the computer history, when a device of
its type is designed. The information documented in this appendix is based on a
bachelor thesis [7].

Stack computers are one of the first computers that were produced. Burroughs
Corporation produced one of the earliest stack machines B5000, which was a main-
frame computer, in 1961. It produced several other series up to B7900 and A series
machines. The programs that ran on them were written in COBOL, ALGOL and
FORTRAN languages. Another company, The English Electric, manufactured a
stack machine, KDF9, in 1963. This also ran programs written in ALGOL. In
1974, International Computers Limited, announced ICL2900 series of mainframe
computers. Hewlett Packard’s HP3000 series minicomputer produced in 1972 was
another machine based on stack architecture. It also ran COBOL programs.

Though the stack computers were one of the most sophisticated machines that were
built at that time, they couldn’t continue their run due to several reasons. Their
hardware was designed to directly support high-level languages such as ALGOL
and COBOL, through micro-coding. Hence, a machine optimized for one language
performed poorly for another language. In 1980s, the RISC processors were de-
signed to improve the throughput and performance, which was solidly backed by
the advancement of C compiler technology. The earlier stack machines were no

60 History of Stack machines

match to these modern processors. There were other issues like single stack for
both parameters and return address, which made parameter access by the function
difficult. Also, the performance of iterative code on the stack machine is poor. All
these made the stack machines loose popularity.

Though stack based microprocessors were developed in 1980s, they couldn’t gen-
erate enough interest due to the tags attached by the first generation and some
distorted historical facts. Most of the work on stack computers has emphasised on
their simplicity, suitability for real-time applications and faster execution rate. But,
very little has been written about its power efficiency, except that it is a low power
device. One such study describes in detail the reasons for the stack computer to
be power efficient. It can be understood why very less importance was given to its
power efficiency, as most of the work in this area was done in the 1980s and 1990s.
This was the time when the supremacy of the microprocessors was attributed to its
speed rather than other characteristics.

In 1970, Charles (Chuck) Havice Moore developed a stack based language called
Forth. All the stack microprocessors that were built from 1980s were the hardware
implementation of this language. The first single-chip stack microprocessor that
was designed was NC4016, by NOVIX. It was an 8 MHz, 16-bit processor, designed
with about 16000 transistors in 3 um High-speed CMOS technology and ran Forth
language programs. It differed from the earlier stack architectures in that it had
two separate stacks for data and return address, both implemented outside the
main memory.

Harris Corporation (now Intersil Corporation) produced RTX2000, which was de-
rived from NC4016 in 1988. It was a 10 MHz, 16-bit processor built in 2 um
CMOS standard cell technology. RTX2010RH is a radiation-hardened version of
RTX2000. It was built using 1.2 um CMOS technology and mainly used in space
applications. Some of the several missions where this processor was used are IM-
AGE (for imaging the Earth’s magnetosphere), Rosetta and Philae (for studying
the comet 67P/ChuryumovGerasimenko), Deep Impact (for studying the comet
9P/Tempel) and the Advanced X-ray Astrophysics Facility. The main reason for
using this processor in the Rosetta and Philae mission was that this was the only
radiation-hardened processor that was available with the lowest power budget.

A 32-bit dual-stack processor named Sh-BOOM was designed by Chuck Moore in
1988, which also had 16 general-purpose registers for temporary storage and IO
operations. It was marketed by Patriot Scientific as IGNITE I processors. In 1995,
it was followed by MuP21, a 21-bit processor manufactured in 1.2 um with 7000
transistors and running at 20 MHz. This was the first processor with Minimal
Instruction Set Computer (MISC) design and was targeted towards video appli-
cations. There were other stack processors named F21 AND c18 designed and

61

prototyped. Besides, there were several designs prototyped on FPGA, but nothing
was commercialized.

In 2009, Charles Moore founded a company GreenArrays, Inc [12]. It has produced
a multi-computer chip GA144, which is an 18x8 array of identical, independent,
F18A computers, each of which operates asynchronously.

Stack processors has generated a good amount of interest also in the academia.
Prof. Philip Koopman of Carnegie Mellon University has done extensive study on
Stack processors and also had worked on RTX2000 processors [13]. Prof. Chris
Crispin-Bailey of the University of York also has done considerable amount of work
on stack processors [14]. There also have been some amount of work in the univer-
sities in the form of research, doctoral, masters and bachelor thesis.

62 History of Stack machines

Bibliography

[1] A. Chapyzhenka, D. Ragozin, and A. Umnov, “Low-power architecture for
CIL-code hardware processor,” Programming Problems, vol. 4, pp. 20–38, 2005.

[2] J. L. Hennessy and D. A. Patterson, Computer Organization and Design: The
Hardware/Software Interface. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2nd ed., 1998.

[3] P. J. Koopman, Jr., Stack Computers: The New Wave. Hemel, Hemstead,
Herts, UK: Ellis Horwood, Ltd., 1st ed., 1989.

[4] P. J. Koopman, Jr., “The WISC Concept,” BYTE, 1987.

[5] C. H. Squin and D. A. Patterson, “Design and Implementation of RISC I,”
1982.

[6] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
5th ed., 2011.

[7] C. E. LaForest, “Second-generation Stack Computer Architecture,” Master’s
thesis, University of Waterloo, 2007.

[8] A. Vachoux, “Top-down digital design flow.” http://lsm.epfl.ch/files/

content/sites/lsm/files/shared/Resources%20documents/TopdownDF.

pdf, 2011. Accessed: September 8, 2015.

[9] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2nd ed., 2003.

[10] G. Yip, “Expanding the Synopsys PrimeTime Solution with Power Anal-
ysis.” https://www.synopsys.com/Tools/Implementation/SignOff/

CapsuleModule/ptpx_wp.pdf, 2006. Accessed: September 8, 2015.

http://lsm.epfl.ch/files/content/sites/lsm/files/shared/Resources%20documents/TopdownDF.pdf
http://lsm.epfl.ch/files/content/sites/lsm/files/shared/Resources%20documents/TopdownDF.pdf
http://lsm.epfl.ch/files/content/sites/lsm/files/shared/Resources%20documents/TopdownDF.pdf
https://www.synopsys.com/Tools/Implementation/SignOff/CapsuleModule/ptpx_wp.pdf
https://www.synopsys.com/Tools/Implementation/SignOff/CapsuleModule/ptpx_wp.pdf

64 BIBLIOGRAPHY

[11] K. Schleisiek, “Microcore an Open-Source, Scalable, Dual-Stack, Harvard Pro-
cessor Synthesisable VHDL for FPGAs.” http://www.microcore.org, 2004.
Accessed: September 8, 2015.

[12] C. H. Moore, “Greenarrays, Inc..” http://www.greenarraychips.com/, 2009.
Accessed: September 8, 2015.

[13] P. J. Koopman, Jr. http://users.ece.cmu.edu/~koopman/. Accessed:
September 8, 2015.

[14] C. Crispin-Bailey. http://www-users.cs.york.ac.uk/~chrisb/. Accessed:
September 8, 2015.

http://www.microcore.org
http://www.greenarraychips.com/
http://users.ece.cmu.edu/~koopman/
http://www-users.cs.york.ac.uk/~chrisb/

Lo
w

-p
o

w
e

r M
icro

p
ro

ce
sso

r b
a

se
d

 o
n

 Sta
ck A

rch
ite

ctu
re

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, September 2015.

Low-power Microprocessor
based on Stack Architecture

Girish Aramanekoppa Subbarao

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-464

http://www.eit.lth.se

G
irish

 A
ram

an
e

ko
p

p
a Su

b
b

ara
o

Master’s Thesis

	Girish AramanekoppaStack_processor_thesis_report_v2.0.pdf
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Overview
	Thesis Outline

	Problem statement
	Issues with RISC processors
	Proposed solution

	Hardware Architecture
	Stack Processor Overview
	Processor Specification
	Processor Architecture
	Program
	Design improvement opportunities
	Limitations

	IC Layout Design, Implementation and Simulation
	Tools and Design flow
	Implementation
	Gate count
	Power simulations

	Simulation results and Analysis
	Simulation with different supply voltages
	Simulation with different clock frequencies
	Simulation with different transistor threshold voltages
	Simulation at different corners
	Simulation with different instructions
	Analysis
	Comparison

	Conclusion and Future work
	Conclusion
	Future Work

	Instruction set architecture
	Instruction set
	Instruction codes
	Instruction bit map

	Simuation results
	History of Stack machines
	Bibliography

