Master’s Thesis

Emulation of TPM on Raspberry Pi

Marcus Sundberg
Erik Nilsson

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, March 2015.

Emulation of TPM on Raspberry Pi

Marcus Sundberg Erik Nilsson
zbt08msulstudent.lu.se fysO7eni@student.lu.se

Department of Electrical and Information Technology
Lund University
Advisor: Martin Hell

March 19, 2015

Printed in Sweden
E-huset, Lund, 2015

Abstract

The Trusted Platform Module (TPM) is a dedicated microprocessor designed
to secure hardware by integrating cryptographic keys into the non-volatile memory
of the module. TPM is specified by the Trusted Computing Group (TCG).

TCG is an initiative started in 2003 by several multinational semiconductor and
IT-companies. The initiative is an effort to develop standards for Trusted Com-
puting where hardware is used to provide security support to software. The TPM
is typically connected to the LPC bus on the motherboard of a PC and can be
used to create and store cryptographic keys, generate random numbers, hash val-
ues and encrypt data.

The purpose of this thesis is to develop a TPM learning environment and a labora-
tory manual for introductory courses in computer security where the students are
able to learn about the functionalities of the TPM as a means to secure hardware.

The functions of the TPM will be emulated on the ARM based single board
computer Raspberry Pi developed by the Raspberry Pi foundation. The TPM
commands will be executed from a PC which will connect to the Raspberry Pi
remotely through TCP.

Several exercises related to TPM and its functionalities are provided as an ap-
pendix to this report. The exercises are intended for students or others interested
in Trusted Computing. This report also provides exercises related to the creation
of TPM applications using TSS (Trusted Computing Software Stack).

Keywords: TPM, Trusted Computing, Raspberry Pi

Acknowledgements

This master thesis was conducted in the Autumn of 2014 at the faculty of Electrical
and Information Technology (EIT) at LTH. We would like to thank Ben Smeets
and Martin Hell at EIT for giving us the opportunity of conducting this thesis
project.

ii

Contents

[1__Introduction| 2
1.1 Trusted Computing| 2

1.2 uestions to be evaluated| L. 3

1.3 Thesis subgoals and approach| 3
[[.4Why use TPM emulation? 4

2 Basic Cryptography| 5
3__Trusted Platform Modulel 10
Bl Whatisa TPMJ 10
B.2 __TPM Architecturel 12
3.3 TPM and cryptographic keys|. 13
3.4 Keycreation| L 17
3.5 ata encryption and decryption| L. 17

18

18

3.8 Communicating with the TPM]. 18
3.9 Developing TPM applications| 22

4 Metho 26
4.1 _Chosen hardwarel 26
B2 Softwarel. 27
[4.3 Evaluating TPM emulators|. 28
[4.4" Running the emulator on Raspberry Pi| 33
[45 ommunicating remotely to Raspberry Pi| 35
4.6 Preparing to create exercises| 35
47 TSSon Raspberry Pi TPM]. 36

b Result 41
[5.1 _Setting up the TPM environment| 41
5.2 etting up the IBM software TPM on Raspberry Pi|. 41
5.3 Building for other platforms|o L. 43
[5.4 Settingup libtpmonclient]. 44
5.5 Setting up TrouderS|o 45

il

[6__Conclusion|
[6.1 Evaluating if thesis goal has been reached|.
[6:2 reating a T earning exercise|
6.3 Tack of documentation]

6.4 Was an expected solution achieved?

6.5 Further development]

|EIEIIOEI’8§II§!

A__Exercises

IB TrouSerS applications|

|C TrouSerS applications|

v

47
47
48
48
49
49

50

53

63

68

List of Figures

[2.1 _ The principle of asymmetric cryptography| 6
E.2 The principle of symmetric cryptography| 7
[2.37 A hash function may be used as a digital fingerprint [I]] 8
[3.1 The TPM installed in a compatible motherboard,|. 10
[3.27 The architecture of the TPM as described by TCG [2[]. 12
[3.3 The Storage Root Key| 15
3.4 The Platform Migratable Key| 16
3.5 eytree examplel Lo 16
[3.6 Architecture of the TCG Software Stack (TSS) [2].|. 19
3.7 Content of the PCR printed in the terminal.| 25
3.8 A list of all the keys loaded in the TPM.| 25

|4.1 A Raspberry Pi Revision B running the IBM software TPM with remote |

accessover TCP/IP] 27
42 The architecture of the ETH TPM Emulator) 29
43 The architecture of the IBM Software TPM [3]] 31
4.4 Result of command tpm_version| 39
5.1 Software TPM running on Windows 8.1} 44

LIST OF FIGURES 1

Glossary

o AIK - Attestation Identity Key

e EK - Endorsement Key

e PCR - Platform Configuration Register

e SRK - Storage Root Key

e TC - Trusted Computing

e TCG - Trusted Computing Group (developed TPM)
e TDDL - TPM Device Driver Library

e TPM - Trusted Platform Module

e TrouSerS - The open-source TCG Software Stack

e TSS - TCG Software Stack

— TPM services provided through the TSS API are:

* FExtend data into the TPM’s PCRs and log these events
* Random Number Generation

RSA encryption and decryption using PKCS v1.5 and OAEP
padding

*

RSA key pair generation
RSA key storage

RSA sign/verify

Seal data to arbitrary PCRs

EEE R

Chapter]_

Introduction

1.1 Trusted Computing

Trusted Computing is a framework for data and network security created by the
Trusted Computing Group (TCG). TCG is a non-profit organization with mem-
bers like IBM, Ericsson, Google, Microsoft, Intel and AMD. TCG was created to
develop standards for Trusted Computing by means of hardware solutions, appli-
cations and services. According to TCG, the term "Trusted Computing" (TC)
refers to applications that leverage hardware-based "roots of trust" at the edge of
the network and at the endpoints - sometimes referred to as "hardware anchors in
a sea of untrusted software" - for higher assurance.

“Hardware anchors in a sea of untrusted software” generally means that hard-
ware is used to provide security support to software for threats that are difficult
to eliminate with software only [4] [5].

The development of the Trusted Platform Module is a step towards Trusted Com-
puting which is a technology developed and promoted by the Trusted Computing
Group. The main purpose of the TPM is to generate cryptographic keys in a se-
cure way. Since the TPM is a dedicated hardware device it provides more security
in doing this than a software-only solution. The TPM could be used by software
to authenticate hardware devices. This makes the TPM a valuable asset when
striving for system security.

1.1.1 Restrictions

TCG has in 2014 released the TPM 2.0 library specification that provides updates
to the previous published TPM main specifications. This thesis restricts the work
to TPM version 1.2. The reason for this is that version 2.0 contains several addi-
tional features that has not yet been implemented in software emulation. In the
near term, it is expected that both TPM 1.2 and TPM 2.0 will be available and
that vendors will provide implementations that support both TPM 1.2 and TPM
2.0.

The key changes of TPM 2.0 as compared to the existing TPM 1.2 specification

Introduction 3

include:

e Support for additional algorithms

e Agility of algorithms for use by geographies or markets that require specific-
use algorithms

e Enhancements to the availability of the TPM to applications
e FEnhanced authorization for improved TPM management

e Additional cryptographic services to enhance the security of platform ser-
vices

When sentences like “TPM supports only asymmetric cryptographic algorithms”
is used in this report, what is really meant is that “TPM version 1.2 supports only
asymmetric cryptographic algorithms”.

1.2 Questions to be evaluated
The following two questions form the heart of this report:

e Could a Raspberry Pi be used as a TPM server?

e Could the user communicate with the TPM remotely in a simple way?

1.3 Thesis subgoals and approach

A four-tier approach was developed in order to reach the intended objectives for
this thesis:

e Evaluate the best suitable TPM emulator to be used in a learning environ-
ment.

o Make the emulator run on the Raspberry Pi single board computer.

e FEnable remote communication to the TPM emulator running on the Rasp-
berry Pi, for example through TCP /IP.

e Create exercises to be used by students in order to introduce Trusted Com-
puting.

The thesis follows these four tiers in order to bring answers to the above questions
and to create a learning environment used as an introduction to Trusted Comput-
ing.

The first step was to evaluate if there already exists any suitable TPM emula-
tors in order not to ‘reinvent the wheel’. If no suitable emulator existed then a
basic TPM emulator may have to be implemented to some extent. The main focus
of the thesis would then be the development of a TPM emulator. However, if an
already existing TPM emulator were to be used, the main focus of the thesis would
be to develop the structure of a TPM learning environment.

4 Introduction

The first step was evaluated simultaneously with the investigation of basic TPM
functionality since knowledge of the TPM are required when evaluating features
of existing TPM emulators.

1.4 Why use TPM emulation?

In order to learn about the functionality of the Trusted Platform Module (TPM)
it is convenient to use software emulation instead of interfacing an actual TPM
attached to the hardware. Software emulation of TPM enables some possibilities
that are not efficient or possible by using hardware. One example would be to
clear the TPM in the case that some application did not work as expected. This
is easily done on a TPM emulator but could cause data loss if done on a hardware
TPM which may be used by other applications.

Code written for a software TPM may be directly used for a hardware TPM. Pro-
gramming for a software TPM gives the advantage of being able to debug and reset
the TPM without affecting the surrounding system. Developing TPM applications
using a software TPM also prevents the developer from getting locked out from
the system if anything should go wrong. These are the main reasons for using a
software TPM when developing and testing applications.

A TPM that is integrated into a laptop or is connected to a PC motherboard is
bound to be used by the specific owner of the system. A TPM is usually shipped
with an Endorsement Key (EK) and a certificate created at manufacturing. When
using a software TPM, the user can create his or her own EK and certificate to
get a better understanding of how the creation of these are performed.

Chapter 2

Basic Cryptography

Some basic cryptographic terms are used in this report. This section contains a
short explanation of asymmetric and symmetric cryptography, and the differences
between them. Certificates, signatures and hash algorithms will also be mentioned.
This report will not go into any deeper detail regarding the inner workings of these
algorithms.

2.0.1 Asymmetric cryptography

In asymmetric cryptography two keys are used, a private key and a public key.
The public key is used to encrypt messages and is available for everyone. The
private key is used to decrypt messages and must only be known to the recipient
of the message. Asymmetric cryptography is like a locked mailbox. Everyone can
write letters and put them in the mailbox (encrypt the letters), but only the owner
of the mailbox key can open the mailbox and receive the mail inside it (the private
key). This principle is illustrated in figure

The keys can also be used to sign and verify digital signatures. Here it should
be noted that an asymmetric key should not be used for both encryption and sign-
ing. When encrypting, the public key is used, whereas when signing, the private
key is used.

One example of asymmetric cryptography is RSA. RSA is the cryptosystem used
in a TPM. In RSA the user picks two large prime numbers and computes N = pq.
Then an exponent e is chosen which satisfies ged(e, (p —1)(¢—1)) = 1. The N and
e is the RSA public key. The private key is the numbers p, q and d where d is
calculated using the formula e * d = 1(mod(p — 1)(¢ — 1)). The prime numbers p
and q should be of size 1024-2048 bits. In a TPM RSA keys are used to encrypt,
sign and store data as well as other keys. Figure illustrates the principle of
asymmetric cryptography.

6 Basic Cryptography

Asymmetric key cryptography

Sender Receiver

Public key Public key

&

Public key

P

Private key

PP

Cleartext Cleartext

d
\ Encryption N Decryption /

Cipthertext

A
v

Figure 2.1: The principle of asymmetric cryptography.

Asymmetric cryptography is typically very slow and should thus not be used to
encrypt large amounts of data. Instead, symmetric cryptography is used for bulk

encryption [6].

2.0.2 Symmetric cryptography

In symmetric cryptography, the key is shared between the parties. That means
that both the encrypter and decrypter must know the secret key. Symmetric cryp-
tography is used to encrypt large amounts of data since the symmetric encryption
algorithms allow for high performance [3].

TPM version 1.2 does not support native symmetric key creation and storage, but
there are ways to store a symmetric key by encrypting it with an RSA key. To take
advantage of the speed of symmetric encryption with the strength of asymmetric
encryption, a symmetric key can be used to encrypt data and an asymmetric key
pair can be used to encrypt the symmetric key. This is called a hybrid encryption

I6].

As will be shown later, a TPM uses a hybrid encryption when binding data. One
or many symmetric keys can be protected (encrypted) by a TPM binding key. The
symmetric keys can then be used by the system to perform symmetric encryption.
The binding key’s responsibility is to keep the symmetric keys safe. Figure
illustrates the principle of symmetric cryptography.

Basic Cryptography 7

Symmetric-key cryptography

Sender Receiver

Exchange key
using a
secure channel
Secret key Secret key

Cleartext l Cleartext

* Encryption

Cipthertext | Decryption /‘

v

-

Figure 2.2: The principle of symmetric cryptography.

2.0.3 Certificate

A digital certificate, or public key certificate, uses a third party called a certificate
authority (CA) which is used to sign the user’s public key with the user informa-
tion. This creates a certificate for the user and his or her public key. Another user
A can now receive the public key and check the certificate if the public key truly
came from user A. If user B trusts the CA then he or she can now trust that the
key truly belongs to user A [3]. In a TPM certificates are used to certificate the
EK so that the user truly knows that the target is a TPM and not a hostile target
that claims to be a TPM in order to receive sensitive information.

2.0.4 Hash functions

A hash function is a function which takes arbitrary length bit strings as input
and produces a fixed length bit string as output. This can be used as a digital
fingerprint to check that data has not been changed. No matter if it is a small
text file or a large application, the output of the hash function will still be of the
same length. The minimum examples of cryptanalytic attacks the hash must be
able to withstand is:

Pre-image resistance: Given a hash h it should be difficult to find any message
m such that h = hash(m).

Second pre-image resistance: Given a message m; it should be difficult to find
another message mgo such that my # mo and hash(m;) = hash(ms).

Collision resistance: It should be difficult to find two different messages m and
ma such that hash(mi) = hash(mz).

This leads to the property that if just a single bit of a large application is changed,
then the entire hash output value will be different. This is called an avalanche

8 Basic Cryptography

effect [3]. Figure illustrates how a hash function is used as a digital fingerprint.
Note how the fingerprint changes completely as the input text varies.

Input Fingerprint
fingerprint

Fox e BT | DFCD3454 BBEAT788A |
The red fox - -
jumps over ﬁpugnecrggl:t —» 008646BB FBTDCBE2 |
the blue dog
The red fox - -
jumps ouer ﬁ?f:ggg':t —»| 8FD87558 78514F32 |
the blue dog
The red fox - -
jumps over ﬁ?f:gt’?g':t —»{ c1304BC6 8FSF75B3 |
the dog blue
The red fox - -
jumps oer ﬁpl?:ggg':t —D' 24C9F62C C3EFBB75 |
the blue dog

Figure 2.3: A hash function may be used as a digital fingerprint [I].

In Trusted Computing, hash functions are used to check the state of e.g. the boot
loader or the BIOS. SHA-1 is the hash function used in TPM 1.2 and the output
of this function is a 160-bit string.

Basic Cryptography 9

2.0.5 Digital Signature

The private key of an RSA key pair can be used to digitally sign data. This
signature can be used to prove that the data has not been changed and that the
signer is in possession of the private key. Signing using RSA is performed by first
hashing the data and then applying RSA to the hash value using the private key.
The public key can then be used to verify the signature. Note that verifying a
digital signature does not prove who actually signed the document but rather that
the signer knows the private key of the RSA key pair. To answer the question of
who really signed the document, the use of digital certificates is needed [6].

Chapter 3

Trusted Platform Module

3.1 Whatisa TPM?

A Trusted Platform Module (TPM) is a microchip that is connected to the moth-
erboard of a computer. The intent of a TPM is to create and store cryptographic
keys, like RSA keys. Many laptops sold today are shipped with a built in TPM,
for example recent versions of HP EliteBook, Dell Latitude, Sony Vaio and Lenovo
ThinkPad [7].

Desktop PC motherboards usually does not come shipped with a TPM, but some
of the more recent motherboards have support for a TPM that can be bought sep-
arately and connected to an onboard TPM connector. The TPM is then enabled
and disabled in BIOS. Figure displays how the actual TPM looks like when
bought separately and when installed.

(a) The TPM chip (b) Installed TPM

Figure 3.1: The TPM installed in a compatible motherboard.

10

Trusted Platform Module 11

This section provides a list over how the Trusted Platform Module have been used
with various hardware and applications:

Apple switching from PPC to x86: In 2006, when Apple changed platform
from the PowerPC to Intel’s x86, they created a software called Rosetta.
Rosetta is an emulator that allowed the user to run older software created
for PowerPC based Apple computers on more recent Intel-based hardware.
To control that Rosetta was only used on Apple’s computers and not on any
other Intel-based PC, Apple used a TPM. If the TPM was not present on
the system, then this proved that the system was not a system created by
Apple, and therefore Rosetta would not work [8] [9].

Intel based Mac for developers: When Apple switched platform from the Pow-
erPC to Intel’s x86, they released development kits for programmers to allow
them to start programming software for the new Mac. This Mac was a reg-
ular PC that could run the new Intel-based Mac OS X. To prevent that the
operating system was installed on regular PCs, the developer Mac used a
TPM which needed to be present on the system to be able to install the new
Intel-based Mac OS X. If this TPM was not present on the system, then it
proved that the PC is not a valid development system and therefore is not
permitted to run the Intel-based Mac OS X [§].

Windows 8 boot process: New laptops shipped with Windows 8 contains a
TPM that is used to protect the user from threats that is activated outside of
the operating system. The operating system is unable to detect and remove
these threats with traditional antivirus software. One of the main function of
the TPM is to measure the components loaded before the operating system,
such as BIOS, kernel, boot loader etc. and to report the result to the user
when the operating system is loaded. Laptops shipped with Windows 8
have an option called Secure Boot enabled by default in the UEFI BIOS.
This means that if the user has not disabled secure boot, then the TPM is
activated on every boot to measure the components loaded on the system
[10).

BitLocker: BitLocker is a drive encryption feature that is created by Microsoft
and can be used on newer versions of Windows. Here a TPM can be used
to provide keys used for the encryption. BitLocker can also use a TPM to
verify the integrity of early boot components and boot configuration data.
This helps ensure that BitLocker makes the encrypted drive accessible only
if those components have not been tampered with and the encrypted drive
is located in the original computer [IT].

Chromebooks: All Chromebooks are shipped with a TPM. The TPM is here
used for various reasons. For example to allow the Chromebook to be shared
between users but still prevent them from being able to see each other’s files.
Each users files is encrypted by the system, and the keys are stored inside
the TPM [12]. The TPM is also used to allow the users to log into the
system while the system is offline. Once the user has logged in for the first
time, a hash of the password is saved and encrypted by using the keys that
are stored inside the TPM. When accessing the system in offline mode, the

12 Trusted Platform Module

TPM can now be used to authenticate the user in order to access the files.
The TPM is also used in the boot process to measure the components loaded
before the Chrome OS starts [13].

These five examples illustrates a few ways of how a TPM can be used in various
security solutions. Apple has used TPMs to prevent their software from being
installed on non-Apple systems. Microsoft and Google uses TPM to detect mali-
cious code that is loaded prior to the operating system and Google also uses TPM
in Chromebooks to authenticate the users and protect their files from each other.

3.2 TPM Architecture

The following figure [3.2] shows the building blocks of a TPM. The TPM mainly
contains hardware support to generate random numbers and to do SHA-1 and
RSA calculations.

Platform
. o q Attestation
Non-Volatile Configuration Identity Key Program

Storage R(epgéﬂ)er (AIK) Code

Communications

Random
Number
Generator

Trusted Platform Module (TPM)

SHA-1 Key RSA Exec
Engine Q| Generation Engine Engine

Figure 3.2: The architecture of the TPM as described by TCG [2].

One block to take special notice of is the Platform Configuration Register (PCR).

3.2.1 Platform Configuration Register (PCR)

PCRs are registers that can store 20-byte hash digests. TPM version 1.2 contains
24 PCRs. The first 8 is for hardware digests and the following 8 is for software
digests. The 20-byte hash digest is created by the SHA-1 hash algorithm, which as
mentioned before creates an output string of a fixed size no matter of how large the
string input was. The TPM creates this kind of hash digests and saves the values
in the 8 first PCRs when booting up the system. If the workstation is powered on
and the TPM calculates different hash digests as those that is saved in the PCRs,
then this proves that the system has been changed and a threat that no anti-virus
software would find has been detected. Checking and saving hash digests of the
boot up process in PCRs is called a trusted boot.

Trusted Platform Module 13

Digests of software can also be recorded in the PCRs. This is useful for soft-
ware attestation i.e. a test of what software has been loaded and as such a test
of the state of the machine. By creating a hash digest of for example a banking
security software and then trying to connect to an online banking service, then
the bank can check the hash digest and see if the software is up to date. If the
software is not up to date the bank is able to check the version and notify the user
that the software needs to be updated.

Hash digests can only be saved in PCRs by the owner of the TPM through a
special TPM command. This command has to be executed on the machine and
cannot be executed remotely [14].

3.3 TPM and cryptographic keys

So far it has been mentioned that a TPM is a microchip connected to the moth-
erboard that can provide cryptographic functions in hardware, and has been used
by multinational companies like Apple, Microsoft and Google. This section will
show in more detail what a TPM actually does.

3.3.1 Types of keys

The TPM can create RSA keys to be used for various purposes. The keys created
by the TPM can be migratable or non-migratable. Migratable keys may be trans-
ferred to another TPM, while non-migratable are locked to the TPM they were
created on. When a parent key is migrated to another TPM all its children keys
get migrated as well. The different types of keys are:

Endorsement Key: The Endorsement Key (EK) is a 2048-bit RSA key pair that
is created during manufacturing of the TPM. This key is the only artifact in
the TPM that can never be removed or changed. Even if the TPM is reset,
the EK remains. The EK is used to identify the TPM as a valid TPM. If a
message is encrypted with the public EK, then the only one able to decrypt
the message is the TPM that contains the private EK. To make sure that
the TPM which the user communicates with is in fact a TPM and not some
hostile system claiming to be a TPM, the manufacturer also includes an EK
certificate [15].

Storage Root Key: When a TPM is activated by the takeownership command
or reset, it creates a key called Storage Root Key (SRK), and lets the user
set a password for the TPM and the SRK. The SRK is a 2048-bit, non-
migratable RSA key. The only way to delete the SRK is to reset the TPM.
The SRK is the root in the TPM key tree, and all the other keys must
be children of the SRK. In a system used by multiple users, it is only the
administrator that owns the SRK [16].

Storage Key: A storage key is a 2048-bit RSA key that is used to encrypt data
and to store other RSA keys. The SRK is one example of a storage key.
Another normal storage key to be created is a platform migratable key.

14 Trusted Platform Module

The platform migratable key is a migratable storage key whose parent key
is the SRK. This key can be used as a parent to all the different user-
migratable keys, so when the platform key is migrated to another TPM, all
users migratable keys is migrated as well. This can be useful for backup-
purposes. In a system with many users, each root for each user can start
with a storage key. For example the user A can create a migratable storage
key that is a child of the platform migratable key, and a non-migratable
storage key that is the child of the SRK. For user B, the same thing is
done. This way all users get their own branches in the key tree structure.
When encrypting data using a storage key the data is encrypted with an
asymmetric cryptographic algorithm, which means that the encryption will
be strong but slow, as mentioned before. It is therefore recommended to
only encrypt small chunks of data using a storage key [17].

Signature Key: The signature key is an RSA key of size 2048-bits or smaller.
This key is only used to sign user data. User data can be signed to validate
that a message from a user in fact is from this specific user. The user uses
his or her private key of the signature to sign the data, and then the receiver
of this data can validate the signature with the public part of the signature
key. If the signature is valid then this proves that it was signed with the
private key. If the user needs to sign TPM data, then Identity keys is used
instead [I8].

Binding Key: The binding key is an RSA key used to store symmetric keys.
As said before, encryption with asymmetric keys is secure but slow, while
encryption with symmetric keys is fast but less secure. To combine the
speed of symmetric encryption with the security of asymmetric encryption,
the data can be encrypted by the system using the symmetric keys stored
by the binding keys [19].

Legacy Key: The Legacy key is an RSA key that can be used for both encryp-
tion and signing. This is however not recommended and therefore it is only
recommended to use legacy keys for backward compatibility with older sys-
tems. For signing use signature keys and for encryption use storage keys or
binding keys [19].

Identity Key: An identity key is a non-migratable signing key that is used to
sign PCRs when doing machine attestation, and to sign other keys as being
non-migratable. The parent key of an identity key must always be the SRK.
The identity key is used to sign certificates for the TPM keys [19].

3.3.2 Key storage

All keys created by a TPM cannot be stored in the TPM. The reason for this
is that a TPM is a small, low cost chip with limited amount of storage, which
means that there must be a secure way to store the keys created by the TPM
outside the chip. This is achieved by using a technique TCG calls secure storage.
Secure storage means that data and the keys may be stored securely on a hard
drive by encrypting the private key of a key pair with another key pair’s public

Trusted Platform Module 15

key, which means that all newly created key pairs must specify another key pair
as their parent. This is achieved by creating a tree structure for the keys|20].

Key hierarchy

The tree structure start with the SRK, the root of the tree. This section illustrates
how a typical tree structure may be designed.

When the user launches the system with the TPM for the first time, the TPM is
activated and the SRK is created. The only way to change the SRK is to reset the
TPM so that a new SRK can be created. The SRK is stored in the non-volatile
memory block in the TPM. Figure [3:3] shows the SRK as the root in the key tree.

SRK
Storage Key
Non-migratable

Figure 3.3: The Storage Root Key

As mentioned earlier the keys can both be migratable and non-migratable. There-
fore it may be a good idea to separate the migratable keys from the non-migratable
keys in the tree.

Between the non-migratable SRK and the different user’s migratable key should
be a migratable storage key accessible by the administrator. The reason for this
is that the administrator can make a backup of the keys, and if for example the
system needs to be updated, then the administrator is able to migrate all the user’s
migratable keys in one go. This key is usually called the platform migratable key
(PMK). The parent key of the PMK can be the SRK, which means that the private
key of the PMK key pair is encrypted in a blob by the SRK public key. See figure
To decrypt a file by using the PMK the private key must first be decrypted
by the SRK which requires the usage secret of the SRK

16 Trusted Platform Module

SRK
Storage Key
Non-migratable

PMK
Storage Key
Migratable

Figure 3.4: The Platform Migratable Key

This part of the tree is controlled by the system administrator. The next part is
controlled by the different users of the system. Each user gets his own branch of
the tree for his migratable and non-migratable key. Figure [3.5]illustrates how the
tree might look when it contains two users.

SRK
Storage Key
Non-migratable

PMK
Storage Key
Migratable
User 1 User 2 User 1 User 2
Storage Key Storage Key Storage Key Storage Key
Migratable Migratable Non-migratable Non-migratable

Figure 3.5: A Keytree example

Figure shows the benefits of storage keys. Since they are used to store other
keys and data, they may be used to create a new branch for each user. This makes
it very easy to add or remove users to the system. When a parent key is deleted
then all its child keys are deleted as well. This means that only two keys needs to
be removed in order to remove a user from the system. The different users can use
these storage keys as parents to their newly created keys. It is not recommended
to make the tree deeper than necessary since the user would have to travel from
the root down to the required key in order to decrypt the data which could be
time consuming if the tree contains many nodes [21].

Trusted Platform Module 17

3.4 Key creation

One of the main purposes of a TPM is to create and store cryptographic keys in
a secure environment. The reason for this is to extend the security by storing for
example private RSA keys in an area where no one except the user is able to reach
them, which is in the TPM hardware. If a user creates a RSA key pair by using
for example OpenSSL, and then uses the public key to encrypt a message, then
the message is kept secret only if the user is able to keep the private key secret.
The keys created by a TPM is stored in a tree structure, which means that all new
keys must connect with an already existing key in the TPM, a so called parent
and child relation. The reason for this was discussed in section 2.5: Key storage.

3.5 Data encryption and decryption

When encrypting data, for example messages and large files, the most effective
algorithm to use is a symmetric-key algorithm. However, the TPM does not sup-
port any symmetric cryptosystems. In order to use symmetric-key algorithms
to encrypt data but still take advantage of the TPM’s secure storage, a hybrid
cryptosystem is used. With a hybrid cryptosystem the speed of symmetric-key
encryption remains without the problem of keeping the encryptin key secret.
The idea is that the user creates a symmetric key and uses this key to encrypt his
data. Then an asymmetric private key is used, in this case a RSA key to encrypt
the symmetric key. When using a TPM to encrypt data there are two encryption
options:

Bind data using a Binding key: Bind data means that the encrypted data is
bound to a specific RSA key. Since the data is bound to the key and not
to the TPM itself, the data may be transferred to any TPM as long as the
key is present. This means that the RSA key can be migratable and can
be backed up. When binding data, the first thing that needs to be done
is to create a symmetric key by using the random number generator built
into the TPM. The next step is to store the symmetric key in a binding
key. The encryption can then be done in software, by using a symmetric
cryptographic algorithm like AES. This is the only realistic alternative if
the user for example is going to back up the hard drive. The TPM has
no cryptographic accelerator capabilities, so doing an encryption of this
magnitude using a TPM would not be efficient.

Seal data using a storage key: Sealing data means that data is encrypted us-
ing RSA encryption. Unlike binding data which is bound to a specific RSA
key, the data is bound to the TPM and the systems configuration when seal-
ing data. In other words, data sealed by one TPM also has to be unsealed
by the same TPM [19].

18 Trusted Platform Module

3.6 Public key signatures

A TPM may also sign messages by using a signature key. This can be used to
authenticate the user since the signing is performed using the private key of the
RSA key pair. A verified signature proves that the verifier has access to the private
key, since only someone with knowledge of the private key could sign the message
with a key that can be verified with the public key.

3.7 Authentication and attestation

The difference between authentication and attestation is [22]:
o Attestation: “What is the state of machine X?”
e Authentication: “Is this machine X?”

It is always important to be able to authenticate the TPM that the user communi-
cates with to be sure that the TPM is not a hostile system claiming to be a TPM.
It can also be important in some situations to know the state of the machine that
contains the TPM. For example a banking service or a game server might only
allow user access if the software is up to date.

There are a few techniques that can be used to perform a machine authentica-
tion and attestation. It can both be done on a high-level using T'SS commands
(more about this later) and on low-level by using only TPM commands. Since this
thesis is about the TPM, the authentication and attestation techniques that will
be shown uses only TPM commands.

Here the authentication can be done by either signing data using a signature
key, or decrypting data using a binding key. The attestation process can be done
by either binding a storage key to a PCR value or quoting a PCR value using an
identity key.

3.8 Communicating with the TPM

There are various ways of communicating with the Trusted Platform Module.
When developing more complex applications it is preferred to use a high-level
function library as oppose to the more limited low-level native commands of the
TPM. The following section describes a common API implementation for devel-
oping high-level TPM applications.

3.8.1 TCG Software Stack (TSS)

When developing programs that use a TPM, the preferred way to communicate
with the TPM is through the TCG Software Stack (TSS). TSS is an API where
the programmer may use different layers depending on what kind of application
that is going to be developed. The TSS architecture is illustrated in figure [3.6]

Trusted Platform Module 19

Application

TSS Service Provider Interface (TSPI
TSS (TSeD

TSS Service Provider (TSP)

l TSS Core Service Interface (TCSI)

TSS Core Services (TCS)

l TSS Device Driver Interface (TSDI)

TPM Device Driver Library
(TDDL)

/dev/tpm User Space

TSS Device Interface

TPM Device Driver Kernel Space
|
[]
TPM Hardware

Figure 3.6: Architecture of the TCG Software Stack (TSS) [2].

When developing for embedded systems where the resources are limited and only
basic TPM functionality is needed then the programmer can communicate with
the TPM through the lowest layer, the TDDL (TCG device driver library). TDDL
provides the user with a low-level API which can be used to run basic TPM func-
tions like creating keys, unseal an encrypted file and calculate SHA-1 values to
name a few. Only TPM functions that are implemented in hardware can be exe-
cuted using TDDL. When communicating with the TPM through the TDDL layer,
the programmer needs to use the TDDL API calls to send and receive TPM data
[23].

Basic TPM commands are useful for low-level applications, but when develop-
ing more complex applications, high-level TPM functionality is typically required.
For example when developing low-level applications the user needs to keep track
of keys in their hierarchies and sessions. By using a high-level API, the user can
let the software handle this instead. It provides the possibility to unload keys
from the TPM when the storage is full [24]. This is where the TSS Core Service
(TCS) is useful. TCS works almost like a software implementation of a TPM
which means that software is used to extend the functionality of a TPM. For ex-
ample it can perform key context swapping to manage the used storage in the
TPM. When communicating with a TPM through the TDDL, the user can only
run one command at the time. With the help of TCS, the system can queue the
TPM commands that are going to be executed from many applications, and also
prioritize the most important TPM commands.

Another benefit of TCS is that the application is not only limited to communicate
with the TPM on the same system as itself, but it can also remotely communicate

20 Trusted Platform Module

with a TPM on another system through the TCP/IP protocol. This is possible by
letting TCS on one system talk to the TCS on the other system. The TCS layer
also converts the API requests into byte streams which can be understood by the
TPM [25].

The top layer is called the TCG Service Provider (TSP). TSP is used to pro-
vide an object-oriented interface to every application on a system that uses a
TPM which makes the code more structured and easier to understand. This is
also useful because now the application can rely more on the TSP to perform most
of the trusted functions provided by the TPM so the programmer can focus on the
rest of the application. TSP also provides dynamic handles that allow for efficient
usage of both the application’s and TSP’s resources. On low-level applications,
this must be done by the user.

Many TPM applications may be used on a system at the same time, and there is
one TSP for each applications. Since calls to the TPM are executed sequentially,
the TCS is used to queue and direct the TPM calls through the TDDL [26] [27].

A company may choose to implement their own TCG Software Stack (TSS) since
the specification is publicly available from TCG. TrouSerS is an open source im-
plementation of the T'SS that may be used by the public according to the Common
Public License (CPL). One of the key objectives of this thesis is to evaluate if the
TSS may be used with an emulated TPM. TrouSerS is the TSS of choice for this
thesis.

3.8.2 TPM commands

This section describes the commands used by the TPM at the lowest level of the
TSS to preform all the functions listed in chapter 3 [22].

Key creation: The TPM can create five types of keys. These keys are created
by using two different TPM commands:

TPM_CreateWrapKey: This command is used to create storage, binding,
signing and legacy keys.

TPM_MakeIdentity: This command is used to create Identity keys.

Loading a key into the TPM: Since the storage is limited in a TPM, the key
is stored on the hard drive and loaded into the TPM when needed. The
command to load a key into a TPM is: TPM_Loadkey.

Evicting a key from the TPM: When the key is not needed anymore in the
TPM, it has to be evicted from the TPM to make room for other keys that
needs to be used. The command to evict a key is: TPM_EvictKey.

Data binding: One particular thing about data binding is that the encryption is
not done by the TPM. Instead the higher layers in the TSS is responsible for
the encryption. Therefore the command for data binding is not TPM_Bind,
but rather: TSS_Bind.

Trusted Platform Module 21

Data unbinding: When unbinding data, the TPM is needed because private
keys are used to decrypt the data, and the private keys is only known by
the TPM. The command to unbind data is: TPM_Unbind.

Data sealing: One difference between data binding and data sealing is that with
data binding the data is bound to a specific TPM key, while with data
sealing the data is sealed to a specific TPM. The data sealing is done by the
TPM, so the command to seal data is: TPM_Seal.

Data unseal: When unsealing data, the user may require the password for the
sealing key and for the data, and the PCR values may have to match. Since
PCR values and password only can be checked by the TPM, the command
to unseal data is: TPM_Unseal.

Signature: The TPM command to sign data is: TPM_Sign.

Authentication: Authentications can either be Signing-based or Decryption-
based. The key used for Signing-based Authentication is a signature key
and the key used for Decryption-based Authentication is a binding key.
The TPM commands that is used is: TPM_Sign or TSS_Bind [2§].

PCR: The command used to write a new 20 bytes digest to a PCR is: TPM_Extend
To calculate SHA-1 hash values and load into the PCRs can also be done
by using the commands:

22 Trusted Platform Module

TPM_SHA1Start
TPM_SHA1Update
TPM_SHA1CompleteExtend

3.9 Developing TPM applications

As mentioned before when developing TPM application, TSS will most often be
used. TCG has released a specification of the TSS and a package with C header
files. It is however up to each vendor to develop their own TSS. One TSS that is
free and open source is TrouSerS as mentioned before.

When writing TPM applications on a high level the TSP layer in the TSS ar-
chitecture is used. This will provide a useful API for easy TPM programming and
make the application responsible for key management, memory usage and error
handling. A simple TrouSerS application typically looks like this [29]:

first.c

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<tss/platform.h>
#include<tss/tss_defines.h>
#include<tss/tss_typedef .h>
#include<tss/tss_structs.h>
#include<tss/tspi.h>
#include<trousers/trousers.h>
#include<tss/tss_error.h>

#define DEBUG 1

// Macro for debug messages

#define DBG(message, tResult) { if (DEBUG) printf("(Line’d, %s) %s returned \
0x%08x. %s.\n",__LINE__ ,__func__ , message, tResult,\

(char *)Trspi_Error_String(tResult));}

int main(int argc, char **argv)
{
TSS_HCONTEXT hContext=0;
TSS_HTPM hTPM = O;
TSS_RESULT result;
TSS_HKEY hSRK = O0;
TSS_HPOLICY hSRKPolicy=0;
TSS_UUID SRK_UUID = TSS_UUID_SRK;
// By default SRK is 20 bytes of 0

Trusted Platform Module 23

// takeownership -z
BYTE wks[20];
memset (wks,0,20) ;
// At the beginning
// Create context and get tpm handle
result =Tspi_Context_Create(&hContext);
DBG("Create a context\n", result);
result=Tspi_Context_Connect (hContext, NULL);
DBG("Connect to TPM\n", result);
result=Tspi_Context_GetTpmObject (hContext, &hTPM);
DBG("Get TPM handle\n", result);
// Get SRK handle
// This operation need SRK secret when you takeownership
// if takeownership -z the SRK is wks by default
result=Tspi_Context_LoadKeyByUUID(
hContext,
TSS_PS_TYPE_SYSTEM,
SRK_UUID,
&hSRK
);
DBG("Get SRK handle\n", result);
result=Tspi_GetPolicyObject (hSRK, TSS_POLICY_USAGE, &hSRKPolicy);
DBG("Get SRK Policy\n", result);
result=Tspi_Policy_SetSecret (hSRKPolicy,TSS_SECRET_MODE_SHA1,20, wks);
DBG("Tspi_Policy_SetSecret\n", result);

// INSERT TPM COMMANDS HERE:

// END OF APP

// Free memory

result = Tspi_Context_FreeMemory(hContext, NULL);
DBG("Tspi Context Free Memory\n", result);

result = Tspi_Context_Close(hContext) ;

DBG("Tspi Context Close\n", result);

return O;

3.9.1 The basic TSPl commands

These are the basic steps that are needed to connect to the TPM. It requires the
TSPI commands:

Tspi_Context_Create: This command tells the TSP to generate a new context
handle for the application. This command must be used since there can
be more TPM application running on the same machine, so this context is
used by TSP to keep track of each application. It also provides functions
for resource management and freeing of memory. The handle to the created

24 Trusted Platform Module

context object is saved in
TSS_HCONTEXT_hContext [30] [31].

Tspi_Context_Connect: This command connects the TSP context to a TCS
provider. The local TCS is represented by Null as seen in the code. If
the TPM is not activated on the system then this command will return
TSS_E_NO_CONNECTION. If the TPM is not activated then it is recommended
to end the program after this command and activate the TPM before exe-
cuting again [32] [33].

Tspi_Context_GetTpmObject: After a TCS connection is made in the command
Tspi_Context_Connect, then this command is used to retrieve a handle to
the TPM object [33].

Tspi_Context_LoadKeyByUUID: This command creates an object of a key and
loads it into the TPM. All information about the key is handled by the TCS.
In the initial step the SRK is loaded into the TPM with this command.

Tspi_GetPolicyObject: This command is used to locate the current authoriza-
tion policy associated with the context [34].

Tspi_Policy_SetSecret: This command is used to create a policy object of the
authorization data (owner password), and returns a handle for this object
[35].

When the TPM is initialised the user may test its functionality by running:
Tspi_TPM_GetRandom: Return a random number of a specified size.

Freeing allocated memory is done with the command: Tspi_Context_FreeMemory
Last command to be used is the command that closes the context: Tspi_Context_Close

The TPM application can easily be compiled with GCC. The command is [29]:
gcc trousersApp -o trousersApp.c -ltspi -Wall

In Appendix B are two examples where the usefulness of T'SS is demonstrated.
The first program will print a list of the PCR content in the terminal. A capture
of this is displayed in figure

Trusted Platform Module

25

The next program, displayed in figure
in the TPM in the terminal [29].

ownloads/programmi
swichblade@swichblade-1015PN: /Downl... X | swichblade@swichblade-1015PN: ~/Deskt... % swichblade@swichblade-1015P!

60000600000000000000000000000000000000000
00
00
00
60000600000000000000000000000000000000000
00
00
00
00
00
00
00
00
00
00
00
00
FEfFFfrfFrfrFFrfrFfrFrrfFFfFFFFfFrFfrffrf
biddiaindisigaiadnndadandaddadaddsanndngd
e frffrffffrffffrffrffff
FEfFFfrfrrfrFrrfFFf P rrfFrfFFFFfFrFrrrffff
FEfFFfrfFrfrFFrfrFfrFrrfFFfFFFFfFrFfrffrf
hindiadndssdnaiadnndadandaadadasdadandndd
00

(Line90, main) Tspi Context Free Memory
returned 0x00000000. Success.
(Line92, main) Tspi Context Close

Figure 3.7: Content of the PCR printed in the terminal.

will print a list of all the keys loaded

015PN: ~/Downloads/programming_with_trousers-master/StartUp
swichblade@swichblade-1015PN: ~/Downl... x | swichblade@swichblade-1015PN: ~/Deskt... x swichblade@swichblade-1015PN:

returned 6x00000000. Success.
(Line92, main) Tspi Context Close
returned @x00000000. Success.

suichblade@swichblade-1015PN:~/Downloads/programming_with_trousers-master/startups ./keyreadz

(Line43, main) Create a context
returned 0x00000000. Success.
(Line45, main) Connect to TPM
returned @x00000000. Success.
(Line47, main) Get TPM handle
returned 0x00000000. Success.
(Line52, main) Get SRK handle
returned @x00000000. Success.
(Line54, main) Get SRK Policy
returned 6x00860000. Success.

(Line56, main) Tspi_Policy_SetSecret

returned ©x00000000. Success.

(Line64, main) Tspi_Context_GetRegisteredKeysByuuID
returned 0x00000000. Success.

Registered key 0:

version 3 oG

: 00000000 0000 0000 00 00 GOOOOOO0O0001
: 60000000 AGOO ©OOA 60 OO HOBEO00O0HSO
YES
vendor data : (@ bytes)

(Line76, main) Tspi Context Free Memory
returned 0x00000000. Success.

(Line78, main) Tspi Context Close
returned 0x00000000. Success.

swichblade@swichblade-1015PN: ~/Downloads/programming_with_trousers-master /startup$ Il

Figure 3.8: A list of all the keys loaded in the TPM.

A list of all TSPI commands can be found at the TSS specification [36].

Chapter 4

Method

4.1 Chosen hardware

4.1.1 Raspberry Pi

Raspberry Pi is a single board computer developed by the Raspberry Pi foun-
dation. It features an ARM CPU running at 700 MHz and 512 MB of RAM.
Combined with its low power usage it makes for an ideal platform to run soft-
ware intended to emulate the Trusted Platform Module. Raspbian Wheezy is
the OS of choice in this thesis. Based on the Debian Linux distribution, it seemed
like the ideal platform for installing and using a software based TPM Emulator on.

The Raspberry Pi was developed to be used in schools to teach students about
computer science and over 2.5 million units have been sold [37].

Combining a well-known device like Raspberry Pi with a relative unknown tech-
nique like the TPM may contribute to the interest in Trusted Computing and
perhaps even inspire students to create new TPM applications by using the result
from this thesis. Raspberry Pi Revision B shown in figure was used in this
thesis.

26

Method 27

Figure 4.1: A Raspberry Pi Revision B running the IBM software
TPM with remote access over TCP/IP.

4.2 Software

A variety of software were used in this thesis in order to test and evaluate TPM
functionality. Some of the most frequently used software are listed here.

Ubuntu 14.04 was the Linux distribution that was used to compile source code
and to test and develop the thesis. However, any version of Ubuntu could have
been used.

Raspbian Wheezy is an operating system developed for Raspberry Pi based
on the Debian "Wheezy" Linux distribution. Raspbian is a popular choice among
the existing operating systems for Raspberry Pi and it uses the same package
manager as the popular Ubuntu Linux distribution which is also based on Debian.
These were the key factors that made Raspbian the operating system of choice for
the TPM on Raspberry Pi solution.

WinSCP 5.5.6 (Windows Secure CoPy) is a SFTP, SCP and FTP client for
Windows that was used to transfer files to and from the Raspberry Pi. This ap-
plication made it easy to transfer files from a PC to the Raspberry Pi through SSH.

PuTTY 0.63 is the serial console that were used on Windows to connect to
the Raspberry Pi through SSH.

VMware Player 7.0.0 has been used in the thesis to virtualize Ubuntu on a
Windows machine. This proved very handy for testing the various TPM emulator

28 Method

features.

4.3 Evaluating TPM emulators

At the start of this thesis there existed two TPM emulators that could be suitable
for use as a learning environment. These two software TPMs were identified as:

e “TPM Emulator” (referred in this report as the ETH TPM Emulator)
e “Software TPM“ by IBM (referred in this report as the IBM software TPM)

The first emulator was created by Mario Strasser at the Department of Computer
Science, Swiss Federal Institute of Technology Zurich (ETH). This emulator had
been released as an open source solution under the license GNU GPL (General
Public License). This emulator was fairly well documented and it seemed to have
been popular among users interested in a software TPM solution as it was linked
to from the TCG website [3§].

The second emulator was created by IBM and is targeted toward application de-
velopment, education, and virtualization. This emulator is provided “as is” with
an open source code.

Appendix C lists the license terms for the IBM software TPM. This emulator was
somewhat less documented than the first emulator but still proved to be relatively
easy to setup and use [3].

431 ETH TPM Emulator

The initial choice fell on the ETH TPM Emulator. This emulator provides full
support for TPM 1.2 and is portable due to its open source implementation. This
solution actually also contains the MTM - Mobile Trusted Module for use in em-
bedded devices. MTM was however not considered in this thesis [39] [40].

During this thesis, the ETH TPM emulator were in revision 0.7.3 and was last
updated in 2011. The figure shows how the ETH TPM emulator engine com-
municates with its surroundings. The compiled ETH TPM Emulator application
runs a daemon in user space that is called tpmd. In order to directly communicate
from an application to the ETH TPM Emulator daemon one needs to load the
kernel module tpmd_dev into the Linux kernel.

The first experiments with the ETH TPM emulator were conducted on Ubuntu
with full system access. The source code for the ETH TPM Emulator was down-
loaded and compiled without any major problems. It took a while in order to
figure out how the emulator actually worked and how it was supposed to respond
when interfaced with.

The first experience of running actual TPM commands was through the TPM

Method 29

Crypto Module < > Application
o)
=
o
TPM Emulator
Engine < tddl
A

tpmd_dev

Figure 4.2: The architecture of the ETH TPM Emulator.

Device Driver Library (TDDL). A test application that utilized TDDL was in-
cluded in the ETH TPM Emulator source code tree. This application allowed the
user to open a connection to the simulated TPM device and send low-level TPM
commands.

The ETH TPM Emulator provided the test application test_tddl for testing
of low-level commands to the ETH TPM Emulator engine. The TDDL interface is
the standard interface that applications use for communicating directly with the
TPM. This interface is part of the T'SS library and is in fact used by the TSS stack
to talk to the TPM. Although this interface is available for use by applications,
its direct use is typically best avoided [40].

Test of the ETH TPM emulator by running the TPM_GetCapability command:

// TPM_GetCapability command:
BYTE getcapability[] =

{
0, 0xC1, // TPM_TAG_RQU_COMMAND
0, 0, 0, 18, // blob length, bytes
0, 0, 0, 101, // TPM_ORD_GetCapability
o, 0, 0, 6, // TCP_CAP_VERSION
0, 0, 0, 0 // no sub capability

}

If the ETH TPM emulator daemon is running, the test application could be used
to test various TDDL commands. The result of the TPM_GetCapability command
is displayed below. The ETH TPM emulator responds with a result string of as
many bytes as the command.

30 Method

pi@raspberrypi ~/tpm/tpm_emulator-0.7.3/build/tddl $ sudo ./test_tddl

Transmit: 00 c1 00 00 00 12 00 00 00 65 00 00 00 06 00 00 00 OO
Result: 00 c4 00 00 00 12 00 00 00 00 00 OO0 00 04 01 01 00 00

Success, Bye!

pi@raspberrypi ~/tpm/tpm_emulator-0.7.3/build/tddl $

The output of a test_tddl application written to test TDDL [41I]. An install
script was written in order to automate the download and compilation process.
This made it easy to build and install the emulator on a Debian system.

A simple install script for the ETH TPM Emulator:

installTPMEmulator.sh

#!/bin/bash

required stuff
#apt-get install cmake libgmp3-dev

versions
export TPM_V=tpm_emulator-0.7.3

install path
export TPM_INSTALL_PATH=/...

cd $TPM_INSTALL_PATH
mkdir $TPM_V
cd $TPM_V

download and extract
wget http://sourceforge.net/projects/tpm-emulator.berlios/files/$TPM_V.tar.gz
tar -zxvf $TPM_V.tar.gz

build

cd $TPM_V
mkdir build
cd build
cmake ../
make

make install

Method 31

clean up
cd ../..
find . -name "

4.3.2 Software TPM by IBM

Another interesting solution for emulating the Trusted Platform Module is the
IBM software TPM. The following description is derived from the website of the
IBM software TPM [3].

The IBM software TPM is targeted toward application development, education,
and virtualisation. The intent is that an application can be developed using the
software TPM and then run on a hardware TPM.

Some advantages of this approach:

e In contrast to a hardware TPM, the emulator runs on many platforms and
is generally faster.

e Application errors are easily reversed by simply removing the TPM state
and starting over.

e The debugging abilities as well as the supporting TPM demonstration util-
ities helps to understand how a TPM works.

Host Programs TCP/IP TPMs

IBM Command
Line Utilities Software TPM
libtpm
TCG Test Suite - = Software TPM

/dev/tpm0
or tddl.dll
TSS o i
!] Windows or
Te,s t ! TSS Linux Proxy
Suite b

Figure 4.3: The architecture of the IBM Software TPM [3].

32 Method

Software TPM modules

The IBM software TPM package contains four modules for use with TPM devel-
opment and testing as displayed in the IBM software TPM architecture figure [1.3]
These modules are [3]:

e Software TPM
— Current to TPM 1.2 revision 116 with updates to 117
e libtpm

— libtpm supports the Utilities. It compiles to a shared object or DLL.
It provides a low-level API to TPM command ordinals.

e Utilities

— Utilities is a number of command line programs. Each typically maps
directly to TPM command ordinals, but some support authorization
session setup or context saving.

e TPM Proxy

— The TPM Proxy acts on one side as a TCP/IP socket server and on
the other side as an interface to the TPM device driver. It passes
commands from the socket to the device driver and passes responses
from the device driver to the socket.

This description seemed to fit the purpose of this thesis well. The IBM software
TPM uses TCP/IP sockets as a communication interface. In practice this would
mean that this emulator was ready to establish a connection between two systems,
one running the actual emulator and the other running the communicating appli-
cation [42].

The build and install process for the IBM software TPM is very straightforward,
just download, extract and compile using the appropriate make file.

The following is a simple install script for the IBM software TPM.

installIBMEmulator.sh

#!/bin/bash

required stuff
#apt-get install libtool automake libssl-dev openssl

versions
export TPM_V=tpm4720

install path
export TPM_INSTALL_PATH=/...

Method 33

cd $TPM_INSTALL_PATH
mkdir $TPM_V
cd $TPM_V

download and extract
wget -c http://downloads.sourceforge.net/project/ibmswtpm/$TPM_V.tar.gz
tar -zxvf $TPM_V.tar.gz

build

cd tpm

make --file=makefile-ts
cd ../libtpm

./autogen

./configure

make

clean up

cd ..

find . -name "

set env vars

export TPM_PATH=$TPM_INSTALL_PATH/$TPM_V/tpm
export TPM_PORT=6543

Since the ETH TPM Emulator seemed to be the most well documented emulator
and it acted like an actual TPM due to the kernel module the decision was made
that this emulator would be the primary choice. Information were found on how
to use the emulator together with the open source TSS TrouSerS which made the
emulator even more interesting.

The ETH TPM Emulator had to be used with root access and was somewhat
difficult to debug. The ETH TPM Emulator could however be reconstructed from
a daemon application to a more basic foreground application. This would make
the debugging of the source code easier since the application would simply stop
executing at the exact point of the occurred error. No further research were made
on this since focus was changed to the IBM software TPM.

4.4 Running the emulator on Raspberry Pi

The following section describes efforts and problems that were encountered when
trying to make the TPM emulators run on Raspberry Pi.

441 ETH TPM Emulator

In order to install all components of the ETH TPM Emulator on any system, root
access is needed. This caused some concern for using the ETH TPM Emulator

34 Method

in an educational environment. On the Raspberry Pi this caused no major issues
since root access is given just by typing sudo (without any password) on the de-
fault Raspbian Wheezy installation.

The ETH TPM Emulator was successfully run on the Raspberry Pi. Low-level
TPM commands were tested through the provided TDDL test application.

However there were some issues when trying to establish communication between
applications and the TPM Emulator engine. The main reason for these problems
were the fact that efforts to build and initialise the tmpd_dev kernel module on
Raspbian proved to be fruitless. The error was traced to conflicting versions of the
Linux headers used to compile the module. Despite efforts to build the seemingly
correct Linux headers for Raspbian the tmpd_dev module could not be probed on
Raspbian. This problem made it difficult to test the communication between an
application and the TPM emulator engine.

pi@raspberrypi

~/tpm/tpm_emulator-0.7.3/build/tpmd_dev/Linux $ sudo modprobe tpmd_dev
ERROR: could not insert ’tpmd_dev’: Exec format error

pi@raspberrypi

~/tpm/tpm_emulator-0.7.3/build/tpmd_dev/linux $ dmesg [tail -n 1
[171963.273854] tpmd_dev: disagrees about version of symbol module_layout

When the ETH TPM Emulator did not work on Raspbian, further attempts were
made to try it on another Raspberry Pi Linux distribution. Efforts were made to
build Gentoo for Raspberry Pi, however it proved to be somewhat time consuming.
When Gentoo was up and running the ETH TPM Emulator could be installed by
using the Gentoo package manager Portage. The ETH TPM Emulator was marked
as masked which means that the package had been blocked for installations and
had to be unmasked in order to be installed. After this was done, the ETH TPM
Emulator, TPM-tools, OpenSSL and TrouSerS were installed.

However the ETH TPM Emulator did not work at all on Gentoo. The kernel
module tpmd_dev could be loaded using modprobe, but no TPM command could
be executed. Not even the provided test applications worked. The error messages
given by the ETH TPM Emulator did not give any clues on how to solve the prob-
lem. When changing to the IBM software TPM there was no difficulty to compile
and run the emulator.

4.42 Software TPM by IBM

The Software TPM by IBM was built and installed on Raspbian without any
problems. Since the Software TPM by IBM had built-in support for network

Method 35

communication and did not need system root access it was considered to be the
primary choice of TPM emulator for this thesis.

4.5 Communicating remotely to Raspberry Pi

These options were investigated in order to communicate with the TPM environ-
ment running on the Raspberry Pi:

e Remotely (no physical connection)

e Using a network cable between Raspberry Pi and workstation to communi-
cate through LAN.

e Using a USB cable between Raspberry Pi and workstation to enable serial
communication.

o Websockets

e Other solutions like SSH or CGI.

None of these options where considered efficient when using the ETH TPM Emu-
lator that did not provide any built-in network communication. However, by using
the Software TPM by IBM, these problems were eliminated. The Software TPM
by IBM provided native TCP/IP network communication which made it easy to
establish a connection between the emulator running on the Raspberry Pi and the
host computer. All focus was hereby shifted to the Software TPM by IBM.

4.6 Preparing to create exercises

A goal of this thesis is to provide an easy and effective way of giving students a
clear overview of the Trusted Platform Module and its applications without having
to dive too deep into technicalities. This means giving the students the oppor-
tunity to write their own TPM applications by using a high-level API. The IBM
software TPM came bundled with a set of command line utilities that could be
used to demonstrate various TPM commands.

These utilities demonstrated how to do all basic TPM tasks like key creation, key
loading, key evicting, PCR writing and reading, data binding and sealing to name
a few. The developer of the IBM software TPM, Kenneth Goldman also confirmed
through mail correspondence that these utilities may be used for educational pur-
poses when no C programming was desired.

The demo command line utilities were used when creating the lab manual in order
to allow users of different TPM and programming knowledge to use them. For
a deeper understanding of how a TPM works, these exercises can be used as an
overview of a TPM before diving deeper into its functionality.

36 Method

4.7 TSS on Raspberry Pi TPM

When the IBM software TPM was functional on the Raspberry Pi, focus was
shifted to testing the TCG Software Stack (TSS). TrouSerS (The open-source
TCG Software Stack) is an open source implementation of TSS. This solution
seemed to be most suitable for this thesis since it is fairly well documented. The
next step was to investigate if the IBM software TPM supported TrouSerS.

By looking in the installation instructions it was evident that the IBM software
TPM and TrouSerS can be used together since the installation package contained
descriptions on how to setup TrouSerS. The IBM software TPM website also pro-
vided a description on how to setup TrouSerS. One problem was that the install
file instructions and the website provided different settings. While the install file
instructions described the setup steps as:

Examples - varies with TrouSerS install path
> export LD_LIBRARY_PATH=/root/trousers-0.3.1/src/tspi/.libs

Add to /usr/local/etc/tcsd.conf:

remote_ops = seal,unseal,registerkey,unregisterkey,loadkey,createkey,sign,
random,getcapability,unbind,quote,readpubek,getregisteredkeybypublicinfo,
getpubkey,selftest

Must be owner/group/mode tss/tss/0600
> export TESTSUITE_OWNER_SECRET="ownerAuth"

> export TESTSUITE_SRK_SECRET="srkAuth"

> /root/trousers-0.3.1/src/tcsd/tcsd -f > tss.log 2>&1
> ./tpmbios

> ./createek

> ./takeown -pwdo ownerAuth -pwds srkAuth

./tsstests.sh -v 1.2 &> logfile

The IBM software TPM website described the steps like this [3]:

Begin provisioning the TPM using the SW TPM utilities as per the INSTALL
instructions.
Additional steps are required if the TPM is disabled or deactivated.

> tpmbios (each time the TPM is started)
> createek (only required once)

> ./nv_definespace -in ffffffff -sz 0 (only required once)

DO NOT take ownership using the SW TPM utilities.

Method 37

Running tcsd:
Set the environment variable TCSD_TCP_DEVICE_PORT to match the TPM’s
TPM_PORT socket number. As root:

/usr/sbin/tcsd -e -f

Different approaches had to be tested since the instructions did not match. The
instructions provided in the installation package did not work. The problem is due
to the fact that the IBM software TPM runs on another machine where TrouSerS
can’t find it. The error message states TCSD ERROR: Could not find a device
to open!

The other approach found on the website was then tested, but to no avail. The
IBM software TPM needed to be cleared since the instructions states that no
ownership should be taken by using the software TPM tools. According to this in-
struction the environment variable TCSD_TCP_DEVICE_PORT should be set to match
the environment variable TPM_PORT. Therefore this was set to port number 6543
which is the same as TPM_PORT.

Next step was to run the command tcsd -e -f with full system access. When
executing tcsd this time, the option -e was used in order to establish a connection
to the IBM software TPM through TCP.

TrouSerS needs to know the location of the IBM software TPM in order to be able
to execute. These settings are enabled in /usr/local/etc/tcsd.conf:

remote_ops=seal,unseal,registerkey,unregisterkey,loadkey,createkey,
sign,random,getcapabiliy,unbind,quote,readpubek,
getregisteredkeybypublicinfo,getpubkey,selftest

The environment variable TCSD_TCP_DEVICE_PORT has to be set since this tells
TrouSerS at which port the TPM will listen to for commands. The option -e also
has to be set when executing tcsd since this tells TrouSerS that the connection
to the TPM is going to be made over TCP.

Since it could not be found how the TPM destination is specified, the next step
was to try to get TrouSerS to communicate with the TPM when it runs locally
on the PC. When the software TPM is started and communication is established,
the next step is to connect TrouSerS to the TPM. Since the port 6543 is used
for communication over TCP by the TPM, it is this port number the variable
TCSD_TCP_DEVICE_PORT is set to. The communication still did not work which
raised the question about additional missing settings.

38 Method

Here several different approaches were tested. From recompiling the TPM with a
different makefile, to trying different versions of TrouSerS and changing configu-
rations in tcsd.conf, but to no avail. After some additional searching, this text
was found in TrouSerS README [43]:

README. txt

If you’re attempting to make the TCS Core Services daemon communicate
with a softwware TPM through TCP, you must call it using the -e option.

/usr/local/sbin/tcsd -e

The default values for hostname, port and UN socket device path are
"localhost", "6545" and "/var/run/tpm/tpmd_socket:0". It will search
for the IN socket device, then for an UN socket one, and then for the
real TPM in this order. The default values match with the current open
source project required values, if for instance case you need to set
values of your choice, the environment variables for them are
TCSD_TCP_DEVICE_HOSTNAME, TCSD_TCP_DEVICE_PORT if using an IN socket
and TCSD_UN_SOCKET_DEVICE_PATH if running an UN socket.

This reveals two useful settings. The variable TCSD_TCP_DEVICE_PORT is set to
6545 by default and the environment variable called TCSD_TCP_DEVICE_HOSTNAME
specifies the TPM location. This is set to localhost by default which refers to
the current machine TrouSerS is used on.

Here it was suspected that TrouSerS for some reason does not check the new
value of TCSD_TCP_DEVICE_PORT and instead sets it to its default value which
is 6545. To try this theory the software TPM was initialised with environment
variables TPM_PORT and TPM_SERVER_PORT set to 6545. This time when executing
TrouSerS with the command sudo tcsd -e -f it worked to start the tcsd server.

To see if TPM commands could be sent to the TrouSerS the commands that is
included with tpm_tools were tried. The command tpm_version outputs:

This indicates that it received information from the TPM. Now when it was pos-
sible to use TrouSerS with the software TPM locally, the next task would be to
connect to a TPM from another machine other than the one where TrouSerS is
installed.

Now the problem remained that TrouSerS does not check the environment vari-
ables

TCSD_TCP_DEVICE_PORT and TCSD_TCP_DEVICE_HOSTNAME. This could be tested
by declare some random values like:

export TCSD_TCP_DEVICE_PORT=777

Method 39

swichblade@swichblade-1015PN: ~/Desktop/tpm4720/libtpm/utils = B W) 14143 %

x

ichblade-1015PN: p/tpma720/libtpm/utils % | swichblade@swichblade-1015PN: ~/Desktop,/tpma720/libtpm/utils
swichblade@swichblade-1815PN: ~/Desktop,/ tpma726/libtpm/utils$ tpm_version
rsion Info:
2 1.2.18.112
2

3 3

TPM Vendor ID: BM

TPM Version: 01016000

Manufacturer Info: 49424doe
swichblade@swichblade-1015PN:~/Desktop/tpm4720/libtpm/utilsS l

Figure 4.4: Result of command tpm_version

export TCSD_TCP_DEVICE_HOSTNAME=192.168.1.77
(Note that this IP-address is different from the PC and the Raspberry Pi.)

When executing tcsd with these values, TrouSerS still did connect to the TPM
locally through port 6545. The next step was to examine why TrouSerS did not
read these values and to figure out if there is any other way to specify the desti-
nation address. When searching the source code in tddl.c the following code was
found:

tddl.c

if (getenv("TCSD_USE_TCP_DEVICE")) {

if ((tcp_device_hostname =

getenv ("TCSD_TCP_DEVICE_HOSTNAME")) == NULL)
tcp_device_hostname = "localhost";

if ((un_socket_device_path =

getenv ("TCSD_UN_SOCKET_DEVICE_PATH")) == NULL)
un_socket_device_path = "/var/run/tpm/tpmd_socket:0";

if ((tcp_device_port_string =

getenv ("TCSD_TCP_DEVICE_PORT")) != NULL)
tcp_device_port = atoi(tcp_device_port_string);

else
tcp_device_port = 6545;

This means that there is a fourth environment variable called TCSD_USE_TCP_DEVICE
that can be set. However setting this variable did not solve the problem.

After many attempts, the problem with setting the environment variables per-
sisted. The last attempt to make TrouSerS communicate with the software TPM

40 Method

was to simply hard code the port and destination into the source code. Therefore,
the variable

tcp_device_hostname = "localhost" was changed to tcp_device_hostname =
"192.168.1.160" which was the IP addressed allocated to the Raspberry Pi and
the port number remained the default. When recompiling the source code with
this modification the communication between the software TPM and TrouSerS
worked. This is not the optimal solution, but it works and was therefore used.

This shows that it is possible to have TrouSerS communicating with the Soft-
ware TPM by IBM through TCP, allowing a learning environment with e.g., a
Raspberry Pi being used as a TPM emulator. Also developers can take advantage
of this when developing TPM applications using T'SS.

Chapter 5

Result

5.1 Setting up the TPM environment

The IBM software TPM emulator was chosen for this thesis because it is easy to
use, requires no root access and has built in support for TCP/IP communication.
Since this thesis is supposed to be used in an educational environment it is imper-
ative that the students are able to start, stop and reset the TPM without the risk
of deleting important data.

5.2 Setting up the IBM software TPM on Raspberry Pi

Since the Raspberry Pi runs on a different hardware architecture than a PC (ARM
for Raspberry Pi and x86 for PC), there are two choices when compiling the emu-
lator. The emulator can be compiled natively or it can be cross-compiled. When
compiling natively the source code is compiled on the target platform. This is a
straightforward way to compile source code since the toolchain is installed on the
target platform, however the compile time will most likely increase on a CPU-weak
platform like the Raspberry Pi.

The other alternative is cross-compiling. Cross-compiling describes the practice
of building binaries for a target hardware platform on another platform. In order
to do this, a tool-chain is required on the compiling platform. Such a toolchain
exists for the Raspberry Pi and the following code illustrates how to build by using
cross-compilation:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- [39]

Since the software TPM is a small application the source code was compiled na-
tively on the Raspberry Pi during this thesis.

The IBM software TPM contains three folders: libtpm, tpm, and tpm_proxy.
The folder tpm contains the TPM emulator, the 1ibtpm contains the TPM com-
mands and tpm_proxy contains proxies which can be used to connect a TCP/IP
based TPM interface to a hardware TPM device driver. This will not be needed
in this project. On Raspberry Pi, the content of the folder tpm is needed. Since

41

42 Result

the Raspberry Pi Linux distribution is running from an SD card the easiest way
to copy the tpm folder to the card is by inserting the SD card in a PC with a card
reader. A suitable place to copy the folder is for example to /home/pi

A software that can do cryptographic operations needs to be installed on Rasp-
berry Pi before the TPM emulator can be compiled. The supported software is
either OpenSSL or FreeBL. In this thesis OpenSSL was used, which can be in-
stalled on Raspberry Pi with the command:

sudo apt-get install openssl 1libssl1.0.0

Five makefiles with various options are provided:

makefile-tpm (standard TPM)

makefile-en-ac (TPM activated by default)

makefile-ts (TPM with TPM_Init disabled for TCG test suite)
makefile-freebl (TPM using the FreeBL crypto library)

AN A

makefile-freebl-ts (TPM using the FreeBL crypto library with TPM_Init
disabled for TCG test suite)

In this thesis, the second option is used. Now the source code can be compiled by
running make. This creates the binary tpm_server which starts the TPM emula-
tor.

The last thing to do before the TPM emulator can be executed is to set two
environment variables. Environment variables allows the user to specify strings
that will be available to all applications. The strings can be locations of files or
IP-addresses etc [44].

The environment variables that the TPM emulator will look for is called TPM_PATH
and TPM_PORT. The TPM_PATH contains the location to the folder where the TPM
non-volatile data will be saved, which means data that is saved even when the de-
vice is powered off. The TPM_PORT defines the port number where the TPM server
will listen for commands when used over TCP. These two environment variables
are set with the command:

Result 43

export TPM_PATH=/home/pi/tpm_trousers/NV_Storage
export TPM_PORT=6545

This means that the location of the NV-data is /home/pi/tpm_trousers/NV_Storage,
and the port 6545 will be used to send TPM commands. To set these environment
variables on every Raspberry Pi reboot, a script file called tpm. sh was created and
placed in the location /etc/profile.d/

These environment variables with these values will be set on each startup. Now
the tpm_server can be executed by writing ./tpm_server and no root access is
required.

5.3 Building for other platforms

Both TPM emulators were developed to be quite portable. This was a handy fea-
ture since the user probably will use different platforms. To test the portability of
the Software TPM by IBM once it was selected as the emulator of choice for this
thesis it was built for Windows as well. In order to compile the source code for
Windows, MinGW (Minimalist GNU for Windows) was used. The Win32 port of
OpenSSL v1.0.1i was also needed. The correct path to the compiler and OpenSSL
were set in the makefiles, after that the Software TPM and the demonstration
utilities compiled without any problems. The IBM software TPM on Windows
was tested by running the included test programs from another system running in
VirtualBox. It worked without any problems. Figure shows the running TPM
emulator on Windows 8.1.

A simple Windows batch file for easy initialization of software TPM is shown
below.

Qecho off
title TPM SERVER

setx TPM_PATH "C:\PATH_TO_EXECUTABLE"
setx TPM_PORT "6543"

rm 00.permall
tpm_server.exe

44 Result

= TPM SERVER - o IEN|

Figure 5.1: Software TPM running on Windows 8.1

5.4 Setting up libtpm on client

With the TPM emulator running on Raspberry Pi the next step is to be able to
communicate with it remotely through TCP. The functions needed for this task
are located in the libtpm folder. The various build scripts are presented here.

comp-sockets.sh TCP/IP socket interface, standard TPM
comp-chardev.sh character device interface, standard TPM
comp-serialp.sh character device interface, TPM on serial port

comp-unixio.sh Unix domain socket interface, standard TPM

comp-sockets.sh is chosen by default and is the one that will be needed for this
thesis. To build these tools the following commands is used:

./autogen
./configure
make

This fills the folder 1ibtpm/utils with binaries that represents the TPM com-
mands. Some examples are:

createkey
loadkey
evictkey
listkeys
createek
listpubek

The use of these binaries are self-explanatory. Some preparations are necessary in
order to be able to send these commands to the TPM emulator.

Result 45

The environment variables called TPM_SERVER_NAME and TPM_SERVER_PORT needs
to be set:

export TPM_SERVER_NAME=192.168.1.160
export TPM_SERVER_PORT=6545

TPM_SERVER_NAME is used to specify the location of the TPM emulator i.e the
IP address of Raspberry Pi.

TPM_SERVER_PORT specifies the port which the command will be sent through.
This port number must be the same as TPM_PORT.

After these environment variables are set the communication with the TPM emula-
tor can be established. Every time the TPM emulator is started on Raspberry Pi,
the program tpmbios must be executed on the PC with the command ./tpmbios,
which is located in libtpm/utils. This simulates the startup process for the TPM
and makes the TPM emulator operational.

Note that no EK has been created. This is the first thing that needs to be done

when using the TPM emulator for the first time. This is done with the command:
./createek

5.5 Setting up TrouSerS

TrouSerS may be downloaded either directly from SourceForge or by a package
manager on a Linux system. For Debian based distributions use:

sudo apt-get install trousers

If TrouSerS is downloaded from SourceForge then it has to be compiled and in-
stalled. This is done with the following commands:

sh bootstrap.sh

./configure -enable-debug

make

sudo make install

When setting up TrouSerS, the first step is to add the line:
remote_ops = seal,unseal,registerkey,unregisterkey,loadkey,
createkey,sign,random,getcapability,unbind,quote,readpubek,
getregisteredkeybypublicinfo,getpubkey,selftest

in /usr/local/etc/tcsd.conf

Next step is to initialise the environment variables. Since TrouSerS will communi-

46 Result

cate with the TPM over TCP, the environment variables TCSD_USE_TCP_DEVICE,
TCSD_TCP_DEVICE_PORT and TCSD_TCP_DEVICE_HOSTNAME will be used.

export TCSD_USE_TCP_DEVICE=true

export TCSD_TCP_DEVICE_PORT=6545 (default port)

export TCSD_TCP_DEVICE_HOSTNAME=192.168.1.160 (default IP for Raspberry
Pi)

Now tcsd can be executed using the command sudo /usr/local/sbin/tcsd -e
-f. If tcsd is started then a message that it waits for connections will be shown.

To test if the communication with the TPM works one may try the command
tpm_version from the package tpm-tools. The next step is to run the command
tpm_takeown to take ownership over the TPM. This command is also included in
tpm-tools so it can be used by just writing tpm_takeown in the terminal. Here
the user has to set both owner password and SRK password. Now the user controls
the TPM and is able to create and execute TPM applications.

56 Test TrouSerS with the IBM software TPM

The user should now have a Raspberry Pi with the software TPM running and
the following environment variables initialised.

TPM_PATH=/home/pi/tpm_trousers/NV_Storage
TPM_PORT=6545

The server is started with the command ./tpm_server.

The user should have the IBM TPM utils and TrouSerS installed.
The user should have set the environment variables

TPM_SERVER_NAME=192.168.1.160
TPM_SERVER_PORT=6545

and the IP address to the Raspberry Pi and the port number used to send infor-
mation should be set in the TrouSerS source code. The IBM TPM utils command
that always needs to be executed is ./tpmbios. If no EK has been created it
should be created with the command ./createek

TrouSerS should be executed with the command sudo tcsd -e -f.
The user can now take ownership of the TPM with the command tpm_takeown
-z -y. This will set a default, well known password to the owner and to the SRK.

Chapter 6

Conclusion

6.1 Evaluating if thesis goal has been reached
The questions to be answered by this thesis project could be summarized as:

e Can a Raspberry Pi be used as a TPM server?

e Can the user communicate with the TPM environment remotely?

The first choice of TPM emulator used in this thesis was the ETH TPM Emulator.
This emulator was successfully run on the Raspberry Pi and the low-level TPM
commands were tested through the provided TDDL test app.

With this emulator there were some problems to establish communication between
applications and the TPM Emulator engine. The main reason for these problems
originated from the fact that the tmpd_dev kernel module could not be compiled
on Raspbian due to conflicting versions of the Linux headers used to compile the
module. Despite efforts to build the seemingly correct Linux headers for Raspbian
the tmpd_dev module could not be probed.

The emulator chosen for this thesis was the IBM software TPM. Even if this
emulator was designed in a different way than the ETH TPM Emulator found
on the TCG website it turned out to have all features required for this project.
First of all it was designed to run as a server/client, where the server is the TPM
emulator and the client is the user. Secondly it could be used without root access
which is more suitable for an educational environment. Building the IBM software
TPM for Raspbian was unproblematic. The Raspberry Pi could hence be used to
run a TPM server.

The second task was to investigate if the user could communicate with the TPM
remotely. Communicating with the TPM directly is however not recommended.
The correct way for a user to communicate with a TPM is through the TCG
Software Stack (T'SS). In this thesis the open source TSS implementation called
TrouSerS were used. These are the TPM communication subtask questions:

e Is the user able to communicate with the TPM environment remotely by
using the TPM emulator?

47

43 Conclusion

e Is the user able communicate with the TPM environment remotely by using
TrouSerS?

The IBM software TPM contained a folder containing a set of demo command
line utilities which according to the documentation could be built to communi-
cate with the TPM emulator over TCP. This could be done by just declaring two
environment variables containing the IP address of the TPM server and the port
number of which the TPM would send and listen for commands.

The second subtask was the actual challenge. TrouSerS had to be communicating
with the TPM emulator remotely in order to be able to develop high-level TPM
applications. TrouSerS could communicate with a TPM over TCP, but this did
not confirm that it would work if the TPM emulator was located on a different
machine. The lack of documentation and that no one else seemed to have tried this
experiment before made this a trial and error challenge. There were instructions
on how to make the IBM software TPM and TrouSerS work together but these
instructions were conflicting. Since TrouSerS is an open source project, the source
code could be investigated in order to see how TrouSerS establish the connection.
The IBM software TPM could eventually be configured to work with TrouSerS
remotely. This makes us feel like the purpose of this thesis has been reached.

6.2 Creating a TPM learning exercise

The purpose of this thesis was not only to create a TPM learning environment
but also to create some exercises that can be used to learn about the workings
and applications of the Trusted Platform Module. In order to do this, one must
first learn how the TPM works and how it communicates with its surroundings.
Native TPM commands are very low-level and should best be avoided.

The purpose of the exercises is to illustrate what a TPM is capable of doing and
to show what each TPM command is used for without having to actually program
the TPM. The IBM software TPM comes bundled with a set of command line
utilities that demonstrates various TPM commands and functionality.

This is useful for someone who is learning how to use the TPM. Before they
start writing TPM commands they may try out a demonstration of the command
to see what the command does and what parameters is needed. For example, when
creating a key one has to specify a parent key to the new key. Without this parent
key the new key cannot be created. This is demonstrated in the command line
demonstration utilities.

6.3 Lack of documentation
Very little publically documented work involving TPM emulation has been done

before this thesis. When trying to get the ETH TPM Emulator to work there
were sometimes errors that no one seemed to have experienced before this thesis

Conclusion 49

project. Not many concrete examples were found on how to get TrouSerS to
work with a TPM emulator, the same goes for programming the actual TPM.
Opensecuritytraining.info proved to be a good website for learning about the TPM
[45].

6.4 Was an expected solution achieved?

The goal of this thesis was to investigate if a TPM could be emulated on a dedi-
cated hardware platform which would then act as the actual TPM that the user
could communicate with. The result of this thesis is having a Raspberry Pi run-
ning a TPM emulator from IBM that can be connected to from any workstation
over the Internet. This also allows for more than one user to work with the same
TPM emulator from different locations.

The TPM emulator works with an open source T'SS implementation called TrouSerS
that is used to interface the TPM in order to write high-level applications.

The results of this thesis project seems to be consistent with the original intent
of running a software TPM on a dedicated platform and to develop a laboratory
manual in order to introduce Trusted Computing.

6.5 Further development

One of the most important reasons why the Raspberry Pi was chosen to act as a
TPM server is the potential for further development. Some suggestions are stated
here:

e Developing a web-based user interface. Since Raspberry Pi is a fully func-
tional Linux-supported computer, a free webserver, for example Apache or
nginx can be installed to allow the monitoring of the TPM to be more vi-
sual. It can show the content of the PCRs, show history over executed TPM
commands etc.

e Have various TPM events communicating with the world via the GPIO of
the Raspberry Pi, for example outputting commands via LCD display.

e Investigate if there is any easy way to separate the TCS part from the TSP
part in the TSS. This would show a more correct way of how the TSS is used
since one TCS is used for all application, and one TSP for each application
is used. The TCS could then also be installed on the Raspberry Pi and the
TSP could be installed on each workstation.

Bibliography

1]

2]

[10]
[11]

[12]

Shows a typical fingerprint function at work. the fingerprints seen here (in
hexadecimal format) are actually the first eight bytes (64 bits) of the sha-1
cryptographic hash functions of those text examples. http://en.wikipedia.
org/wiki/File:Fingerprint.svg.

Trusted platform module (tpm) components. http://
www.trustedcomputinggroup.org/files/resource_files/

AC652DE1-1D09-3519-ADA026A0CO5CFAC2/TCG_1_4_Architecture_
Overview.pdf.

IBM. Software tpm introduction. http://ibmswtpm.sourceforge.net/\

TCG. Trusted platform module. https://www.trustedcomputinggroup.
org/7e=category.developerDetail&urlpath=trusted_platform_
module&resource_type_id=1.

TCG. What is trusted computing? http://www.
opensecuritytraining.info/IntroToTrustedComputing_files/
Dayl-3-what-is-trusted-computing.pdf.

Smart, Nigel. Cryptography: An introduction. http://www.cs.umd.edu/
“waa/414-F11/IntroToCrypto.pdf.

us.hardware. Tpm laptops. http://us.hardware.info/products/2054/
trusted-platform-module-tpm-laptopstablets#allproducts.

0OSx86. Osx86 faq. http://wiki.osx86project.org/wiki/index.php/FAQ.

Black Hat. The trusted computing revolution. http://www.blackhat.com/
presentations/bh-usa-06/BH-US-06-Potter-trusted.pdfl

Windows. Securing the windows 8 boot process. http://technet.
microsoft.com/en-us/windows/dn168167.aspx.

Windows Server. Bitlocker drive encryption overview. http://technet.
microsoft.com/en-us/library/cc732774.aspx.

Google Chrome Blog. Chromebook security: browsing more securely. http:
//chrome.blogspot.se/2011/07/chromebook-security-browsing-more.
htmll

50

http://en.wikipedia.org/wiki/File:Fingerprint.svg
http://en.wikipedia.org/wiki/File:Fingerprint.svg
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf
http://ibmswtpm.sourceforge.net/
https://www.trustedcomputinggroup.org/?e=category.developerDetail&urlpath=trusted_platform_module&resource_type_id=1
https://www.trustedcomputinggroup.org/?e=category.developerDetail&urlpath=trusted_platform_module&resource_type_id=1
https://www.trustedcomputinggroup.org/?e=category.developerDetail&urlpath=trusted_platform_module&resource_type_id=1
http://www.opensecuritytraining.info/IntroToTrustedComputing_files/Day1-3-what-is-trusted-computing.pdf
http://www.opensecuritytraining.info/IntroToTrustedComputing_files/Day1-3-what-is-trusted-computing.pdf
http://www.opensecuritytraining.info/IntroToTrustedComputing_files/Day1-3-what-is-trusted-computing.pdf
http://www.cs.umd.edu/~waa/414-F11/IntroToCrypto.pdf
http://www.cs.umd.edu/~waa/414-F11/IntroToCrypto.pdf
http://us.hardware.info/products/2054/trusted-platform-module-tpm-laptopstablets#allproducts
http://us.hardware.info/products/2054/trusted-platform-module-tpm-laptopstablets#allproducts
http://wiki.osx86project.org/wiki/index.php/FAQ
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Potter-trusted.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Potter-trusted.pdf
http://technet.microsoft.com/en-us/windows/dn168167.aspx
http://technet.microsoft.com/en-us/windows/dn168167.aspx
http://technet.microsoft.com/en-us/library/cc732774.aspx
http://technet.microsoft.com/en-us/library/cc732774.aspx
http://chrome.blogspot.se/2011/07/chromebook-security-browsing-more.html
http://chrome.blogspot.se/2011/07/chromebook-security-browsing-more.html
http://chrome.blogspot.se/2011/07/chromebook-security-browsing-more.html

Bibliography 51

13]
14
[15]
[16]
17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

Katherine Fang, Deborah Hanus, Yuzhi Zheng. Security of google chrome-
book. http://dhanus.mit.edu/docs/Chrome0SSecurity.pdf.

Steven Kinney. Trusted platform module basics using tpm in embedded sys-
tems page 53.

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 29.

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 40.

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 31.

Ariel Segall. Tpm keys creating, certifying, and wusing them.
http://opensecuritytraining.info/IntroToTrustedComputing_files/
Dayl-7-tpm-keys.pdf.

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 36.

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 19.

Steven Kinney. Trusted platform module basics using tpm in embedded sys-
tems page 42.

Ariel Segall . Using the tpm:machine authentication and attesta-
tion. |http://opensecuritytraining.info/IntroToTrustedComputing_
files/Dayl-7-tpm-keys.pdf.

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 64.

Ariel Segall . Programming for the tpm and other practical top-
ics. http://opensecuritytraining.info/IntroToTrustedComputing_
files/Day2-4-programming-tpm.pdf.

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 141.

TCG. Tcg software stack (tss) specification. https:
//www.trustedcomputinggroup.org/files/resource_files/
647B51B6-1D09-3519- ADOE37E883F62329/TSS_Version__1.1.pdf.

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 141.

Decryption-based authentication. http://opensecuritytraining.info/
IntroToTrustedComputing_files/Day2-1-auth-and-att.pdf.

David Challener. An introduction to programming the tpm. https://www.
cylab.cmu.edu/tiw/slides/challener-TPM. pdf.

TCG. Tss 1 2 errata a-final.pdf page 182.

http://dhanus.mit.edu/docs/ChromeOSSecurity.pdf
http://opensecuritytraining.info/IntroToTrustedComputing_files/Day1-7-tpm-keys.pdf
http://opensecuritytraining.info/IntroToTrustedComputing_files/Day1-7-tpm-keys.pdf
http://opensecuritytraining.info/IntroToTrustedComputing_files/Day1-7-tpm-keys.pdf
http://opensecuritytraining.info/IntroToTrustedComputing_files/Day1-7-tpm-keys.pdf
http://opensecuritytraining.info/IntroToTrustedComputing_files/Day2-4-programming-tpm.pdf
http://opensecuritytraining.info/IntroToTrustedComputing_files/Day2-4-programming-tpm.pdf
https://www.trustedcomputinggroup.org/files/resource_files/647B51B6-1D09-3519-AD0E37E883F62329/TSS_Version__1.1.pdf
https://www.trustedcomputinggroup.org/files/resource_files/647B51B6-1D09-3519-AD0E37E883F62329/TSS_Version__1.1.pdf
https://www.trustedcomputinggroup.org/files/resource_files/647B51B6-1D09-3519-AD0E37E883F62329/TSS_Version__1.1.pdf
http://opensecuritytraining.info/IntroToTrustedComputing_files/Day2-1-auth-and-att.pdf
http://opensecuritytraining.info/IntroToTrustedComputing_files/Day2-1-auth-and-att.pdf
https://www.cylab.cmu.edu/tiw/slides/challener-TPM.pdf
https://www.cylab.cmu.edu/tiw/slides/challener-TPM.pdf

52

Bibliography

[31]

[32]
[33]

[34]
[35]
[36]
[37]
[38]

[39]
[40]
[41]

[42]
[43]

[44]
[45]

[46]
[47]

(48]

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 79.

TCG. Tss 1 2 errata a-final.pdf page 191.

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 81.

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 304.

TCG. Tss_1 2 errata_a-final.pdf page 232.

Tss specification. http://www.trustedcomputinggroup.org/files/
resource_files/6479CD77-1D09-3519-AD89EAD1BC8CI7FO/TSS_1_2_
Errata_A-final.pdf.

Number of sold raspberry pi devices. http://www.raspberrypi.org/
a-birthday-present-from-broadcom/.

Mario Strasser. Software-based tpm emulator for linux. http://archiv.
infsec.ethz.ch/education/projects/archive/tpmemulatortalk.pdf.

Mario Strasser and Heiko Stamer.
Jan-Erik Ekberg and Markku Kylanpaa.

Tpm emulator at sourceforge. http://tpm-emulator.sourceforge.net/
installation.htmll

Ibm software tpm at sourceforge. http://sourceforge.net/projects/
ibmswtpm/.

Trousers readme. http://sourceforge.net/p/trousers/trousers/ci/
master/tree/README|

Environmentvariables. https://wiki.debian.org/EnvironmentVariables|

Introduction to trusted computing. http://www.opensecuritytraining.
info/IntroToTrustedComputing.

Mingw at sourgeforge. http://sourceforge.net/projects/mingw/files/
latest/download?source=files|

Win32openssl. http://code.x2go.org/releases/binary-win32/
3rd-party/Win320penSSL/|

David Challener,Kent Yoder,Ryan Catherman,David Safford,Leendert Van
Doorn . Ibm.press.a.practical.guide.to.trusted.computing.jan.2008 page 63.

http://www.trustedcomputinggroup.org/files/resource_files/6479CD77-1D09-3519-AD89EAD1BC8C97F0/TSS_1_2_Errata_A-final.pdf
http://www.trustedcomputinggroup.org/files/resource_files/6479CD77-1D09-3519-AD89EAD1BC8C97F0/TSS_1_2_Errata_A-final.pdf
http://www.trustedcomputinggroup.org/files/resource_files/6479CD77-1D09-3519-AD89EAD1BC8C97F0/TSS_1_2_Errata_A-final.pdf
http://www.raspberrypi.org/a-birthday-present-from-broadcom/
http://www.raspberrypi.org/a-birthday-present-from-broadcom/
http://archiv.infsec.ethz.ch/education/projects/archive/tpmemulatortalk.pdf
http://archiv.infsec.ethz.ch/education/projects/archive/tpmemulatortalk.pdf
http://tpm-emulator.sourceforge.net/installation.html
http://tpm-emulator.sourceforge.net/installation.html
http://sourceforge.net/projects/ibmswtpm/
http://sourceforge.net/projects/ibmswtpm/
http://sourceforge.net/p/trousers/trousers/ci/master/tree/README
http://sourceforge.net/p/trousers/trousers/ci/master/tree/README
https://wiki.debian.org/EnvironmentVariables
http://www.opensecuritytraining.info/IntroToTrustedComputing
http://www.opensecuritytraining.info/IntroToTrustedComputing
http://sourceforge.net/projects/mingw/files/latest/download?source=files
http://sourceforge.net/projects/mingw/files/latest/download?source=files
http://code.x2go.org/releases/binary-win32/3rd-party/Win32OpenSSL/
http://code.x2go.org/releases/binary-win32/3rd-party/Win32OpenSSL/

Appendix /~\

Exercises

These exercises can be used to try out different TPM functions before an actual
TPM application is developed. We believe that this is the best way to get an idea
of what a TPM is used for instead of diving into technicalities right from the start.

A set of command lines utilities designed to demonstrate various TPM function-
ality comes bundled with the IBM TPM emulator. These utilities can be used to
demonstrate the following functions:

e Key creation

e Key migration
e File encryption
e Authentication
e Attestation

In order to develop an actual TPM application one would normally use the TCG
Software Stack (TSS). TrouSerS is an open source implementation of the TSS and
is used in this thesis. Development using TrouSerS will be described in some of
the following exercises.

Exercise 1: Download software

In order to download, build and install the Software TPM by IBM, we have written
some build scripts to automate the process. The build scripts are available in their
entirety under “Software TPM by IBM” in the report.

Linux

When writing these exercises, the current version of the Software TPM was tpm4720.
Two parameters should be set by the user:

versions
export TPM_V=tpm4720

install path

93

54 Exercises

export TPM_INSTALL_PATH=/...

In order to build the Software TPM, some packages must be installed on the
users system:

e libtool

e automake
o libssl-dev
e OpenSSL

On a Debian-based system, run apt-get install libtool automake libssl-dev
openssl in a terminal shell.

Then simply run ./build.sh in a terminal shell. The build script downloads
and compiles the Software TPM at the user’s location of choice.

Windows

In order to build the Software TPM by IBM on a Windows system, a port of the
GCC (GNU Compiler Collection) is needed. A port of GCC is e.g., included in
the MinGW (Minimalist GNU for Windows) [46] development environment.

A port of OpenSSL (the open-source implementation of the SSL and TLS pro-
tocols) to Windows is also needed. This should be downloaded and installed on
the user’s system.

Win320penSSL [47].

e set user environment variables:

— TPM_PATH
— TPM_PORT

e modify makefile.mak

— set correct path to MinGW
— set correct path to OpenSSL
— remove OBJFILES -+= applink.o

e make -file=makefile.mak

Run the makefile in the MinGW shell in order to compile the Software TPM.
TrouSerS has unfortunately very little support for Windows at the moment of
writing this, therefore these exercises will only cover the Linux build of TrouSerS
and the software TPM.

Exercises 55

Exercise 2: TPM Provisioning (getting TPM ready for use)

Introduction:

TPM provisioning means to get the TPM ready for use. This is achieved in a few
steps. The first step is to activate the TPM. A TPM that has been newly installed
on the system is normally deactivated. The TPM is activated in the BIOS. The
next step is to ensure that the TPM contains an EK keypair and a certificate for
the EK. It should be the manufacturer that creates the EK and certificate at man-
ufacturing but unfortunately this isn’t always the case. If the EK is not created
at manufacturing it has to be created and certified as the second step in the TPM
provisioning. The third step is to take ownership of the TPM. It is in this step
where the SRK is created. Two passwords has to be set in this step. One for the
owner of the TPM and one for the SRK. The owner password is needed when for
example TPM settings is changed and the SRK password is needed for when the
SRK is used.

Quiz:
1. Which TPM command is used to create the Endorsement Key (EK)?

2. If the user is forced to create and certify his or her own EK, the public key of
the EK has to be saved and sent to a certification authority. Which command is
used to save the public key of the EK?

3. Which TPM command is used to take ownership of a TPM?

Hint: Use the document "TPM Main Part 3 Commands" to read about all TPM
commands.

Exercise 2.1: Establish a connection to the TPM emulator over TCP /IP.

1. An actual hardware TPM is enabled and disabled in the BIOS. Before a con-
nection to the IBM software TPM is made the BIOS process has to be simulated.
This is done by using the binary tpmbios in the util directory. This does a
TPM_Startup, which is the TPM command used to either deactivate the TPM,
start up the TPM with a reset of the PCR registers, or start up the TPM with a
restore of PCR values from their saved state [48].

Note: ./tpmbios has to be reentered every time the TPM emulator is started.

2. In the second step the EK will be created. When using the emulator the
EK has to be created by the user. This is done by using the utility ./createek.

Keep an eye on the TPM emulator terminal when the command ./createek
is executed. The EK public key will be printed to the terminal. Take a screen

capture of it.

3. Next step is to take ownership of the TPM. This will create the SRK and

56 Exercises

set a password to the TPM and the SRK. The utility used for this is ./takeown
-pwdo ooo -pwds sss, where ooo and sss is the passwords to the TPM owner
and the SRK. These passwords can be set to other values by the users. Memorize
the passwords as they will be needed later. After these steps the TPM is setup
and ready for usage.

Exercise 3: Key hierarchy

Introduction:

The first key that gets loaded into the chip after the machine is booted is usu-
ally a platform migratable key. This key which is usually owned by the system
administrator has the well-known secret for its authorization, but requires the sys-
tem owner’s authorization to migrate. If it is migrated, all other migratable keys
(which in this design will be children or grandchildren of this key) will also be
migrated.

After the platform migratable key is loaded, a user can load his base migrat-
able storage key and his base non-migratable storage key because the TPM now
knows the private key of the platform migratable key necessary to decrypt the user
migratable key.

Quiz:
1. Motivate why it is recommended that the key tree does not get too deep.

2. The identity key is one type of signature key. Describe some differences between
an identity and a signature key.

3. Which keys can be used for file encryption?

4. There is one type of key that exists, but it is not recommended to use it.
Which key is that, and why does it exist?

Exercise 3.1: Create a Key hiearchy using the TPM emulator:
Create a key hiearchy that contains:

e a platform migratable storage key,

a migratable storage key,

e a non migratable storage key,

a migratable signing key,

a non migratable signing key,

a migratable binding key,

a migratable symmetric key,

a non migratable identity key.

Make a picture of your key hierarchy and motivate your solution.

Exercises 57

Exercise 4: Key Migration

Introduction:

The TPM keys can either be migratable or non-migratable. By using key migra-
tion the user can transfer the migratable keys to another system. This is useful
for backups and when the TPM is transferred to another system. If a parent key
is migrated all the children of this key is migrated as well. When doing a key
migration, a blob is created which is then transferred to the target.

Quiz:

1. Is it possible for a migratable key to be the parent of a non-migratable key?

2. Which command is the first to be executed when performing a key migra-
tion?

3. Give a short description of the command TPM_ConvertMigrationBlob.
4. Which TPM command loads the migrated keys into the TPM?
5. Is it the TPM or the TSS that handles the transfer of the migration blob?

Hint: Use the document "TPM Main Part 3 Commands" to read about all TPM
commands.

Exercise 4.1: Key migration in the TPM emulator

In this exercise we will show how migratable keys can be migrated and then
reloaded in the TPM emulator using the demo utilities. First create a migra-
tion key blob that can be saved and then reloaded to this TPM or another TPM.
Migrate the keys using the utility ./migrate. Reload the keys to this, or another
TPM using the utility

./loadmigrationblob.

58 Exercises

Hints: ./migrate -hp <SRK handle in hex> -pwdp <SRK password>
-pwdo <TPM owner password>

-pwdm MIGRATION_PASSWORD

— tkSTORAGEKEY_FILENAME.key

-im TPM2_STORAGEKEY _FILENAME key

— pwdkTPM2_STORAGEKEY_PASSWORD

-ok migrationblob.bin

./loadmigrationblob -hp TPM2_STORAGEKEY_HANDLE
— i fmigrationblob.bin — pwdpTPM2_STORAGEKEY_PASSWORD

Exercise 5: Extending values to PCRs

Introduction:

The PCRs (Platform Configuration Registers) is used to save SHA-1 hash digests
of applications. This is used for both trusted boots and attestations. By calculat-
ing and saving a digest of an application, it can be shown if the application has
been tampered with by an intruder. If one single bit is changed in the application,
the hash digest will be completely different.

Quiz:
1. How many PCRs does the TPM version 1.2 contain?

2. Describe one TPM command that can be used to extend a SHA-1 digest to a
PCR.

3. Describe which TPM command that can be used to read a PCR value.

4. The SHA-1 calculations can either be done by the TPM or the TSS before
the digest is saved to a PCR. Describe one situation when it has to be done by
the TPM.

Exercise 5.1: SHA-1 calculation and PCR extending using the TPM
emulator

This exercise will show how a TPM can calculate a SHA-1 digest of an application
and then extend this to a PCR. This is done by using the commands:

TPM_SHA1Start
TPM_SHA1Update
TPM_SHA1CompleteExtend

The first command starts the SHA-1 calculation, and if the file is too large then
it passes the remaining calculation to the second command. The last command
finishes the calculation and extends the result into a PCR.

The demo function that can be used to illustrate these commands is
./sha -if <filename> -ix <PCR index>.

Exercises 59

Calculate the hash value of for example the binary file tpmbios and extend it
to the PCR 11. Keep an eye on the TPM emulator terminal. Read the PCR value
using the utility ./pcrread when the calculation is done.

Exercise 6: File encryption

There are four commands that handle the encryption and decryption of data in
the TPM. Three commands are supported by the TPM: TPM_UnBind, TPM_Seal,
and TPM_UnSeal. The fourth command is supported by the TSS, TSS_Bind.

Quiz:
1. Why is TSS_Bind a T'SS command, and not a TPM command?

2. Give some differences between Data binding and Data sealing.

3. Can a key used for data sealing be migrated to another TPM?

Data binding

Exercise 6.1: Data binding using the TPM emulator

Create a binding key using the command ./createkey. Then encrypt a file with
some text using the .pem file created by ./createkey. The command used for
this is . /bindfile. (Note that the key does not have to be loaded into the TPM).
Then try to decrypt the file using the command ./unbindfile. Note that the
command ./loadkey has to be executed before decryption is possible.

Why doesn’t the key have to be loaded inside the TPM when encrypting, but
it has to be when decrypting?

Data sealing

Exercise 6.2: Data Sealing using the TPM emulator

Create a storage key and load it into the TPM using the commands ./createkey
and ./loadkey. Seal a textfile using the storage key with the command ./sealfile.
Unseal the file using the command ./unseal.

Test if you can do a sealing with a legacy key, a binding key or a signing key.
If not, why?

Exercise 7: Machine Authentication

Introduction:

Machine authentication is used to bring answer to the question “Is this machine
X7 Tt is always important to be able to authenticate the TPM that the user
communicates with to be sure that the TPM in fact is a TPM and not a hostile
system claiming to be a TPM.

60 Exercises

Signature based:

The goal of this exercise is to show how a TPM can authenticate itself by digitally
signing a file using a signature key, and then letting the target verify the signature
using the public part of the signature key pair. If the signature is valid then this
proves that the TPM knows the private key of the signature key pair and this
proves that the TPM is who he claims to be.

Quiz:
1. Which TPM command is used to sign a file?

2. Does a TPM has to be present in order to verify the signed file? Why /why not?

Exercise: Sign a file with some text in it by loading a signature key into the
TPM and use this key to sign the file using the utility ./signfile. Let an-
other TPM verify the signature by using the utility ./verifyfile. Could the
verifyfile command have been done by another TPM?

Decryption based:

The goal of this exercise is to show how a TPM can authenticate itself by decrypt-
ing a file. If a TPM encrypts a file using its public storage key, then the only user
able to decrypt the file is the one with the private key of the key pair. If a user
can decrypt the file, then this user possesses the private key and is therefore the
correct user.

Quiz:
1. Is the TPM used to encrypt the file, store the binding key, or both?

2. Which TPM command is used to decrypt the file?

3. Can the decryption based authentication be done by using data sealing in-
stead of binding?

Exercise 7.1:. Encrypt a file by creating a binding key and load it into the
TPM and then encrypt a text file using the command ./bindfile Then decrypt
it using the command . /unbindfile.

Exercise 8: Attestation

Attestation is a mechanism by which one wants to obtain a proof that the right
software was loaded (by recording its hash in a PCR). The goal of attestation is to
prove to a remote party that your application software are intact and trustworthy.
This is useful by for example banks who now could ask the user to show that he
has the correct versions of the banking software. Just like with authentication,
attestation can either be signature based or decryption based.

Exercises 61

Quiz:
1. Machine authentication answers the question “Is this machine X?”. What
question does attestation bring answer to?

Signature based:

Exercise 8.1:

Create an AIK (Attestation Identity Key) using the command ./identity. Us
it to quote a PCR value, like the PCR with the hash digest of tpmbios. The
verification of the quote will be done automatically.

Hints:

./identity -pwdo <owner password>
-la <a label>

-pwds <SRK password>

-ok <key filename>

./quote -hk <key handle in hex> -bm <pcr hash digest> -pwdk <key password>

Decryption-based:

With a decryption based attestation we bind a PCR value to a storage key. The
key can only be used for decryption if the PCR value that was bound to the key
is unchanged or has obtained the same value after a restart of the system. So if
a program has been changed, then the PCR value will be different and then the
key cannot be used for decryption.

Exercise 8.2:

Create a text file and extend the hash digest to a PCR. Create a storage key
and bind it to the PCR value using the command ./createkey (-ix is used to
specify the PCR index). Load the key into the TPM. Seal the text file using the
storage key with the command ./sealfile. Unseal the file using the command
./unsealfile (Should be successful).

Change the text in the text file and extend the PCR with the new hash digest of
the text file. Try decrypt the file again (should not work, PCR value bound to
the storage key has changed). Clear ownership of the TPM using the command
./forceclear.

62 Exercises

Exercise 9: Write your own TPM application using TrouSerS
On Debian:

sudo apt-get install trousers

sudo apt-get install tpm_tools

> export TCSD_TCP_DEVICE_PORT=<your RPi port>
> export TCSD_TCP_DEVICE_HOSTNAME=<your RPi IP>

Take command of the TPM using tpm_tools by writing tpm_takeown -z -y in
the terminal. Use the examples found in the section "Developing TPM applica-
tions" and write your own TPM application. Here are some examples for TPM
applications:

Generate random numbers using Tspi_TPM_GetRandom

Extend values in PCRs using Tspi_TPM_PcrExtend

Appendix B

TrouSerS applications

List PCRs

ListPCRs.c

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<unistd.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<tss/platform.h>
#include<tss/tss_defines.h>
#include<tss/tss_typedef.h>
#include<tss/tss_structs.h>
#include<tss/tspi.h>
#include<trousers/trousers.h>
#include<tss/tss_error.h>

#define DEBUG 1

#define DBG(message, tResult) { if (DEBUG) printf("(Line%d, %s) \
%s returned 0x%08x. %s.\n",__LINE__ ,__func__ , message, \
tResult, (char *)Trspi_Error_String(tResult));}

int main(int argc, char *xargv) {

BYTE *rgbPcrValue, *rgbNumPcrs;
UINT32 ulPcrValuelLength;
UINT32 exitCode, subCapSize, numPcrs, subCap, i, j;

TSS_HCONTEXT hContext=0;
TSS_HTPM hTPM = 0;

TSS_RESULT result;

TSS_HKEY hSRK = 0;

TSS_HPOLICY hSRKPolicy=0;
TSS_UUID SRK_UUID = TSS_UUID_SRK;
//By default SRK is 20bytes 0
//takeownership -z

BYTE wks[20];

63

TrouSerS applications

memset (wks,0,20) ;

//At the beginning
//Create context and get tpm handle
result =Tspi_Context_Create(&hContext);
DBG("Create a context\n", result);
result=Tspi_Context_Connect (hContext, NULL);
DBG("Connect to TPM\n", result);
result=Tspi_Context_GetTpmObject (hContext, &hTPM);
DBG("Get TPM handle\n", result);
//Get SRK handle
//This operation need SRK secret when you takeownership
//if takeownership -z the SRK is wks by default
resu1t=Tspi_Context_LoadKeyByUUID(

hContext,

TSS_PS_TYPE_SYSTEM,

SRK_UUID,

&hSRK) ;
DBG("Get SRK handle\n", result);
result=Tspi_GetPolicyObject (hSRK,

TSS_POLICY_USAGE, &hSRKPolicy);
DBG("Get SRK Policy\n", result);
result=Tspi_Policy_SetSecret (hSRKPolicy,

TSS_SECRET_MODE_SHA1, 20, wks);
DBG("Tspi_Policy_SetSecret\n", result);

subCap = TSS_TPMCAP_PROP_PCR;
//Retrieve number of PCR’s from the TPM
result = Tspi_TPM_GetCapability (hTPM,
TSS_TPMCAP_PROPERTY,
sizeof (UINT32),
(BYTE *)&subCap,
&ulPcrValuelLength,
&rgbNumPcrs) ;
if (result == TSS_SUCCESS) {
if (ulPcrValueLength != sizeof (UINT32)) {
printf ("GetCapability (TSS_TPMCAP_PROP_PCR)
returns value != sizeof (UINT32)!");
Tspi_Context_FreeMemory(hContext, NULL);
Tspi_Context_Close(hContext) ;
exit(result);
}
//Algorithm found at trousers/testsuite
numPcrs = *(UINT32 *)rgbNumPcrs;
printf ("\nPCR List\n");
for (i = 0; i < numPcrs; i++) {
result = Tspi_TPM_Pchead(hTPM,i,
&ulPcrValueLength,
&rgbPcrValue) ;
printf ("PCRY%02u: ", i);
for (j = 0; j < ulPcrValuelength; j++) {

TrouSerS applications

65

printf ("%02x", rgbPcrValue[j] & Oxff);

}

printf ("\n");
}
printf ("\n");

//Free memory

result = Tspi_Context_FreeMemory(hContext, NULL)

DBG("Tspi Context Free Memory\n", result);
result = Tspi_Context_Close(hContext) ;
DBG("Tspi Context Close\n", result);
return 0;

List Keys

ListKeys.c

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<tss/platform.h>
#include<tss/tss_defines.h>
#include<tss/tss_typedef.h>
#include<tss/tss_structs.h>
#include<tss/tspi.h>
#include<trousers/trousers.h>
#include<tss/tss_error.h>

#define DEBUG 1

#define DBG(message, tResult) { if (DEBUG) printf("(Line’d, %s) \
func__ , message, tResult, \

%s returned 0x%08x. %s.\n",__LINE__ ,__
(char *)Trspi_Error_String(tResult));}

int main(int argc, char x*argv) {

UINT32 i,pulKeyHierarchySize;
TSS_HKEY hKey;
TSS_KM_KEYINFO* ppKeyHierarchy;

TSS_HCONTEXT hContext=0;
TSS_HTPM hTPM = O0;

TSS_RESULT result;

TSS_HKEY hSRK = 0;

TSS_HPOLICY hSRKPolicy=0;
TSS_UUID SRK_UUID = TSS_UUID_SRK;

>

66

TrouSerS applications

//By default SRK is 20bytes 0
//takeownership -z

BYTE wks[20];

memset (wks,0,20) ;

//At the beginning

//Create context and get tpm handle

result =Tspi_Context_Create(&hContext);

DBG("Create a context\n", result);
result=Tspi_Context_Connect (hContext, NULL);
DBG("Connect to TPM\n", result);
result=Tspi_Context_GetTpmObject (hContext, &hTPM);
DBG("Get TPM handle\n", result);

//Get SRK handle

//This operation need SRK secret when you takeownership
//if takeownership -z the SRK is wks by default
resu1t=Tspi_Context_LoadKeyByUUID(hContext, TSS_PS_TYPE_SYSTEM, SRK_UUID,
&hSRK) ;

DBG("Get SRK handle\n", result);

result=Tspi_GetPolicyObject (hSRK, TSS_POLICY_USAGE, &hSRKPolicy);
DBG("Get SRK Policy\n", result);

result=Tspi_Policy_SetSecret (hSRKPolicy,TSS_SECRET_MODE_SHA1,20, wks);
DBG("Tspi_Policy_SetSecret\n", result);

//Get Registered Keys By UUID
//0ut:pulKeyHierarchySize - size of the key list
//ppKeyHierarchy- the keys in the keylist
result = Tspi_Context_GetRegisteredKeysByUUID (
hContext,
TSS_PS_TYPE_SYSTEM, NULL,
&pulKeyHierarchySize,
&ppKeyHierarchy
)3

if (result == TSS_SUCCESS) {
DBG("Tspi_Context_GetRegisteredKeysByUUID\n", result);
//Print the key info for each loaded key in the tpm.
for (i = 0; i < pulKeyHierarchySize; i++) {
printf ("Registered key %u:\n", 1i);
print_KM_KEYINFO(&ppKeyHierarchy[il) ;

Tspi_Context_CloseObject (hContext, hKey);

result = Tspi_Context_FreeMemory(hContext, NULL);
DBG("Tspi Context Free Memory\n", result);

result = Tspi_Context_Close(hContext) ;

DBG("Tspi Context Close\n", result);

return O;

TrouSerS applications

67

//method to print the key info from print_KM_KEYINFO
//This method was taken from trousers/testsuite.
void print_KM_KEYINFO(TSS_KM_KEYINFO k) {

printf ("Version: %hhu.%hhu.%hhu.%hhu\n",

k->versionInfo.bMajor,
k->versionInfo.bMinor,
k->versionInfo.bRevMajor,
k->versionInfo.bRevMinor

)

printf ("UUID: %08x %04hx %04hx %02hhx %02hhx \

%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx\n",
k->keyUUID.ulTimeLow,
k->keyUUID.usTimeMid,
k->keyUUID.usTimeHigh,
k->keyUUID.bClockSeqHigh,
k->keyUUID.bClockSeqLow,
k->keyUUID.rgbNode [0] & Oxff,
k->keyUUID.rgbNode[1] & Oxff,
k->keyUUID.rgbNode[2] & Oxff,
k->keyUUID.rgbNode [3] & Oxff,
k->keyUUID.rgbNode [4] & Oxff,
k->keyUUID.rgbNode[5] & Oxff
)3

printf ("parent UUID : %08x %04hx %04hx %02hhx \
%02hhx %02hhx%02hhx’%02hhx%02hhx%02hhx%02hhx\n",

k->parentKeyUUID.ulTimeLow,
k->parentKeyUUID.usTimeMid,
k->parentKeyUUID.usTimeHigh,
k->parentKeyUUID.bClockSeqHigh,
k->parentKeyUUID.bClockSeqLow,
k->parentKeyUUID.rgbNode [0] & Oxff,
k->parentKeyUUID.rgbNode [1] Oxff,

&
k->parentKeyUUID.rgbNode[2] & Oxff,
k->parentKeyUUID.rgbNode[3] & Oxff,
k->parentKeyUUID.rgbNode [4] & Oxff,
k->parentKeyUUID.rgbNode[5] & Oxff
)3

printf("auth: %s\n", k->bAuthDataUsage 7 "YES" : "NO");

if (k->ulVendorDataLength)

else

printf ("vendor data : \"Us\" (%u bytes)\n",
k->rgbVendorData,
k->ulVendorDatalLength
)s

printf ("vendor data: (0 bytes)\n");

printf ("\n");

Appendix C

TrouSerS applications

IBM License file

LICENSE. txt

$Id: LICENSE 4702 2013-01-03 21:26:29Z kgoldman $
(c) Copyright IBM Corporation 2006, 2010.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the names of the IBM Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

68

LUN

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2015-434

http://www.eit.Ith.se

	sundbergnilsson.pdf
	Introduction
	Trusted Computing
	Questions to be evaluated
	Thesis subgoals and approach
	Why use TPM emulation?

	Basic Cryptography
	Trusted Platform Module
	What is a TPM?
	TPM Architecture
	TPM and cryptographic keys
	Key creation
	Data encryption and decryption
	Public key signatures
	Authentication and attestation
	Communicating with the TPM
	Developing TPM applications

	Method
	Chosen hardware
	Software
	Evaluating TPM emulators
	Running the emulator on Raspberry Pi
	Communicating remotely to Raspberry Pi
	Preparing to create exercises
	TSS on Raspberry Pi TPM

	Result
	Setting up the TPM environment
	Setting up the IBM software TPM on Raspberry Pi
	Building for other platforms
	Setting up libtpm on client
	Setting up TrouSerS
	Test TrouSerS with the IBM software TPM

	Conclusion
	Evaluating if thesis goal has been reached
	Creating a TPM learning exercise
	Lack of documentation
	Was an expected solution achieved?
	Further development

	Bibliography
	Exercises
	TrouSerS applications
	TrouSerS applications

