Master’s Thesis

Firmware update in a resource

constrained environment
Anton Martinsen
Alexander Nasslander

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, September, 2015.

Firmware update in a resource constrained
environment

at u-blox

Anton Martinsen
Alexander Nasslander

2015

LLUND

UNIVERSITY

Master’s Thesis
"Wireless communications”

Faculty of Engineering LTH
Department of Electrical and Information Technology

Supervisors:
Mats Andersson, u-blox
Mats Cedervall, EIT

Abstract

An embedded system’s software is often the backbone for a successful prod-
uct. To make the system stand out from the other competitors on the mar-
ket, your system must be adaptive and ready for quick updates. However,
one may never truly know where your system is going to be used and how
difficult it can be to access and update it.

Here we show a solution that securely updates a system based upon a
lower layer Bluetooth connection. We found a way to update a system
that has constrained memory resources using RSA keys for verifying the
validity of the firmware. Furthermore, we found that our solution did not
meet the memory restrictions but there are ways to improve the solution
so that these restrictions are met.

The findings of this report can be a used as a reference for further de-
velopment of wireless firmware updates using digital signatures in resource
constrained environments.

Contents

1. Introduction 1
2. Background 3
2.1. Sectors in the memory 4
2.2. The Bluetooth stack 5
2.2.1. Host Controller Interface, HCI 5

2.3. Callbacks 6
24. RSA . . . 7
2.4.1. Encryption and Decryption 7

2.4.2. Signing and Verifying 7

2.4.3. In combination 7

3. Methodology 9
3.1. HCI commands in HCITester 10
3.1.1. Master Script 10

3.1.2. Slave Script 11

3.1.3. Extended Inquiry Master Script. 11

3.1.4. Extended Inquiry Slave Script 11

3.2. Clmplemention., 11
3.2.1. Setting up a connection on the module using HCITester 12

3.2.1.1. Making the module visible 12

3.2.1.2. Connecting to the module 13

3.2.1.3. Receiving data on the module 16

3.2.1.4. Sending data from the module 16

3.2.1.5. Disconnecting from the module 17

3.2.2. Client connection 18

iii

Contents

3.2.3.

3.3.
3.3.1.
3.3.2.
3.3.3.
3.3.4.

3.4.

3.5.
3.5.1.
3.5.2.
3.5.3.
3.5.4.
3.5.5.
3.5.6.
3.5.7.
3.5.8.
3.5.9.

4. Result

4.1.

4.2.

4.3. FOTA

4.4.

4.5.

4.6.

Watchdogs oL

FOTA, Firmware update Over The Air.

Communication protocol, FOTA-header
Client and Server communication
Updating the firmware
3.3.3.1. Erasing old firmware
3.3.3.2. Writing data to the memory
3.3.3.3. Generating real firmware in binary code . .
3.3.3.4. Sending binary program to the module . .
Initiating FOTA

The Bootloader,

Data securityo

Master keyo
Representing big numbersin C
Session key oL
Generating the RSA keys
Message digest function
Signing L
Verification oL
3.5.7.1. Validation in FOTA
3.5.7.2. Validation in the bootloader
Authentication data packet
Verifying the firmware

Bootloader
Signing the Firmware

Authentication handshake
Firmware transmission

Size of firmware and performance

5. Discussion and conclusions
5.1. Reducing the program size

iv

5.1.1.
5.1.2.
5.1.3.

Duplicate radio patch
Unused HCIcode
CRC . . .

39
40
41
41
43
45
46

5.2. Using the One Time Programmable memory

53. SPPstack
5.4. Securityo
54.1. SHA-lhash
5.4.2. Physical access to the module
5.4.3. Encryption of thedata
5.5. Robustness
5.6. Performance.
5.6.1. Increasing the throughput

A. List of Acronyms

Bibliography

Contents

1 Introduction

U-blox develop and sell wireless modules that use Bluetooth, Wi-Fi, cel-
lular technology and positioning technology to communicate in a broad
variety of applications. The modules have an applied firmware running the
functionality of the communication interface, i.e the Bluetooth stack etc.,
and an application utilizing this interface. This means that the firmware
can be made quite small. A typical firmware for a Bluetooth and Wi-Fi
module from u-blox needs about 1.5 M B of storage. A memory used for
storing these kinds of firmwares on the module does not need to have big
capacity. Using memories with smaller capacities is beneficial in regard to
both production costs and power consumption.

Since these modules are very small they can be embedded in larger sys-
tems and be hard to physically reach in order to update the firmware on the
module if it is needed. At the moment there is no way to update the mod-
ule’s firmware if the module can not be reached physically which is a prob-
lem. Hence implementing a way to update the firmware through wireless
communication is desired. By adding wireless updating of the firmware on
the module using Bluetooth new problems are introduced, someone could
possibly connect to the module and send malicious firmware.

The goal of this project is to create a program on u-blox’s wireless module
series ODIN-W26x that can upgrade the application firmware over the air.
The program needs to be robust and be able to recover from failed updates
since the modules can be hard to reach physically. The module also needs
to be protected from downloading and executing unintended firmware for
the module. Because of memory restrictions the program needs to prefer-
ably be less than 128 kB. U-blox want us to research if it is possible to
implement a wireless way to update firmware on their module including

1. Introduction

data security within the size restriction of 128 kB.

2 Background

This chapter will give a brief explanation of different concepts that might
be unknown to the reader.

2. Background

2.1. Sectors in the memory

In the report we will bring up sectors. A sector is a group of memory cells
that has a dedicated address range and a size. The sectors supports reading
and writing data. The flash memory used in this project (see figure 2.1)
can store up to 2 MB of data.

Block Bank Name Block base addresses Size

Sector 0 0x0800 0000 - 0x0800 3FFF 16 Kbytes

Sector 1 0x0800 4000 - 0x0B00 7FFF 16 Kbytes

Sector 2 0x0800 8000 - 0x0800 BFFF 16 Kbytes

Sector 3 0x0800 CO00 - 0x0800 FFFF 16 Kbyte

Sector 4 0x0801 0000 - 0x0801 FFFF 64 Kbytes
Bank 1 Sector 5 0x0802 0000 - 0x0803 FFFF 128 Kbytes
Sector 6 0x0804 0000 - 0x0805 FFFF 128 Kbytes
Main memory Sector 11 0x0B80E 0000 - 0x080F FFFF 128 Kbytes
Sector 12 0x0810 0000 - 0x0810 3FFF 16 Kbytes

Sector 13 0x0810 4000 - 0x0810 7FFF 16 Kbytes

Sector 14 0x0810 8000 - 0x0810 BFFF 16 Kbytes

Sector 15 0x0810 CO00 - 0x0810 FFFF 16 Kbytes

Sector 16 0x0811 0000 - 0x0811 FFFF 64 Kbytes
Bank 2 Sector 17 0x0812 0000 - 0x0813 FFFF 128 Kbytes
Sector 18 0x0814 0000 - 0x0815 FFFF 128 Kbytes
Sector 23 0x081E 0000 - 0x081F FFFF 128 Kbytes

System memory 0x1FFF 0000 - 0x1FFF 77FF 30 Kbytes

oTP 0x1FFF 7800 - 0x1FFF 7AOF 528 bytes

Option bytes Bank 1 0x1FFF CO00 - Ox1FFF COOF 16 bytes

Bank 2 0x1FFE C000 - 0x1FFE COOF 16 bytes

Figure 2.1.: Embedded Flash memory interface.

2.2. The Bluetooth stack

2.2. The Bluetooth stack

The Bluetooth stack (see figure 2.2) is the counterpart to the OSI model for
Bluetooth. It varies from implementation to implementation since a lot of
the higher layers of the Bluetooth stack are optional. The reason for this is
that different manufactures want different functionality for their Bluetooth
devices. Let us say that we have a headset that could be connected to your
smartphone. It would be necessary for the headset to handle audio streams
for playing the sound to the speakers and for sending the recorded audio
from the microphone. But it would be unnecessary for the headset to have
support for BPP (Basic Printing Profile), which is used for sending items
to printing devices.

Application Layer Applications

Presentation Layer
RFCOMM / SDP

Session Layer
L2CAP

Host Controller Interface (HCI)

Transport Layer

Link Manager (LM)

Network Layer

Link Controller

Data Link Layer

Baseband

Physical Layer

Radio

0OSI Reference Bluetooth
Model stack

Figure 2.2.: OSI reference model and Bluetooth stack.

2.2.1. Host Controller Interface, HCI

The lower layers of the Bluetooth stack are basically the same for any
Bluetooth device. This part of the stack is needed in order to establish a
connection with another Bluetooth device. Since different applications in
the higher part of the Bluetooth stack can communicate at the same time,

2. Background

HCI and Logical Link Control and Adaptation Protocol (L2CAP) handles
all the different application connections that sends or receives data.

HCI sends HCI commands to the Link Manager to make the Bluetooth
device behave desirable. For example; sending data, making the device vis-
ible for other devices and so on. There is a quite big set of HCI commands
and we will just bring up a few of them. The Link Manager may reply if
something is happening; received data, a connection request and so forth.
The messages from the Link Manager is called HCI events.

To send and receive data, HCI uses ACL (Asynchronous connection-less)
data packets, as can be seen in figure 2.3. The packet has a Connection
Handle, that is used for keeping track of what connection the packet is
associated with. There is a field containing information about how much
data there is in a packet, called Data Total Length. The flags are not used
in this project.

Bit Offset
0 12 16 32

PB | BC

Connection Handle Flag | Flag

Data Total Length

Data

Figure 2.3.: Image of the ACL data packet.

2.3. Callbacks

A callback is a function that can be used as an input parameter to other
functions. These callbacks are used to execute the right HCI event handlers
when a given HCI event has been detected.

2.4. RSA

2.4. RSA

RSA is used for secure data transmission and is the most widely used
public-key cryptosystem according to HANDBOOK of APPLIED CRYP-
TOGRAPHY1], chapter 8, section 2. It is based upon the practical diffi-
culty of factoring the product of two large prime numbers, known as the
factoring problem. The larger primes you use, the harder it will be to crack.
An RSA key pair is made of a private key and a public key.

2.4.1. Encryption and Decryption

The public key can be known by anyone and is used for encryption of
the data. The data can be decrypted by the owner of the private key. If
someone wants to send secret private message to you, the sender encrypts
the message and sends it to you. The message can be decrypted with the
private key, that is only known by you. It is very important that you keep
your private key secret.

2.4.2. Signing and Verifying

You can also use RSA keys to verify the transmitter of the message, called
digital signature. If you want to send a message to someone and you want
the receiver to verify that the message was from you, your private key can
be used. You sign the message with your private key and the receiver uses
your public key to see the message. Since everyone has access to your public
key they can see the message that you signed. However, the message could
only be signed by your private key. In that way everyone knows that you
sent the message.

2.4.3. In combination

If you combine a receivers public key and your private key, the message
can be encrypted and signed. The receiver can only see the message with
the receiver’s private key, and verify that the message was sent from you
with your public key.

In order to encrypt, decrypt, sign and verify with RSA keys, some math-
ematical operations must be supported for big integers. Namely modulo
operations and exponential functions.

3 Methodology

Here we explain the methods and techniques used to get the module to
support wireless firmware updates and the choices we made during the
development of our project. The results and limitations of our work is
presented in chapter 4, page 39.

3. Methodology

3.1. HCI commands in HClITester

Before starting to program the HCI communication in C some experience
with the HCI layer had to be gained in order to understand which HCI
commands and parameters were needed to perform the task of updating
the firmware on the module. In order to perform the task there were four
main functionalities that had to be implemented and used in the HCI layer:

1. Connect to the module
2. Receive data
3. Send data

4. Disconnect from the module

To decide what commands were needed to complete these four sub tasks,
research was made by reading the Bluetooth 1.1 Connect Without Cables
[2], chapter 8, where the chain of commands to set up a connection is
described. The script program HCITester from Tezas Instrument [5] was
used to write four different scripts called "Master”, ”Slave”, "Extended
Inquiry Master” and "Extended Inquiry Slave”. The first two scripts were
made from a sample script that could set up three different Bluetooth Low
Energy connections, send data to them and disconnect. These scrips were
carried out by two instances of HCITester connected to two different USB
ports with two different USB dongles connected.

3.1.1. Master Script

The Master script sends a connection request to the specified Bluetooth
address then waits for a connection complete event response from the Link
Manager. When the Master has received a connection complete event it
sends an ACL data packet to the Slave and awaits an ACL data packet
back. When the Master receives an ACL data packet it disconnects and
waits for a disconnection event.

10

3.2. C Implemention

3.1.2. Slave Script

The Slave script waits for a connection to be made then it waits for an
ACL data packet and responds by sending an identical ACL data packet
back to the Master. After this it waits for a disconnection event.

3.1.3. Extended Inquiry Master Script

Sets up an extended Inquiry scan of the surrounding. Also includes a
remote name request to identify the name of the module with a specified
Bluetooth address. This one was used a lot throughout the project to
identify the Bluetooth address of the module but mostly to identify if the
module was up and running and check if the firmware had been switched
by setting the radios extended inquiry response message to different text
messages.

3.1.4. Extended Inquiry Slave Script

Sets up the radios local name and its extended inquiry response. Then
makes the module visible by enabling scan, setting scan type and setting
up the scan activity. The commands in this script should be used by the
module to make it visible.

3.2. C Implemention

U-blox already had a project where they could tunnel HCI commands and
events via a UART interface. The project included the complete Bluetooth
stack and the RTSL (Real Time System Library) environment. This means
that it was possible to connect and send data to a target device using the
Bluetooth stack. Since the implementation for the communication with
the Link Manager was already done in that project, it was a good basis for
our server implementation.

To make our solution smaller we had to remove some unwanted function-
ality from the u-blox project, i.e the higher layers of the Bluetooth stack
and the UART interface. We decided to remove the L2CAP part of the
Bluetooth stack and the higher-layered protocols. We made that decision
based on the knowledge that the module only should have one connection

11

3. Methodology

with another device, namely the client that sends the new Firmware to the
module. Another benefit of doing this is that we got less higher-layered
headers to take care of in the frames. This gave us more space for the
firmware to be sent in our sending frames. We removed the UART inter-
face because we thought it would be unnecessary for the module to be able
to communicate with the entity that the module is physically connected
to, during the update of the firmware. When we had removed the UART
interface and the higher-layered parts of the Bluetooth stack, the project
could still be compiled and was executable. However, the module would
not know what to do with the incoming packets from the Link Manager
since the pipe was now broken. If we executed the modified project it would
generate errors where the pipe was previously used. We used this to our
advantage by debugging the modified project and observing the call stack
to see where the errors were produced.

3.2.1. Setting up a connection on the module using HCITester

3.2.1.1. Making the module visible

We started off by trying to find the HCI commands in the HCI layer of the
C-code project that corresponded to the same commands as the ones in the
HClITester script called "Extended Inquiry Slave” that made the dongle
visible and able to respond to an extended inquiry request. The following
five functions were found:

e HCI_CmdWrScanEnable (0x03)

e HCI_CmdWrName (remoteName)

e HCI_CmdWrExtIngRsp(FALSE, text)

e HCI_CmdWrPScanActivity(uiPageScanInterval,uiPageScanWindow)

e HCI_CmdWrIngScanType (0x01)

These functions seemed to match the commands that were used in the "Ex-
tended Inquiry Slave” script. We tried executing these functions, however
the device did not show up when we tried to find it using our "Extended
Inquiry Master” script in HCITester. We decided to insert breakpoints in

12

3.2. C Implemention

Visual Studio in the two functions called cb0S_error and cb0S_error2.
These functions catch any errors produced in the OS used by the module.
One of the breakpoints managed to catch an error and we decided to follow
the callstack and noticed that a callback was missing, we had to register the
appropriate callback in order for the program to have the necessary func-
tions to perform the task. A more detailed description of the procedure of
identifying the callback can be seen in 3.2.1.2.

The callback was of the type ¢cbHCI_CallBack and the function to reg-
ister it was cbHCI_registerCallBack(cbHCI_CallBack* hciCallback).
Using this function to register the callback in our initiation we managed to
execute the code without errors.

The module was now showing up when an extended inquiry request was
performed in HCITester.

3.2.1.2. Connecting to the module

The module was now visible and able to respond to an extended inquiry
request, meaning we could now identify the Bluetooth address of the mod-
ule in HCITester from the extended inquiry response. By inserting the
modules Bluetooth address into the Master script in HCITester we could
now force a connection event on the module, once again we researched the
call stack in Visual Studio to find the callback needed.

In figure 3.1 on page 13 you can see the call stack and the function that
created the error was called hand1eHCID_EC_CONNECTION_REQUEST_EVENT.

| Call Stack > 1 x
| Name ‘ Language =
(@ 05 _error2(file = 0x8027a48 "hd_event.c”, line = 1435) CfC++
handleHCID_EC_CONNECTION_REQUEST_EVENT(pParameters = 0x20020a93 <heap+2707: "\230\3312032\3353\022")
handleEventPacket{pPacket = 0x20020a91 <heap+2705> "\004Yn\23013312\03213363\0227) CfC++
HCIE_HandleMsg(msgld = 4110, pData = 0x20020558 <heap+13658>) CfC++
chbBLUETOOTH _process(UNUSED_dummy = 0x0) cfc++
cbOS5_main(UNUSED _pParameters = 0x0) CfC++
main{arge = 536872136, args = Ox4ca) CfC++

Figure 3.1.: Picture of the call stack from a forced connection event on the
module.

By looking closer at this function, in listing 3.1. We could see that the er-

ror was asserted at line 6. This meant that the callback called pCmCallback
was equal to NULL, which means that the callback had not been registered.

13

0~ O Utk WN

O G g
N U W - OO

3. Methodology

static void handleHCID_EC_CONNECTION_REQUEST_EVENT (uint8 *pParameters)

{

TBdAddr BdAddress;
uint8 linkType;

cb_ASSERT (pCmCallBack != NULL);

if (pCmCallBack != NULL &&
pCmCallBack—>pfConnectInd != NULL)
{

HCI_ReverseBdCopy (BdAddress.BdAddress ,pParameters);
BdAddress.AddrType = BT_PUBLIC_ADDRESS;
linkType = pParameters[9];

pCmCallBack—>pfConnectInd (BdAddress,linkType);

Listing 3.1: Error asserted at line 6 if pCmCallBack is NULL.

Then we searched the Bluetooth stack of the project for pCmCallBack
and found that pCmCallBack was of the type HCIE_TCmCallBack. However
we could not simply just register this callback because the original functions
in the callback sent information to higher layers in the Bluetooth stack. In
order to break the communication with higher layers we had to statically
define the callback in our handler and override the functions. The statically
defined connection callback can be seen in listing 3.2 on page 15. The
handle functions that has been set as NULL will be disregarded by our
handler, this was done because these functions were not necessary for the
solution of the project. Also we noticed that this callback included the
function handling disconnection events, naturally we decided to include
the function handling disconnection events and by overriding it we could
make sure it did not pass information to higher layers in the stack.

14

=W

0~ O Ot

3.2. C Implemention

static HCIE_TCmCallBack hciConnectionCallback=

{
HandleHciConnectEvt,
HandleHciConnectCnfNeg,
HandleHciConnectInd,
HandleHciDisconnectEvt ,

NULL, //HandleHciDisconnectCnfNeg,

NULL, //HandleHciConnectCancelCnf,

NULL, //HandleHciAuthEvt,

NULL, //HandleHciChangeEncryptEvt,

NULL, //HandleHciRequestKeyInd ,

NULL, //HandleHciRequestPinInd ,

NULL, //HandleHciNewKeyEvt ,
NULL,//HandleHciloCapabilityInd ,

NULL, //HandleHciloCapabilityEvt ,

NULL, //HandleHciUserPasskeyInd ,

NULL, //HandleHciUserPasskeyEvt ,

NULL, //HandleHciUserConfirmationInd ,
NULL, //HandleHciSimplePairingComplEvt ,
NULL, //HandleHciRemoteExtFeatureCnf,
NULL, //HandleHciRemoteExtFeatureCnfNeg,
NULL, //HandleHciReadEncryptionKeySizeCnf

1

Listing 3.2: The static definition of the callback handling connections.

An example of one of the overridden functions can be seen in listing 3.3
on 15. The function simply responds that it accepts a connection if it has
no current connection, if it however already has a connection then it will
decline the connection attempt. As you can see, the function only uses HCI
commands to respond and does not include any higher layers.

static void HandleHciConnectInd(TBdAddr tAddress, TPacketType <
tPacketType){

if (connHandle =— INVALID_CONN_HANDLE){
HCI_RspConnect ((TBdAddr *)&tAddress , <«
BT_MASTER_SLAVE_POLICY_OTHER_SIDE_DECIDE);

}
else
{
HCI_RspNegConnect ((TBdAddr *)&tAddress, <«
HCI_ERR_REMOTE_USER_TERMINATED_CONNECTION);
}

Listing 3.3: The overridden HandleHciConnectInd function.

15

3. Methodology

After that the registration of the callback was done with one simple line of
code: HCIE_RegisterConnectionCallBack(&hciConnectionCallback)

The connection event function became rather simplistic, only saving the
connectors Bluetooth address in a variable.

3.2.1.3. Receiving data on the module

Once the code for connection had been implemented we could verify it
working by noticing in HCITester that the Master script had got a con-
nection event from the module and had now begun to try and send an
ACL packet instead of waiting for a connection event. This generated an-
other cb0S_error and we simply followed the call stack once again to find
the callback needed for the task of handling data. By registering the ap-
propriate callback for handling data and overriding the handleDataEvent
function we could verify that the information we had sent from HCITester
was available as a parameter in the function handleDataEvent.

3.2.1.4. Sending data from the module

The Master script was now waiting for a response from the module in the
form of an ACL data packet. In order to make the script move on to the
disconnection part of the script we needed to send an ACL data packet
from the module in response to the received data from HCITester.

By searching the different HCI functions available we managed to find the
function "HCI_WritePacket” which needed the saved connection handle
and the length of the data, including the ACL header size, to be sent. As
one can guess it also needed the actual data to be sent. Before calling the
HCI_WritePacket function an ACL data packet must be assembled by the
above parameters. The function takes two arguments, the ACL data packet
to be sent and a status telling that it is a ACL data packet. An example
of the usage of the HCI_WritePacket function can be seen in listing 3.4,
row 15, page 17.

However this function did not behave as we expected, the ACL data
packet was sent to the Link Manager but was never transmitted from the
radio.

We decided to put a breakpoint at the function and follow the operations
it made. When doing so we noticed that the HCI_WritePacket function,

16

0~ Uk WN -

3.2. C Implemention

which took a pointer to the ACL data packet to be sent as input parameters,
made the pointer go back one byte in the memory to verify that the byte
before the pointer was a constant called
HCI_TRANSPORT_INDICATOR_ACL_DATA_PACKET, which was represented by
0x02. Basically it was double checking that the ACL data packet was
indeed an ACL data packet.

We made a function called sendData which took the data to be sent and
the length of the data to be sent as an input parameters. Then it created
a pointer to a byte which had the value 0x02
(HCI_TRANSPORT_INDICATDR_ACL_DATA_PACKET)foﬂommd,by a ACL data
packet assembled with the connection handle and the length of the data to
be sent and the actual data. The pointer was then changed so that it was
pointing to the first byte of the ACL data packet. This pointer was then
sent into the HCI function for sending ACL data packets. The function
can be seen in listing 3.4.

The connection handler and the length are both represented with two
bytes, in Little-Endian format. The Link Manager interprets the ACL data
packet in Big-Endian, so we had to convert them as can be seen in listing
3.4, row 6 to 9.

extern void sendData(uint8 *pucData, uintl6 uilength){
uint8[uilength + 5] sendingAclPacket;

sendingAclPacket [0] = 0x02;

sendingAclPacket [1] = (uint8)(0xFF & connHandle);
sendingAclPacket [2] = (uint8)(connHandle >> 8);
sendingAclPacket [3] = (uint8)(0xO00FF & uilength);
sendingAclPacket [4] = (uint8)(uilength >> 8);

for (uint16 i = 0; i < uilength; ++4i){
sendingAclPacket [i + 5] = pucData[i];
}

HCI_WritePacket (HCI_ACL_DATA_PACKET, &sendingAclPacket[1]);

Listing 3.4: Code snippet for sending data via ACL data packet.

3.2.1.5. Disconnecting from the module

When the HCITester Master script received an ACL data packet in re-
turn from the module it forced a disconnection event on the module. The

17

3. Methodology

callback needed to handle this had already been registered and the discon-
nection handle function had already been overridden at this point.

However we encountered a rather strange error when the event was forced
on the module. Somehow when the HCI function wanted to decide if the
connection was a classic Bluetooth connection or Bluetooth Low Energy
through a function called getLinkType(), it decided that the connection
was of the type Bluetooth Low Energy, which produced a cb0S_error.

This was of course wrong, the connection was not a Bluetooth Low En-
ergy connection. We tried to, instead of using getLinkType(), just set
the link type to a static 0x01, which represented a classic Bluetooth con-
nection. This simple attempt was successful. And the disconnection was
successful.

The handle disconnection event function became very simplistic as well,
just clearing the current connection variable.

3.2.2. Client connection

When the module could handle the HCI events needed for setting up a
connection, disconnecting, sending and receiving data, a client solution
which could connect to the module and send the data had to be created.

We were provided with a project from an employee at u-blox. That
project had some similarities with the original project that we started
with. The project had the functionality to connect to a specified Blue-
tooth address with HCI, i.e establish a data link with the lower part of the
Bluetooth stack. This project was using a COM port to communicate with
the radio unit via a USB interface.

This mean that the software for this project can run on a computer and
send HCI commands to the radio and receive HCI events from the radio as
well. Since the software would run on our computer it would be convenient.

We copied the sendData function from the server implementation and
registered the same callbacks that we needed to send data, receive data
and disconnect. We also hard coded the modules Bluetooth address so it
would be easier for us to test our solution.

18

3.3. FOTA, Firmware update Over The Air

3.2.3. Watchdogs

If the module got stuck somewhere while it was running, we wanted it to
recover from that. We found implementations of watchdogs timers that
was made by u-blox. If the module had a connection with the client and
no data was sent during 1 second the module would restart itself. Every
time the module received data we reset the watchdog timer.

3.3. FOTA, Firmware update Over The Air

Now that we had a module and a client that could establish a connection
and send and receive data we had to add some additional logic. We started
of by creating two C files, FOTA_client.c and FOTA_server.c. Our idea
was that the sending client would use FOTA_client.c to send data to the
module, then the module would then use FOTA_server.c to handle the
data. We figured that these two files should behave like big multiplexers
for the opposites sides. We decided that the multiplexers would be imple-
mented using the foundations of the TCP state machine: SYN, ACK, SEQ
and FIN.

3.3.1. Communication protocol, FOTA-header

The TCP state machine and TCP header has a lot of good features! but a
lot of them was unnecessary for our project. Since the module should only
have one connection with the sending client via a data link, not through a
network?, we could remove some features. We did not have to deal with
Ports®, Urgent pointer and Options. So we simply did not included those
features in our protocol. Data offset was no longer needed because of the
removal of the Options field made our header fixed sized. This was made
to save us space so that the module could receive bigger packets, having in
mind that the the maximum amount of bytes in one frame is 1017 bytes
as described later in subsection 3.3.2 on page 20. The protocol that was
created can be seen in figure 3.2.

'Data fields in the TCP header
2TCP works on the Transport layer of the OSI model
3Source port and Destination port

19

3. Methodology

Byte Offset
0 I 1 2 I 3
0 CRC ACK number
4 Status DATA, up to 1012 Bytes

Figure 3.2.: Image of the FOTA header

We decided that we might have use for some error-detection functionality.
That is why we dedicated a 16 bit field in the FOTA for CRC (Cyclic
Redundancy Check). The idea of the ACK number field was that it should
be used both as ACK number and SEQ number. The sending client sends
the FOTA header and puts the sequence number in that field and the
module responds with a FOTA header with an acknowledge number in
that field. We realized that the module would never send large amount
of data to the sending client, therefore we decided to merge the fields of
Sequence number and Acknowledge number with each other.

The reason we put a Status field, as shown in figure 3.2, is that we
wanted to use it as the TCP flags. One byte would give us plenty of
different combinations of flag to send (28 = 256).

3.3.2. Client and Server communication

When we were able to connect, receive data, send data and disconnect to
the module and the client, we where now ready for the module and client
to establish a data link. We had to take care of the incoming ACL data
packets that was dedicated for the module and the client. If either the client
or the module got an ACL data packet, it would trigger the handleDataEvt
function, see listing 3.5, page 21.

In order to make sure that the ACL data packet is dedicated for the
module we analysed the Connection handler from the ACL header an com-
pered it with the previously stored Connection handler, see listing 3.3, page
15. If the ACL data packet was not dedicated for the module, the module
would simply ignore that packet. If it was the correct Connection handler,

20

—

0O Utk WN

T W N =

3.3. FOTA, Firmware update Over The Air

a pointer to the data field of the ACL header and the length of the data
field (in bytes) would be the parameters for the FOTA_handleData func-
tion. That function is the entry for the state machine in FOTA_server.c,
see listing 3.6. The ACL data packets that is sent to the client is processed
in the a similar manner.

static void handleDataEvt(TConnHandle tHandle, boolean bFirst, uint8 *<«
pucData, uint16 uilength)
{
if (tHandle = connHandle){
FOTA_handleData(pucData,uilength);
}
}

Listing 3.5: Incoming ACL data packets with the right connection handler
is forwarded to fota_client.c and fota_server.c.

extern void FOTA_handleData(uint8 *pucData, uintl6 uilength);

Listing 3.6: Entry to the state machine in fota_server.c.

We started to define some flags for the status field for the FOTA header?.
The first flags we defined were: FIRST_PACKET, ACK, SEQ and END, see
listing 3.7. We realized that we would need more flags for the status field
but these flags would make a good basis. We built the state machine in
FOTA_server.c and FOTA_client.c according to those flags.

// Flags for Status in FOTA_header
#define FIRST PACKET 0x00

#define ACK 0x01
#define SEQ 0x02
#define END 0x03

Listing 3.7: First definitions of status flags for FOTA header .

The first thing we tried was to send some random data® in the data
field of the FOTA header with the FIRST_PACKET flag, from the client to
the module. The module would reply the same data back to the client
who printed out the data on console. We made sure that the received
data was identical to the data that was sent to the module. We had some

4FOTA header, see subsection 3.3.1, page 19.
5An array of data starting with 0x00, 0x01, 0x02.. and so on.

21

3. Methodology

problems in the beginning to send big chunks of data to the module. For
some reason the module could only receive ACL data packets with 1017
Bytes or less. This was due to the radio settings. We decided to keep this
setting and adjust our packets to that size. This was a fairly easy step but
it was an acknowledgement that we had two separate programs that could
communicate with each other.

The next thing that was needed was to let the client tell the module
how much the total amount of bytes it was going to send. We did that
by sending a FIRST_PACKET flag with a 32 bit word in the data field of
the FOTA header, to the module from the client. The reason that we
used a 32 bit word was that a 16 bit word was to small to represent the
maximum size of a firmware, (2! — 1)bytes < 2MB < (232 — 1)bytes.
For simulation purpose, we allocated that amount of bytes (i.e the value
of the 32 bit word) in the modules RAM. Now we could simulate writing
to the modules EEPROM with the pointer given by the allocation. We
started to simulate a firmware update that needed 1 M B of space. Since
we could only send 1012 bytes of data for each FOTA packet we started
using the SEQ and ACK flags. We implemented a solution that imitated
the TCP ACK’s and PSH’s excluding the sliding window solution. If the
module got a Sequence number that was not expected it would reply with
an Acknowledge number of the wanted number, i.e a resend. We introduced
a 16 bit variable (static uint16 ACKED) to keep track of the Acknowledge
number. For the client side of the solution an associated variable (static
uint16 SentUnAcked) was introduced. It was introduced to keep track of
any resend requests from the module.

For the module to keep track of how many bytes of data that has been re-
ceived, we introduced a 32 bit variable: static uint32 bytesReceived.
This variable was updated for every FOTA packet that contained data,
however it was not updated for resend requests. When the module had
received all of the data from the client it was time to terminate the connec-
tion. To terminate the connection we implemented the module to send an
END in the Status field of the FOTA header. The client was implemented
to terminate the program when the module had sent an END in the Status
field of the FOTA header.

When we got the communication to work properly we implemented error
detection. The client calculated the CRC of the data that would be sent
in a FOTA packet and then put the result in the CRC field of the FOTA

22

3.3. FOTA, Firmware update Over The Air

header. When the module receives a FOTA data packet it calculates the
CRC of the data field and compares it with the value of the CRC field. If
the CRC is not valid the module will ask for a resend.

3.3.3. Updating the firmware

When we had established a working communication of sending data to
the module, we had to figure out how to write the data correctly into
the memory of the module. We found a template called cb_flash.h
which included two promising functions cbFLASH_write(cb_uint32 addr,
cb_uint8* data, cb_uint32 length) which starts writing the data at
a specified address and cbFLASH_sectorErase(cb_uint32 addr) which
erases the whole sector at the specified address.

3.3.3.1. Erasing old firmware

As a first step we used the function cbFLASH_read(cb_uint32 addr,
cb_uint32 length, cb_uint8* buf) that reads the values of the memory
into a buffer from the specified address. Then we used cbFLASH_sectorErase
at the specified address to erase the values at this sector of the memory.
When using cbFLASH_read after erasing the sector we could verify that the
values in the buffer called buf had been erased.

Since we had to erase one sector at a time with a given address to each
sector, we decided to make a sector memory offset map of the application
memory sectors, as seen in listing 3.8 on page 24. Fach element is the
memory offset of each sector from the application address which the appli-
cation runs from. By doing this we realized that the maximum size of a
firmware could be 1.625 MB.

23

0~ O Utk WN

[R e i e e i e
= O OO Uk WNEFEOO©

1

3. Methodology

static uint32 memOffsets[19] = {
0x000000 /* Sector 4, 64 KB */,
0x010000 /* Sector 5, 128 KB */,
0x030000 /* Sector 6, 128 KB */,
0x050000 /* Sector 7, 128 KB */,
0x070000 /* Sector 8, 128 KB */,
0x090000 /* Sector 9, 128 KB */,
0x0B0000 /* Sector 10, 128 KB */,
0x0D0000 /* Sector 11, 128 KB */,
0x0F0000 /* Sector 12, 16 KB */,
0x0F4000 /* Sector 13, 16 KB */,
0x0F8000 /* Sector 14, 16 KB */,
0x0FC000 /* Sector 15, 16 KB */,
0x100000 /* Sector 16. 64 KB */,
0x110000 /* Sector 17, 128 KB */,
0x130000 /* Sector 18, 128 KB */,
0x150000 /* Sector 19, 128 KB */,
0x170000 /* Sector 20, 128 KB */,
0x190000 /* Sector 21, 128 KB */,
0x1A0000 /* Sector 22, 128 KB */
I

Listing 3.8: Memory offsets

We then decided to make our own function called prepareMem(uint32
length), which took the length of the new firmware as an input argument
and from this length calculated the number of sectors that would have to
be erased for the new firmware to fit. When the number of sectors had
been calculated the function only had to iterate through the number of
sectors that needed to be erased and use the code in listing 3.9 on page 24
where FLASH_ADDR is the address where the application starts.

res = cbFLASH_sectorErase(memOffsets[i] + FLASH_ADDR);

Listing 3.9: Erasing a sector

When running this code the program crashed and could not start again
when restarting the module. We quickly realized that the FOTA firmware
had started to erase itself on the module because the FOTA firmware was
running at the application address at this moment.

In order to solve this we changed the address and offset where Visual
Studio puts and executes the FOTA program in the memory of the module.

When the code for FOTA executed from the memory address 0x801B0000,
the FOTA code was out of range for the prepareMem function to erase it.
We could now verify with the function cbFLASH_read, that the sectors had

24

3.3. FOTA, Firmware update Over The Air

been erased.

However the prepareMem function later had to be changed slightly so that
it erased all of the application sectors instead of only erasing the sectors
needed for the firmware. This was done because when the firmware was
updated with real firmware some bytes were left unchanged from the old
firmware that somehow interacted with the new firmware. Specifically the
text strings for the radio remote name and the extended inquiry response
were affected depending on what firmware used to be on the module. By
clearing all the sectors for each update this problem was avoided.

3.3.3.2. Writing data to the memory

By writing some random data with the function cbFLASH_write into the
memory followed by cbFLASH_read we could verify that the function
cbFLASH_write was working properly.

Since the FOTA handler has a variable called bytesReceived that keeps
track on how many bytes that have already been received of the new
firmware the function cbFLASH_ write simply had to write the incoming
data to the address FLASH_ADDR+bytesReceived. When this function had
successfully written the data to the memory the variable bytesReceived
was simply incremented with the data length.

When bytesReceived was equal to the firmware length we used our
self made function void cbHW_forceFOTABoot (cb_uint32 status) in the
cb_hw.c file to restart the module into the bootloader.

3.3.3.3. Generating real firmware in binary code

Now when the module was able to erase old data and write new data
into the memory we wanted to try and send some real firmware in binary
code. We made an identical copy of our FOTA project but changed the
text strings to the HCI commands that changed the remote name and the
extended inquiry response on the radio. By doing this we could identify if
the firmware had been downloaded by the module by using HCITester to
send a remote name request and an extended inquiry request. This project
was then compiled and the binary file of the program was altered so it was
in the format of a byte array and inserted as temporary firmware in our
client project as a byte array.

25

3. Methodology

3.3.3.4. Sending binary program to the module

At first glance it seemed to work perfectly to send the firmware to the
module. The remote name and extended inquiry response had changed
to the new intended responses. Note that there was no firmware at the
application address at this try. The memory was clean.

We wanted to try and change existing firmware at the application address
for new firmware. By using Visual Studio to insert another copy of our
FOTA code at the application address but with a different remote name
and extended inquiry response. Then we started the updating sequence.
The module restarted and we once again used HCITester to check the name
request response and extended inquiry response. The module was able to
respond to the two different HCI requests, however the responses looked
rather strange. They looked like they were a mixture of the old firmwares
response and the new firmwares response.

We decided to check the memory with the program STM32 ST-Link
utility using an ST-link and export the binary file of the program which
was now in the modules memory and compare this binary file with binary
file of the program which had been sent from the client. The two binary
files were identical except for the part which decided the remote name of
the module and the extended inquiry response text field.

The two responses seemed to depend on the previous firmwares response
so we tried to change the prepareMem function so that it cleared all the
application sectors instead of just the sectors needed for the size of the
firmware to make sure there was no code left from the previous firmware.
This proved successful and the firmware update functionality was complete.

3.3.4. Initiating FOTA

We implemented a simple application so that we could simulate a firmware
already running on the module. The application could make the module
accessible and connected with another device on a HCI level. We wanted to
provoke the application to start FOTA. As mentioned in section 3.3.3.2 we
implemented a function (void cbHW_forceFOTABoot (cb_uint32 status))
in cb_hw.c that restarts the module and writes a value to a backup regis-
ter. This register can be accessed by the module at any time. The value
of the argument is stored in the backup register.

26

3.4. The Bootloader

3.4. The Bootloader

At first we used u-blox own bootloader without any alterations however
when we wanted to start FOTA by connecting to the module. The boot-
loader had to be altered a little bit. We had to implement a check in the
bootloader which checked a certain byte in the backup register to see if this
was equal to 0x01 which meant that FOTA had been activated. If this byte
was equal to 0x01 then the bootloader would execute the program and run
from the FOTA address instead of the application address. If the byte is
something other than 0x01 the bootloader will try to run the application.
If the module lost its power then the information in the backup register
would be lost.

When the first part of security was implemented, a simple naive hash of
the program, the bootloader had to be altered a little again. The bootloader
had to read the stored hash and the stored length of the application from
the EEPROM and calculate the hash of the program from the application
address to check if the program was correct before executing the application
at the application address.

When the RSA signing had been implemented the bootloader was changed
so that it calculated the hash of the firmware, then evaluated this hash with
signed hash stored in the EEPROM using the stored 512 byte private key.
See chapter 3.5.7.2 at page 33 for example of this RSA verification.

The bootloader refuses to start the application if the first bytes at the
application address have the value OxFFFFFFFF, which means that there is
no application to be run.

27

3. Methodology

3.5. Data security

When we started this project we knew that data security would have a
big impact on the outcome. We decided quite early to follow three basic
principles: Integrity, Availability and Authenticity. We decided to use RSA
keys for our project since it is well known, well tested and well documented.

3.5.1. Master key

Our idea was that u-blox should possess a big private RSA key for every
product type. Every unit associated with that particular product type has
the public RSA key of that product type. We call this key: ” Master key”.
Since the security of RSA is based on factorization of prime numbers it
will be harder to break with larger prime numbers. This means that we
want a big Master key. According to BlueKrypt [4] both NIST and ANSSI
recommend a key of length 2048 bit, hence using an RSA key of 512 bytes
(4096 bit) should be considered safe. We thought it was a good idea to let
the module authenticate every FOTA data packet that was received. So
we decided to sign each packet of data that is sent to the module with an
RSA signature.

3.5.2. Representing big numbers in C

In order to support a 512 byte RSA key in C we needed to represent bigger
numbers (and their mathematical operations) than what standard C could.
At first we tried implementing this ourselves using vectors of 32 bit num-
bers. However, this proved rather troublesome. We researched if there were
any big number libraries available for C and we noticed that u-blox already
had licensed code for RSA that had implemented a way to use big numbers
and their operations which was used in their WLAN project. We decided
to include the files rsa. c, which has everything needed for RSA encryption
and signing, and bignum.c which has big number representation with all
the mathematical operations that are needed for RSA.

28

3.5. Data security

3.5.3. Session key

Using a 512 bytes signature from the Master key in every FOTA data
packet would limit the maximum of data in each frame to 500 bytes:

1012DataFieldSizebytes - 512SizeOfSignaturebytes = 500byt65

We did not want to use a smaller Master key and we wanted to be able
to send bigger amounts of data in every FOTA data packet, to speed up
the transmission. To fix this problem we decided to introduce a temporary
RSA key that the module and the client only used during the session of
the firmware update. We call this RSA key: ”Session key’”.

The Session key should only exist a short period of time and does not
need to be as large as the Master key. We decided to use a 128 byte (1024
bit) RSA key as the Session key. By using a 128 byte RSA key we increased
the maximum limit of bytes of data in a FOTA data packet from 500 bytes
to 884 bytes:

1012DataFieldSizebytes - 1285izeOfSignaturebyteS = 884byt63

This introduced a problem for us, how can the module verify this temporary
Session key if there is a new Session key for every session? The module
already has the public Master key stored, so we decided to sign the public
Session key with the private Master key for every new firmware update and
send it to the module.

3.5.4. Generating the RSA keys

By using the two functions rsa_init(rsa_context *ctx, int padding,
int hash_id) and rsa_gen_key(rsa_context *ctx, int (*f_rng) (void
*, unsigned char *, size_t), void *p_rng, unsigned int nbits,
int exponent) in rsa.c we were able to generate a private and a public
Master key on 512 bytes with the code in listing 3.10 on page 30. Where
the key information is saved in the rsa_context variable root_keys. The
fourth input parameter is the length of the key in bits, 512 bytes is 4096
bits so this was inserted as the fourth input parameter to the function.

29

N O U W N

© 00O Utk WN -~

3. Methodology

rsa_context root_keys;
rsa_init(&root_keys, RSA_PKCS_V1i5, 0);
if (rsa_gen_key(&root_keys, &myrand, NULL, 4096, 0x10001) != 0){
printf ("FAILED GENERATING KEY\n”);
}
Listing 3.10: Code that generates the Master keys into the variable

root__keys.

The private key information was then written to a file to be stored with
the function mpi_write_file(const char *p, const mpi *X,
int radix, FILE *fout) in bignum.c, this function takes the big num-
ber structs called mpi, which are stored in the rsa_context struct as in-
put argument and writes them to a file given the file stream and the radix
format you want the keys to be stored in. We decided to save them as
hexadecimal by writing 16 as the input. An example of writing the big
numbers to a file is given in listing 3.11.

fileP = fopen(”P.bin”, "wb”);
i = mpi_write_file(NULL, &root_keys.P, 16, fileP);
it (1= 0)f
printf ("ERROR: write to file: %d\n”, i);
}

fclose(fileP);

Listing 3.11: An example of writing big numbers to file.

The public Master key was inserted into the EEPROM on the module
and was accessed both in the FOTA authentication process and in the
bootloader to check if the firmware is valid u-blox firmware at FOTA start
up and module start up respectively.

By using the same two functions but with different input parameters we
could also generate a public and private Session key on 128 bytes. Only
two things had to be changed, the rsa_context variable root_keys was
changed to session_keys and the parameter deciding the length of the key
was changed from 4096 bits to 1024 bits since the Session keys should be 128
bytes long. These Session keys are generated every time an authentication
of the firmware with the Master key has been successful.

30

3.5. Data security

3.5.5. Message digest function

In order to sign a message we needed a message digest function, a so called
hash function that can be given an RSA signature. The message digest
function is used both when signing and when verifying. We decided to use
SHA-1 for this. The output of SHA-1 will always be 20 bytes regardless
the length of the message you want to digest. We found a free to use C-file
from google code [3], which was written by Wei Dai, that calculates the
SHA-1 hash which we called shal.c. The function calls can be seen used
in listing 3.13 at page 33.

3.5.6. Signing

Since we decided to use RSA keys to verify data etc, we had to add signing
features. The rsa.c had a wide selection of RSA signing functions using
different hash functions. Luckily for us, they had support for SHA-1 sign-
ing. We used an already existing function to sign our hash sums. The
function that we used was rsa_rsassa_pkcsl_v15_sign(rsa_context
*ctx, int mode, int hash_id, unsigned int hashlen,

const unsigned char *hash, unsigned char *sig).

It uses the private RSA key that is contained in rsa_context *ctx to
sign the hash (const unsigned char xhash). In order for the function to
know what kind of hash to sign, SHA-1 in our case, int hash_id has to
be set to a value that corresponds to SHA-1. This was predefined in rsa.c
as: "#define SIG_RSA_SHA1 5”. The function needs the length of the
hash (unsigned int hashlen) if one does not specify what kind of hash
is being used. A pointer where the result will be placed (unsigned char
*sig) is required. The parameter int mode specifies if the function should
sign with the public RSA key or the private RSA key of the rsa_context
*ctx. It might seem obvious but we used the private RSA key for every
signing. If the signing was successfully done the function would return 0.
An example of using the function can be seen in listing 3.12 on page 32.

31

—_

N O Ut W

3. Methodology

if (rsa_rsassa_pkcsl_v15_sign(&session_key, RSA_PRIVATE, SIG_RSA_SHA1l,6 <+

0, calculatedHASH, &signedHASH) != 0)
{
printf("Failed signing\n”);
Yelse{
printf(”Signing success\n”);
}
}

Listing 3.12: Example of RSA signing.

3.5.7. Verification

In order to verify the RSA hash signature, the module needs to calcu-
late the SHA-1 hash of the same data that has been signed. When the
hash of the data has been calculated we used the public RSA key to ex-
tract the SHA-1 hash from the signed hash. If the hash sums are equal
then the signature is considered valid. We used a predefined function
in rsa.c that can verify signatures with public RSA keys. This is the
function: int rsa_pkcsl_verify(rsa_context *ctx, int mode, int
hash_id, unsigned int hashlen, const unsigned char *hash,
unsigned char *sig).

The function is similar to the function described in subsection 3.5.6 with
the main difference that unsigned char *sig is the pointer to the signa-
ture. The function returns 0 if the signature is considered valid.

The verification is done in four different parts on the module of which
two are made with the Master key, the Master key is used when a FOTA
upgrade is initiated and in the bootloader before it runs the firmware to
make sure that the program has not been altered. The third verification
of data is done with the smaller Session key, this verification is done when
the firmware version and length of the firmware is sent to the module.
The last verification is done with the smaller Session key as well, but this
verification is done many times, it verifies each data packet of the firmware
that is received.

3.5.7.1. Validation in FOTA

We made a function called validSignature, seen in listing 3.13 at page
33, that calculates the hash of data with the specified length and re-

32

[y

O 00~ Uik W

3.5. Data security

turns TRUE if the rsa.c function rsa_pkcsl_verify(&key, RSA_PUBLIC,
SIG_RSA_SHA1, 0, rsa_SHA1_hash, signature) succeeds, in other words
if the SHA-1 hash function of the data is equal to the hash received when
the public key is applied to the signed hash that was sent to the module.
Both the validation of Master and Session key signatures use this function.

The public key for the Master key is stored in the EEPROM while the
public key for the Session key is received from the client and stored as a
variable temporarily during the update.

static cb_boolean validSignature(rsa_context key, unsigned char *«
calculateHashOf, cb_uint32 len, unsigned char *signature){

unsigned char *rsa_SHA1_hash;

shal_init();
shal_write(calculateHashOf, len);
rsa_SHA1_hash = (unsigned char *) shal_result();

if (rsa_pkcsl_verify(&key, RSA_PUBLIC, SIG_RSA_SHA1, 0, «
rsa_SHA1 _hash, signature) =— 0)
return TRUE;
return FALSE;

Listing 3.13: The validSignature function.

3.5.7.2. Validation in the bootloader

The validation function in the bootloader called isValidFirmware, seen
in listing 3.14 on page 34 is basically the same except a few things. It
checks if the first bytes in the firmware are OxFFFFFFFF, which means that
there is no firmware on the module. It also checks if the length of the
firmware, which is stored at a specific address called FW_LENGTH_ADDR in
the EEPROM, is too big to fit on the module. Other than that, the function
is the same except that it reads the public Master key from the addresses
PUBLIC_N_ADDR and PUBLIC_E_ADDR inside the EEPROM.

33

0~ O Utk WN

[R N N R N R e e i e e e
W OO0 Ulk W~ O o

25
26
27
28

29
30
31
32
33
34

3. Methodology

static cb_boolean isValidFirmware (){

cb_uint32 length;

cb_uint8 ij;

cb_boolean valid;

rsa_context root_key;
unsigned char *rsa_SHA1_hash;

valid = FALSE;
memcpy(&length, FW_LENGTH_ADDR , sizeof(cb_uint32));

if (*(cb_uint32*)APPLICATION_ADDR — OxFFFFFFFF)
return valid;

if (length => 0x1A0000 || length — 0)
return valid;

rsa_init(&root_key, RSA_PKCS_Vi5, 0);

root_key.len = ROOT_KEY_LEN;

mpi_read_binary(&root_key.N, PUBLIC_N_ADDR, ROOT_KEY_LEN);
mpi_read_binary(&root_key.E, PUBLIC_E_ADDR, 4);

shal_init();
shal_write (APPLICATION_ADDR, length);
rsa_SHA1_hash = (unsigned char *) shal_result();

if (rsa_pkcsl_verify(&root_key, RSA_PUBLIC, SIG_RSA_SHA1l, 0, «
rsa_SHA1_hash, SIGNED_HASH_ADDR) — 0){
// This was not signed with the root key from u—blox
valid = TRUE;

}

return valid;

Listing 3.14: The isValidFirmware function in the bootloader.

3.5.8. Authentication data packet

We decided to make a data packet to manage authentication of the Ses-
sion key, called ”Authentication data packet”. The Client would send an
Authentication data packet via a FOTA data packet. The Authentication
data packet can be seen in figure 3.3, on page 35 .

We introduced a 32 bit variable (uint32 current_KEY_version) that
was stored in the module’s EEPROM. During the initiation of the FOTA
the module was implemented to read the stored value from a defined ad-

34

© 00~ Ut W

3.5. Data security

dress (KEY_VERSION_ADDR). When the Authentication data packet is re-
ceived from the client the module compares

current_KEY version with the KEY version data field in the Authenti-
cation header. If the KEY_version is an older version then the module will
respond with AUTH_DENY, as shown in listing 3.15.

//auth: pointer to Authentication header

if (auth—>KEY_version <= current_KEY_version){
// This is an old key version, not valid for the firmware update
// Reply with AUTH DENY
sendData((uint8*) &sendingHeader , FOTA_HEADER_SIZE + 1);
cbLED_setColor (cbLED_OFF);
cb0S_delay(3000000); // 3s
cbHW_forceF0TABoot (0) ;

}

Listing 3.15: Validating if it is an old Session key.

Byte Offset

0 I 1 I2 I 3
0 KEY_version
4 N_len E_Len
8 RSA_Session_E

4 to 65535 Bytes

RSA_Session_N
20 to 65535 Bytes

Signed HASH (SHA-1 signed with Session Key)
20 to 65535 Bytes

Signed HASH (SHA-1 signed with Master Key)
20 to 65535 Bytes

Figure 3.3.: Structure of a theoretical Authentication data packet

If the KEY_version is considered a newer key version, the public Session
key is extracted with the N_len and E_len data fields. These fields simply
tell the byte offset where the parameters of the public Session key is located.
The reason that the minimum size of the public exponent (RSA_Session_E)

35

3. Methodology

is 4 bytes, is because it is represented in series of 32 bit words. This applies
to the public modulus as well, but the minimum size of RSA_Session_N is
20 bytes. The reason for this is that we use SHA-1 as the hash function,
see subsection 3.5.5, page 31. To validate that the public Session key is as-
sociated with the private Session key we decided to sign the Authentication
header (KEY_version, RSA_Session_E and RSA_Session_N) on the client
side of the solution. This signature can be seen in figure 3.3. The size of
the signature is the same size as the public modulus, RSA_Session_N. The
module verifies that the Session key works with the verification function,
subsection 3.5.7 on page 32. To make the module validate that the Session
key is a trusted RSA key from u-blox, we signed the whole Authentication
header and the signature from the Session key with the Master key. The
signature can be seen on figure 3.3 on page 35. The signature from the
Master key is validated with the public Master key stored on the module.

3.5.9. Verifying the firmware

We wanted the module to only accept newer firmware version, i.e we did not
want to downgrade the module. Once the Session key has been validated
by the module we sent a First-packet data packet to the module. Figure
3.4 shows the structure of the packet.

Byte Offset
0 I 1 |2 I 3
0 FW_version
4 FW_len
8 Signed HASH (SHA-1 signed with Session Key)
1 128 Bytes
1
1
132

Figure 3.4.: Structure of First-packet data packet.

We introduced an 32 bit variable, static uint32 current_FW_version,

36

3.5. Data security

to keep track on what firmware version was running on the module. The
value is stored in the module’s EEPROM at a dedicated address
(FW_VERSION_ADDR). During the start up of FOTA, current_FW_version
is assigned the value contained in FW_VERSION_ADDR. If FW_version from
the received First-packet is larger than the stored current_FW_version it
is considered as an update of the current firmware on the module. FW_len
is the length of the firmware and is treated as in subsection 3.3.2 on page
20. We signed the First-packet with the Session key so that the module
can verify the firmware version.

37

4 Result

The result of this project is a working solution of updating firmware on
the u-blox ODIN-W26x series with support to recover from a failed up-
date. The program also protects the module from receiving and executing
firmware that is not authenticated by u-blox with a 512 byte RSA key.

39

4. Result

4.1. Bootloader

The resulting bootloader of the module became rather simple. As can be
seen in figure 4.1 on page 40. The bootloader simply checks if a FOTA
update has been activated, if it has then it starts the FOTA update. If
a FOTA update has not been initiated it checks if the firmware on the
module is valid firmware by applying the public Master key on the signed
hash of the firmware, which is stored in the EEPROM, and compares it
with the hash of the firmware. If the firmware is not valid, it needs new
firmware and starts the FOTA update state machine and waits for a new
connection to start a firmware upgrade. If FOTA has not been initiated
and there is valid application firmware on the module, then the bootloader

@
The module starts [€— < i Run FOTA ;

Reads from the I

ForcedFOTA
backup register

starts the application.

Reads the public
RSA ROOT_KEY
and the
signed HASH
from EEPROM

Is ForcedFOTA? Is it a valid HASH?

Run Application
(the Firmware)

Figure 4.1.: A flow chart diagram of the bootloader.

40

4.2. Signing the Firmware

4.2. Signing the Firmware

The module can authenticate the firmware and verify whether the firmware
is acceptable. The security of our solution is dependent on the private RSA
key. The private RSA keys are never transmitted and can therefore never
be sniffed. The module does not have access to the private RSA keys and
therefore no one that has physical access to the module can extract them
from the module’s memory. We sign every packet that is going to be sent
to the module and store it in a file. The file is then provided to the client.
Since the file has been pre-signed by us, the client has no information about
the private RSA keys.

4.3. FOTA

When the FOTA software is executed by the bootloader it reads the infor-
mation needed for authentication from the EEPROM and starts a connec-
tion timer, the client will have 10 seconds to connection to the module or it
will restart and enter the bootloader. If the client connects to the module
the connection timer is cancelled and another timer is started. This timer
resets every time a new data packet is received. When this is done the
FOTA software enters the authentication handshake which is described in
subsection 3.5.8, page 34. If the authentication fails the module will restart
itself into the bootloader.

However if the authentication is successful, then the client will verify that
the firmware is valid, this part of the program is described in 3.5.9, page
36. If it is a valid firmware the module is ready to receive the firmware,
described in subsection 3.3.3 on page 23. Regardless if the firmware has
been successfully sent or if it has failed, the module will restart and run
the bootloader. This part of the program can be viewed in figure 4.2 on
page 42.

41

4. Result

BOOT LOADER
starts FOTA

Read from EEPROM:

RSA ROOT_KEY
Current Start ionTil

version

Current Key version

A\ 4

Connected with the Client?

connectionTimer expired?
NO /\ NO
—_—
>

YES

> —— Restart Module

Cancel connectionTimer

Start nextPacketTimer

Authentication
Handshake

Authenticated?

NO

Firmware y,
Transmission

Figure 4.2.: A flow chart diagram of FOTA.

42

4.4. Authentication handshake

4.4. Authentication handshake

In figure 4.4 on page 44 you can see our final state machine of the authen-
tication handshake process. The program waits for an Authentication data
packet. If an Authentication data packet has not been received within 10
seconds, the module will exit FOTA by restarting itself. If an Authentica-
tion data packet is received the module will try to verify that the firmware
is from u-blox, as described in subsection 3.5.8 on page 34. Since our so-
lution uses two kind of RSA keys (Master key and Session key) with the
sizes 512 bytes and 128 bytes, our Authentication is designed as in figure
4.3. If the authentication fails the module will send an AUTH_DENY to the
client and restart itself.

Byte Offset
0 | 1 I2 | 3
0 KEY_version
4 N_len E_Len
8 RSA_Session_E
4 Bytes
12 RSA_Session_N
' 128 Bytes
1
1
136
140 Signed HASH (SHA-1 signed with Session Key)
; 128 Bytes
1
264
268 Signed HASH (SHA-1 signed with Master Key)
; 512 Bytes
1
776

Figure 4.3.: Authentication data packet used in our solution.

If the authentication succeeds the module send AUTH_OK to the client.
The module now possesses the Session key which is used for verifying the
received FOTA data packets. Then the module will wait for a First-packet.

43

4. Result

If a First-packet is not received within 1 second, the module will restart
itself and enter the bootloader. If a First-packet is received the module will
verify that the firmware is newer version than the current one. The module
will also check if the firmware is to large for the module. If the firmware is
not a newer one or the length of the firmware is to large, the module will
respond with an AUTH_DENY. If they are correct the module will respond
with an AUTH_OK and erase the old firmware. The module is now ready for

the firmware transmission.

! P < T)
L A . Firmware
' S (| { Transmission

‘Authentication Handshake
Start

Received AUTHENTICATE?

old Firmware from the
- Send an ACK of the

e number received from

the Client.

nextPacketTimer

memory.

Erase the
sequenc

start

Send AUTH_DENY YES

to the Client

nextPacketTimer expired?

i ature of
‘the AUTHENTICATE packet
with public ROOT_KEY

Valid signature?

NO

Extracts the Key version from
the AUTHENTICATE packet

Key version > Current Key version?

NO

Extract the RSA SESSION_KEY

from the AUTHENTICATE packet.

Validate the signature of the
AAUTHENTICATE packet.

Valid signature?

NO

Firmware length > MAX_FW_SIZE?

Extract the length of the
Firmware from the
FIRST_PACKET.

A

Cancel nextPacketTimer.
Validate the signature of

VES

I Firmware version > Current Firmware version?

Extract the Firmware version
from the FIRST_PACKET.

with public SESSION_KEY.

Valid signature?

Send AUTH_OK to the Client.
Start nextPacketTimer

Received FIRST_PACKET?

nextPacketTimer expired?

Figure 4.4.: A flow chart diagram of the authentication handshake.

44

4.5. Firmware transmission

4.5. Firmware transmission

In figure 4.5 on page 46 you can see the final state machine of the module
when firmware is being received. The program waits for the data to start
sending, if it does not receive any new firmware packet within a second the
module restarts.

If it however gets a new packet it evaluates the data packet with the
public Session key to make sure that the packet is valid. If the signature
does not match, then the module breaks the connection and restarts.

If the signature was accepted then the program checks if the incoming
data is really the next data in line by comparing the sequence number with
the ACK number, in case a packet of data has been lost on the way. If
the sequence number is not equal to the ACK number, then the module
asks for the client to re-send the lost data packet. If the packet actually is
the next packet in line, then the program writes the data to the memory
and increments the ACK number and the number of bytes received by the
module with the length of the data.

After that the module asks for the next packet unless the number of
bytes received is equal to the length of the firmware to be downloaded,
because then the firmware is completely downloaded. The program starts
the next packet timer and waits one second for the Master key signed hash
of the entire firmware. If this signature is accepted by the module then
the FOTA program writes the received signed hash of the firmware with
the new Key version and the new Firmware version into the EEPROM and
notifies the client that the update was completed and restarts the module.

45

4. Result

Firmware Transmission
Starts .
____________ R

L Received SEQUENCE Data?

NO

\ NO YES

Restart the module

Send FOTA is done

nextPacketTimer expired?

A

‘Cancel nextPacketTimer.
Validate the signature of
the SEQUENCE Data
with public SESSION_KEY.

to the Client

A

Valid signature?

Write to EEPROM:
/\ YES _| = new HASH of the Firmware

Valid signature?
Y

D ..

YES

YES
Send ACKED number as an
A ACK to the Client.
Start nextPacketTimer.

‘Check the sequence number
in the FOTA_header.
NO

SEQ nbr == ACKED nbr?

. :

nextPacketTimer expired?

* Key Version
* Firmware Version

Calculate the HASH
of the Firmware.
Compare it with the

signed HAS

Received signed HASH
of the Firmware?

Write data to memory.
ACKED nbr += received data YES

length. > P start
nbrOfBytesReceived

+= received data length.
nbrOfBytesReceived == Firmware length

Figure 4.5.: A flow chart diagram of the firmware transmission.

4.6. Size of firmware and performance

The resulting FOTA firmware is 133 kB in size. When updating the
firmware on the module the FOTA firmware has a static erase time of
the memory on 27 seconds. When the memory has been erased the module

has a firmware transmission rate of 5.2 kBps.

46

5 Discussion and conclusions

As this master thesis project came to an end there were still thoughts and
ideas of improvements for the program, that we simply did not have time
to introduce in the program.

47

5. Discussion and conclusions

5.1. Reducing the program size

The goal of the project was to fit the program so that the size was less
than 128 kB. If the size would be less than 128 kB then it would be able
to fit within one sector in the memory. The final project size was 133 kB*
which was a little bit bigger than the goal. The fact that the size got just
a little bit bigger than 128 kB meant that another sector of memory would
have to be used, a sector of 128 kB. This means that 128 kB that could
be used for the application is lost. However, given more time to optimize
the code we believe that the code could easily fit within 128 kB.

5.1.1. Duplicate radio patch

A huge problem with the size is the radio patch file, which is 58 kB in
size. This radio patch is both used by our FOTA code and the application,
which means that there is 58 kB of duplicated code. So instead of having
the duplicated code of the radio patch we suggest that the radio patch
is stored at a specific address in the memory as a function that can be
called. That way you could cut off a huge chunk of data from the FOTA
code and fit the program into 128 kB, which also gives more space for the
application.

5.1.2. Unused HCI code

By taking a thorough look at the HCI event and HCI command handler
which includes several huge switch cases, the compilator can not distinguish
that these events or commands are not called from the radio, hence the
compilator can not optimize these switch cases. Knowing this one can
manually optimize these handlers by removing the events and commands
that will never be used from the switch cases.

5.1.3. CRC

By looking closer at ACL data packets we discovered that these packets
include a CRC, hence the CRC that we implemented in our project is

!The FOTA program’s actual size is 135500 bytes

48

5.2. Using the One Time Programmable memory

redundant since the ACL data packet covers the information we send. Re-
moving the CRC calculations and checks on the module would save a little
bit of memory and process time.

5.2. Using the One Time Programmable memory

The OTP (One Time Programmable) memory is a part of the memory that
can only be written data to once. During the lifetime of the module we
do not want the Master key to be changed so the key is supposed to be
stored in the OTP, however in the current program this is not the case.
The key is stored in the EEPROM of the modules memory in the current
project. The reason for this is because we simply did not want to ruin the
modules memory by writing something into the OTP that later could not
be changed. If however the code would be used in u-blox products later
then the public Master key should be stored in the OTP memory. This
could be done in manufacturing of the module. This is also the reason we
choose a 512 bytes RSA key because the OTP memory is 528 bytes and
the RSA key would have to fit in the OTP.

5.3. SPP stack

An interesting thought about this project is if one would extend the Blue-
tooth stack so that SPP (Serial Port Profile) was used. The reason why
this is interesting is because Android phones use SPP. The project could be
extended so that smart phones are able to connect and update the firmware
on the module if the memory restrictions allow it.

5.4. Security

5.4.1. SHA-1 hash

When we developed the program we did it step by step increasing the
functionality and security of the program as the project progressed. We
started with the SHA-1 hash just to have a hash that could be signed with
RSA. After a while we realized that the most vulnerable part of our data
security solution over the air is our SHA-1 hash. Since the SHA-1 hash

49

5. Discussion and conclusions

is only 20 bytes it is much easier to find malicious code that has hash
collisions with the valid code. This malicious code could then be sent to
the module with the same RSA signed hash and get accepted. According
to BlueKrypt [4], NIST does not recommend the use of SHA-1 for digital
signatures in the year 2015. They recommend using any of the following
SHA hash functions: SHA-224, SHA-256, SHA-384 or SHA-512. So in
order to increase the security of our solution the SHA-1 hash would have
to be switched for a more advanced hash function.

5.4.2. Physical access to the module

The absolute biggest problem with our security is if someone would get
physical access to the module. If one has access to the module’s memory
one can simply replace the public Master key with another public RSA
key. The module would not notice that the Master key has been replaced.
This means that the module will not accept any firmware updates from
u-blox. People can then use the private RSA key to update the module
with firmware that is not intended for the module.

However, if a person has physical access to the module hir? could just
simply erase the whole memory and load it with whatever hir wants.

5.4.3. Encryption of the data

In our project we use RSA keys to sign and verify data. RSA keys can
also be used for encryption of the data. We thought it was a good idea to
encrypt the firmware since anyone could sniff our wireless traffic, but we
did not do it. The reason for this is that the firmwares that u-blox provide
to their modules is not secret, one can simply download binary files from
their homepage. If the firmware is publicly known it does not matter if one
can sniff it.

5.5. Robustness

Another goal of the project was to make the updating program robust,
so that it could recover from a failed firmware update whether it being a
power loss, incorrect firmware or an aborted update. Since the bootloader

2A gender-neutral personal pronoun. Pronunciation: “here”

50

5.6. Performance

starts into FOTA if anything is wrong with the firmware in most cases it
is robust because it can always recover by receiving a new update of the
firmware. However, if the module would receive a power loss in the unlikely
event that it is currently erasing the Key version to write down the new
one. Then the Key version would have the value OxFFFFFFFF, which is
the highest possible value for the Key version to be. There is no way for
the module to accept new firmware. There are ways of covering for this
unlikely event, one way would be to store another copy of the Key version
in another part of the EEPROM, but that would cost more memory.

5.6. Performance

As mentioned in result the firmware transmission rate was 5.2 kBps. This
result might seem a little low but we have to bear in mind that the max-
imum allowed size of the application firmware is 1.625 M B. If a firmware
of maximum size was downloaded to the module then the download would
take approximately 5 minutes and 47 seconds. This includes the 27 seconds
of erasing the memory.

The performance on the time it takes to update the module has never
been a high priority in this project because the modules do usually not
need many firmware upgrades in their lifetime. The most important part
was to make the FOTA firmware fit within reasonable memory size so the
application firmware size was not affected too much.

5.6.1. Increasing the throughput

There are however some ideas on how to increase the throughput of the
data. Our solution sends an ACK for every FOTA data packet it receives.
Instead of reply on every packet the module could use a buffer to store
several packets, like a sliding window used in TCP. The client does not
have to wait for ACKs as often.

The same thing applies for the verification of the data packets. Instead
of signing every packet one can simply sign a bunch of them. There would
be less signatures to be verified, hence more space can be used for the
firmware data in the FOTA data packets.

o1

A List of Acronyms

ACK Acknowledgement

ACL Asynchronous connection-less

CRC Cyclic Redundancy Check

EEPROM Electrically Erasable Programmable Read-Only Memory
FOTA Firmware update Over The Air

HCI Host Controller Interface

L2CAP Logical Link Control and Adaptation Protocol

TCP Transmission Control Protocol

UART Universal Asynchronous Receiver/Transmitter

53

Bibliography

[4]

[5]

Paul C. van Oorchot snd Scott A. Vanstone Alfred J. Menezes. HAND-
BOOK of APPLIED CRYPTOGRAPHY. CRC Press, 1996.

Jennifer Bray and Charles F Sturman. BLUETOOTH 1.1 Connect
Without Cables. Bernard Goodwin, 2001.

Wei Dai. Sha-1. http://oauth.googlecode.com/svn/code/c/
liboauth/src/shal.c.

Damien Giry. Bluekrypt: Cryptographic key length recommendation.
http://www.keylength.com/en/compare/.

Texas Instruments. Hcitester. http://processors.wiki.ti.com/
index.php/LPRF_BLE_HCITester.

95

LUND

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2015-463

http://www.eit.lth.se

	FirmwareUpdateConstrainedEnvironment Anton M_Alexander N.pdf
	Introduction
	Background
	Sectors in the memory
	The Bluetooth stack
	Host Controller Interface, HCI

	Callbacks
	RSA
	Encryption and Decryption
	Signing and Verifying
	In combination

	Methodology
	HCI commands in HCITester
	Master Script
	Slave Script
	Extended Inquiry Master Script
	Extended Inquiry Slave Script

	C Implemention
	Setting up a connection on the module using HCITester
	Making the module visible
	Connecting to the module
	Receiving data on the module
	Sending data from the module
	Disconnecting from the module

	Client connection
	Watchdogs

	FOTA, Firmware update Over The Air
	Communication protocol, FOTA-header
	Client and Server communication
	Updating the firmware
	Erasing old firmware
	Writing data to the memory
	Generating real firmware in binary code
	Sending binary program to the module

	Initiating FOTA

	The Bootloader
	Data security
	Master key
	Representing big numbers in C
	Session key
	Generating the RSA keys
	Message digest function
	Signing
	Verification
	Validation in FOTA
	Validation in the bootloader

	Authentication data packet
	Verifying the firmware

	Result
	Bootloader
	Signing the Firmware
	FOTA
	Authentication handshake
	Firmware transmission
	Size of firmware and performance

	Discussion and conclusions
	Reducing the program size
	Duplicate radio patch
	Unused HCI code
	CRC

	Using the One Time Programmable memory
	SPP stack
	Security
	SHA-1 hash
	Physical access to the module
	Encryption of the data

	Robustness
	Performance
	Increasing the throughput

	List of Acronyms
	Bibliography

