
Im
p

ro
ve

d
 co

d
e o

b
fu

scatio
n

 th
ro

u
g

h
 au

to
m

atic co
n

stru
ctio

n
 o

f h
id

d
e

n
 exe

cu
tio

n
 p

ath
s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, June 2014.

Improved code obfuscation
through automatic construction
of hidden execution paths

Erik Nylander

http://www.eit.lth.se

Erik N
ylan

d
e

r

Master’s Thesis

Improved code obfuscation through automatic
construction of hidden execution paths

Erik Nylander
ada09eny@student.lu.se

Department of Electrical and Information Technology
Lund University

Advisor: Christopher Jämthagen

June 24, 2014

Printed in Sweden
E-huset, Lund, 2014

Abstract

This report describes the implementation of a code obfuscation tool using instruc-
tion overlapping. Instruction overlapping is a technique used to hide code inside
other code to throw off various disassemblers. If a commercial product would be
obfuscated using instruction overlapping it could potentially be protected from
being copied and spread on the Internet.

The tool was implemented and tested using different programs with varying
results. While some tests showed promising results, the tool proved to be lacking
in others. To make the tool stronger, improvements has been thought out and
suggested.

While there are problems when using instruction overlapping, the technique
shows promise and a tool could certainly be implemented. With the suggested
improvements, the tool should be able to achieve a satisfying level of obfuscation
for any program.

i

ii

Acknowledgements

I would like to thank my advisor Christopher Jämthagen for his guidance through-
out the work. I would also like to thank my examiner Martin Hell for providing
ideas and inspiration as well as handling the administrative work. Lastly I would
like to thank my friend Patrik Billgren for the discussions and exchange of ideas
during the work on our theses.

iii

iv

Table of Contents

1 Introduction 1

2 Background 3
2.1 CISC . 3
2.2 RISC . 3
2.3 IA-32 architecture . 4
2.4 Disassemblers . 7

3 Code obfuscation 9
3.1 What is code obfuscation . 9
3.2 Some obfuscation techniques . 9
3.3 Instruction overlapping . 12

4 Implementation 17
4.1 Programming Language . 17
4.2 Main features . 17
4.3 Usage . 17
4.4 The algorithm . 18
4.5 Parsing and representing a program 20
4.6 "Preface" . 21
4.7 Generating a MEP . 22
4.8 Memory access adjusment . 24
4.9 Swapping instructions . 25

5 Result 29
5.1 Test programs . 29
5.2 Running the tool . 32

6 Discussion and further development 37
6.1 Observations regarding launchshell 37
6.2 Observations regarding writetofile 37
6.3 Known problems . 38
6.4 Further development . 39

v

7 Conclusion 43

References 45

A The code 47
A.1 program.cpp . 47
A.2 emulator.cpp . 49
A.3 parser.cpp . 50
A.4 instruction.cpp . 51

vi

List of Figures

3.1 Flowchart for the behaviour when using instruction overlapping . . . 14

4.1 Flowchart for the main steps of the algorithm 19

vii

viii

List of Tables

2.1 The IA-32 instruction format . 5
2.2 Format of the Mod-Reg-R/M byte 6
2.3 Format of the SIB byte . 7

5.1 Results for launchshell . 33
5.2 Results for writetofile . 33

ix

x

Chapter 1
Introduction

The software business is a very competitive field because it is very lucrative in this
day and age. In order to generate the highest revenue, a software company must
provide software that goes beyond what products from other companies are doing.
To do so, the source code must be exclusive and only known by people inside the
company. The alternative is to have source code that is public domain but provide
a service to use the code with that no other company can provide.

Today it is not sufficient to only worry about other companies stealing or
copying code, hackers and piracy is a big problem. It is also not sufficient to keep
the source code secret only during the development. When a program is ready for
release it is built and packaged and the source code is never made public in clear
text. However, when a program is released, the built source code is contained in
the executable binaries. These binaries are vulnerable because an adversary can
use different kinds of disassemblers to go from the binary hexadecimal codes to
assembly code. When the assembly code is made visible to the adversary, it can
be analyzed and exploited.

After the release of a program, usually it takes a couple of weeks or sometimes
days for a hacker to copy the program and release it on the Internet. It is not
unusual for a program to solely rely on license keys in order to make the program
usable only to those who has bought it. The way a hacker can exploit this is to
disassemble the binary files, find out how the license key’s validity is calculated,
write a license key generator that produces a seemingly legitimate serial key by
reverse-engineering the validity check. The program can then be released to the
public together with the license key generator so that anyone can use the program
without buying it, causing a loss in revenue for the developer.

One way of avoiding this problem is to use anti-disassembly. Anti-disassembly
is the art of making a program difficult to disassemble and analyse. By utilizing
different techniques, a program can be modified so that a disassembler produces
erroneus output or no output at all. Several anti-disassembly techniques have been
developed and used over the years but the search for better techniques goes on.

This thesis aims to investigate the use and possibilities of one such technique
called Instruction overlapping. Instruction overlapping exploits the variable length
of instructions in the x86 architecture and attempts to hide code inside other
code to make a disassembler produce faulty output while still maintaining the
correct behaviour when the program is run. To investigate the practical uses of
this technique, a tool will be implemented and tested to determine if Instruction

1

2 Introduction

overlapping is a viable option for anti-disassembly and also how such a tool could
be implemented.

Chapter 2
Background

2.1 CISC

CISC (Complex Instruction Set Computer) denotes a series of microprocessor ar-
chitectures mainly used in personal computers today. When the first CISC proces-
sors were launched, memory was expensive so in order to conserve memory space,
instructions were designed to take up as little space as possible when used in pro-
grams. At the same time, engineers struggled to bridge the semantic gap, meaning
the gap between high-level code and assembler code which would allow for better
compilers as the assembler code approached high-level functionality. This resulted
in a large set of instructions, many of them able to carry out several low level op-
erations such as loading of data from memory, arithmetic instructions and storing
of data to memory. In the end, this approach proved to be lacking because it made
compilers difficult to implement since there were so many instructions to choose
from. Another big problem was that the processors were hard to implement in
hardware because the instructions became so complicated. The most important
aspects of CISC architectures are as follows: [Bro99]

• An extensive set of instructions to provide a lot of possibilities when coding.

• Powerful instructions performing several low level operations meant to bridge
the gap between assembler code and high-level code.

• Instructions of variable length.

2.2 RISC

As the limitations of CISC became more apparent in the 1980s, researchers at
University of California at Berkeley and Stanford University started looking for
less troublesome, more simple and overall more flexible alternatives. This research
resulted in a new type of computer architecture called RISC (Reduced Instruc-
tion Set Computer). RISC aimed to make microprocessors easy to implement in
hardware and easier to code for by using a much smaller but more straight for-
ward instruction set. The developers of RISC always had the words “make the
common case fast” in mind while developing. This largely contrasts the way of
thinking while developing the older CISC-architecture where the developers aimed

3

4 Background

to make very powerful and specific instructions in order to make the assembler
code more similar to high-level code while using as little memory as possible. The
most important aspects of the RISC architecture are the following:

• All instructions are of the same length. This makes the instructions easier
to decode and it also makes the architecture much simpler to implement in
hardware.

• To provide many registers without any special purposes, allowing for vari-
ables and temporary calculations to be stored in registers as opposed to
being stored in memory resulting in much faster calculations.

• Only certain load and store instructions may access memory. The purpose
of this is to reduce the amount of low level operations an instruction can
perform which makes more effective use of the ALU while at the same time
reducing the complexity of the instructions.

Even though the RISC architecture had many advantages over CISC, it took a long
time for RISC to take its place, mainly because of the lack of software support and
the fact that memory was still expensive. Today however, RISC is the most com-
monly used microprocessor-architecture used overall while CISC still dominates
the personal computer-market. Some well known manufacturers of RISC-chips
are MIPS, Sun Microsystems(SPARC) and ARM. [Bro99]

2.3 IA-32 architecture

IA-32 is the third generation of x86 microprocessor architectures made by Intel.
When it was launched in 1985 together with the Intel 80386 microprocessor it
was the first 32-bit architecture from Intel, fully backwards compatible with pro-
grams made for previous generations of 16- and 8-bit processors. x86 in itself is
a CISC architecture which together with the backwards compatibility of IA-32
to its predecessors made for a very complicated platform with an extensive set
of instructions with different levels of complexity. Another consequence of this is
that the instructions can vary in length from one byte up to fifteen bytes which
unintentionally open some interesting possibilities for code obfuscation..

With the new 32-bit architecture and Protected Mode, the Intel 80386 could
address up to 4 gigabytes of memory. However, when using Protected Mode, all
programs are assigned a certain amount of memory to use in order to prevent
programs from interfering with each other and any attempt to access memory
outside of the allotted amount results in a segmentation fault.

2.3.1 The IA-32 instruction set

Being a CISC architecture, the instruction set for IA-32 contains a very large
amount of instructions which can be roughly divided into the following categories:
[AF14] [Hyd96]

Data movement instructions Instructions to move data around between mem-
ory or registers.

Background 5

Arithmetic instructions These instructions perform arithmetic operations like
addition and subtraction.

Logical instructions Logical instruction perform logical operations such as AND,
OR and other bit-operations.

Control flow instructions These instructions change the control flow of the
program.

I/O instructions I/O instructions gives access to the I/O ports on the processor
in order to read data from or write data to peripheral devices.

String instructions String instructions are used to operate on data in the form
of strings of bytes.

Interrupts Interrupt instructions invoke different kinds of software interrupts in
the processor.

2.3.2 Looking at an x86 instruction

The IA-32 instruction format is shown in Table 2.1:

Prefix Opcode Mod-Reg-R/M SIB Displacement Immediate
1-4 bytes 1-2 bytes 1 byte 1 byte 1-4 bytes 1-4 bytes

Table 2.1: The IA-32 instruction format

Prefix This is an optional field used to add prefixes to certain instructions in
order to override segment sizes, operand sizes and so on.

Opcode The opcode consists of 1-2 bytes and is the instruction code that deter-
mines the type of instruction. Some instructions only contain this field.

Mod-Reg-R/M The Mod-Reg-R/M byte is used in a couple of different ways,
mainly to determine if an instruction will access memory or registers. This
field will be explained in more detail later.

SIB SIB stands for Scale-Index-Base and is used to enable index-based addressing
of memory. This field will be explained in more detail later.

Displacement The displacement field is used to access memory with a displace-
ment. If the Mod-Reg-R/M-byte gives the register that the memory address
will be collected from, the displacement field will determine a value to add
to the address before accessing the memory.

Immediate Instructions that uses some kind of immediate value gathers this
value from this field instead of picking one from a register or memory.

6 Background

The Mod-Reg-R/M byte

The Mod-Reg-R/M byte consist of three groups of bits that together determines
what kind of data that the instruction is accessing, see Table 2.2. These groups
are explained below:

Mod Reg R/M
2 bits 3 bits 3 bits

Table 2.2: Format of the Mod-Reg-R/M byte

Mod
The two Mod bits determines if the instruction shall access memory at an address
stored in a register and also if a displacement shall be added to the address.

00 The processor will use indirect addressing mode. The address will be collected
from the register specified by the R/M bits. Two exceptions are when the
R/M field is 100 or 101.

01 Indirect addressing mode but an 8-bit displacement will be added to the ad-
dress before it is dereferenced.

10 Indirect addressing mode but a 32-bit diplacement will be added to the address
before it is dereferenced.

11 Direct addressing mode, no memory will be acccessed. Both the Reg and R/M
fields will denote registers.

Reg
The Reg field will denote a register:
000 - eax, 001 - ecx, 010 - edx, 011 - ebx, 100 - esp, 101 - ebp, 110 - esi, 111 - edi.

R/M
The R/M field will denote a register just like the reg field. It also denotes the
register from which an address will be dereferenced. There are two exceptions to
this, namely if the mod bits are 00 and if the R/M bits are 100, then the SIB
byte will be used when accessing memory or when the R/M bits are 101, then a
displacement value will be dereferenced instead.

The SIB byte

The SIB byte like the Mod-Reg-R/M byte also contains three fields of bits called
Scale, Index and Base, see Table 2.3. As mentioned before, this byte enables
index-based memory access. When the SIB byte is used, the address being ac-
cessed will be calculated as follows: Base+ Scale ∗ Index. The fields in the SIB
byte will be explained below:

Background 7

Scale Index Base
2 bits 3 bits 3 bits

Table 2.3: Format of the SIB byte

Scale
The two Scale bits determines what value the Index value will be multiplied with.

00 Index will be multiplied by 1.

01 Index will be multiplied by 2.

10 Index will be multiplied by 4.

11 Index will be multiplied by 8.

Index and Base
The Index and Base fields both denotes registers encoded in the same way as the
Reg and R/M fields in the Mod-Reg-R/M byte. [Art13] [Irv10]

2.4 Disassemblers

There are generally two different kinds of disassemblers namely static disassem-
blers and dynamic disassemblers. Static disassemblers use either a linear sweep
algorithm or a recursive traversal algorithm to decode the instructions in a pro-
gram. A linear sweep disassembler works in such a way that it reads the program
byte after byte, decoding instructions as they come along. A clear advantage with
this approach is that the entire program can be disassembled in a single sweep.
It is also fairly quick since it only depends on the size of the program. The per-
haps most critical disadvantage this approach has is that it does not take the
control flow of the program in to account causing it to misinterpret things like
data embedded in the stream of instructions.

Recursive traversal disassemblers works such that whenever they encounter a
function call or a branch instruction it calculates the possible target address of the
instruction, marks the current address as visited and then proceeds to recursively
call its disassembler function with the potential target addresses of the current
instruction. If it encounters an address that has already been visited, the function
returns. This enables the disassembler to avoid interpreting embedded data as
executable instructions.

A dynamic disassembler executes the code at the same time as it disassembles
the instructions by using an attached debugger, allowing it to follow the control
flow of the program by executing branch instructions and function calls.

Since an analyst can use different kinds of disassemblers, the obfuscator must
take the weaknesses of each in account when obfuscating the code in order to
achieve a high level of obfuscation to confuse the analyst.

8 Background

Chapter 3
Code obfuscation

3.1 What is code obfuscation

Obfuscating code is the action of deliberately making code harder to analyze,
interpret and recreate. In the case of machine code, the idea is to make the code
hard to disassemble correctly and hard for humans to read and understand once
it has been disassembled. The creator of some program can choose to obfuscate
their code for a variety of reasons, both benign and malevolent e.g., a legitimate
programmer may want to hide certain parts of a program, for example which ports
the program listens to or the algorithm that determines if a serial code is correct
while on the other hand a hacker might want to make his virus harder to analyze
which could delay the analysis of the virus and the creation of a fix which in turn
would let the virus infect a larger number of hosts. By achieving a high level
of obfuscation, the risk of a program getting cracked, copied and spread on the
internet is greatly reduced. It will also be less susceptible to hacker attacks since
an adversary will have a difficult time finding security flaws to exploit.

3.2 Some obfuscation techniques

Over the years, several obfuscation techniques have been invented and employed,
ranging from simple tricks to confuse linear sweep disassemblers to sophisticated
self modifying code. Some notable approaches will be presented below.

3.2.1 Junk byte insertion

This obfuscation technique aims to exploit the weakness of linear sweep disassem-
blers by embedding data among the executable instructions. Upon disassembly,
the disassembler will interpret the junkbyte as the opcode to the start of an in-
struction, which could cause the following bytes to be interpreted as the rest of
the instruction. This would make the program look completely different from the
program written without the junkbyte. Note that a recursive traversal disassem-
bler follow the control flow of the program so that it never encounters the junk
byte. An example of junk byte insertion is displayed below. [CJ13]

Consider the following code:

9

10 Code obfuscation

jmp label eb 01

db 0x8d 8d # junk byte

label:

xor eax, 0x12345678 35 78 56 34 12

int 0x80 cd 80

After assembling the code above and then using the GNU Assembler objdump

[obj14] on it we see that the linear sweep algorithm produces the following code:

$ objdump -D -b binary -mi386 -M intel example.o

0: eb 01 jmp 0x3

2: 8d 35 78 56 34 12 lea esi,ds:0x12345678

8: cd 80 int 0x80

Here it is very clear that the linear sweep algorithm in objdump interpreted the data
byte 0x8d as the the opcode for the x86 Load Effective Address instruction making
the disassembled code look different from the code that was actually written. An
important thing to note is that the junk byte must be placed so that it will never
be reached, potentially causing the program to crash. Another important thing to
notice in this example is the fact that the instruction int 0x80 appears in both
code snippets. This is due to the fact that the disassembler tends to synchronize
with the correct code in a few instructions (one in this case) because of the variable
length of x86 instructions.

3.2.2 Opaque predicates

Opaque predicates is a technique used to fool recursive traversal disassemblers and
can be used together with junk byte insertion. The idea is to convert unconditional
jump instructions into conditional jump instructions but make it so that the jump
is always taken at runtime. This forces the recursive traversal algorithm to consider
both the target as well as the next instruction after the jump. By placing junk
bytes directly after the jump instruction, the disassembler can be tricked into
producing erroneous code. [CJ13]

Modifying this technique could also fool a dynamic disassembler. Since a
dynamic disassembler will disassemble the code while it is being run, it will only
encounter the legitimate code and never reach the junk byte. However, this could
be overcome by making the seemingly unconditional jump conditional. This might
seem confusing but if one were to make the conditional jump depend on the fact
that a debugger was present or not, one could make the jump be not taken if that
was the case. Then the dynamic disassembler would be forced to disassemble the
junk byte, making it produce faulty code.

3.2.3 Instruction embedding

Instruction embedding [LSPM12] is an interesting obfuscation technique because it
effectively hides one or more instructions inside another instruction. An instruction
a embeds an instruction b if the last x bytes of a consist of all the bytes in b. The

Code obfuscation 11

most important part of any obfuscation technique is to not change the behaviour
of the program, luckily, the x86 architecture allows jumps into the middle of an
instruction. This means that a jump can be made into the embedding instruction
so that the next instruction to be run is actually the embedded instruction.

Since the embedding instruction must be able to contain the entirety of the
embedded instruction there are constraints on what instruction can be embedded
and which instructions they can be embedded in. The best instructions to use as
embedding instructions are those that utilize both a 32-bit displacement value and
a 32-bit immediate value, then it will contain 8 bytes that are fully customizable
which means that an instruction with the length of 8 bytes can be embedded.
Consider the following instruction:

lea esi, 0x12345678 ; 8d 35 78 56 34 12

If the byte 8d would be removed, the following instruction would be found:

xor eax, 0x12345678 ; 35 78 56 34 12

In this example, the instruction xor eax, 0x12345678 is embedded in the in-
struction lea esi, 0x12345678.

3.2.4 Using cryptographic hash functions or pseudo-random number gen-
erators

These two approaches both stem from the same idea, namely to generate the code
at runtime so that it is never visible to an analyst using a static disassembler.
Because the code is generated first when the program is run, it is only present at
runtime and only in memory, which means that there is no code to analyze when
the program is not being run.

In the case of using pseudo-random number generators, the basic idea is to find
a seed s to a built-in pseudo random number generator G on the host such that
a number of consecutive calls to G will generate the desired bytes. This is often
very hard to do since the probability of finding such a seed is very small, especially
as the number of desired bytes grow in size. Because of this the method can be
altered by using different kinds of mappings between the generated numbers and
the desired bytes. [JA09]

When using cryptographic hash functions, the idea is similar. By using some
key combined with a salt value together with some cryptographic hash function,
a sequence of bytes will be generated. The goal is to find the key, a salt and a
hash function such that they together generate the bytes that make up a program.
Like the case when using pseudo-random number generators this is very hard to
achieve which is why this form of anti-disassembly is rarely used. [AdJ06]

Both of these approaches depend on finding certain values to make them work.
The only way to do this is by doing an exhaustive search for suitable values which in
turn requires a lot of computing power. If this search space could be divided among
a large amount of hosts, time it would take to obtain the desired values would be
greatly reduced. An interesting thing to note is that this kind of distributed
computing mainly exist in botnets and that a programmer with a botnet at his
disposal usually has malevolent purposes in mind.

12 Code obfuscation

3.3 Instruction overlapping

Instruction overlapping is the obfuscation technique of which the main focus of this
thesis lies on. It is similar to instruction embedding in that it hides instructions
inside others but it is also more advanced and a more elegant solution. In the case
of instruction embedding, an instruction hides another and a jump is needed to
execute the hidden instruction. This requires a large amount of jump instructions
when a large amount of instructions are hidden which could seem suspisious to
an analyser. At the same time, it would not stand a chance against a dynamic
disassembler since the control flow of the program is followed and only the in-
structions executed are disassembled. Instruction overlapping in its simplest form
attempts to overcome the former of this problem by making the code look normal.
With a bit of tweaking it can also overcome the second problem by making the
disassembler execute the non-hidden code.

The main difference between instruction overlapping and instruction embed-
ding is that instruction embedding hides one instruction inside another while in
instruction overlapping, several instructions can be hidden inside several others.
The main idea is that when looking at a program as a stream of bytes, if the pro-
gram were to be run starting with the first byte in the stream, one execution path
would be executed while if the program were to be run starting at an offset from
the first byte, another execution path would be executed. The perfect scenario
for this technique would be to have two completely executable paths (non of the
executions paths crasches the program) so that the execution path starting at the
first byte is the visible code (to the analyst) and the executions path starting at an
offset is the hidden code. If this result was achieved, only one jump instruction into
the hidded execution path would be needed to run the program as opposed to the
case with instruction embedding where serveral jumps were needed. This would
make the program look natural and not as suspisious which solves the problem
with strange looking code when using instruction embedding. [CJ13]

3.3.1 Overlapping instructions

Instructions are overlapping if one sequence of instructions a can be extracted from
another sequence of instructions b by removing one or more of the bytes making
up sequence b. For example, consider the following instructions:

test dword [edi+0x10c383ff], 0x5b8 ; f7 87 ff 83 c3 10 b8 05 00 00

add [ebx-0xf7cfc40], al ; 00 83 c0 03 83 f0

add al, [ecx] ; 02 01

nop ; 66 90

If the instructions above make up sequence b, then sequence a can be found inside
b by removing the bytes f7 87 ff:

add ebx, 0x10 ; 83 c3 10

mov eax, 0x5 ; b8 05 00 00 00

add eax, 0x3 ; 83 c0 03

xor eax, 0x2 ; 83 f0 02

add [esi-0x70], esp ; 01 66 90

Code obfuscation 13

3.3.2 Main Execution Path and Hidden Execution Path

As mentioned before, instruction overlapping relies on having two executable paths
in one program, the Main-Executaion-Path(from here on called MEP) and the
Hidden-Execution-Path(from here on called HEP). The MEP is the path visible to
an analyst and the HEP will consist of the program that is hidden. In the example
in the previous section, sequence b is the MEP and sequence a is the HEP.

Upon execution, to access the HEP, a jump instruction has to be placed before
the MEP to change the control flow of the program so that program counter will
find the next instruction starting at the first byte of the HEP. This will allow the
HEP to be executed while remaining hidden if the program is disassembled using
a linear sweep disassembler.

To fool a dynamic disassembler is a little more difficult but it is possible. To do
this, the MEP has to be executed since a dynamic disassembler only disassembles
the instructions that are run. Analysis of programs are often done on virtual
machines to protect the host system from potentially harmful programs. This is
very good for the sake of instruction overlapping since there are ways for a program
to find out if it is run with a debugger attatched or on a virtual machine. The jump
into the HEP can then be made to depend on this fact [Rut14] [gdb14] [Pum14].

Unfortunately this makes up one of the main challenges when using instruction
overlapping namely that the MEP must be able to run without crashing. Since
the MEP is generated by inserting bytes in front of the HEP, there is little control
to be had over the instructions in the MEP once the bytes to put before the
HEP has been chosen. Certain type of instructions are not suitable in a MEP,
memory accessing instructions for example could very easily make the program
crash. Other undesireable instructions are jump instructions and interrupts.

The other main challenge is that because of the variable instruction length in
the x86 architecture, the MEP tends to synchronize with the HEP after a number
of instructions. This is a problem because once the MEP has synchronized with
the HEP, the remaining instructions of the program are out in the open.

The intended behaviour when using instruction overlapping is described in
Figure 3.1.

3.3.3 Instruction overlapping using NOP instructions

One way of achieving instruction overlapping is by using nop instructions [CJ13].
The nop instruction is interesting because while it can be encoded as 0x90 it can
also be encoded using up to 15 bytes. Consider the following instruction and its
encoding:

nop word ptr [eax+eax + 0x00000000]}; 66 0f 1f 84 00 00 00 00 00

Because the nop instruction does not alter the state of the processor other than
increasing the program counter, it will not access any memory even though it has a
memory operand. What this means is that the last five bytes of the instruction can
be chosen arbitrarily meaning that the nine byte nop can be used for instruction
overlapping. The reason for not using the 15 byte encoding is that the additional
bytes are static and can not be assigned arbitrary values.

14 Code obfuscation

Figure 3.1: Flowchart for the behaviour when using instruction over-
lapping

The idea is to hide the HEP instructions inside the nop instructions. This
ensures that the MEP is runnable but it raises the question of how to make the
HEP able to run as well. By just embedding the HEP instructions inside nop
instructions, all that is achieved is non functioning instruction embedding. What
is needed is something to glue the HEP together and make it runnable. In [CJ13]
the proposed way of doing this is to use so called wrapping instructions. The
wrapping instruction will be placed between the instructions in the HEP to serve
as a bridge between the nop instructions in the MEP. This is best explained by
considering the format of the MEP instructions to look like this: XX YY ZZ where
XX are the prefix and opcode bytes, YY are the arbitrarily chosen bytes which makes
up the HEP instruction and ZZ is preferably the last byte in the MEP instruction
so that it together with XX make up the wrapping instruction. Then the MEP will
look like this:

XX YY ZZ ; nop containing HEP instruction

XX YY ZZ ; nop containing HEP instruction

XX YY ZZ ; nop containing HEP instruction

...

The HEP will then look like this:

YY ; HEP instruction

ZZ XX ; Wrapping instruction

YY ; HEP instruction

ZZ XX ; Wrapping instruction

YY ; HEP instruction

ZZ XX ; Wrapping instruction

...

Code obfuscation 15

Ideally the wrapping instruction is one that does not affect the behaviour of the
HEP such as test or cmp.

An example of this approach will be presented below. Consider the following
code:

mov ax, 0x15 ; 66 b8 15 00

mov bx, 0x1 ; 66 bb 01 00

and eax, ebx ; 21 d8

Using test as the wrapping function, the MEP will look like this:

nop word ptr [esi - 0x56ffea48] ; 66 0f 1f 84 66 b8 15 00 a9

nop word ptr [esi - 0x56fffe45] ; 66 0f 1f 84 66 bb 01 00 a9

nop word ptr [ecx - 0x6f6f6f28] ; 66 0f 1f 84 21 d8 90 90 90

The HEP will then look like this:

mov ax, 0x15 ; 66 b8 15 00

test eax, 0x841f0f66 ; a9 66 1f 0f 84

mov bx, 0x1 ; 66 bb 01 00

test eax, 0x841f0f66 ; a9 66 1f 0f 84

and eax, ebx ; 21 d8

nop ; 90

nop ; 90

nop ; 90

Note that the last three nop instructions were added to stop the overlapping.
While this approach ensures that the MEP does not crash, it is not very

powerful since the longest instruction that can be hidden has the length of four
bytes unless the last byte is suitable for a wrapping instruction in which case the
length is five bytes. Other weaknesses are that the MEP code looks very suspicious
containing only nop instructions and that the HEP gains unecessary instructions.

3.3.4 A more dynamic solution

A stronger way to achieve instruction overlapping is to iteratively insert bytes in
front of the HEP. With a little luck this could make the code overlap and the
MEP would end up looking a lot more natural since it would be made up of actual
real instructions instead of just nop instructions. The first example on instruction
overlapping in this report was achieved using this approach.

The problems with this way of doing things are those that arise when using
instruction overlapping in itself, namely to make the HEP and MEP runnable as
well as obfuscating a whole program without having the MEP synchronize with
the HEP.

To use this technique and deal with the problems that arise, a tool could be
used. Such a tool would have to be able to iteratively insert bytes in front of the
program that is to be ofuscated. It must then look at which inserted bytes makes
the MEP synchronize with the HEP in the most instructions. When the best bytes

16 Code obfuscation

have been chosen, the tool has to be able to deal with potential problems such as
instructions that makes the MEP crash and so on.

In short, the problems that a tool needs to be able to handle are when there
are instructions accessing memory in the MEP or instructions that change the
control flow of the program in the MEP. It also needs to be able to keep the MEP
from synchronizing with the HEP.

In the next chapter the implementation of such a tool will be described.

Chapter 4
Implementation

4.1 Programming Language

The tool was implemented using C++ with some additional C-libraries. The choice
of programming language largely depended on three main factors; speed, flexibility
and convenience. C++ was the natural choice because it offers the convenience
of the C++ standard libraries which offer good and well implemented container
classes and iterators while still maintaning C-like performance.

4.2 Main features

The main features considered for the tool were:

• Being able to parse and represent a program

• Being able to insert one or more bytes before the instructions in the HEP
to optain a MEP

• Being able to determine which of the inserted bytes generates the longest
and best MEP

• Swapping instructions in the HEP if illegal or unsuitable instructions are
found in the correspondig place in the MEP

• Compensating for memory access in the MEP

• Emulate the instructions in the MEP and determine if a jump instruction
is legal or not if one is found in the MEP

All of these features were fully implemented or implemented to an extent in the
final product.

4.3 Usage

The tool was implemented so that a specific input generates an output in the form
of a template for the obfuscated program generated from the input.

17

18 Implementation

4.3.1 Input

The intended input for the tool is a file containing the bytes representing an
assembled program. The input file is assumed to be assembled in a way such that
only the representation of the instructions are present in the input file, i.e. no code
to make the program runable are added when the instructions are assembled.

4.3.2 Ouput

The output of the tools is presented as a template for the obfuscated program that
was generated from the input file. It contains aside from the instructions a data
section where data is allocated, a preface part and a memory adjustment part.
The two latter parts will be explained further on.

4.4 The algorithm

The main steps of the algorithm implemented in the tool currently is described in
Figure 4.1. The algorithm is described in more detail in the pseudo code below:

Read and parse input file. Store in HEP vector

Do preface substituting 32 bit lea instructions

If mov substitution parameter is set:

Substitute all 32 bit mov instruction in HEP vector

Build vector containing all possible starting bytes between 00 and FFFFFF

while no good MEP is found:

for each starting bytes:

Copy HEP bytes to MEP

Insert starting bytes first in MEP

Check how many instructions are hidden and save the

largest number

Remove starting bytes in MEP

for each starting bytes:

Remove starting bytes with fewer hidden instructions

than the maximum

for each starting bytes:

Copy HEP bytes to MEP

Insert starting bytes first in MEP

Calculate number of memory accesing instructions using

registers to access memory and save minimum

Remove starting bytes in MEP

for each starting bytes:

Remove starting bytes with more than the minimum amount

of registers to access memory

Remove starting bytes generating MEPs containing

instructions using SIB bytes

if starting bytes is empty:

insert nop instruction first in the HEP and loop

else:

break

Insert last starting bytes before the HEP

Adjust for memory access

Print template for obfuscated program

Implementation 19

Figure 4.1: Flowchart for the main steps of the algorithm

The algorithm above is the one used in the current implementation. The ideal
algorithm for the tool is described below:

Read and parse input file. Store in HEP vector

Build vector containing all possible starting bytes between 00 and FFFFFF

for each starting bytes:

Copy HEP bytes to MEP

Insert starting bytes first in MEP

Check how many instructions are hidden and save the

largest number

Remove starting bytes in MEP

for each starting bytes:

Remove starting bytes with fewer hidden instructions

than the maximum

for each starting bytes:

Copy HEP bytes to MEP

20 Implementation

Insert starting bytes first in MEP

Calculate number of memory accessing instructions and keep track

of what registers they use.

remove starting bytes in MEP

Find what starting bytes generating the MEP(s) not using a register

for memory access more than once

if found:

Pick the best starting bytes and insert first in the MEP

else:

Pick the second best starting bytes and insert first in the MEP

Optimize_MEP:

while MEP contains problematic instructions and MEP synchronizes with HEP

and threshold not reached:

Look for instructions causing problems(Instructions using

SIB bytes, instructions causing the MEP to synchronize with

the HEP, unconditional jump instructions, etc)

if found:

Replace instruction causing the problem in the HEP

if conditional jump found:

Emulate instructions before jump instruction and check flags

if the jump will be taken:

Replace instruction in HEP causing the jump

else:

Proceed

If threshold was reached:

If MEP still synchronizes with HEP:

Generate new MEP by inserting new starting bytes before the

synchronizing instruction.

GOTO Optimize_MEP

Adjust for memory access

Print template for obfuscated program adding code for fooling

dynamic disassemblers.

4.5 Parsing and representing a program

In order to perform operations on a program it needs to be parsed and represented
in some way. This part is done in two steps in the tool, first the input file is read
and the bytes are stored in a vector, then the bytes are parsed and stored in
Instruction objects.

Since the parsing and representation of x86 instructions would be very time
consuming to implement, two different third party C libraries were used, Udis86
and Libemu.

4.5.1 Udis86

Udis86 [udi14] is a disassembler library for x86 written in C. It is used to disas-
semble a stream of bytes and presenting them result both in hexadecimal byte
form aswell as in assembly language. It can disassemble bytes coming from either
a byte array or directly from a file. In the tool it is used to read a file and return
the bytes and to present the output.

4.5.2 Libemu

Libemu [lib14] is a C library used for emulation. It provides the tools to build
code analysis programs tailored to specific needs. The library contains an advanced

Implementation 21

emulator capable of executing a stream of instructions and present the resulting
outcome. Alongside the emulator, Libemu offers debugging capabilities.

The tool uses Libemu to parse a stream of bytes and store them in Libemu’s
internal instruction object. The reason for using an instruction object as opposed
to only using the bytes and derive the data necessary from them is that this
offers an extra layer of abstraction so that all the instructions can be handled
the same way instead of having to utilize ad-hoc style handling for each different
type of instruction. The tool wraps the internal instruction object to add some
capabilities.

4.6 "Preface"

Some instructions are very long, therefore they are difficult to hide. At the same
time they often seem to make the MEP sync with the HEP. In order to avoid this
behaviour the tool uses a few tricks to substitute these kinds of instructions by
moving them out of the HEP and replace them with other instructions that makes
the program behave the same but makes the HEP easier to hide.

After the input file has been read and parsed, a function called doPreface()

is called. This functions loops through the instructions and looks for certain kinds
of instructions. If one is encountered, it is substituted for one instruction in the
Preface part of the program and one instruction in the HEP. How this is done is
different for different kinds of instructions.

4.6.1 Workaround for lea instructions

The Load Effective Address or lea instruction loads an address and places it in a
register. For example: lea eax, [somedata] computes the address of the source
operand somedata and stores it in the destination register, eax without actually
accessing the memory.

If the address of somedata in the example above was 0x12345678, the instruc-
tion would be encoded as follows: 8d 05 78 56 34 12. This instruction is the 6
bytes long which can be hard to hide.

What happens in doPreface() when it encounters a similar lea instruction
is that it removes the instructions from the HEP. It then proceeds to add a lea
instruction with the same destination register but with the label of the data minus 1
as the source operand. After that, an ADD instruction adding 1 to the destination
register of the lea instruction is added to the HEP where the original lea instruction
was located. For example:

lea eax, [somedata]

becomes:

preface:

lea eax, [somedata-1]

hep:

add eax, 1

22 Implementation

The result is that the program behaves like it did prior to the change but the
HEP will be easier to hide while the lea instruction and the data which address is
loaded is somewhat hidden.

The use of a label yields a problem that also affects other parts of the tool.
Since the input file is derived from a file written in assembly language, the labels
are translated into memory addresses when the file is assembled and because the
assembler file is assumed to be assembled without any headers to make the program
runable, the address that the label is translated into will not be correct when the
output from the tool is run. Because of this, all use of labels has to be done
manually after the output has been generated before the obfuscated program can
be run.

4.7 Generating a MEP

The first step when generating a MEP from the HEP is to insert one or more bytes
before the HEP (from here on called starting bytes) so that a new execution path
with overlapping instructions is created. Since the x86 architecture can handle
instructions that are up to 15 bytes long, the maximum number of bytes to insert
before the HEP is 14. In the tool however, the maximum number of bytes inserted
is three. This is mainly because the search space would be too great and the tool
would take a very long time to run.

The choice of starting bytes depends on the instructions in the HEP, therefore
all combinations of starting bytes (with some exceptions) are inserted before the
HEP and the result is evaluated. Because the x86 provides some instructions with
a length in the range of one to three bytes, these starting bytes are discarded
since they only generate one instruction and no overlapping occurs. The other
types of starting bytes that are discarded are those beginning with F6 because of
limitations in the implementation of libemu.

4.7.1 Input starting bytes

Since the maximum number of bytes inserted before the HEP is three, all the
combinations of one to three bytes are considered which results in a large search
space. Before making exceptions all the bytes in the ranges
[0x00 - 0xFF], [0x0000 - 0xFFFF], [0x000000 - 0xFFFFFF] are generated. This
brings the number of bytes generated up to 256 + 2562 + 2563 = 16843008 start-
ing bytes. By removing the unsuitable starting bytes the number is reduced to
3316228 starting bytes.

These different starting bytes are stored in a special object called Opcode and
then placed in a vector<pair<Opcode, OpcodeMetaData> startingBytes using
the pair class offered by the C++ Standard Library.

After storage, the different starting bytes are inserted before the HEP and
evaluated. The different results of the evaluation is stored in the OpcodeMetaData

object coupled with the Opcode object.

Implementation 23

4.7.2 Looking for the longest MEP

The first step in the evaluation of the starting bytes is checking the number of
instructions before the MEP synchronizes with the HEP. Since the goal is to hide as
many instructions as possible, a higher number means a better HEP. The number
is calculated for each of the starting bytes by comparing the last instruction in the
MEP in the HEP, if they are equal, the last instruction in both execution paths
is popped and the process is repeated until the instructions differ. The number of
hidden instructions is calculated as follows:

Sync number = HEP size - number of equal instructions

The number is then saved in the OpcodeMetaData object for the starting bytes
being checked.

After the sync number has been calculated for every Opcode object, the highest
sync number is calculated and all starting bytes with a sync number less than the
highest are removed.

4.7.3 Ranking the starting bytes

After the starting bytes generating the longest MEP have been found, the evalu-
ation of the remaining starting bytes continues. This part of the evaluation looks
more at the actual instructions in the generated MEPs and their characteristics.
Starting bytes with MEPs containing undesireable instructions are removed. The
different kinds of undesireable instructions are described below.

Instructions using SIB bytes

The SIB byte is used for index-based memory access. Firstly, all kinds of memory
access in the MEP is undesireable but in some instances they can be remedied
by adjusting for memory access which will be explained later. The problem with
the use of SIB bytes is that they involve more than one register when calculating
the memory address being accessed by the instruction. This means that both of
the registers must contain values such that the calculated address is one that the
program is allowed to access. This makes further usage of said registers in other
registers difficult.

Interrupts

The explanation for why interrupting instructions are undesireable in the MEP is
simple, they interrup the execution of the program.

Since memory access is a tricky problem to handle it is desired to have as few
instructions accessing memory as possible. As a part of the ranking of starting
bytes, the number of memory accessing instructions for each of the starting bytes
is calculated and saved. The OpcodeMetaData object contains a char usedRegs[]

array with eight elements, one for each register. To calculate the number of mem-
ory accessing instruction, the tool inserts each of the starting bytes before the

24 Implementation

HEP again an then loops through the generated MEP. When a memory accessing
instruction is found, the register with the memory address being accessed is de-
termined and the corresponding element in the usedRegs array is added by one.
The number is then calculated by adding all the numbers in usedRegs. This could
have been done without using the usedRegs array by just using an integer to save
the number of memory accessing instructions. The reason to why the registers are
recorded is that the best possible outcome would be if the registers were only used
once or never, then it would not be enough if only the number of memory access-
ing instructions was used. For example a MEP containing 4 memory accessing
instructions where all use different registers is better than a MEP containing only
two memory accessing instructions where the same register is used twice.

When instructions using SIB bytes or when interrupting instructions are present
in a MEP it can not be used and another MEP must be chosen. If all of the
best starting bytes generates MEPs with such instructions then the HEP must be
changed in an attempt to overcome this problem. This is done by inserting a NOP
instruction as the first instruction in the HEP. NOP is an instruction that has no
effect on the processor other than increasing the program counter. In x86 it is
implemented as an xchg eax, eax instruction which does nothing since xchg is
used to swap the values of two registers. When the NOP has been inserted, the
process of inserting starting bytes before the HEP is done all over with the original
3316228 Opcode objects. This is repeated until a MEP without any interrupts or
instructions using SIB bytes is found.

4.8 Memory access adjusment

As mentioned before, instructions accessing memory in the MEP needs to be taken
care of in order not to crash the program when the MEP is executed. Because
there is very little control to be had over the MEP once the proper starting bytes
have been choosed, the memory addresses being accessed by certain instructions
cannot be changed. Since said addresses can be virtually any number in the
range of 0x00000000 - 0xFFFFFFFF the probability of a certain address being
accessible without rendering a segmentation fault is very, very small and running
a MEP without handling this in some way would most likely end up in a crash. In
order to change this behaviour and enable the MEP to run without crashing, the
memory addresses that the instructions attempts to access needs to be adjusted
for so that they may be accessed without crashing the program.

In the tool, this is implemented in a fairly simple manner. When the starting
bytes have been chosen and the MEP has been generated, the program being oper-
ated on resides in two vector<Instruction>’s, namely preface and mep. At this
point a new vector<Instruction> memoryAdjustment is created and a function
adjustForMemoryAccess() where mep and memoryAdjustment are passed as ref-
erences is called. In this function, all the instructions accessing memory are found
and adjusted for.

When an instruction accessing memory has been found (that has not been adjusted
for earlier or affected by a lea substitution), the adjustment works like this:

Implementation 25

1. Determine the register containing the address being accessed

2. Make a note to allocate memory for the register

3. Construct a lea instruction loading the address of the allocated memory in
to the register

4. Place the lea instruction in the memoryAdjustment vector

5. If an offset is used before dereferencing the address, constuct an add or sub
instruction using the register and the offset

6. Place the add or sub instruction in the memoryAdjustment vector

For example, if we have the following MEP:

add [ecx+0xbb80c46], eax

then we would end up with the following code:

section .data

dd ecxData 1 # Allocating one double word with value 1

section .text

memoryAdjusment:

lea ecx, [ecxData] # Loading the address of ecxData into ecx

sub ecx, 0xbb80c46 # Compensating for the offset

mep:

add [ecx+0xbb80c46], eax

When the memory adjustment is done, in the best case scenario, the MEP is able
to run and exit without crashing.

4.9 Swapping instructions

In general it is hard to derive a good MEP from any given HEP and it gets
harder and harder the longer the HEP is. In some cases it is hard to hide a HEP
because it contains long instructions that breaks the MEP by syncing with the
HEP. In others it is the sheer volume of the program making the MEP contain
a lot of instructions accessing memory which makes the memory adjustment step
very difficult. Thankfully, there are a lot of way to do the same thing in x86
which means that one or more instructions can be swapped for other instructions
while still maintaining the behaviour of the program. What this means is that if
a problematic instruction is found in the MEP, then the instruction in the HEP
that spawned the problematic instruction can be swapped. That way the HEP
maintains its behaviour and the MEP might get executable without crashing.

26 Implementation

4.9.1 Swapping 32-bit mov instructions

The mov instruction is used to move data between registers and memory, the
possible combinations are listed below:

• Register to Register

• Register to Memory

• Memory to Register

• Immediate value to Register

• Immediate value to Memory

As seen above, it is not possible to move a value from one memory address to
another using only one mov instruction. When moving a 32 bit value to a register,
the instruction length is five bytes which makes the mov instruction almost as
problematic as the lea instructions. Since mov is such a regular instruction being
used constantly it needs to be handled in some way. There are many instructions
which has the same or longer length but the reason for wanting to handle mov is
that it is often used when invoking Linux system calls [sys14]. System calls are an
important part of many programs, they can for example be used for starting other
processes, open and write to files or listening to network ports. Code invoking
system calls would benefit from being hidden since one might want to hide certain
functionality in a program such as which files the program writes to/reads from
as well as which network ports the program listens to.

A system call is invoked by putting a system call number in eax and usually
some parameters to the system call in the ecx, edx, ebx registers. The system
call is then invoked by calling the kernel using an interrupt instruction(int 0x80).
This is where the mov instruction comes in to the picture. Because numbers are
moved to a 32 bit register like eax, 32 bit mov instructions are used. This is a
problem since there is usually more than one mov instruction in a row before the
interrupt instruction. One could argue that the corresponding eight bit registers
al, cl, dl, bl could be used to avoid moving 32 bit values. However, if there
is any number larger than 0xFF in the register, the wrong value would reside in
the 32 bit register after the eight bit move has been performed since only the least
significant bits in the register is changed by the eight bit move.

The way the tool handles 32 bit mov instructions is by replacing them with
two 16 bit mov instructions and a bitwise left shift. The handling is performed
like this:

1. Move the 16 most significant bits of the 32 bit mov instruction into the 16
bit corresponding register

2. Shift the 32 bit register 16 steps to the left

3. Move the 16 least significant bites of the 32 bit mov instruction into the 16
corresponding register

This way we end up with the same value in the register and get rid of the 32 bit
mov, replacing it with three instructions that are easier to handle. For example,
consider the following instruction:

Implementation 27

mov eax, 0x11112222

After replacing this instruction we end up with the following instructions:

mov ax, 0x1111

shl eax, 0x10

mov ax, 0x2222

Since it is not always beneficial to replace every 32 bit mov instruction, it is op-
tional for the tool to make the substitution or not. Whether or not the substitution
shall be made is decided based upon an argument to the tool.

28 Implementation

Chapter 5
Result

5.1 Test programs

To test the tool, two different test programs were written to be used as input for
the tool. The two test programs are desribed below.

5.1.1 launchshell

The functionality of the launchshell program is to open a shell when the program
is run. This is done by making a Linux system call called sys_execve which
will execute the program specified by the parameters passed to the system call.
Since this program could be extended so that that the shell is opened with root
permissions it could potentially be used by a hacker as shell code to gain control
over a local or remote host. This program was chosen as a test program because
it is a good exempel of a program that could benefit from being obfuscated. If
the program was to be disassembled by an analyser, he would not find the shell
code. The entire program written in assembly language is presented and explained
below:

BITS 32

section .data

shellpath: db "/bin/sh",0

shellpathlen: equ $-shellpath

The first part of the program is the data section. Here the string shellpath is
allocated and populated with the path to the shell that will be opened. Second,
the shellpathlen is allocated and the length of shellpath is placed in it.

section .text

global _start

_start:

lea esi, [shellpath] ; 8d 35 20 00 00 00

xor eax, eax ; 31 c0

29

30 Result

mov dword [esi+shellpathlen], esi ; 89 76 08

mov dword [esi+shellpathlen+4], eax ; 89 46 0c

Next is the text section which contains the executable code. First, the address of
the first byte in the shellpath string is loaded into the esi register with the lea
instruction, second, xor eax, eax will effectively replace any value residing in eax
with zero,vthis will be used later.

The next two instructions will be used when passing parameters to sys_execve.
The first instruction will place the address of the shellpath string directly after
the string itself. The second instruction will place the value of eax, namely zero
directly after the address in the previous instructions in memory. These use of
these two instructions might seem strange but there is a good explaination which
will be presented shortly.

mov eax, 0xb ; b8 0b 00 00 00

lea ebx, [esi] ; 8d e1

lea ecx, [esi+shellpathlen] ; 8d 4e 08

lea edx, [esi+shellpathlen+4] ; 8d 56 0c

int 0x80 ; cd 80

The final part of the program is the system call. First, the number 0xb is placed
in eax. This is the number identifying sys_execve. Then the address of the
shellpath string is placed in ebx. The next step is where the seemingly strange
two instructions are explained. sys_execve takes three parameters, the first one is
a pointer to a string containing the path of the program to be started, the second
one is a pointer to an array containing arguments to the program being started,
by convention, the first argument is the path to the program itself which is why
the address of the shellpath string was placed after the string in memory. The
next lea instruction places the address of the argument in ecx.

The third parameter to sys_execve is an array of strings which are passed as
environment to the executed program. In this case, this parameter is not needed
which is why a zero was placed after the argument array in memory. The last lea
instruction places the address of the zero in the edx register.

Lastly the system call is invoked by the interrupt instruction.

5.1.2 writetofile

The next program is called writetofile and like the name suggests, it’s func-
tionality is to write data to a file. To do this, two different system calls are used,
sys_open and sys_write. sys_open will open a file (or create one provided that
certain parameters are used) while sys_write will write to an open file if permit-
ted. To motivate the use of this program as a test program, consider the following:
if a program uses similar code to write data to a file, it could benefit from being
obfuscated in order to keep an adversary from knowing if and to what file the
program writes its data. In term this would keep the adversary from being able to

Result 31

tamper with the data making the program behave in a way that was not intended.
The program is explained below:

BITS 32

section .data

textoutput: db ’Hello’, 10

textoutputlen: equ $-textoutput

filetoopen: db ’hello.txt’, 0

Just like in launshell the first part of the program is dedicated to allocate data.
In this program there are three variables allocated, textoutput which is the string
that will be written to the file, textoutputlen which is the length of that string
and lastly filetoopen which contains the path to the file.

section .text

global _start

_start:

mov eax, 0x5 ; b8 05 00 00 00

mov ebx, filetoopen ; bb 46 00 00 00

mov ecx, 0x2 ; b9 02 00 00 00

int 0x80 ; cd 80

The next part of the program is responsible for opening the file. The first in-
struction moves the number 0x5 which is the number for sys_open to eax. The
second instruction places the address of the filetoopen string in ebx. The third
instruction the value 0x2 is placed in ecx. This value determines that the file is
opened with read and write permissions. Lastly, the system call is invoked by the
interrupt instruction.

cmp eax, 0 ; 83 f8 00

jl exit ; 0f 8c f8 ff ff ff

When the sys_open system call has been invoked, the result of the system call is
placed in eax. If the file does not exist, a negative number is placed in eax and if
it does exist, the address of the file descriptor is placed in eax.

These two instructions are meant to serve as error handling. The first instruc-
tion compares if the value in eax is bigger than zero and the result of the compared
is saved in the eflags register. The second instruction then checks the eflags reg-
ister to examine the result, if the value was smaller than zero, the execution will
jump to the exit label. Otherwise the execution continues.

mov ebx, eax ; 89 c3

mov eax, 0x4 ; b8 04 00 00 00

mov ecx, textoutput ; b9 40 00 00 00

mov edx, textoutputlen ; ba 06 00 00 00

int 0x80 ; cd 80

32 Result

If sys_open system call was successful, it is now time to write to the file. For this,
the system call sys_write will be used. The first instruction moves the value in
eax to ebx. This is because the address of the file descriptor returned by sys_open

was saved in eax and since eax is where the system call number is saved, the
address of the file descriptor must be moved to ebx before the system call number
is moved to eax. The second instruction does just that. The third and fourth
instructions places the address of the textoutput string in ecx and the length of
the string in edx. Lastly the system call is invoked by the interrupt instruction
and the string “hello” is written to the file.

exit:

mov eax, 1 ; b8 01 00 00 00

mov ebx, 0 ; bb 00 00 00 00

int 0x80 ; cd 80

The last instructions invoke the sys_exit system call which will terminate the
current process.

5.2 Running the tool

When both of the test programs had been written and tested they were assembled
without any headers to make them runnable using nasm [nas14] which is an x86
assembler. The tool was then run twice with each of the test programs as input,
once with the substitution of 32 bit mov instructions and once without it. Once
the tool was finished, the output was copied into an assembly file and the manual
allocation of data and the manual part of the memory adjustment was done. After
that, both the HEP and the MEP were executed to see if the HEP had the intended
behaviour and if the MEP executed without crashing.

The following will be presented in the result:

Replacing mov This field shows if the tool was run with 32 bit mov substitution
or not

Instructions hidden This field shows the percentage of instructions in the input
program that were hidden by the tool. Calculated by dividing the number
of instructions in the input program not shown in the output by the total
number of instructions in the input program.

HEP functional This field shows if the HEP is functional when the output from
the tool is run.

MEP functional This field shows if the MEP runs without crashing.

The results for the runs are presented in Table 5.1 and Table 5.2.
The output from the tool after the manual work and some finishing for each

of the runs are presented below.

Result 33

Replacing mov Instructions hidden(%) HEP functional MEP functional Starting bytes
Yes 55.6 Yes No 0xF3 0xF7
No 77.8 Yes Yes 0xF7 0x87 0xFF

Table 5.1: Results for launchshell

Replacing mov Instructions hidden(%) HEP functional MEP functional Starting bytes
Yes 14.3 - - 0xF7 0x87 0xFF
No 21.4 No No 0xF7 0x87 0xFF

Table 5.2: Results for writetofile

5.2.1 launchshell

With 32 bit mov substitution
BITS 32

section .data

shellpath: db "/bin/sh",0

shellpathlen: equ $-shellpath

ebxData: dd 1

eaxData: dd 1

section .text

global _start

_start:

;preface

lea esi, [shellpath-1]

;Memory adjustment

lea ebx, [ebxData]

add ebx, 0x3fcefe3a

lea eax, [eaxData]

sub eax, 0x0

jmp mep0 + 0x2

mep0:

repe test dword [ebx-0x3fcefe3a], 0x89087689 ; f3 f7 83 c6 01 31 c0 89 76 08 89

inc esi ; 46

or al, 0x66 ; 0c 66

mov eax, 0xe0c10000 ; b8 00 00 c1 e0

adc [esi-0x48], ah ; 10 66 b8

or eax, [eax] ; 0b 00

lea ebx, [esi] ; 8d 1e

lea ecx, [esi+0x8] ; 8d 4e 08

lea edx, [esi+0xc] ; 8d 56 0c

int 0x80 ; cd 80

mov eax, 1 ; b8 10 00 00 00

mov ebx, 0 ; bb 00 00 00 00

int 0x80 ; cd 80

When looking at the code it is clear that it looks very different from input program.
The data section is very similar with the addition of ebxData and eaxData which
are used for memory adjustment. Next is the preface where the lea instruction in
the input program has been replaced and after that is the memory adjustmen part
where the ebx and eax registers are populated and the offsets are compensated
for. Now for the really interesting part, after the jmp instruction the actual MEP
is shown. Compairing it to the input program, the code looks very different. It
is not until the lea ebx, [esi] instruction that the MEP has synced with the
HEP and the code looks the same as in the input program. This means that the

34 Result

tool has been able to hide five of the nine instructions in the input program.

Without 32 bit mov substitution
BITS 32

section .data

shellpath: db "/bin/sh",0

shellpathlen: equ $-shellpath

ediData: dd 1

ecxData: dd 1

eaxData: dd 1

ebpData: dd 1

section .text

global _start

_start:

;preface

lea esi, [shellpath-1]

;Memory adjustment stuff

lea edi, [ediData]

sub edi, 0x1c683ff

lea ecx, [ecxData]

sub ecx, 0xbb80c46

lea eax, [eaxData]

sub eax, 0x0

push ebp

lea ebp, [ebpData]

sub ebp, 0x84e8d1e

jmp mep0 + 0x3

;mep

mep0:

test dword [edi+0x1c683ff], 0x7689c031 ; f7 87 ff 83 c6 01 31 c0 89 76

or [ecx+0xbb80c46], cl ; 08 89 46 0c b8 0b

add [eax], al ; 00 00

add [ebp+0x84e8d1e], cl ; 00 8d 1e 8d 4e 08

lea edx, [esi+0xc] ; 8d 56 0c

int 0x80 ; cd 80

pop ebp ; 5d

mov eax, 1 ; b8 01 00 00 00

mov ebx, 0 ; bb 00 00 00 00

int 0x80 ; cd 80

This output is similar to the previous one, the memory adjustment part is a
little different since this output uses other registers for memory access. The lea
substitution in the preface is the same. The real difference is in the MEP where it
is not until the lea edx, [esi+0xc] that the MEP synchronizes with the HEP.
Compairing this output to the input program, seven of the nine instructions have
been hidden by the tool.

5.2.2 writetofile

With 32 bit mov substitution
BITS 32

section .data

textoutput db ’Hello’, 10

textoutputlen equ $ - textoutput

filetoopen db ’hello.txt’, 0

ediData: dd 1

esiData: dd 1

section .text

global _start

Result 35

_start:

;preface

;Memory adjustment

lea edi, [ediData]

add edi, 0x47996f01

lea esi, [esiData]

add esi, 0x48

jmp mep0 + 0x3

;mep

mep0:

test dword [edi-0x47996f01], 0xe0c10000 ; f7 87 ff 90 66 b8 00 00 c1 e0

adc [esi-0x48], ah ; 10 66 b8

add eax, 0xbb6600 ; 05 00 66 bb 00

add cl, al ; 00 c1

jecxz 0x28c31de8 ; e3 e7

mov bx, 0x46 ; 66 bb 46 00

mov cx, 0x0 ; 66 b9 00 00

shl ecx, 0x10 ; c1 e1 10

mov cx, 0x2 ; 66 b9 02 00

int 0x80 ; cd 80

cmp eax, 0x0 ; 83 f8 00

jl 0x28c31dea ; 0f 8c e6 1d c3 28

mov ebx, eax ; 89 c3

mov ax, 0x0 ; 66 b8 00 00

shl eax, 0x10 ; c1 e0 10

mov ax, 0x4 ; 66 b8 04 00

mov cx, 0x0 ; 66 b9 00 00

shl ecx, 0x10 ; c1 e1 10

mov cx, 0x40 ; 66 b9 04 00

mov dx, 0x0 ; 66 ba 00 00

shl edx, 0x10 ; c1 e2 10

mov dx, 0x6 ; 66 ba 06 00

int 0x80 ; cd 80

mov ax, 0x0 ; 66 b8 00 00

shl eax, 0x10 ; c1 e0 10

mov ax, 0x1 ; 66 b8 01 00

mov bx, 0x0 ; 66 bb 00 00

shl ebx, 0x10 ; c1 e3 10

mov bx, 0x0 ; 66 bb 00 00

mov eax, 1 ; b8 01 00 00 00

mov ebx, 0 ; bb 00 00 00 00

int 0x80 ; cd 80

When running the tool with writetofile as input and using 32 bit mov substi-
tution, the output is on the same format as the runs with launchshell. The data
section looks similar, the variables from the input program are allocated together
with the data for memory adjustment. The MEP is a little harder to interpret
since the 32 bit mov substitution has changed the look of the program. Upon
assembly of the input program, the label in the instruction mov ebx, filetoopen

has been translated into mov ebx, 0x46. Knowing this, it can be determined that
the tool only managed to hide two of the instructions in the input program.

An interesting thing to note is that while the output looks completely different
from the input program, it is not hidden, this is simply the work of the 32 bit mov
sustitution which does not mean that the program is obfuscated since it is still
easy to see what the program does.

Without 32 bit mov substitution
BITS 32

section .data

textoutput db ’Hello’, 10

textoutputlen equ $ - textoutput

filetoopen db ’hello.txt’, 0

ediData: dd 1

eaxData: dd 1

36 Result

ecxData: dd 1

section .text

global _start

_start:

;preface

;Memory adjustment

lea edi, [ediData]

sub edi, 0x5b890ff

lea eax, [eaxData]

sub eax, 0x0

lea ecx, [ecxData]

sub ecx, 0x2

jmp mep0 + 0x3

;mep

mep0:

test dword [edi+0x5b890ff], 0xbb000000 ; f7 87 ff 90 b8 05 00 00 00 bb

inc esi ; 46

add [eax], al ; 00 00

add [ecx+0x2], bh ; 00 79 02

int 0x80 ; cd 80

cmp eax, 0x0 ; 83 f8 00

jl 0x2d6d57e9 ; 0f 8c e5 57 6d 2d

mov ebx, eax ; 89 c3

mov eax, 0x4 ; b8 04 00 00 00

mov ecx, 0x40 ; b9 40 00 00 00

mov edx, 0x6 ; ba 06 00 00 00

int 0x80 ; cd 80

mov eax, 0x1 ; b8 01 00 00 00

mov ebx, 0x0 ; bb 00 00 00 00

int 0x80 ; cd 80

The format of this output is the same as for the others. Looking at the MEP it is
by the int 0x80 instruction that the MEP has synchronized with the HEP. This
means that the almost the entire first system call has been hidden. The number
of hidden instructions is for this run three.

Another interesting observation is that the tool chose the starting bytes 0xF7 0x87

0xFF for both of the writetofile runs aswell as for one of the launchshell runs
even though they contain different instructions.

Chapter 6
Discussion and further development

6.1 Observations regarding launchshell

As shown in the Result section, the tool was most successful when obfuscating this
program, both with and without the 32 bit mov substitution. Interestingly enough,
the best result was achieved without the 32 bit mov substitution. Reaching a 77.8%
level of obfuscation while still being able to run both the MEP and the HEP is a
very good result. It is not a perfect result since the last 22.2% could potentially
contain sensitive code. There are a few potential remedies for this problem that
will be discussed in the Further development section.

Running the tool with this input program with the 32 bit mov substitution
achieved a 55.6% level of obfuscation which is still pretty good. While the HEP
was able to run and actually start a shell the MEP crashed. The reason for the
crash is that the or eax, [eax] instruction tried to access memory that it was
not allowed to. Even though the memory access of the address in eax had been
adjusted for, two instructions before the or eax, [eax] instruction had changed
the value of eax. This is a weakness in the memory adjustment part of the tool.

6.2 Observations regarding writetofile

While the tool achieved fairly good results when obfuscating launchshell, at-
tempting to obfuscate writetofile was a different story. Not only did the tool
only manage to hide at most 21.4% of the program, which in this case is only three
instructions, none of the obfuscated programs worked as intended.

The output generated when obfuscating the program without the 32 bit mov
substitution managed to run and the HEP even managed to run without crashing.
However, even though the HEP ran, it did not work as intented, it did not write
“Hello" to the file. The reason for this is that when assembling the instructions in
the output, nasm chose a different encoding of the add [ecx+0x2], bh instruction
in the MEP, resulting in the wrong behaviour in the HEP. The instruction add

[ecx+0x2], bh was encoded as [00 79 02] instead of [00 b9 02 00 00 00] as
the tool intended. Both of the encodings are correct, both Udis and objdump

recognizes [00 b9 02 00 00 00] as add [ecx+0x2], bh. When the HEP is run,
instead of placing the correct value in ecx using mov ecx, 0x2([b9 02 00 00

00]), the instruction jns 0xf (79 02) is executed. jns is short for jump not signed

37

38 Discussion and further development

and does a relative jump if the sign flag is not set. Because the sign flag is not
set on this occasion, the jump is taken and the interrupt instruction invoking the
system call is skipped. This problem is discussed further under Known problems.

The reason for the crash of the MEP is an issue that arise when labels are used.
When a program containing labels is assembled, the labels are translated into mem-
ory addresses, for example jmp exit could be translated into jmp 0x80902342.
The problem is that when the program is assembled without any headers to make
it runnable, the memory address for the label is different from when the program
is assembled with headers. When the assembled program is parsed by the tool, the
labels have already been translated. The tool can then only operate on the bytes
that are available to it. This means that if a label is used in the input program, the
corresponding memory address will be present in the obfuscated program. Since
this memory address is different from the one that would be used if the input
program was runnable, if it were to be used in the HEP, this would result in a
crash.

By time the execution has reached the int 0x80 instruction, the number in
eax is not related to any system call. Because of this, when the interrupt instruc-
tion is executed, a negative number is placed in eax. Since there is a jl exit

instruction in the HEP depending on whether the value in eax is smaller than zero
and the MEP has synced with the HEP by this time, the jump is taken, causing
a segmentation fault because the program is not allowed to access the memory
address in the jump instruction.

When obfuscating writetofile with the 32 bit mov substitution the situation
grew even more bleak. Only two instructions (actually only one and a half because
of the mov substitution) was hidden. On top of that the program could not be
run because it could not be linked to be executable. nasm was able to assemble the
program but ld [ld14] could not link it and produced an error message instead.
The cause of this problem is the jecxz 0x28c31de8 instruction.

6.3 Known problems

These are some problem discovered during the implementation of the tool. They
will be explained below and in some cases potential solutions will be suggested.

6.3.1 The label problem

The problem with labels has been touched on already in previous sections. It is a
big problem since it involves all uses of labels. Since this breaks the behaviour of
the HEP and in most cases results in a segmentation error causing the program
to crash it is a big problem that needs a solution.

One solution could be to use a file assembled together with headers to make it
runnable, where the labels have been translated into correct memory addresses as
input to the tool. The tool would then have to ignore the instructions having to
do with the headers and find the instructions that needs to be hidden. Then the
tool could perform the same operations as it does currently but hopefully without
the label problem.

Discussion and further development 39

6.3.2 Weaknesses in memory adjustment

As mentioned several times before, memory adjustment is a difficult problem.
Sometimes the memory adjustment in the tool is sufficient to make a MEP execute
without crashing but for the most part there are issues. Currently when memory
is adjusted for, only one memory accessing instruction using a specific register
is considered. In some cases more than one instruction tries to access memory
using the same register which in the current implementation is ignored. On top
of that, anything can happen to the register between the memory adjustment and
the actual instruction that was adjusted for.

The problem with instructions between the memory adjustment and the in-
struction that was adjusted for could be counteracted by taking the in-between
instruction into account when calculating what value that needs to be in the reg-
ister for the memory accessing instruction to execute properly.

When it comes to several instructions using the same register for memory
access, the situation is a bit more complicated. One solution could be to have a
memory adjustment part for each of the memory accessing instructions. That way
a conditional jump instruction to the memory adjustment part could be inserted
in the MEP. In order not to break the behaviour of the HEP, the condition would
be if the MEP is supposed to run or not. This of course means that the MEP has
to be made to synchronize with the HEP before each of the problematic memory
adjustment parts using for example nop instructions. This solution is related to
the Having more than one MEP part in the Further development section.

6.3.3 Wrong encodings when assembling

In the x86 architecture, one instruction can have several different encodings. This
is unfortunate because when the tool produces its output, it expects the instruc-
tions to be encoded using the same bytes that it uses when the output is assembled.

If however there is a difference between the encoding used in the tool and the
one used by nasm the MEP looks like it is supposed to but the HEP will contain
the wrong instructions which is a huge problem.

One potential solution would be to not rely on nasm and print the bytes directly
to a file. This ensures that the correct encoding is used. However, to make the
output program runnable, headers would have to be added which would complicate
the process immensely.

6.4 Further development

In the following sections are some suggestions for improvements in the tool to
make it better and less prone to unsuccesful obfuscations.

6.4.1 Choosing starting bytes

Currently, when the tool chooses starting bytes, first it removes all starting bytes
that did not generate the longest possible MEP, it then proceeds to remove the
starting bytes with the most memory accessing instructions and then it chooses the

40 Discussion and further development

last Opcode object in the list of starting bytes to act as the actual starting bytes
for the MEP. There are a few problems with this approach that will be discussed
below.

To obtain the best possible MEP, all possible starting bytes would have to be
tested with all possible variations of the input program. Variations of the input
program could be swapping one instruction at a time, maybe several times if several
alternatives to the instruction exists. Then every one of the generated MEPs could
be checked for problems and the best ones could be picked out. However, this is
not an approach that is computionally feasible, it would take an enormous amount
of time to test all combinations. This is why the number of bytes in the starting
bytes has been limited to three.

The next problem is regarding choosing starting bytes based upon the number
of memory accessing instructions. As mentioned in the Implementation section, a
MEP containing three memory accessing instruction using three different registers
is better than a MEP with only two memory accessing instructions that uses the
same register. This is one of the most important improvements that could be
made to the tool since it could greatly reduce the number of problems regarding
memory adjustment.

6.4.2 Having more than one MEP

In some programs it is difficult to find starting bytes that can hide a lot of instruc-
tions. This problem becomes even bigger as the size of the input program grows.
Since obfuscating only a portion of a program could be a complete waste of time
if the entirety of the input program contains sensitive instructions this is also a
big problem and one of the biggest challenges when using instruction overlapping.

One possible solution to this problem could be to have more than one MEP.
This could work in such a way that if the MEP synchronizes with the HEP after
an insufficient amount of instructions, the tool could insert a new jump instruction
and new starting bytes so that an additional MEP is created. This would effectively
hide an additional portion of the program and it would do so without compromising
the behaviour of the HEP since it would only cause a jump into the next instruction
of the HEP. Of course the problem with finding the best starting bytes and memory
adjustment would have to be dealt with again.

The memory adjustment could be done so that there was a memory adjustment
section for each MEP in the output program. Then when one MEP ended, the
execution would jump to the memory adjustment section for the next MEP in line
where all the memory accessing instruction in that MEP would be adjusted for.
In order to not change the behaviour of the HEP, this could be made so that the
jump to the memory adjustment section would only be taken if the MEPs were to
be executed.

6.4.3 Substituting instructions on demand

When encountering problematic instructions in the MEP, currently the tool tries
to pick other starting bytes in an attempt to get rid of the problematic instructions.
If none of the starting bytes produce a satisfying MEP, the tool adds a one byte nop

Discussion and further development 41

instruction before the HEP and the process of choosing starting bytes is started
all over again. Not only does this make the runtime of the tool a lot longer but
there is also no guarantee that it will find a suitable MEP.

A far better solution would be to replace instructions in the HEP if they cause
problems in the MEP. Currently, the tool can substitute 32 bit mov instructions
by using 16 bit mov instructions and a logical shift instruction. The problem with
the current implementation is that it can only replace 32 bit mov instructions and
only does so by replacing all of them at once.

This is an area in the tool that could be expanded which would contribute
immensely to finding good MEPs. The way this would work is that when a prob-
lematic instruction is found in the MEP, the tool finds the instruction in the HEP
the makes up the problematic instruction and replace it with some other instruc-
tion(s). This could be used to get rid of all kinds of instructions and if needed
avoid difficult memory adjustments. Thankfully there are a lot of ways to do the
same thing in x86.

6.4.4 Adding code to fool dynamic disassemblers

A very important feature when using instruction overlapping is being able to de-
termine if the MEP or HEP is to be executed. Because the MEP is only supposed
to be executed when the program is being analysed. Since this is often done us-
ing a dynamic disassembler in a virtual machine. Thankfully there are ways to
determine if a program is run on a virtual machine and whether a debugger is
attached.

If code for detecting a debugger or if the program was run on a virtual machine
was added to the program, the execution of the MEP could be made to depend on
that fact. This should of course be provided by the tool. [Rut14] [gdb14] [Pum14]

6.4.5 Taking advantage of the emulator

libemu was first considered for the tool because of its emulation capabilities, how-
ever the tool does not use the emulator at all.

The primary use of the emulator, would be if a conditional jump instruction
was found in the MEP. Then the instructions prior to the jump instruction could
be emulated and the tool could inspect the eflags register to determine if the jump
would be taken. If that would be the case, the instruction in the HEP generating
the jump in the MEP would have to be replaced. If not, the jump would be allowed
to stay in the MEP since it would not compromise the control flow of the program.

Another less obvious use could be to help with instruction substitution. As
mentioned in the Implementation section, instead of using 32 bit mov instructions
when moving values smaller than 0xFF, eight bit mov instructions could be used
instead. The problem with this approach was that if a larger value than 0xFF

already was in the register, the wrong value would reside in the register since
the eight bit mov only would affect the least significant part of the register. The
emulator could be used to emulate all the instructions before a 32 bit mov and
look at the value in the register to determine if the instruction could be replaced
with its eight bit equivalent.

42 Discussion and further development

Chapter 7
Conclusion

While there are many obstacles in the way of successfully use instruction over-
lapping for code obfuscation it can still be used fairly well provided that tricks
like adjusting for memory and being able to swap instructions are used. As for
a tool, it is the author’s opinion that it could work very well together with some
modifications to the current tool as well as the suggested features discussed in the
Further development part of the Discussion and further development section.

In conclusion, the main challenges when using instruction overlapping are in-
structions accessing memory, instructions that change the control flow of the pro-
gram and that the MEP can synchronize with the HEP after an unsatisfactory
amount of instructions. Fortunately all of these problems can be remedied in one
way or another. By utilizing a smarter memory adjustment technique, perhaps
using a memory adjustment section for each of the memory accessing instructions
the problem of the MEP crashing can be avoided entirely. If instructions changing
the control flow of the problem are found in the MEP, the emulator can be used
to determine if they should be swapped or not. Lastly by using several MEPs, the
program will be hidden and the problem of synchronization will be eliminated.

43

44 Conclusion

References

[AdJ06] John Aycock, Rennie deGraaf, and Michael J. Jacobson Jr. Anti-
disassembly using cryptographic hash functions. Journal in Computer
Virology, 2, 2006.

[AF14] Mike Lack Adam Ferrari, Alan Batson. x86 assembly guide. http:

//www.cs.virginia.edu/~evans/cs216/guides/x86.html, 2014.

[Art13] Nitay Artenstein. x86 instruction encoding revealed: Bit twiddling
for fun and profit. http://www.codeproject.com/Articles/662301/
x86-Instruction-Encoding-Revealed-Bit-Twiddling-fo, 2013.

[Bro99] Mats Brorsson. Datorsystem Program- och Maskinvara. Studentlitter-
atur, 1999.

[CJ13] Patrik Lantz Christopher Jämthagen, Martin Hell. A new instruction
overlapping technique for anti-disassembly and obfuscation of x86 bi-
naries. 2013.

[gdb14] Answer to ’detect if gdb is running’ by user terminus. http://

stackoverflow.com/a/3599394/3374384, 2014.

[Hyd96] Randall Hyde. The Art of Assembly 16-bit DOS version. 1996.

[Irv10] Kip R. Irvine. Assembly Language for x86 Processors 6th edition. Pear-
son Education Inc., 2010.

[JA09] Daniel Medeiros Nunes de Castro John Aycock, Juan Manuel Gutiér-
rez Cárdenas. Code obfuscation using pseudo-random number genera-
tors. Computational Science and Engineering, 3, 2009.

[ld14] ld - the gnu linker. http://linux.about.com/library/cmd/blcmdl1_
ld.htm, 2014.

[lib14] Libemu. http://libemu.carnivore.it/, 2014.

[LSPM12] Charles LeDoux, Michael Sharkey, Brandon Primeaux, and Craig
Miles. Instruction embedding for improved obfuscation. In ACM South-
east Regional Conference, 2012.

[nas14] nasm - the netwide assembler. http://www.nasm.us/, 2014.

45

46 References

[obj14] Gnu disassembler objdump. https://sourceware.org/binutils/

docs/binutils/objdump.html, 2014.

[Pum14] Pumqara. My own tricks to detect ollydbg. http://pumqara.

i-nz.net/html/code_protection/Detecting%20OllyDbg/

DetectOllyDbg+Pum.htm, 2014.

[Rut14] Joanna Rutkowska. Red pill... or how to detect vmm using (almost) one
cpu instruction. http://www.hackerzvoice.net/ouah/Red_%20Pill.
html, 2014.

[sys14] Linux kernel system calls. http://asm.sourceforge.net/syscall.

html#p31, 2014.

[udi14] Udis86. http://udis86.sourceforge.net/, 2014.

Appendix A
The code

A.1 program.cpp
program.cpp - This is the main program of the tool

/**

* Compares two instructions a and b based on their bytes

* @param insa Instruction a

* @param insb Instruction b

* @return true if the instructions are equal, false otherwise

*/

bool InstructionCompare(Instruction &insa, Instruction &insb)

/**

* Prints a program in its hexadecimal form

* @param program the program to print

*/

void printProgram(vector<BYTE> program)

/**

* Prints a vector in its hexadecimal form with the instructions divided

* @param instructions the instructions to print

*/

void printInstructions(vector<Instruction> instructions)

/**

* Build a vector of pair<Opcode, OpcodeMetaData> objects containing all possible starting bytes between

* 0x00 and 0xFFFFFF

* @return the vector of Opcode and OpcodeMetaData pairs

*/

vector<pair<Opcode, OpcodeMetaData> > buildStartingBytesVector()

/**

* Takes a vector of Instruction objects and returns is as a vector of bytes

* @param instructions the vector of Instruction objects

* @return a vector of bytes

*/

vector<BYTE> getBytesFromInstructions(vector<Instruction> instructions)

/**

* Inserts the starting bytes in an Opcode object before the HEP, checks when the MEP synchronizes with the HEP

* and returns the number of hidden instructions

* @param p the Parser object used to check if the new MEP contains invalid instructions

* @param e the Emulator object used to build the new MEP

* @param hep the HEP in the form of Instruction objects

* @param mepProgram the MEP in the form of bytes

* @param opc the Opcode object containing the starting bytes

47

48 The code

* @param opc_meta the OpcodeMetaData object containing information about the Opcode object

* @return the number of hidden instructions

*/

int checkSyncConditionsAndReturnSyncNumber(Parser &p, Emulator &e,

vector<Instruction> &hep, vector<BYTE> &mepProgram,

Opcode &opc, OpcodeMetaData &opc_meta)

/**

* Inserts the starting bytes in an Opcode object and calculates how many registers that are used for memory access

* @param e the Emulator object used to build the new MEP

* @param hep the HEP in the form of Instruction objects

* @param mepProgram the MEP in the form of bytes

* @param opc the Opcode object containing the starting bytes

* @param opc_meta the OpcodeMetaData object containing information about the Opcode object

* @return the number of registers used to access memory

*/

int calculateRecurringRegisters(Emulator &e, vector<Instruction> &hep, vector<BYTE> &mepProgram,

Opcode &opc, OpcodeMetaData &opc_meta)

/**

* The main method responsible for obfuscating a program. Takes an input file, obfuscates it an outputs a template

* for the obfuscated program. The arguments are made up of the path to the input file, the number of instructions

* in the input file and if 32 bit mov substitution should be used.

*/

int main(int argc, char* argv[])

A.1.1 Opcode
/**

* Opcode is a struct used for saving starting bytes

*/

/**

* Returns a string with the starting bytes in hexadecimal form

*/

string getOpcodeString()

/**

* Returns the number of starting bytes in the Opcode struct

*/

int getOpcodeSize()

A.1.2 OpcodeMetaData
/**

* OpcodeMetaData is a struct for saving various information about an Opcode struct

*/

/**

* Creates an OpcodeMetaData struct

*/

OpcodeMetaData()

/**

* Calculates the number of registers used for memory access by a MEP created with an Opcode struct

* @return the number of registers

*/

int getNumberOfRecurringRegisters()

/**

The code 49

* Prints the all purpose registers and how many times they are used for memory access

*/

void printRecurringRegisters()

A.2 emulator.cpp
emulator.cpp - This the Emulator class wrapping functionality from libemu

/**

* Creates an Emulator

*/

Emulator::Emulator()

/**

* Emulator destructor

*/

Emulator::~Emulator()

/**

* Loads a vector of bytes in the memory of the emulator

* @param instructionBytes the vector of bytes to load in memory

*/

void Emulator::loadProgramInMemory(vector<unsigned char> instructionBytes)

/**

* Parses the bytes in the memory of the Emulator and places them in Instruction objects

* @return vector of Instruction objects

*/

vector<Instruction> Emulator::getInstructionVector()

/**

* Parses a vector of bytes to form an Instruction object.

* @param insBytes the bytes to parse

* @param ret the Instruction object to store the result in

* @return true if the bytes make up a valid instruction

*/

bool Emulator::getInstruction(vector<unsigned char> insBytes, Instruction &ret)

/**

* Performs the preface and substitutes 32 bit LEA instructions

* @param program the vector containing the program

* @param preface a vector of Instruction objects to store the result of the preface in

* @param hep a vector to store the HEP in

*/

void Emulator::doPreface(vector<unsigned char> program, vector<Instruction> &preface, vector<Instruction> &hep)

/**

* Replaces 32 bit LEA instructions by placing the LEA in the preface and an add instruction in the HEP

* @param ins The Instruction object containing the LEA instruction

* @param preface the vector to store the preface part of the substitution in

* @param hep the vector to store the HEP part in

*/

void Emulator::replaceLEA(Instruction ins, vector<Instruction> &preface, vector<Instruction> &hep)

/**

* Memory adjustment to make the MEP able to run without crashing

* @param memoryAdjustment the vector to store the memory adjustment part in

* @param mep the MEP

*/

void Emulator::adjustForMemoryAccess(vector<Instruction> &memoryAdjustment, vector<Instruction> &mep)

50 The code

/**

* Substitutes a 32 bit MOV instruction

* @param a The instruction to substitute

* @return vector of Instruction objects that makes up the substitution

*/

vector<Instruction> Emulator::substituteMov(Instruction &a)

/**

* Optimizes the HEP by replacing 32 bit MOV instructions.

* @param the HEP

* @return the new optimized HEP

*/

vector<Instruction> Emulator::optimizeHep(vector<Instruction> hep)

/**

* Emulates the instructions in the memory of the Emulator and returns the value of the EFLAGS register

*/

int Emulator::runAndGetEFlags()

/**

* Prints a debug message with register and memory information

*/

void Emulator::printDebug()

A.3 parser.cpp
parser.cpp - This class wraps functionality in Udis86 and is responsible for reading the input file

/*

* Creates a parser object and sets up the Udis86 object for parsing and disassembly

*/

Parser::Parser()

/**

* Reads an input file using Udis86 and places the bytes in a vector

*

* @param fileName the path of the input file

* @param numberOfInstructions the number of instructions to read from the input file

* @return a vector containing the bytes making up the input file

*/

vector<unsigned char> Parser::parseFile(char fileName[], int numberOfInstructions)

/**

* Disassembles a vector of bytes and returns the number of valid instructions

* @param buffer the vector containing the bytes

* @return the number of valid instructions

*/

int Parser::parseUntilInvalid(vector<BYTE> buffer)

/**

* Disassembles a vector of bytes and prints the instructions in assembly language

* @param preface the vector containing the bytes in the preface

*/

void Parser::parseAndPrintPreface(vector<BYTE> preface)

/**

* Disassembles a vector of bytes and prints the instructions in assembly language

* @param memoryAdjustment the vector containing the bytes in the memory adjustment part

*/

The code 51

void Parser::parseAndPrintMemoryAdjustment(vector<BYTE> memoryAdjustment)

/**

* Disassembles a vector of bytes and prints the instructions in assembly language

* @param mep the vector containing the bytes in the program

* @param startingOpcodeSize the number of starting bytes

* @param index an index for the mep

*/

void Parser::parseAndPrintProgram(vector<BYTE> mep, int startingOpcodeSize, int index)

/**

* Prints a return statement in assembly language

*/

void Parser::printProgramReturn()

A.4 instruction.cpp
instruction.cpp - This class wraps the emu_instruction struct from libemu

/**

* Constructs an Instruction object

* @param ins struct containing characteristics of the instruction, gathered using libemu

* @param info struct containing other characteristics of the instruction, gathered using libemu

* @param legalInstruction shows if the instruction can be in the MEP without crashing it

* @param bytes the bytes making up the instruction

*

*/

Instruction::Instruction(struct emu_instruction ins, struct emu_cpu_instruction_info info,

bool legalInstruction, std::vector<BYTE> bytes)

/**

* Constructs an empty Instruction object

*/

Instruction::Instruction()

/**

* Returns the emu_instruction struct of the Instruction object

* @return the emu_instruction struct

*/

struct emu_instruction Instruction::getInstruction()

/**

* Returns the emu_cpu_instruction_info struct of the Instruction object

* @return the emu_cpu_instruction_info struct

*/

struct emu_cpu_instruction_info Instruction::getInstructionInfo()

/**

* Return the legalInstruction value

* @return the legalInstruction value

*/

bool Instruction::isLegal()

/**

* Returns the bytes making up the instruction

* @return the bytes making up the instruction

*/

std::vector<BYTE> Instruction::getBytes()

52 The code

/**

* Prints the instruction in hexadecimal form

*/

void Instruction::printInstruction()

/**

* Returns the instruction as a string in hexadecimal form

* @return the string to return

*/

std::string Instruction::getByteString()

Im
p

ro
ve

d
 co

d
e o

b
fu

scatio
n

 th
ro

u
g

h
 au

to
m

atic co
n

stru
ctio

n
 o

f h
id

d
e

n
 exe

cu
tio

n
 p

ath
s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, June 2014.

Improved code obfuscation
through automatic construction
of hidden execution paths

Erik Nylander

http://www.eit.lth.se

Erik N
ylan

d
e

r

Master’s Thesis

