
M
u

ltio
b

je
ct lo

ca
lizatio

n
 u

sin
g

 w
ave

le
t ra

d
a

r se
n

so
rs

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, June 2014.
In cooperation with Acconeer AB.

Multiobject localization using
wavelet radar sensors

Per Atlevi

http://www.eit.lth.se

Pe
r A

tlevi

Master’s Thesis

 6/23/2014

1

 Master thesis: Multiobject localization using wavelet radar sensors

Author: Per Atlevi

Date: 6/23/2014

 6/23/2014

2

Abstract
In this Master Thesis, a good two-step positioning scheme based on Time of Arrival (TOA)
measurements is found in order to localize objects, such as fingers, using sensors acting as both
transmitters and receivers. A two-step positioning approach takes the input signals from the sensors
and first estimates position related parameters, in this case TOA, and then uses these parameters to
estimate the position. The scheme is implemented in an Android application. The input signals are
generated and then transferred to the application via USB. Three Time Delay Estimation algorithms
as well as four Localization, or Positioning, algorithms are evaluated. The first Time Delay Estimation
algorithm is based on a simple peak detection approach, the second uses cross covariance and the
third is a least squares estimator. The Localization algorithms use both geometrical and statistical
approaches; the first uses trilateration, the second uses a form of weighted trilateration, the third is
based on the Maximum Likelihood (ML) approach and finds the position using a gradient descent
algorithm and finally the fourth also uses the ML approach but finds the position using a brute force
search algorithm. All the algorithms are assessed based on stability, accuracy and computational
complexity. They are first tested separately and then in conjunction with each other. In addition to
this, sensor placement and density are investigated in order to minimize the estimation errors. The
algorithms chosen to be implemented in the application are able to localize multiple objects with
millimeter precision at high rates.

 6/23/2014

3

Preface
This Master Thesis started in February 2014 and was finished in June the same year. The majority of
the work done in the Thesis was conducted at the research and development company Acconeer
Wavelet Technologies in conjunction with the Electrical and Information Technology (EIT)
department at Lund University.

The Work was done as a final step in order to get a Master’s degree in Nanotechnology at the Faculty
of Engineering at Lund University.

I would like to thank Mats Ärlelid and Mikael Egard from whom I received valuable help throughout
the whole time working on the Thesis. I would also like to thank Fredrik Tufvesson, my examiner, for
valuable input when writing the final report. Lastly, I would like to thank Andreas Jacobsson for all his
help on the Time Delay Estimation part as well as the overall statistics in the paper.

Lund, June 2014
Per Atlevi

 6/23/2014

4

Table of Contents

Abstract ... 2

Preface ... 3

Table of Contents .. 4

1 Introduction .. 6

1.1 Problem Definition and Aim of the Thesis... 6

1.2 Tools .. 8

1.3 Disposition ... 8

2 Background ... 9

2.1 Direct Positioning .. 9

2.2 Two-Step Positioning ... 10

3 Time Delay Estimation .. 15

3.1 Theories and Algorithms ... 15

3.2 Test Setup .. 18

3.3 Results ... 20

3.4 Discussion and Conclusions ... 26

4 Sensor Distribution Analysis ... 29

4.1 Sensor Placement .. 29

4.2 Sensor Density ... 33

5 Localization for One Object .. 37

5.1 Theories and Algorithms ... 37

5.2 Average Runtime for Brute Force Algorithm ... 49

5.3 Impact of Distance Error on Position Error ... 52

5.4 Position Estimation .. 56

6 Multiobject Localization ... 63

6.1 Theories and Algorithms ... 63

6.2 Test Setup .. 65

6.3 Results ... 65

6.4 Discussion and Conclusions ... 69

7 Two-Step Positioning .. 71

7.1 One Object ... 71

7.2 Multiobject .. 75

 6/23/2014

5

8 Android Application .. 77

8.1 Introduction and Aim .. 77

8.2 Graphical User Interface .. 77

8.3 General Implementation and Design .. 78

9 Conclusions ... 80

 6/23/2014

6

1 Introduction

1.1 Problem Definition and Aim of the Thesis
The aim of this project is to investigate methods for identifying multiple objects based on input from
multiple wavelet radar sensors. An appropriate method should then be implemented on an Android
Smartphone.

A sensor transmits radar wavelets and then receives reflections of the same wavelets (assuming one
or more objects are in range). The reflected signals received by the sensors are correlated with a
reference signal producing output signals as can be seen in figure 1. The signals have thermal noise
and since the correlation is (practically) analog, the overall noise can be assumed to be of Gaussian
nature with zero mean (which is important for certain methods in this thesis, as can be seen in
section 5.1.2). The sensors together form a sequential Single-Input and Single-Output (SISO) system.
In a system like this, each sensor transmits and receives signals in turn, making it sequential as
opposed to parallel. The approach used in this project is a two-step positioning procedure; first,
estimation of position related parameters is done and second, the position estimation is done. The
estimations are based on TOA measurements and hence, trilateration methods for positioning are
mainly considered. One reason for using a two-step approach instead of a one-step approach (where
the position estimation is done directly using the input signals) is that methods using the one-step
approach in general have a higher computational complexity than methods using the two-step
approach. But the main reason is that the resulting Android application should easily be able to
present distance measurements (i.e. the first step in the two-step procedure).

Figure 1. A correlated analog signal with reflections 0.2 m and 0.3 m away

 6/23/2014

7

All the input data used in this project will be generated in Matlab (i.e. the data used is simulated).

The sensors support ranges from 10 to 500 mm. When estimating an object’s position in two
dimensions, the sensors are distributed along a 1-dimensional, 0.1 m long array (more specifically
along the x-axis) and the objects are located in an area of 0.157 m2 where the restrictions on and
are -0.1 m 0.1 m and 0.015 m 0.8 m. This area will be called the Area in the rest of this
thesis. When estimating in three dimensions, the sensors are distributed within a plane (more
specifically in the xy-plane) where the sides are 0.1 m and the objects are located in a volume of
0.0314 m3 where the restrictions on , and are -0.1 m 0.1 m, -0.1 m 0.1 m and
0.015 m 0.8 m. This volume will be called the Volume in the rest of this Thesis.

With the above prerequisites the following should be investigated:

• Three methods for time delay estimation is to be investigated more closely, namely:
a) Peak Detection
b) Covariance
c) Least Squares
The goal is to find the best one considering stability, accuracy and the fairly limited
computational power in an Android application. The reason that these three should be
investigated is mainly due to their quite low computational complexity.

• Considering the constraints on sensor placement, how should the sensors be placed to minimize
the position estimation error? To be investigated is mainly:
a) How far apart the sensors should be
b) How many sensors that is ideal
alternatively, is there a way to minimize the impact of suboptimal sensor placement?

• Which of the following methods is the best for estimating the position of 1 object in either 2 or 3
dimensions, considering a tradeoff between accuracy, stability and computational power?
a) Linear Least Squares
b) Non-Linear Least Squares
c) Centroid
d) Weighted Centroid
also, which of these are applicable for estimating multiple objects?

• Given that you have a certain error in the time delay estimation, Δdi, how big of an impact does
this have on the error, Δx, Δy, Δz, in position estimation in 2 and 3 dimensions?

• If appropriate methods for time delay estimation as well as position estimation are found, how
do you effectively implement these in Java (used in Android)?

 6/23/2014

8

1.2 Tools
The main tools for finding different papers and reviews on Time Delay Estimation and
Localization/Positioning have been IEEE Xplore and Google Scholar.

The algorithms studied have been implemented and evaluated in Matlab R2013b.

The implementations of algorithms in Java as well as the creation of the application have been
realized in the open source tool Eclipse IDE. And ADT (Android Development Tools) plugin has been
used in Eclipse to easier create the Android interface in the application. The application has been
tested on a Sony Xperia ZL.

1.3 Disposition
The rest of this paper is organized as follows. In the next section, section 2, the background is
presented. In section 3, the time delay estimation is considered and in section 4, sensor distribution
analysis is performed. In section 5, the different positioning algorithms for one object as well as some
error analysis is considered. In section 6 and 7, multiobject localization and the whole two-step
positioning estimation is discussed, respectively. Section 8 handles the Android application part of
the Thesis and finally section 9 briefly states the conclusions.

 6/23/2014

9

2 Background
Localization has been a very important topic for several years. Localization enables a range of
applications such as GPS, target tracking, environmental monitoring, robotic mapping, emergency
interventions and node positioning in wireless sensor networks [1][2][3]. For a long time, localization
was mainly realized in 2 dimensions, but in recent years the focus has been drifting more towards 3-
dimensional localization. Localization can also be referred to as positioning.

There are several different ways to locate, for example, a target sensor in a sensor network. Firstly,
there are two main approaches, namely direct positioning and two-step positioning. The direct
positioning approach takes received signals from the sensors in the network and directly estimates
the position of the object. The two-step positioning approach, however, first estimates a number of
position related parameters based on the received signals and then estimates the position of the
object based on these parameters, see figure 2.

Figure 2. (a) Direct positioning approach and (b) Two-step positioning approach [4]

2.1 Direct Positioning
As mentioned above, direct position determination (DPD) is a one-step process, taking the received
signals and directly estimates the position of the object (often a transmitter). In direct positioning,
the data received in all the sensors in a sensor network is first transmitted to a single location where
the computation will be done.

Consider a signal, , received at the i:th sensor:

where is a complex scalar describing the attenuation, is the array response (see the section on
Angle of Arrival in Two-Step Positioning), is the signal waveform, is the delay from (the start
time of the signal) and lastly the vector is the noise. As can be seen, both the delay and the array
response is dependent on , which is the position of the object (transmitter). This position is then
determined (after some manipulation of the signals such as Fourier transforming them) by
minimizing the cost function :

 (2.1)

 6/23/2014

10

where is the total number of sensors, is the number of discrete samples, is the Fourier
transform of , is the Fourier transform of and denotes the Frobenius norm [5].

This is in fact the least squares method. In the case of zero-mean Gaussian noise, however, this is the
exact maximum likelihood estimate. The accuracy of DPD has proven to be better than the two-step
positioning approach. This is, however, at the cost of high computational complexity due to the
calculations of eigenvalues, amongst other things [6].

2.2 Two-Step Positioning
The first part of the Two-Step Positioning approach is to estimate position related parameters. The
most common position related parameters are Received Signal Strength (RSS), Angle of Arrival (AOA),
Time of Arrival (TOA) and Time Difference of Arrival (TDOA). Below, a node can either be a
transmitter, receiver or simply an object to be located.

2.2.1 RSS
Since the amplitude (energy) of a signal reduces as it propagates through space (called path loss), the
distance between a reference node and a target node can be estimated via the different strengths of
the signals. However, due to several mechanisms such as diffraction, reflection and scattering, the
relation between distance and signal power can be quite complicated. There are also other effects
such as shadowing which causes errors in the estimation. These errors are often modeled as zero-
mean Gaussian with a specific variance . How accurate a distance estimate can be is defined by the
Cramer-Rao lower bound:

where is an estimate of the distance , is the square root of the variance of the error and is the
path loss exponent. As can be seen in (2.3), the higher the path loss exponent and the shorter
distance between sensor and object, the better variance can theoretically be achieved.

2.2.2 AOA
The Angle of Arrival specifies the angle between a reference node and a target node, as can be seen
in figure 3. The angle is often retrieved by having multiple antennas at the node receiving the signals.
The difference in time of arrival for the different antennas then contains the angle information. The
Cramer-Rao lower bound on the error (variance) can be calculated here as well. If the antennas are
distributed equally along a line, the CRLB is:

 (2.2)

 (2.3)

 (2.4)

 6/23/2014

11

where is the estimation of the Angle of Arrival , the SNR is the signal to noise ratio for the sensor,
 is the effective bandwidth, is the number of antennas and is the distance between two

antennas. In (2.4) it is evident that the more antennas as well as higher SNR lead to a better
theoretical variance.

Figure 3. The Angle of Arrival, α

2.2.3 TOA
In Time of Arrival the time it takes for a signal to travel from a transmitter to a receiver (alternatively
from a transmitter via a reflector back to the transmitter which also acts as a receiver) is measured
and this time can then be converted to a distance (via the speed of light). As for RSS and AOA, TOA is
also affected by noise. The noise is often modeled as zero-mean white Gaussian noise and the
received signal at a sensor node can then be expressed as:

where is the transmitted signal from another node, is the Time of Arrival and is the noise.
With this model, the Cramer-Rao lower bound can be expressed as:

where is the estimation of (Time of Arrival), SNR is the signal to noise ratio in the sensor and is
the effective bandwidth. In (2.6) one can see that the larger the effective bandwidth as well as higher
SNR, the better theoretically variance can be achieved.

2.2.4 TDOA
Time Difference of Arrival is basically an extension of Time of Arrival. There are two approaches for
obtaining the TDOA. The first approach is to estimate the TOA for two signals between two different
(synchronized) reference nodes and the target node. Then the TDOA estimate is simply the
difference between the TOA estimates. The second approach is to cross-correlate two signals from
two different reference nodes. The TDOA can then be calculated from the highest correlated value.
The Cramer Rao lower bound is closely related to that of TOA.

 (2.5)

 (2.6)

 6/23/2014

12

The second part of the two-step positioning approach is to estimate the node position based on the
estimates of the position related parameters. There are three main techniques for doing this, namely
Mapping, Geometric and Statistical methods.

2.2.5 Mapping
This technique uses an existing database containing previous estimates of parameters. These
estimates are then used to estimate the position of the node. The data in the database is often
created by training a system before using it.

2.2.6 Geometric
The geometric methods use geometric relationships in order to calculate the position based on the
estimated parameters. Depending on which position related parameters estimated, different
relationships can be used.

When RSS or TOA is used, the distances between the nodes are known. Each distance, corresponding
to the distance between one reference node and the target node, gives rise to a circle around the
reference node where the target node can be located. In order to obtain a unique location of a target
node in two dimensions, distances from three, linearly independent, reference nodes are needed.
This is true if the objects can be located anywhere in the plane (which is the general case and
therefore discussed here). But if the objects are only located in one half-plane, as is the specific case
in this thesis, only two sensors are needed. More on this can be found in section 5.1.1. The three
circles intersect in one point, which then is the location of the target node, see figure 4. This method
is called trilateration. In three dimensions, four, linearly independent, nodes are needed to find the
location. The location is now the intersect point of four spheres [7]. It is, of course, possible to find
the location by using more reference nodes; this is then often called multilateration or simply
lateration [8].

Figure 4. Estimating the node position (red
dot) with three sensors (black dots) using
trilateration in two dimensions

If AOA is used, the position of a node in 2 dimensions can be calculated using triangulation instead.
The triangulation method uses the angles between two different reference nodes and the target
node to calculate the position, see figure 5.

 6/23/2014

13

Figure 5. Estimating the node position (red dot)
with two sensors (black dots) using triangulation

And lastly if TDOA is used, two distance differences can be obtained from two reference nodes with
respect to a third one. Each distance difference gives rise to a hyperbola and the position of a target
node in two dimensions is located where the two hyperbolas intersect, see figure 6.

Figure 6. Estimating the node position (grey dot) with
three sensors (black dots) using hyperbola intersection
from TDOAs [9]

2.2.7 Statistical
Due to the fact that the estimates of the position related parameters are error prone (due to noisy
measurements) statistical methods may be a better choice for estimating the position. For example,
consider (geometric) trilateration in two dimensions. If the distances d1, d2 and d3 are wrongly
estimated, the circles will not intersect at the same point and no explicit solution is found, see figure
7. Instead different methods based on the maximum likelihood as well as the least squares
approaches can be used. More on statistical methods can be found in section 5.1.2. [4][9].

 6/23/2014

14

Figure 7. Estimating the node position with three
sensors (black dots) using trilateration but with
noisy measurements in two dimensions

 6/23/2014

15

3 Time Delay Estimation
Time delay estimation is, as explained in the background section (2), the first step in the two-step
positioning scheme. This section will present the implementation of some algorithms as well as some
results achieved.

3.1 Theories and Algorithms
Below, the three algorithms mentioned in the Problem Definition and Aim of the Thesis section are
presented.

3.1.1 Peak Detection
This algorithm is the most simple of the Time Delay Estimations. When having a signal as in figure 7,
the algorithm simply finds the positions of the two peaks, which then are the Time Delay Estimations.
It does this by first finding all peaks (a peak is defined as a point which has a higher value than both
its neighbors) of the signal. Then it finds all the peaks above a certain noise threshold, two in this
case, see figure 8. The corresponding distances is then easy to extract from the input signal.

The reason for implementing this algorithm is its simplicity; due to the low complexity of the
algorithm, the computational power needed is low.

Figure 8. Peaks of an input signal with a noise threshold in order to find the signal peaks

 6/23/2014

16

3.1.2 Covariance
The covariance method for determining the Time Delay Estimation is a bit more complex than the
Peak Detection method. It uses the covariance:

where is the received signal and is a reference signal, seen in figure 9, and is the expected
value. The covariance is a measure of how dependent two variables are on each other. If they are
independent the covariance is zero. If they are dependent, however, the covariance is positive [10]. If
the reference signal is swept with respect to the received signal and the covariance is calculated at
each step, the result is a new vector, see figure 10. This is called a cross-covariance. The peaks in the
resulting vector are located where the delay between the reference signal and the received signal is
such that the vectors are the most dependent. Since the time delay is known for the reference signal,
the Time Delay Estimations can be calculated as the addition of the positions of the peaks and the
reference signal time delay. The positions are found in the same way as in Peak Detection.

The reason for implementing this algorithm is mainly its robustness. It has a much higher tolerance
for noise than the Peak Detection method.

Figure 9. A reference signal

 (3.1)

 6/23/2014

17

Figure 10. Cross covariance of the reference signal in figure 9 and the input signal in figure 7

3.1.3 Least Squares
This method is the most complex of the three. It models the received signal, as

where is the reference signal, is the number of reflections, is the amplitudes for the
different reflections, is the delays for the different reflections and is the noise. The noise is
modeled zero-mean white Gaussian noise.

The signals in the model (received, reference and noise) are Fourier transformed and then the
amplitudes and delays are estimated by minimizing the non-linear least squares criterion:

where is the Fourier transformed reference signal, is the Fourier transform of a time delay
and is the Fourier transform of the received signal. Minimizing with respect to and gives
the estimates:

 (3.2)

 (3.3)

 (3.4)

 6/23/2014

18

and

where is the Fourier transform. It is the that is the most interesting since it can be
converted to a Time Delay Estimation via:

where is the number of bins and is the sampling period. The maxima of is
found in the same way as the Peak Detection algorithm.

The reason for implementing this algorithm is actually the higher complexity; maybe there is a
decent enough tradeoff in accuracy and stability to compensate for this complexity. [11]

3.2 Test Setup
To be able to evaluate the three algorithms for time delay estimation the following setup was used.

3.2.1 Signal Generation
Analog signals

One sensor is placed in origo and the system parameters are set so that a reflection from an object
located 0.3 m away from the sensor at an angle where the sensor’s directivity is at maximum
(angle=90 degrees), has a SNR of approximately 2.2 (or 3.4dB). This value is based on a signal
generation algorithm imitating a real system. The SNR is calculated by dividing the rms value of the
reflection without noise and the rms value of the noise:

where is the length of a reflection and and are the signal and noise, respectively, at the i:th
point in the correlated signal vector.

The signal generated has a resolution as good as 50 micrometers and can therefore be regarded as
almost analog. A generated analog signal can be seen in figure 7.

Digital signals

The digital signals are generated with a more advanced script where the signals generated bear much
more resemblance to the reality. More noise sources are present and no SNRs are calculated. The

 (3.5)

 (3.6)

 (3.7)

 6/23/2014

19

signals have a resolution of 0.5 mm and cannot be regarded as analog and are therefore called digital
signals. A generated digital signal can be seen in figure 11.

Figure 11. A correlated digital signal with reflections 0.2 m and 0.3 m away

3.2.2 Test Execution
In the test, 10 000 simulations are conducted.

In each simulation, one object is randomly placed within the Area. The SNR of the reflection from the
object is then in the range -20 dB to 60 dB. The distance to the object is estimated using the three
algorithms under evaluation, namely, Peak Detection, Covariance and Least Squares. The estimation
error for each method is saved as well as the SNR of the generated signal vector.

Once the simulations are finished, the estimation errors for each of the three algorithms are sorted
and plotted, in the same plot, as a cumulative distribution function. The plot’s x-axis is limited to 0.2
mm.

The estimation error as a function of SNR is also plotted, as a scatter plot, for the three algorithms.
The number of times the estimation fails (due to not finding the reflection) is recorded for the N
simulations, as well as the number of estimation errors larger than 0.2 mm. The average runtimes for
the algorithms are also recorded and lastly the variance for the estimation errors is calculated.

After these simulations, 1000 new simulations are conducted with digital signals. The reason for the
relatively few simulations is that the generation of the more reality based signals is time-consuming.

 6/23/2014

20

The setup is the same but no SNR plots are done. The reason for this is the difficulty in actually
defining the SNR due to the many different noise sources in the generation of the signals.

3.3 Results
The results are separated into three categories, namely stability, accuracy and computational
complexity. All the results for the Time Delay Estimation are presented below.

3.3.1 Analog
Stability

The stability is mainly based on if a reflection is found or not and below is a table presenting this for
the three different algorithms.

Algorithm Percentage not found
Peak Detection 21.1%
Covariance 0.0%
Least Squares 0.0%

Table 1. Percentage of the reflections not found for the algorithms with analog signals

The percentage of large errors can also be considered as a parameter for stability. The table below
displays these large errors for the algorithms. An error is considered large if it is larger than 0.2 mm.

Algorithm Percentage large errors
Peak Detection 13.9%
Covariance 0.2%
Least Squares 1.0%

Table 2. Percentage of large (>0.2 mm) errors for the algorithms with analog signals

 6/23/2014

21

Accuracy

To see the accuracy of the algorithms a cumulative distribution function plot of the errors has been
done and can be seen in plot 1.

Plot 1. Cumulative distribution functions of the errors for the algorithms with analog signals

Since the signal strength of the reflections is weaker, and hence the SNR is worse, for objects far
away, it is also interesting to investigate the error depending on SNR. Six SNR plots are presented
next. The plots on the left-hand side display errors up to 5 mm while the plots on the right-hand side
are zoom-ins of those on the left-hand side, displaying only errors up to 0.5 mm.

 6/23/2014

22

The two SNR plots for Peak Detection:

Plot 2. Estimation error as a function of SNR for Peak
Detection, high-valued y-axis

Plot 3. Estimation error as a function of SNR for Peak
Detection, low-valued y-axis

The two SNR plots for Covariance:

Plot 4. Estimation error as a function of SNR for Covariance,
high-valued y-axis

Plot 5. Estimation error as a function of SNR for Covariance,
low-valued y-axis

 6/23/2014

23

The two SNR plots for Least Squares:

Plot 6. Estimation error as a function of SNR for Least
Squares, high-valued y-axis

Plots 7. Estimation error as a function of SNR for Least
Squares, low-valued y-axis

Computational Complexity

The third parameter to investigate is the computational complexity, i.e. how time-consuming these
algorithms are. Below is a table showing the average runtime for each algorithm. Note that these
runtimes are for one sensor only.

Algorithm Average runtime
Peak Detection 18.6 ms
Covariance 23.4 ms
Least Squares 21.2 ms

Table 3. Average runtime for the algorithms with analog signals

 6/23/2014

24

3.3.2 Digital
The results are presented in the same way as for the analog signals, with the exception that no SNR
plots have been made (due to the difficulties to actually define the SNR in the presence of a large
number of different noise sources).

Stability

The corresponding table for percentage of reflections not found with digital signals is found below.

Algorithm Percentage not found
Peak Detection 34.3%
Covariance 0.0%
Least Squares 1.7%

Table 4. Percentage of the reflections not found for the algorithms with digital signals

An error is now considered large if it is larger than 3.0 mm.

Algorithm Percentage large errors
Peak Detection 16.9%
Covariance 5.40%
Least Squares 3.76%

Table 5. Percentage of large (>1.0 mm) errors for the algorithms with digital signals

 6/23/2014

25

Accuracy

In plot 8, the cumulative distribution functions for the errors are presented.

Plot 8. Cumulative distribution functions of the errors for the algorithms with digital signals

Computational Complexity

The average runtimes will be significantly shorter due to the fact that the digital signals have a lower
resolution and hence fewer data points.

Algorithm Average runtime
Peak Detection 4.16 ms
Covariance 6.59 ms
Least Squares 6.60 ms

Table 6. Average runtime for the algorithms with digital signals

 6/23/2014

26

3.4 Discussion and Conclusions

3.4.1 Analog
Stability

As can be seen in table 1, the by far most unstable algorithm is Peak Detection, whereas both
Covariance and Least Squares are perfectly stable with these analog signals. This is not surprising
since Peak Detection only searches for the highest data point and hence if the noise is large enough
the algorithm cannot distinguish the signal from the noise. Since the other two algorithms considers
not just the highest data point, but the input signal as a whole and, in a way, compares it with a
reference signal, a correct distance estimation can be made even if the signal is weaker than the
noise.

The fact that Peak Detection only considers the highest data point makes its estimation accuracy
more heavily influenced by noise in comparison with the other two algorithms, as can be seen in
table 2. Consider some noise making a data point have a higher value than the true peak, this data
point is selected and a distance estimation error occurs. If this happens for the other two algorithms
however, it does not have a significant impact due to that these algorithms consider the whole input
signal, and not just the highest data point.

Accuracy

It is already stated above that the Covariance and the Least Squares algorithms have better accuracy
than Peak Detection, and this is confirmed in plot 1. Here, one can see that with these analog input
signals, the Covariance and Least Squares algorithms basically estimates the distance without error
excluding a few outliers. These outliers are explained in plots 4 and 6. In plot 4, one can clearly see
that the outliers have an error of 2.5 mm which is the length of one period in the correlated input
signal. This of course only happens if the SNR is low. In plot 5, the outliers have an error of 1.25 mm,
which corresponds to half a period in the correlated input signal. The reason that the Least Squares
algorithm have errors that is 1.25 mm (as opposed to a full period) is when the algorithm Fourier
transforms the signal, only positive values (frequencies) are produced and hence the algorithm does
not distinguish between a signal peak and a signal trough. See figure 12 to more easily understand
the reason of these outliers.

The fact that the algorithms have outliers corresponding to the periods of the input signal is perhaps
even more evident in plot 2. In the zoom-ins (i.e. plots 3, 5 and 7) the estimation errors seem to
appear in “steps”. These steps are around 0.05 mm in size and exactly correspond to the resolution
of the input signal. This effect arises due to the algorithms picking neighboring data points (of the
true value) as estimations.

Once again it is clear that the Covariance and Least Squares algorithms by far outperform the Peak
Detection algorithm.

Computational Complexity

The average runtimes are of course a very important factor when evaluating the algorithms. From
table 3 one apparent conclusion can be made; there is actually no big difference in the runtimes for

 6/23/2014

27

the algorithms. Peak Detection is, as expected due to its simplicity, the best algorithm when it comes
to computational complexity, but not by a large margin. Of course, to be said is that these runtimes
are implementation dependent and may not be the best possible for the algorithms. With more time
and effort, the algorithms could be made to be more efficient, for example by implementing them in
native C instead of in Matlab. The reason that the Covariance algorithm has a bit longer runtime than
the Least Squares algorithm is that the actual covariance operation is of O(n2) whereas the FFT
operations (three in total) in the Least Squares algorithm is of O(n*log(n)). The rest of the algorithms
(which basically is finding the peaks in the resulting vectors) is almost the same, hence the small
difference.

Figure 12. A correlated signal with its true peak and the side peaks being outliers

3.4.2 Digital
Stability

Just as with analog signals, the Peak Detection algorithm is by far the worst when it comes to
stability, as seen in table 4. With digital signals the algorithm is even worse with over 30% reflections
not found. One big difference when it comes to percentage reflections not found is that the
Covariance algorithm still finds all the reflections while the Least Squares algorithm does not. The
reason for this is that for noisier signals that aren’t of Gaussian nature, the Least Squares algorithm
has more difficulties finding the correct peaks in the frequency vector, (3.4).

The percentage large errors are quite small for both Covariance and Least Squares but higher for
Peak Detection, which can be seen in table 5.

 6/23/2014

28

Accuracy

In plot 8, plateaus for the cumulative distribution functions of the errors can be seen for all three
algorithms. The plateaus represent a range where there are practically no errors. This is due to the
period of the correlated input signal; the same phenomenon that could be seen in the scatter plots
for analog signals (i.e. the outliers). This is especially apparent when comparing Least Squares with
the other two algorithms. Least Squares have more plateaus since the errors can be half a period as
well as a full period.

Computational Complexity

As for analog signals, the three algorithms are quite similar when it comes to runtimes, see table 6.
The runtimes for the digital signals are much shorter than the runtimes when having analog signal.
This is not very surprising since the resolution is a factor 10 poorer for the digital signals and hence
fewer data points needs to be processed by the algorithms.

3.4.3 Conclusion
Considering all the observations for both analog and digital signals the best algorithm is either
Covariance or Least Squares. When running in an application the most important quality is the
stability, assuming reasonable computational complexity. Therefore, the time delay estimation
algorithm to be implemented in the Android application is Covariance since it found all reflections
and the runtime was only a little slower than the runtime for Least Squares. Also, the Covariance
algorithm is quite easy to implement in Java Android.

 6/23/2014

29

4 Sensor Distribution Analysis
Before the thesis will proceed to the position estimation part, some sensor distribution analysis will
be performed. The reason for this is to first find out how to place the sensors as well as how many in
the tests on position estimation algorithms, before actually performing them.

4.1 Sensor Placement
This section evaluates the position error with respect to sensor placement.

4.1.1 Test Setup
Two Dimensions:

In the test, 10 000 simulations are conducted.

In each simulation, one object is randomly placed within the Area. Two sensors are placed on the x-
axis with the distance between them being varied from 0.002 m to 0.1 m with a step-size of 0.002 m.
The sensors are placed symmetrical around the y-axis (for example, the sensors can be placed at (-
0.04 0) and (0.04 0). The distance errors for both sensors are constant at 1 mm and the position error
for each sensor placement is calculated (using the algorithm presented in section 5.1.3) and saved.

After the simulations, the average position error is calculated for all the sensor placements and then
plotted against the distance between the sensors.

Three Dimensions:

In the test, 10 000 simulations are conducted.

In each simulation, one object is randomly placed within the Volume. Three sensors are placed in the
xy-plane creating a triangle with the sensors as vertices. The area of this triangle is varied from
0.013 to 32.5 . The sensors are placed in such a way that the triangle becomes equilateral
and has its centroid in origo, (0,0). The distance errors for all three sensors are constant at 1 mm and
the position error for each sensor placement is calculated (using the algorithm presented in section
5.1.3) and saved.

After the simulations, the average position error is calculated for all the sensor placements and then
plotted against the area for the triangle with the sensors as vertices.

4.1.2 Results
The results are first presented as average position error as a function of either distance or area,
depending on dimension. Then four figures are displayed to easier visualize the results.

Two Dimensions:

Plot 9 presents the results of the two dimensional simulations in the form of average position error
as a function of distance between the two sensors.

 6/23/2014

30

Plot 9. Average position error as a function of distance between two sensors in two dimensions, with a
constant distance error of 1.0 mm for both sensors

 6/23/2014

31

Three Dimensions:

In plot 10, the results of the three dimensional simulations are presented in the form of average
position error as a function of the triangle area between the three sensors.

Plot 10. Average position error as a function of area between three sensors in three dimensions, with a
constant distance error of 1.0 mm for all three sensors

The two figures below shows the difference in position error depending how the sensors are placed.

Figure 13. Position error for well-placed sensors Figure 14. Position error for ill-placed sensors

 6/23/2014

32

The next two figures also present the difference in position error, but these are based on actual
probabilities for where the object might be. Red color represents a low probability that the object is
found there while blue color represent a high probability. The two small green circles located along
the x-axis are the sensors.

Figure 15. Position error probability for well-placed sensors Figure 16. Position error probability for ill-placed sensors

4.1.3 Discussion and Conclusions
One thing to first note before evaluating the position placement is that the values on the y-axis are
not especially significant. The test is done in such a way that the overall behavior may be analyzed
but the actual values do not mean anything. The reason for this is that the position errors are
calculated using an error algorithm (presented in section 5.1.3) which takes constant values of the
distance errors as input, i.e. it is not a true estimation algorithm.

Two Dimensions:

It is evident from plot 9 that the average position error is greatly reduced when the distance between
the sensors is as large as possible. However, around 4 or 5 cm, the difference in accuracy becomes
substantially less significant. The conclusion is then simply to have the sensors as far apart as
possible.

Three Dimensions:

It is equally evident from plot 10 that the position error is smaller when the sensors are further apart
(i.e. have a larger area between them) and thus the conclusion is the same as in the two-dimensional
case; have the sensors as far apart as possible.

When looking at figures 12 to 15, one can see that the position error is affected differently in
different directions. So for an object positioned in front of the sensors, the depth resolution is still
quite good for sensors placed close to each other but the horizontal resolution is very bad.

 6/23/2014

33

4.2 Sensor Density
This section evaluates the position error with respect to the number of sensors placed.

4.2.1 Test Setup
Two Dimensions:

1000 simulations are conducted.

In each simulation, one object is randomly placed within the Area. The number of sensors is changed
from 2 to 30 and they are placed on the x-axis, equidistant from one another with the two outermost
sensors at x=-0.05m and x=0.05m. The distance estimation noise is of zero mean Gaussian nature
with a standard deviation of 1 mm. The position is estimated using a brute force maximum likelihood
algorithm in two dimensions, which will be presented in section 5.1.2. The estimated position error
as well as the runtime are calculated and saved.

After the simulations, the average position errors as well as the average runtime for the different
number of sensors are calculated and plotted versus the number of sensors. The reason that only
1000 simulations are performed (as opposed to 10 000 in Sensor Placement) is due to the fact that
the brute force algorithm’s execution time is quite long.

Three Dimensions:

1000 simulations are conducted.

In each simulation, one object is randomly placed within the Volume. The number of sensors is
changed from 3 to 10. The sensors are placed in circles in the xy-plane; doing this is an efficient way
of placing the sensors and still keep the number of linearly dependent sensors to a small amount
(which is quite important, as will be seen further ahead in the thesis). The distance estimation noise
is of zero mean Gaussian nature with a standard deviation of 1 mm. The position is estimated using a
brute force maximum likelihood algorithm in three dimensions, which will be presented in section
5.1.2. The estimated position error as well as the runtime are calculated and saved.

After the simulations, just as in the two dimensional case, the average position errors as well as the
average runtime for the different number of sensors are calculated and plotted versus the number of
sensors.

 6/23/2014

34

4.2.2 Results
The results are displayed in the form of two plots for both two dimensions and three dimensions.

Two Dimensions

The first plot shows the average position error as a function of number of sensors along the x-axis.

Plot 11. Average position error as a function of number of sensors in two dimensions

The second plot shows the average runtime as a function of number of sensors.

 6/23/2014

35

Plot 12. Average runtime as a function of number of sensors in two dimensions

Three Dimensions:

The first plot shows the average position error as a function of number of sensors distributed in
circles in the xy-plane.

Plot 13. Average position error as a function of number of sensors in three dimensions

 6/23/2014

36

The second plot shows the average runtime as a function of number of sensors.

Plot 14. Average runtime as a function of number of sensors in three dimensions

4.2.3 Discussion and Conclusions
Just as in section 4.1, this test is done in a way where the overall behavior can be analyzed and
interpreted but the actual values are of lesser importance.

Two Dimensions:

From plot 11, one can deduct that the position error can be reduced by having more sensors. Also,
from plot 12, the time complexity is of O(n), where n is the number of sensors. However, oftentimes
the number of sensors is limited by other parameters such as space and cost. For example, the
number of sensors one can have in a phone may be limited and therefore a reasonable tradeoff has
to be made.

Three Dimensions:

When the number of sensors ranges from 3 to around 10, the same behavior as in the two-
dimensional case can be observed in plot 13. However, when more sensors are added the accuracy
actually decreases. The reason for this is that the number of almost linearly dependent sensors
increases and as an effect decreases the accuracy. More on linearly dependent / independent
sensors can be found in section 5.1.1.

 6/23/2014

37

5 Localization for One Object
This section presents implementations of different localization algorithms, results achieved and some
error analysis.

5.1 Theories and Algorithms
As described in the background, different localization methods exist. First the implementation of
algorithms using the geometrical approach is presented, then implementation of algorithms using
the statistical approach is presented and lastly, the theory behind the error analysis used in this
Thesis is presented.

5.1.1 Geometrical
Below, the algorithms using the geometrical approach are presented.

5.1.1.1 Single Geometric Trilateration
Two Dimensions:

Since the sensors are placed along the x-axis and the object has to be located at y > 0, two sensors
are needed to find the position of the object (as opposed to three sensors when there are no
restrictions of the object’s position in the plane). The goal is to find the intersection between the two
half-circles generated by the distance formulas for the two sensors in two dimensions:

See figure 17 below for an explanation of the variables and parameters used.

Figure17. Trilateration with two sensors (black
dots) and one object (red dot) in two dimensions

Then the two distances are subtracted:

 (5.1)

 (5.2)

 6/23/2014

38

Since and , (5.3) simplifies to:

Now can be extracted as:

and as:

Since the object only can be located at > 0 the minus sign above can be ignored.

Three Dimensions:

Since the sensors are placed in the xy-plane and the object has to be located at z > 0, three sensors
are needed to find the position of the object (as opposed to four sensors when there are no
restrictions on the object’s position in the room). The goal is to find the intersection between the
three half-spheres generated by the distance formulas for the three sensors in three dimensions:

See figure 18 below for an explanation of the variables and parameters used.

Figure 18. Trilateration with three sensors (black dots) and one object (red dot) in three
dimensions

 (5.3)

 (5.4)

 (5.5)

 (5.6)

 (5.7)

 (5.8)

 (5.9)

 6/23/2014

39

Then the first two equations are subtracted by the third:

Since , and , (5.10) and (5.11) simplify to:

These equations give rise to a linear system:

This system can be solved using gauss elimination and the solution is:

Since the object only can be located at > 0, the minus sign before the square root in (5.18) can be
ignored. Note here that if the sensors are placed in a line in the xy-plane (i.e. they are linearly
dependent) there is no solution to the linear system above. Also, if sensors one and three are located
at the same y-coordinate, the gauss elimination has to be conducted in a different order (but of
course this is just as easy as above).

5.1.1.2 Centroid Trilateration
This algorithm is an extension of the “Single Geometric Trilateration for 1 Object”.

Two Dimensions:

Now, the number of sensors is not restricted to two, but can be any number larger or equal to two.
Firstly the maximum number of possible intersections, , is calculated as

(5.10)

(5.11)

 (5.12)

 (5.13)

 (5.14)

 (5.15)

(5.16)

(5.17)

 (5.18)

 6/23/2014

40

where is the number of sensors and the number two represents the dimension. The reason that
this is the maximum number of intersections is that this is the number of combinations of any two
sensors (which give rise to an intersection) out of all sensors. All the intersections are calculated for
all the combinations of sensors. These intersections constitute a polygon with vertices. And lastly,
the centroid of this polygon is taken as the position estimate.

Three Dimensions:

In three dimensions, the number of sensors can be any number larger or equal to three. Firstly,
similar to the two dimensional case, the maximum number of possible intersections, , are
calculated as

And similar to the two dimensional case, is the number of sensors and the number three
represents the dimension. This is the number of combinations of any three sensors (which give rise
to an intersection) out of all sensors. All the combinations of three sensors are gone through. If a
combination is linearly independent, the intersection is calculated. Otherwise, since an intersection
cannot be calculated if the sensors are linearly dependent, the total number of intersections is
decreased by one. All the calculated intersections constitute a polygon with – (number of linearly
dependent combinations vertices). Lastly, the centroid of the produced polygon is taken as the
position estimate.

This algorithm is similar to the one described in [12]. But here, there are restrictions on where the
sensors and objects are located.

5.1.1.3 Weighted Centroid Trilateration
This algorithm is an extension of “Centroid Trilateration for 1 Object”.

Two Dimensions:

The same procedure is used here as in “Centroid Trilateration for 1 Object” in two dimensions, with
the exception that the centroid taken as position estimate is weighted. The weight of a vertex in the
resulting polygon, i.e. one of the intersections, is based on three parameters

1. The relative position of the object with respect to the two sensors.
2. The distance between the two sensors.
3. The distance to the object.

The first parameter, , is calculated as

 (5.19)

 (5.20)

 (5.21)

 6/23/2014

41

where is the distance between the first sensor and the object and is the distance between the
second sensor and the object. The second, , is calculated as

where and are the x-coordinates for sensor one and sensor two, respectively and is the
maximum separation between two sensors. The third, , is calculated as

where

 is the maximum distance between an object and a sensor for which the object can be
detected by the sensor, is the x-coordinate for the vertex and is the y-coordinate for the vertex.
The total weight, , is then calculated as

The weights for all the vertices, , i=1, 2, ..., N, are now normalized as

where is the normalized weight for the i:th vertex. The position estimate is now the weighted
centroid, calculated as

where is the x-coordinate of the position estimation, is the y-coordinate of the position
estimation and and are the x- and y-coordinates of the i:th vertex, respectively.

Three Dimensions:

The method is basically the same in three dimensions as in two dimensions. In three dimensions,
however, the parameters that the weight of a vertex is based on are calculated differently as well as
there being a fourth parameter. The fourth parameter describes how linearly dependent three

 (5.22)

 (5.23)

(5.24)

(5.25)

 (5.26)

 (5.27)

 (5.28)

 (5.29)

 6/23/2014

42

sensors giving rise to a vertex are. The reason for having this parameter is that the more linearly
dependent the sensors are, the larger estimation error. As stated in section 5.1.1.2, if the sensors are
linearly dependent, there position cannot be estimated. The parameter is calculated as

where , and are the distances for sensors one, two and three to the object, respectively. The
parameter is calculated, by help of Heron’s formula and the law of cosines, as

where

 is the area where the sensors can be placed, , and are the x-coordinates for sensors one,
two and three, respectively and , and are the y-coordinates for sensors one, two and three,
respectively. The parameter is calculated as

where

 is the maximum distance between an object and a sensor for which the object can be
detected by the sensor, , and are the x-, y- and z-coordinates, respectively, for the vertex
being weighted. The last parameter, , is calculated, by help of the law of cosines, as

 (5.30)

 (5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

 (5.37)

(5.38)

(5.39)

(5.40)

 (5.41)

 6/23/2014

43

where

The rest of the algorithm is exactly the same as in the two dimensional case.

These two algorithms are quite similar to those in [8] and [13]. The difference is that in this thesis
there are restrictions on the sensors placement as well as the fact that the second algorithm is used
in three dimensions and not only two.

5.1.2 Statistical
The statistical approaches in this Thesis are based on the Maximum Likelihood method, which is
described below.

Since the distance estimates, , are noisy, they can be modeled as:

where is the number of distance estimates (i.e. sensors), is the exact distance from the i:th
sensor to the object and is the noise for the i:th distance estimation. Now, the Maximum
Likelihood (ML) method can be applied. The ML method takes as estimate the position of the object,
represented by , that makes our distance estimates as probable as possible [10]:

where is the estimate of the position , is the likelihood function and is the
probability density function of = , conditioned on . is a deterministic function and
hence the likelihood function can be expressed as the probability function of the noise instead. Since
the noise is zero mean Gaussian noise (stated in section 1.1) and it can be assumed to be the same
for all distance estimates, the likelihood function can be expressed as:

 (5.42)

 (5.43)

(5.44)

(5.45)

 (5.46)

 (5.47)

 (5.48)

 (5.49)

 6/23/2014

44

where is the standard deviation for the noise. The position estimate, , can now be obtained as:

This estimator is known as the non-linear least squares estimator. [4][9]

5.1.2.1 Gradient Descent
One way to solve the equation above is to use a gradient descent algorithm. The gradient descent is
used to find a local minimum for a certain function, in this case . The method starts at an initial
guess of the local minimum and then steps, with a certain step size , in the direction of the negative
gradient of at the initial guess to a new point. At this new point the process is repeated. The
algorithm runs until a certain condition is fulfilled; for example, until the step size is sufficiently small.

Two Dimensions:

 can be expressed as:

where is the x-coordinate of the object, is the y-coordinate of the object, is the x-coordinate of
the i:th sensor and is the y-coordinate of the i:th sensor.

The algorithm implemented for the two dimensional case uses one of the intersect points as an initial
guess for the gradient descent. This intersect point can be found using the geometrical trilateration
method in two dimensions described above. Then the gradient of , , is calculated as:

The new point, , is the old point, , minus . The algorithm, as explained above,
runs until the step size is smaller than a certain precision. The x- and y-value obtained are the
position estimates.

 (5.50)

 (5.51)

 (5.52)

 6/23/2014

45

Three Dimensions:

 can be expressed as:

where is the z-coordinate of the object and is the z-coordinate of the i:th sensor.

The algorithm implemented is the same as for the two dimensional case with the exception being
that the gradient of , , is:

5.1.2.2 Brute Force
If, however, the area or volume being searched is small enough, a brute force method can be used to
solve the non-linear least squares estimator. The brute force approach defines an area or volume
with a certain resolution (i.e. steps in the two- or three-dimensional matrix). This defined area or
volume is then put in as the x- y- and z-values in equation 3.50. After this, a simple search for the
minimum value is conducted in order to find the position of the object. This method is in general the
most stable and has the highest accuracy if the resolution is high enough. However, the major
drawback of this method is the possibly very high computational complexity, for example if the area
or volume is large or the resolution is very high.

5.1.2.3 Linear Least Squares Estimation:
Instead of trying to solve the non-linear system (5.50) in section 5.1.2, there are methods to linearize
the system. One of the most common methods is to create linear lines of positions instead of circular
lines of positions [12], see figure 19 below.

 (5.53)

 (5.54)

 6/23/2014

46

Figure 19. Linear lines of position as well as circular (original) lines of position
for trilateration [12]

Actually this is not technically a linearization but it has the same effect. To produce these linear lines
of positions the first N-1 distance formulas for the different sensors are subtracted by the N:th,
where N is the number of sensors. This is similar to the geometric approach above, but here the
number of sensors has to be more than the dimension, i.e. at least three sensors in two dimensions
and at least four sensors in three dimensions. However, there is no upper limit for the amount of
sensors. An example now follows for N = 4 in three dimensions. The distance formulas are:

Subtracting the last equation produces the linear system [7]:

which can be written in matrix form as

(5.55)

(5.56)

(5.57)

 (5.58)

(5.59)

(5.60)

 (5.61)

 (5.62)

 6/23/2014

47

This is a general form for the linear lines of positions regardless of the number of sensors (at least
three) or the dimension used. In the general case is a matrix (is the dimension), is
the position of the object (for example in three dimensions) and is a vector of same
size as . The system can be solved using a Least Squares method [14]:

However, the criterion for this solution is for the columns in to be linearly independent which is
not the case in this thesis. As stated in the Problem Definition (section 1.1), the sensors are
distributed along the x-axis in two dimensions and the sensors are located in the xy-plane in three
dimensions. Therefore, this method has not been implemented.

5.1.3 Error Analysis
In order to evaluate the position error, the distance estimation errors’ impact on the position error
will be considered in this section.

This is done by taking expressions of the positions, , as functions of the distance estimations,
, and the sensor positions, , linearize these with respect to the distance estimations and

then calculate the position errors, .

If the function for the x-position is denoted , then, by linearization, the absolute
error of the x-position, , can be expressed by

where is the number of sensors (i.e. number of distance estimations), is the distance estimation
for the i:th sensor and is the distance estimation error for the i:th sensor. The same linearization
is done to retrieve the y- and z-position errors:

where is the function for the y-position and is the function for the
z-position. [7]

 (5.63)

 (5.64)

(5.65)

 (5.66)

 6/23/2014

48

Two Dimensions:

In two dimensions, and is already derived in section 5.1.1, namely
equations (5.5) and (5.6), respectively. From these equations, the derivatives can be calculated as

and

By putting equations (5.67) and (5.68) into (5.64) as well as equations (5.69) and (5.70) into (5.65),
the position errors can easily be calculated.

Three Dimensions:

The approach is the same in three dimensions; , and
 is derived from equations (5.14) and (5.15) in section 5.1.1:

The various derivatives can then be calculated as

(5.67)

 (5.68)

(5.69)

 (5.70)

(5.71)

(5.72)

 (5.73)

(5.74)

 (5.75)

 6/23/2014

49

Where is , is and is . When inserting equations (5.74) –
(5.82) above into equations (5.64) – (5.66) the position errors can easily be calculated.

5.2 Average Runtime for Brute Force Algorithm
As described in section 5.1.2.2, the accuracy of the Brute Force algorithm is heavily dependent on the
resolution parameter. However, the quite poor time complexity of the algorithm limits this
parameter. Due to this, a further evaluation of the runtime of the algorithm is needed.

5.2.1 Test Setup
Two Dimensions:

20 simulations are performed, where the resolution for the algorithm changes. The algorithm
conducts its search within the Area. The sensors are placed on the x-axis at [-0.05 -0.017 0 0.017
0.05]. In a simulation, 1000 iterations are performed.

In each iteration, one object is randomly placed within the Area. The distances between the sensors
and the object are generated with zero mean Gaussian noise with a standard deviation of 1 mm. The
runtime for the position estimation is saved.

After the simulations the average runtimes for the different resolutions are calculated and plotted.

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

 (5.82)

 6/23/2014

50

Three Dimensions:

20 simulations are performed, where the resolution for the algorithm changes. The algorithm
conducts its search within the Volume. The sensors are placed in the xy-plane at the positions (-0.05 -
0.05 0) (-0.05 0.05 0) (0 0 0) (0.05 0.05 0) (0.05 -0.05 0). In a simulation, 1000 iterations are
performed.

In each iteration, one object is randomly placed within the Volume. The distances between the
sensors and the object are generated with zero mean Gaussian noise with a standard deviation of 1
mm. The runtime for the position estimation is saved.

After the simulations the average runtimes for the different resolutions are calculated and plotted.

5.2.2 Results
The results are presented as plots of average runtime versus resolution (i.e. how fine steps the two-
or three-dimensional matrix has in which the search is done).

Two Dimensions:

Plot 15 shows how the average runtime depends on the resolution of the area to be searched.

Plot 15. Average runtime as a function of resolution in two dimensions

 6/23/2014

51

Three Dimensions:

Both the plots below show the average runtime versus resolution of the volume to be searched. The
plot on the right-hand side is a zoom-in of the plot on the left-hand side, with the values on the x-axis
ranging between 3.0 and 7.0 mm.

Plot 16. Average runtime as a function of resolution in
three dimensions

Plot 17. Zoom-in of plot 16

5.2.3 Discussion and Conclusions
As expected and can be seen in plot 15, 16 and 17, the Brute Force algorithm has very steep curves
regarding the runtime as a function of resolution. It is expected since in two dimensions the time
complexity is O(n2) due to that it is an area to be searched and three dimensions the time complexity
is O(n3) due to that it is a volume to be searched.

If one wants to be able to update the position of an object relatively fast in two dimensions, the
resolution cannot be much higher than 0.5 mm. With this resolution the Brute Force algorithm has
an average runtime of 75 ms (see plot 15) which gives rise to a maximum update speed of around 13
Hz.

If in three dimensions (which is more likely when having a sensing application in a mobile phone) the
resolution cannot be much higher than 3 mm if one wants to be able to update the position
estimation at a speed of around 15 Hz.

In other words, as described in section 5.1, the Brute Force algorithm is generally the best in terms of
stability and accuracy but it very important to know the limitations. For example, estimating a
position with sub millimeter accuracy with this method is almost not feasible in three dimensions in a
mobile application where everything is needs to be fast to enhance user experience.

 6/23/2014

52

5.3 Impact of Distance Error on Position Error
A point of evaluation to be conducted in this Thesis, according to section 1.1, is the impact of the
distance error on the position error. This is done below.

5.3.1 Test Setup
Two Dimensions:

In the test, 10 000 simulations are conducted.

In each simulation, one object is randomly placed within the Area. Since the sensors should be placed
as far away from each other as possible, see section 4.1, two sensors are placed at x=-0.05 m and
x=0.05 m and the distance error is changed from 0 m to 0.01 m. The position error for each distance
error is calculated (using the algorithm in section 5.1.3) and saved.

After the simulations, the average position error is plotted against the distance error.

Three Dimensions:

In the test, 10 000 simulations are conducted.

In each simulation, one object is randomly placed within Volume. Since the area of the triangle with
the modules as vertices should be as large as possible, see section 4.1, three modules are placed in
the xy-plane at (0 0.05 0), (-0.05 -0.05 0) and (0.05 -0.05 0). The distance error is changed from 0 m to
0.01 m and the position error for each distance error is calculated (using the algorithm in section
5.1.3) and saved.

After the simulations, the average position error is plotted against the distance error.

 6/23/2014

53

5.3.2 Results
The results are displayed as absolute position error versus distance error plots.

Two Dimensions:

Below, in plot 18, the absolute position error as a function of distance estimation error in two
dimensions is presented.

Plot 18. Position error as a function of distance error in two dimensions

 6/23/2014

54

Three Dimensions:

The corresponding plot in three dimensions is presented below.

Plot 19. Position error as a function of distance error in three dimensions

5.3.3 Discussion and Conclusions
Two Dimensions:

As can be seen in the two plots above, the position error is linearly dependent on the distance
estimation error. This is however obvious, since the algorithm used to calculate the position error
uses a linearization technique, see section 5.1.3. Hence, the shape of the plot does not convey a lot
of information. However, the slope can easily be calculated and a “transition factor”, TF, can be
determined as follows:

This factor states how much worse the absolute position error becomes due to a distance estimation
error. Note here that this factor is highly dependent on both sensor placement and sensor density
and hence is not an absolute value.

 (5.83)

 6/23/2014

55

Three Dimensions:

Just as in the two dimensional case, the position error is linearly dependent on the distance
estimation error. Again, this is due to the linearization technique used in the algorithm that
calculates the position error. However, the transition factor, TF, is quite a bit lower compared to the
two dimensional case:

Again, this factor is highly dependent on sensor placement and sensor density and thus the actual
position error in three dimensions may well be worse than in two dimensions even if the distance
estimation errors are the same.

 (5.84)

 6/23/2014

56

5.4 Position Estimation
This section evaluates the algorithms for the position estimation for one object. The sensors in this
section are placed according to section 4.1 as far apart as possible. In a mobile phone this limit would
be around 10 cm and thus the sensors are placed accordingly. The number of sensors is four in two
dimensions and five in three dimensions. This is obviously a tradeoff; a high number of sensors
increases the accuracy but also increase the cost.

5.4.1 Test Setup
Two Dimensions:

4 simulations are performed, where the strength of the noise is changed. The sensors are placed on
the x-axis at -0.05 m, -0.025 m, 0.025 m and 0.05 m. In a simulation, 1000 iterations are performed.

In each iteration, one object is randomly placed within the Area. The distances between the sensors
and the object are generated with a zero mean Gaussian noise. The position of the object is then
estimated using the four implemented algorithms:

1. Geometrical Centroid
2. Geometrical Weighted Centroid
3. Statistical Maximum Likelihood using Gradient Descent
4. Statistical Maximum Likelihood using Brute Force

The runtimes as well as the position errors for the four algorithms are calculated and saved.

After a simulation, cumulative density functions for the errors are plotted and some other statistics,
such as the standard deviation, are calculated.

Three Dimensions:

The setup is the same as for the two dimensional case, except that the objects is located within the
Volume instead of the Area. Also, the sensors are instead placed in the xy-plane at (-0.05 -0.05 0) (-
0.05 0.05 0) (0 0 0) (0.05 0.05 0) (0.05 -0.05 0).

The resolution for the Brute Force algorithm is 0.75 mm in two dimensions and 4 mm in three
dimensions due to this being a good tradeoff between accuracy and time complexity, see section 5.2.

5.4.2 Results
As for the time delay estimation (section 3.3), the results are divided into three parameters; stability,
accuracy and computational complexity. First, the two-dimensional results are presented and then
the three-dimensional results. All results have four different standard deviations of the added noise
(this is noise added to the generated distances that serves as input for the algorithms), ranging from
0.1 to 10 mm.

 6/23/2014

57

Two Dimensions:

Stability

The stability is here evaluated based on how many positions that weren’t found, as can be seen in
the table below.

Algorithm Std of 0.1 mm Std of 1.0 mm Std of 5.0 mm Std of 10 mm
Centroid

0 % 0 % 0 % 0 %

Weighted
Centroid

0 % 0 % 0 % 0 %

ML Brute Force

0 % 0 % 0 % 0 %

ML Gradient
Descent

0 % 0 % 0 % 0 %

Table 7. Percentage of times a position wasn’t found for the algorithms for different standard deviations of
the noise (noise of the distance estimations that serves as input for the algorithms) in two dimensions

Accuracy

Again, as for the time delay estimation results, plots are made showing the cumulative distribution
functions of the estimation errors for the algorithms in order to evaluate the accuracy. There are a
total of four plots, one for each standard deviation, and they are presented below.

Plot 20. Cumulative distribution functions for the algorithms
with noise std of 0.1 mm in two dimensions

Plot 21. Cumulative distribution functions for the algorithms
with noise std of 1.0 mm in two dimensions

 6/23/2014

58

Plot 22. Cumulative distribution functions for the algorithms
with noise std of 5.0 mm in two dimensions

Plot 23. Cumulative distribution functions for the algorithms
with noise std of 10 mm in two dimensions

Computational Complexity

Lastly, to evaluate the computational complexity, the average runtime for the four algorithms are
presented in table 8 below.

Algorithm Std of 0.1 mm Std of 1.0 mm Std of 5.0 mm Std of 10 mm
Centroid

0.593 ms 0.601 ms 0.629 ms 0.630 ms

Weighted
Centroid

0.885 ms 0.932 ms 0.934 ms 0.924 ms

ML Brute Force

15.4 ms 15.1 ms 15.9 ms 15.5 ms

ML Gradient
Descent

10.1 ms 13.9 ms 17.9 ms 19.2 ms

Table 8. Average runtimes for the algorithms for different standard deviations of the noise (noise of the
distance estimations that serves as input for the algorithms) in two dimensions

 6/23/2014

59

Three Dimensions:

The results in three dimensions are presented exactly the same as in two dimensions, as can be seen
below.

Stability

Algorithm Std of 0.1 mm Std of 1.0 mm Std of 5.0 mm Std of 10 mm
Centroid

0 % 0.1 % 0.4 % 0.8 %

Weighted
Centroid

0 % 0.1 % 0.4 % 0.8 %

ML Brute Force

0 % 0 % 0 % 0 %

ML Gradient
Descent

0 % 0.1 % 0.4 % 0.8 %

Table 9. Percentage of times a position wasn’t found for the algorithms for different standard deviations of
the noise (noise of the distance estimations that serves as input for the algorithms) in three dimensions

Accuracy

Plot 24. Cumulative distribution functions for the algorithms
with noise std of 0.1 mm in three dimensions

Plot 25. Cumulative distribution functions for the algorithms
with noise std of 1.0 mm in three dimensions

 6/23/2014

60

Plot 26. Cumulative distribution functions for the algorithms
with noise std of 5.0 mm in three dimensions

Plot 27. Cumulative distribution functions for the algorithms
with noise std of 10 mm in three dimensions

Computational Complexity

Algorithm Std of 0.1 mm Std of 1.0 mm Std of 5.0 mm Std of 10 mm
Centroid

0.169 ms 0.176 ms 0.192 ms 0.227 ms

Weighted
Centroid

0.446 ms 0.459 ms 0.492 ms 0.565 ms

ML Brute Force

30.7 ms 31.8 ms 33.1 ms 38.1 ms

ML Gradient
Descent

8.79 ms 17.1 ms 22.3 ms 30.5 ms

Table 10. Average runtimes for the algorithms for different standard deviations of the noise (noise of the
distance estimations that serves as input for the algorithms) in three dimensions

5.4.3 Discussion and Conclusions
Two Dimensions:

Stability

The stability, based on how many failed position estimations were made, is good for all four
algorithms as can be seen in table 7. To note here though is that the distance estimations (i.e. the
input of these algorithms) have been generated and not actually estimated. Therefore, the input is
perfect in the sense that there is only noise added to the distances and no other strange errors
(which may be the case when actually estimating the distances).

Accuracy

From plots 20 to 23, one can see the transition of the Maximum Likelihood (ML) Brute Force
algorithm from being the worst to being the best in terms of accuracy when increasing the noise. The

 6/23/2014

61

reason for this is the resolution parameter of the algorithm. Since the resolution is 0.75 mm, when
having a noise standard deviation as small as 0.1 mm, the other algorithms have higher accuracies
since they are not limited by this resolution. But if the noise is larger (have a standard deviation
larger than the resolution parameter) the ML Brute Force Algorithm outperforms the other
algorithms in terms of accuracy.

Another thing to note in these plots is the fact that the Centroid algorithm is consistently the worst
(of course except from the ML Brute Force algorithm when having low noise input). This is expected
since the Weighted Centroid is an extension or enhancement of the Centroid algorithm. And the
Maximum Likelihood (ML) Gradient Descent, despite being a statistical algorithm, is also basically an
extension of the Centroid algorithm since it takes intersections as start points for the descent.

The ML Gradient Descent and Weighted Centroid methods have basically the same accuracy. The ML
Gradient Descent is marginally better when the noise is larger (standard deviations of 5 mm and 10
mm).

Computational Complexity

There is a very distinct difference between the two geometrical algorithms, Centroid and Weighted
Centroid, and the two statistical algorithms, ML Brute Force and ML Gradient Descent when it comes
to average runtimes, which can be seen in table 8. The reason that the geometrical algorithms are
significantly faster is that they basically only calculates intersections and means whereas the
statistical algorithms performs a search of some kind.

There is no difference in average runtime for Centroid or Weighted Centroid when increasing the
noise. This is due to the fact that whatever the noise, there is still the same amount of intersections
to be calculated (of course assuming the same number of sensors and objects to be found).

The runtime of the ML Brute Force algorithm is not affected by the noise either. The reason for this is
that the same matrix is to be searched through regardless of the strength of the noise (assuming the
same area and resolution). However, the average runtime of ML Gradient Descent is increasing with
increased noise. This is because in general the more noise, the worse the initial guess (intersection) is
which means that it takes a longer time for the algorithm to reach the stop condition.

Three Dimensions:

Stability:

The algorithms are a bit more susceptible to failures when estimating in three dimensions, as can be
seen in table 9. The exclusion from this is the ML Brute Force algorithm. The reason for this is that
the algorithm actually never fails in the sense that it always finds the best position estimation from
the distance estimations. Of course if the distance estimations are very noisy, the position estimation
may have large errors, but it is always found.

The reason that the geometrical algorithms fail sometimes in three dimensions but not in two is the
fact that more distance estimations are needed for an intersection (three instead of two). The same
reason applies to the ML Gradient Descent due to the initial guesses being intersections.

 6/23/2014

62

Accuracy

Just as in the two-dimensional case the ML Brute Force algorithm is the best when it comes to
accuracy if the standard deviation of the noise is larger than the resolution parameter of the
algorithm, which is clearly seen in plots 24 to 27.

The Centroid algorithm is still overall the worst (for noisier signals) whereas the ML Gradient Descent
and Weighted Centroid are still more accurate, but not as significantly as in the two-dimensional
case.

Computational Complexity

Again, just as in the two-dimensional case, there is a huge difference in the average runtimes
between the geometrical and the statistical algorithms, as seen in table 10. The runtime stays
basically the same for Centroid, Weighted Centroid and ML Brute Force regardless of noise for the
same reasons as in two dimensions. And finally the runtime for ML Gradient Descent is increasing
with increased noise.

Conclusion

In terms of stability the algorithms are quite similar, with ML Brute Force being a bit more stable
compared to the others. In terms of accuracy, the ML Brute Force is overall the best but the
algorithm is quite inflexible due to the resolution parameter, especially in three dimensions.
Regarding the computational complexity, the geometrical algorithms are by far the better choice.

When taking all this into account the algorithm of choice for implementation in the Android
application is the Weighted Centroid, mainly due to the very fast runtime and reasonable accuracy.

 6/23/2014

63

6 Multiobject Localization
So far, only one object has been considered when estimating the position. However, it is often
desirable to be able to locate more than one object. This section is dedicated to present and evaluate
one such algorithm.

6.1 Theories and Algorithms
Below is the explanation of the multiobject localization algorithm in both two and three dimensions.

Two Dimensions:

The algorithm used to localize multiple objects is essentially an extension of the Weighted Centroid
algorithm (see section 5.1.1.3).

The first step is to find all the intersections for all objects and all combinations of sensors. The
intersections are calculated using the algorithm in section 5.1.1.1 in two dimensions.

The second step is to find clusters of intersections which may constitute an object’s position. All the
intersections are gone through and for each intersection, the sensors and distances giving rise to the
intersection are extracted. This is done in order to determine a suitable tolerance around the
intersection using the algorithm in section 5.1.3. This tolerance is then used when going through the
rest of the intersections to evaluate if these might make up a cluster. If enough intersections are
found, these intersections are regarded as a true cluster (i.e. an object resides within the cluster).
The minimum number of intersections that is regarded as enough to be a true cluster is (N / 2),
where N is the number of sensors and 2 is the dimension, as explained in section 5.1.1.2. See figure
20 for a more easy understanding of the process.

 6/23/2014

64

Figure 20. Multiobject localization (trilateration) with three sensors (green circles) and two objects
(red squares) in two dimensions

The third step is estimating the positions from the found clusters and this is done by the Weighted
Centroid algorithm.

Three Dimensions:

The algorithm in three dimensions is conducted in the same way as in two dimensions, but of course
using the corresponding algorithms in sections 5.1.1.1 and 5.1.1.3 for three dimensions.

 6/23/2014

65

6.2 Test Setup
Again, the sensor placement and density considers both the results from section 4 as well as the cost
of the sensors.

Two Dimensions:

4 simulations are done where the number of objects is changed. Three modules are placed on the x-
axis at -0.05m, 0m and 0.05m. In a simulation, 10 000 iterations are executed.

In each iteration, the objects are placed randomly in the Area. Distances between the sensors and
the objects are then generated containing a zero mean Gaussian noise with a standard deviation of 1
mm. The positions are estimated using the Multi Object Weighted Centroid algorithm. Lastly,
relevant data, such as the estimation error and runtime, is extracted.

After the simulation, the data extracted is presented.

Three Dimensions:

The setup is the same as for the two dimensional case, the only differences is that the objects are
restricted to the Volume. The sensors are located in the xy-plane at (-0.05 -0.05 0) (-0.05 0.05 0) (0.05
0.05 0) (0.05 -0.05 0).

6.3 Results
The results for multiobject localization are in the form of percentage successful estimations. The
definition of a completely successful estimation is that all objects are found, the amount of objects
found is correct and the estimation errors are no larger than 3 cm. The definition of a fairly successful
estimation is that all objects are found, but there are no limitations on the number of objects found
(i.e. the number of objects found can be larger than the actual amount of objects) or the estimation
errors.

Two Dimensions:

Below is a bar chart displaying the percentage of successful estimations for different number of
objects in two dimensions.

 6/23/2014

66

Figure 21. Bar chart displaying the percentage of successful estimations depending on number of objects to be
found in two dimensions

Another interesting thing to examine is the effect on average runtime that the number of object to
be found has. Below is a simple plot that displays the average runtime versus the number of objects.

 6/23/2014

67

Plot 28. Average runtime as a function of number of objects to be found in two dimensions

 6/23/2014

68

Three Dimensions:

Below is a similar chart as in figure 21 above, but in three dimensions.

Figure 22. Bar chart displaying the percentage of successful estimations depending on number of objects to be
found in three dimensions

Also, a plot of average runtime versus number of objects is shown below.

 6/23/2014

69

Plot 29. Average runtime as a function of number of objects to be found in three dimensions

6.4 Discussion and Conclusions
As one might suspect, the more objects to be located, the more errors occur, see figures 21 and 22.
The reason for this is that when more objects are to be located, there is a larger risk that these
objects reside in close proximity to each other. This fact makes the clusters harder to determine;
there is a high risk that some of the intersections making up the cluster of one object is counted
when making up a cluster of another object. This leads to larger errors, especially in three
dimensions, and in the worst case to an object’s position not being estimated.

As can be seen in plots 28 and 29, the average runtime of the localization increases as the number of
objects to be found increases. This is due to the fact that more intersections need to be calculated
when more objects are to be localized. If the objects are located far apart the number of
intersections is increased linearly with the number of objects. But if the objects are located close to
one another, additional intersections arise, see figure 20. This is the reason for the graphs’
appearance in plots 28 and 29. The graph in three dimensions is steeper because more sensors are
needed in three dimensions to determine the position of the objects (and hence a larger number of
additional intersections need to be calculated).

What can be drawn from the results in this section is that the algorithm is very stable (i.e. very high
percentage of fairly successful estimations) regardless of number of objects. This stability may of

 6/23/2014

70

course eventually fall off if the number of objects to be found becomes very large. The accuracy is
very good for few objects but falls off when the number of objects increases, especially in three
dimensions.

 6/23/2014

71

7 Two-Step Positioning
Up to this point, the time delay estimation and the position estimation have been evaluated
separately. Of course, it is interesting to evaluate these two together, as both constitute complete
object position estimation from sensor inputs. This is what is done in this section.

7.1 One Object
The evaluation of a complete two-step positioning estimation for one object is presented below.

7.1.1 Test Setup
The Covariance algorithm is used for the distance (or time delay) estimation mainly due to the
stability but also the precision, as can be seen in section 3.3. All the positioning algorithms are used
in order to evaluate them using a better input (i.e. an input based on TDE and not just generated).
The resolution for the Brute Force algorithm is quite high; 0.5 mm. This is due to the low standard
deviation of the distance estimation.

Two Dimensions:

The setup is similar to the setup for position estimation for 1 object, see section 5.4.1. The difference
is that only one simulation (with 1000 iterations) is done and in each iteration, a simulated,
correlated signal is generated and the distance is estimated using the covariance algorithm. From the
distance estimate, the position of the object is then estimated using the four implemented
algorithms.

Three Dimensions:

The setup is almost the same as for the two dimensional case. The difference is the removal of the
Brute Force algorithm. The reason for this is that the standard deviation for the distance estimation
is small (0.05mm) and hence a very high resolution is needed for the brute force algorithm. This fact
makes the algorithm not feasible due to both time consumption and even memory issues. The
sensors are placed in the xy-plane at (-0.05 -0.05 0) (-0.05 0.05 0) (0 0 0) (0.05 0.05 0) (0.05 -0.05 0).

7.1.2 Results
The results are presented by plotting the cumulative distribution functions of the errors for the
localization algorithms. One major difference in these results compared to the time delay estimation
(section 3.3) and position estimation (section 5.4) is that the definition of an object not found is
stricter. Now, an object is deemed not found if the error of the time delay estimation is larger than 5
mm. The reason for this is that the simulation should be more closely related to the reality, where
oftentimes a very bad estimation is worth about as much as no estimation at all.

Two Dimensions

The percentage of objects not found was 0.4 %. In plot 30, the cumulative distribution functions of
the errors for the four localization algorithms are shown.

 6/23/2014

72

Plot 30. Cumulative distribution functions of the errors for the algorithms in two dimensions

To be able to evaluate the computation complexity for the different algorithms, the table below
presents the average runtimes. Note here that Covariance is the TDE algorithm whereas the rest are
positioning algorithms.

Algorithm Average runtime
Covariance 95.3 ms
Centroid 0.845 ms
Weighted Centroid 1.25 ms
ML Brute Force 44.8 ms
ML Gradient Descent 6.57 ms

Table 11. Average runtimes for the five algorithms in two dimensions

Three Dimensions:

The percentage of objects not found was now 1.0 %. As in the two-dimensional case, a cumulative
distribution plot of the errors is shown below. Note that, as mentioned in the test setup (section
7.1.1), there is no plot for the ML Brute Force algorithm due to the very high computational
complexity.

 6/23/2014

73

Plot 31. Cumulative distribution functions of the errors for the algorithms in three dimensions

Table 12 presents the average runtimes.

Algorithm Average runtimes
Covariance 131 ms
Centroid 0.223 ms
Weighted Centroid 0.680 ms
ML Gradient Descent 5.27 ms

Table 12. Average runtimes for the four algorithms in three dimensions

7.1.3 Discussion and Conclusions
Two Dimensions:

The complete two-step positioning scheme for one object in two dimensions is found to be very
stable with only 0.4 % of the objects not being localized.

Since the distance estimation errors are small with the analog signals and the high accuracy of the
Covariance algorithm, the resolution parameter for the ML Brute Force algorithm is set to high (0.5
mm) but it is still not enough to be even close to perform on the same level as the other algorithms,
which is evident in plot 30.

 6/23/2014

74

When it comes to the computational complexity, the distance estimation (i.e. the Covariance
algorithm) requires the heaviest computation (see table 11). This is due to the fact that the analog
signals have a very large number of data points (see section 3.4 for information). So by having input
signals with significantly fewer data points (as is the case for digital input signals) the average
runtime is decreased a lot. However, the localization algorithms are not dependent on the analog or
digital input signals but the number of sensors used and the number of objects to be located.

The reason that the average runtime for the Covariance algorithm is around a factor four longer than
in section 3.3.1 is the fact that in these tests there are four sensors whereas in the tests in section
3.3, there is only one. This linear behavior of the increase in average runtime depending on sensors
was observed in section 4.2.

Three Dimensions:

In three dimensions the two-step positioning scheme is still very stable with only 1 % of the objects
not being localized.

Here, again due to the small errors in the distance estimations, the ML Brute Force algorithm is not
even tested, see section 7.1.1. The other algorithms have basically the same accuracy as can be seen
in plot 31.

As in two dimensions it is the Covariance algorithm that has the highest computational complexity.

 6/23/2014

75

7.2 Multiobject
The evaluation of a complete two-step positioning estimation for more than one object is presented
below.

7.2.1 Test Setup
Two Dimensions:

The setup is similar to the setup for position estimation for more than 1 object, see section 6.2.

There are three differences:

1. The number of objects is limited to 2.
2. In each simulation, a simulated, correlated signal is generated and the distance is estimated

using the covariance algorithm. The position estimate is then estimated using the distance
estimate.

3. The objects placed are at least 3 cm apart. The reason for this is that a correlated signal pulse
is of this length and the TDE algorithm cannot handle overlapping signals.

Three Dimensions:

The setup is the same as for the two dimensional case. The sensors are located in the xy-plane at (-
0.05 -0.05 0) (-0.05 0.05 0) (0.05 0.05 0) (0.05 -0.05 0).

7.2.2 Results
As for the multiobject localization (section 6.3), the results are presented as percentages successful
estimations. Now, the definition of a completely successful estimation is that all distance estimation
errors are no larger than 1 mm, all objects are found, the amount of objects found is correct and the
position estimation errors are no larger than 3 mm. The definition of a fairly successful estimation is
that all distance estimation errors are no larger than 1 cm, all objects are found, but there are no
limitations on the number of objects found or the estimation errors.

Two Dimensions:

The result is presented in table 13 which shows both the successful estimations as well as the total
average runtime (i.e. the average runtime for both the time delay estimation as well as the object
localization).

Fairly successful estimation Completely successful
estimation

Total average runtime

93.8 % 92.9 % 53.3 ms

Table 13. Results for the complete two-step positioning procedure with two objects in two dimensions

 6/23/2014

76

Three Dimensions:

In table 14 below is the corresponding result in three dimensions.

Fairly successful estimations Completely successful
estimations

Total average runtime

90.4 % 78.2 % 72.5 ms

Table 14. Results for the complete two-step positioning procedure with two objects in three dimensions

7.2.3 Discussion and Conclusions
Finally the complete multiobject two-step positioning procedure is to be evaluated. The stability,
both in two as well as three dimensions, is quite good with over 90 % fairly successful estimations,
which can be seen in tables 13 and 14. The accuracy in two dimensions is very good with almost 93 %
completely successful estimations while in three dimensions the accuracy is a bit worse with almost
80 % completely successful estimations.

The average runtimes are quite long however leading to an update rate of around 19 Hz in two
dimensions and 14 Hz in three dimensions. As stated in previous sections, this is greatly reduced
(around a factor of ten) if input signals with fewer data points is used (as in the case of digital input
signals). With an increased update rate, the impact of a low percentage of successful estimations is
decreases.

The next part of this thesis is to implement the complete multiobject two-step procedure in an
Android Application using Java.

 6/23/2014

77

8 Android Application
A large part of this master thesis is to create an application for Android using Java.

8.1 Introduction and Aim
The main purpose of the application is to be able to estimate distances using input data from a
sensor prototype as well as estimate positions using the estimated distances and displaying the
results to the user. The estimations are done using the complete two-step positioning algorithms
found in the previous sections. The prototype is currently still in development and so the input data
is generated in the prototype’s microcontroller.

The microcontroller is connected to the Android smartphone via USB. This means that the
application should be able to extract the input data via USB host mode on the phone.

The application should have two main pages (or Activities), the first one being the main page where
the results are presented and the second being a settings page.

8.2 Graphical User Interface
On the main page there are three text views with three corresponding toggle buttons. The text views
display the distance estimation, the position estimation in two dimensions and the position
estimation in three dimensions. The corresponding buttons let the user turn the estimations on or
off. There is also a text view displaying different important messages, such as if the sensor is
connected or not. The GUI for the main page can be seen in figure 23 below.

 6/23/2014

78

Figure 23. The main page of the application

In the settings page, different parameters such as gain or supply voltages can be set or changed as
can be seen in figure 24 below.

Figure 24. The Settings page of the application

8.3 General Implementation and Design
Since data should be retrieved via USB, the application should not just run with one thread. In
addition to the main thread, which handles the GUI and responds to buttons being pressed and
changes being made in the settings, additional worker threads should be used. The reason for this is
that the retrieval of the input data from the microcontroller via USB might take time or in the worst
case cause a timeout. If this happens in the main thread, the whole application seems slow or even
dead.

When having more than one thread, however, synchronization is very important. For example if
multiple threads have access to a setting’s state, one thread may change the state of the setting
while, at the same time, another thread is using the state. This can cause concurrency problems and
in the worst case even give rise to deadlock.

In order to prevent this, a monitor handles all the shared data and strictly controls how and when the
different threads are allowed to use this data.

In addition to the main thread there are two worker threads, one that handles the communication
with the microcontroller and one that performs the distance as well as position estimation

 6/23/2014

79

algorithms. The algorithms implemented are the ones chosen previously in the thesis. All the Matlab
functions such as findpeaks used in the Covariance algorithm and xcorr used when creating a
reference are implemented “natively” in Java (i.e. no external library containing these functions is
used).

Below, in figure 25, is the complete design of the application.

Figure 25. The design of the application only including monitors and threads

 6/23/2014

80

9 Conclusions
The goal of this thesis was to investigate algorithms for localizing multiple objects based on input
from multiple wavelet radar sensors and then find the best, based on stability, accuracy and
computational complexity, to implement in an Android application.

Based on all the test results above, one algorithm for time delay estimation (or distance estimation)
and one algorithm for localization (positioning) were found to be the best suited for implementing in
the Android application.

Regarding the time delay estimation; from the choice of the Peak Detection, Covariance and Least
Squares algorithms, the Covariance algorithm proved to be superior in comparison to the other two.
The main and most essential reason for this is its stability. When having either analog or digital input
signals, this algorithm is able to find all reflections within a range of approximately 0.8 m, which is
well above the supported range of 0.5 m.

Another thing to be investigated was how the sensors should be placed and how many that should
be placed in order to minimize the position error, considering the placement constraints. When it
came to the placement, the results were all very conclusive; the further apart the sensors are the
better position accuracy. When it came to the sensor density, the results showed that the more
sensors, the better accuracy. This is always true in two dimensions, but in three dimensions this is
only true if the sensors are placed “properly”, meaning that they should not be linearly dependent
(i.e. be placed on a line). However, there is a tradeoff between the number of sensors and the
computational complexity. Also, the potential cost of more sensors should be considered. With all
this taken into account, the number of sensors in two dimensions should be 3 and the number of
sensors in three dimensions should be 4.

Considering the positioning; from the choice of the Linear Least Squares, Non-Linear Least Squares,
Centroid and Weighted Centroid algorithms, the Weighted Centroid algorithm proved to be superior.
The main reason for this is its very fast runtime and reasonable accuracy.

In the end a complete two-step positioning scheme (including the appurtenant algorithms) was
found in order to estimate multiple objects with the following properties:

In Two Dimensions:

 Good stability with almost 94 % of the objects found within 1 cm of the true position,
considering the large area where the objects were located

 Very good accuracy with almost 93 % of the objects found within 3 mm of the true position
 A fast runtime of 53.3 ms corresponding to an update rate of around 19 Hz for analog signals.

This rate is greatly increased if digital signals are used

In Three Dimensions:

 Good stability with over 90 % of the objects found within 1 cm of the true position,
considering the large area where the objects were located

 Good accuracy with almost 80 % of the objects found within 3 mm of the true position
 A fast runtime of 72.5 ms corresponding to an update rate of around 14 Hz for analog signals.

This rate is greatly increased if digital signals are used

 6/23/2014

81

Finally the creation of the application, including implementing the complete two-step positioning
scheme was in whole quite successful. Everything works seamlessly except the data retrieval via USB.
For some reason the process suffers from heavy data loss when the data amount is larger than 300
bytes and done fast. The solution found for this is to obtain the data in smaller portions. This makes
the transfer stable (i.e. no data loss) but in return takes a lot of time.

The input signals used in the application (i.e. the signals generated in the microcontroller) is digital
signals of around 8 kilobytes. The process of acquiring these signals from the microcontroller can
take as much as two seconds while the two-step positioning estimation has a runtime of
approximately 15 ms (which corresponds to an update rate of around 67 Hz).

So in conclusion, a good two-step positioning scheme was found and successfully implemented in an
Android application (with the exception of some USB connection issues).

 6/23/2014

82

References

Below, all the references used throughout this thesis are listed.

[1] Sadaphal, V. P. and Jain, B. (2005). Localization Accuracy and Threshold Network Density for
Tracking Sensor Networks. IEEE International Conference on Personal Wireless

[2] Estrin, D., Girod, L., Pottie, G. and Srivastava, M. (2001). Instrumenting the World with Wireless
Sensor Networks. IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 4,
pp. 2033-2036.

[3] Evrendilek, C. and Akcan, H. (2011). On the Complexity of Trilateration with Noisy Range
Measurements. IEEE Communications Letters, Vol. 15, pp. 1097-1099.

[4] Gezici, S. and Poor, H. V. (2009). Position Estimation via Ultra-Wide-Band Signals. Proceedings of
the IEEE, Vol. 97, pp. 386-403.

[5] Weiss, A.J. (2004). Direct Position Determination of Narrowband Radio Frequency Transmitters.
IEEE Signal Processing Letters, Vol. 11, pp. 513-516.

[6] Pourhomayoun, M. and Fowler, M.L. (2012). Sensor Network Distributed Computation for Direct
Position Determination. IEEE 7th Sensor Array and Multichannel Signal Processing Workshop, pp. 125-
128.

[7] Shih, C-Y. and Marrón, P. J. (2010). COLA: Complexity-Reduced Trilateration Approach for 3D
Localization in Wireless Sensor Networks. Fourth International Conference on Sensor Technologies
and Applications, pp. 24-32.

[8] Yu, Y., Wang, G., Li, Z. and Li, C. (2007). Alternating Combination Trilateration for Unknown Nodes
of Sensor Networks. IEEE International Conference on Control and Automation, pp. 1747-1751.

[9] Gezici, S. (2007). A Survey on Wireless Position Estimation. Wireless Personal Communications,
Vol. 44, pp. 263-282.

[10] Blom, G., Enger, J., Englund, G., Grandell, J. and Holst, L. (2005). Punktskattning.
Sannolikhetsteori och statistikteori med tillämpningar, s. 253-263. Lund: Studentlitteratur.

[11] Li, J. and Wu, R. (1998). An Efficient Algorithm for Time Delay Estimation. IEEE Transactions on
Signal Processing, Vol. 46, pp. 2231-2235.

[12] Caffery Jr, J. J. (2000). A New Approach to the Geometry of TOA Location. IEEE Vehicular
Technology Conference, Vol. 4, pp. 1943-1949.

[13] Yu, Y-B. and Gan, J-Y. (2009). Self-Localization Using Alternating Combination Trilateration for
Sensor Nodes. International Conference on Machine Learning and Cybernetics, Vol. 1, pp. 85-90.

[14] Björck, Å. (1996). Introduction. Numerical Methods for Least Squares Problems, s. 1-9. New York:
Society for Industrial and Applied Mathematics.

 6/23/2014

83

Appendix A

All the raw data output from the Matlab tests is collected and presented in this appendix.

TDE Analog:

Number of times the reflection were not found for Peak Detection: 2111.000000
Number of times the reflection were not found for Covariance: 0.000000
Number of times the reflection were not found for Least Squares: 1.000000

Number of estimation errors larger than 0.2 mm for Peak Detection: 1098.000000
Number of estimation errors larger than 0.2 mm for Covariance: 20.000000
Number of estimation errors larger than 0.2 mm for Least Squares: 103.000000

The average runtime for Peak Detection is: 0.018571 s
The average runtime for Covariance is: 0.023367 s
The average runtime for Least Squares is: 0.021173 s

The std for Peak Detection is: 0.624188 mm
The std for Covariance is: 0.108795 mm
The std for Least Squares is: 0.146360 mm

TDE Digital:

Number of times the reflection were not found for Peak Detection: 343.000000
Number of times the reflection were not found for Covariance: 0.000000
Number of times the reflection were not found for Least Squares: 17.000000

Number of estimation errors larger than 3 mm for Peak Detection: 111.000000
Number of estimation errors larger than 3 mm for Covariance: 54.000000
Number of estimation errors larger than 3 mm for Least Squares: 37.000000

Number of estimation errors larger than 1 mm for Peak Detection: 204.000000
Number of estimation errors larger than 1 mm for Covariance: 172.000000
Number of estimation errors larger than 1 mm for Least Squares: 511.000000

The average runtime for Peak Detection is: 4.164115 ms
The average runtime for Covariance is: 6.590849 ms
The average runtime for Least Squares is: 6.604295 ms

The std for Peak Detection is: 78.341114 mm
The std for Covariance is: 2.832895 mm
The std for Least Squares is: 1.371314 mm

Position Estimation:

Two dimensions:

 6/23/2014

84

Results for std noise: 0.1 mm

Mean error for ML Gradient Descent: 0.426266 mm
Mean error for ML Brute Force: 0.94867 mm
Mean error for Weighted Centroid: 0.436449 mm
Mean error for Non-Weighted Centroid: 0.516982 mm

Number of positions not found for ML Gradient Descent: 0
Number of positions not found for ML Brute Force: 0
Number of positions not found for Weighted Centroid: 0
Number of positions not found for Non-Weighted Centroid: 0

Average runtime for ML Gradient Descent: 10.056 ms
Average runtime for ML Brute Force: 15.4133 ms
Average runtime for Weighted Centroid: 0.885082 ms
Average runtime for Non-Weighted Centroid: 0.593463 ms

Std for ML Gradient Descent: 0.589145 mm
Std for ML Brute Force: 1.24942 mm
Std for Weighted Centroid: 0.599785 mm
Std for Non-Weighted Centroid: 0.708657 mm

Results for std noise: 1 mm

Mean error for ML Gradient Descent: 4.37005 mm
Mean error for ML Brute Force: 4.35314 mm
Mean error for Weighted Centroid: 4.45542 mm
Mean error for Non-Weighted Centroid: 5.26482 mm

Number of positions not found for ML Gradient Descent: 0
Number of positions not found for ML Brute Force: 0
Number of positions not found for Weighted Centroid: 0
Number of positions not found for Non-Weighted Centroid: 0

Average runtime for ML Gradient Descent: 13.8901 ms
Average runtime for ML Brute Force: 15.0786 ms
Average runtime for Weighted Centroid: 0.931639 ms
Average runtime for Non-Weighted Centroid: 0.600766 ms

Std for ML Gradient Descent: 5.98913 mm
Std for ML Brute Force: 6.02142 mm
Std for Weighted Centroid: 6.0751 mm
Std for Non-Weighted Centroid: 7.16822 mm

Results for std noise: 5 mm

Mean error for ML Gradient Descent: 21.8711 mm
Mean error for ML Brute Force: 19.6694 mm
Mean error for Weighted Centroid: 23.0319 mm

 6/23/2014

85

Mean error for Non-Weighted Centroid: 28.7619 mm

Number of positions not found for ML Gradient Descent: 0
Number of positions not found for ML Brute Force: 0
Number of positions not found for Weighted Centroid: 0
Number of positions not found for Non-Weighted Centroid: 0

Average runtime for ML Gradient Descent: 17.8759 ms
Average runtime for ML Brute Force: 15.8789 ms
Average runtime for Weighted Centroid: 0.934035 ms
Average runtime for Non-Weighted Centroid: 0.629089 ms

Std for ML Gradient Descent: 30.5488 mm
Std for ML Brute Force: 27.5115 mm
Std for Weighted Centroid: 31.5073 mm
Std for Non-Weighted Centroid: 39.2913 mm

Results for std noise: 10 mm

Mean error for ML Gradient Descent: 42.2388 mm
Mean error for ML Brute Force: 35.1421 mm
Mean error for Weighted Centroid: 45.0942 mm
Mean error for Non-Weighted Centroid: 54.4973 mm

Number of positions not found for ML Gradient Descent: 0
Number of positions not found for ML Brute Force: 0
Number of positions not found for Weighted Centroid: 0
Number of positions not found for Non-Weighted Centroid: 0

Average runtime for ML Gradient Descent: 19.2498 ms
Average runtime for ML Brute Force: 15.5259 ms
Average runtime for Weighted Centroid: 0.924431 ms
Average runtime for Non-Weighted Centroid: 0.629535 ms

Std for ML Gradient Descent: 57.8063 mm
Std for ML Brute Force: 47.4401 mm
Std for Weighted Centroid: 59.6462 mm
Std for Non-Weighted Centroid: 71.1082 mm

Three dimensions

Results for std noise: 0.1 mm

Mean error for ML Gradient Descent: 0.683174 mm
Mean error for ML Brute Force: 5.19062 mm
Mean error for Weighted Centroid: 0.69029 mm
Mean error for Non-Weighted Centroid: 0.711684 mm

Number of positions not found for ML Gradient Descent: 0

 6/23/2014

86

Number of positions not found for ML Brute Force: 0
Number of positions not found for Weighted Centroid: 0
Number of positions not found for Non-Weighted Centroid: 0

Average runtime for ML Gradient Descent: 8.78941 ms
Average runtime for ML Brute Force: 30.7027 ms
Average runtime for Weighted Centroid: 0.445913 ms
Average runtime for Non-Weighted Centroid: 0.169061 ms

Std for ML Gradient Descent: 0.880172 mm
Std for ML Brute Force: 6.68011 mm
Std for Weighted Centroid: 0.884999 mm
Std for Non-Weighted Centroid: 0.910589 mm

Results for std noise: 1 mm

Mean error for ML Gradient Descent: 7.07616 mm
Mean error for ML Brute Force: 8.68799 mm
Mean error for Weighted Centroid: 7.12434 mm
Mean error for Non-Weighted Centroid: 7.35722 mm

Number of positions not found for ML Gradient Descent: 1
Number of positions not found for ML Brute Force: 0
Number of positions not found for Weighted Centroid: 1
Number of positions not found for Non-Weighted Centroid: 1

Average runtime for ML Gradient Descent: 17.079 ms
Average runtime for ML Brute Force: 31.7986 ms
Average runtime for Weighted Centroid: 0.45881 ms
Average runtime for Non-Weighted Centroid: 0.176094 ms

Std for ML Gradient Descent: 8.9505 mm
Std for ML Brute Force: 11.0076 mm
Std for Weighted Centroid: 9.02948 mm
Std for Non-Weighted Centroid: 9.37277 mm

Results for std noise: 5 mm

Mean error for ML Gradient Descent: 34.2459 mm
Mean error for ML Brute Force: 30.8797 mm
Mean error for Weighted Centroid: 34.341 mm
Mean error for Non-Weighted Centroid: 35.725 mm

Number of positions not found for ML Gradient Descent: 4
Number of positions not found for ML Brute Force: 0
Number of positions not found for Weighted Centroid: 4
Number of positions not found for Non-Weighted Centroid: 4

Average runtime for ML Gradient Descent: 22.308 ms

 6/23/2014

87

Average runtime for ML Brute Force: 33.1178 ms
Average runtime for Weighted Centroid: 0.492239 ms
Average runtime for Non-Weighted Centroid: 0.192077 ms

Std for ML Gradient Descent: 43.589 mm
Std for ML Brute Force: 38.7789 mm
Std for Weighted Centroid: 43.9149 mm
Std for Non-Weighted Centroid: 45.7803 mm

Results for std noise: 10 mm

Mean error for ML Gradient Descent: 68.7852 mm
Mean error for ML Brute Force: 53.209 mm
Mean error for Weighted Centroid: 69.2854 mm
Mean error for Non-Weighted Centroid: 71.9422 mm

Number of positions not found for ML Gradient Descent: 8
Number of positions not found for ML Brute Force: 0
Number of positions not found for Weighted Centroid: 8
Number of positions not found for Non-Weighted Centroid: 8

Average runtime for ML Gradient Descent: 30.487 ms
Average runtime for ML Brute Force: 38.0675 ms
Average runtime for Weighted Centroid: 0.564669 ms
Average runtime for Non-Weighted Centroid: 0.226602 ms

Std for ML Gradient Descent: 86.0775 mm
Std for ML Brute Force: 65.0071 mm
Std for Weighted Centroid: 86.6997 mm
Std for Non-Weighted Centroid: 90.3303 mm

Position estimation multiple objects:

Two dimensions:

2 Objects placed and 10000 iterations:

Average runtime: 1.84606 ms
Number of times no object was found: 0
Number of times an object was not found: 152
Number of times more than 2 objects was found: 199
Number of times the error was larger than 3 cm: 192
Percentage completely successful estimations: 96.13%
Percentage fairly successful estimations: 98.48%
Average position error: 5.92267 mm

3 Objects placed and 10000 iterations:

 6/23/2014

88

Average runtime: 4.10898 ms
Number of times no object was found: 0
Number of times an object was not found: 287
Number of times more than 3 objects was found: 795
Number of times the error was larger than 3 cm: 698
Percentage completely successful estimations: 88.54%
Percentage fairly successful estimations: 97.13%
Average position error: 9.96327 mm

4 Objects placed and 10000 iterations:

Average runtime: 7.64545 ms
Number of times no object was found: 0
Number of times an object was not found: 433
Number of times more than 4 objects was found: 1750
Number of times the error was larger than 3 cm: 1566
Percentage completely successful estimations: 77.12%
Percentage fairly successful estimations: 95.67%
Average position error: 17.6335 mm

5 Objects placed and 10000 iterations:

Average runtime: 12.5332 ms
Number of times no object was found: 0
Number of times an object was not found: 519
Number of times more than 5 objects was found: 2929
Number of times the error was larger than 3 cm: 2748
Percentage completely successful estimations: 63.7%
Percentage fairly successful estimations: 94.81%
Average position error: 25.4392 mm

Three Dimensions:

2 Objects placed and 10000 iterations:

Average runtime: 4.95478 ms
Number of times no object was found: 0
Number of times an object was not found: 58
Number of times more than 2 objects was found: 1216
Number of times the error was larger than 3 cm: 1154
Percentage completely successful estimations: 87.15%
Percentage fairly successful estimations: 99.42%
Average position error: 29.9996 mm

3 Objects placed and 10000 iterations:

 6/23/2014

89

Average runtime: 19.4841 ms
Number of times no object was found: 0
Number of times an object was not found: 98
Number of times more than 3 objects was found: 3489
Number of times the error was larger than 3 cm: 3334
Percentage completely successful estimations: 63.95%
Percentage fairly successful estimations: 99.02%
Average position error: 53.2048 mm

4 Objects placed and 10000 iterations:

Average runtime: 55.1599 ms
Number of times no object was found: 0
Number of times an object was not found: 94
Number of times more than 4 objects was found: 6004
Number of times the error was larger than 3 cm: 5769
Percentage completely successful estimations: 38.71%
Percentage fairly successful estimations: 99.06%
Average position error: 73.2099 mm

5 Objects placed and 10000 iterations:

Average runtime: 131.352 ms
Number of times no object was found: 0
Number of times an object was not found: 49
Number of times more than 5 objects was found: 8003
Number of times the error was larger than 3 cm: 7818
Percentage completely successful estimations: 19.14%
Percentage fairly successful estimations: 99.51%
Average position error: 92.806 mm

Two-step one object:

Two dimensions:

Mean error for ML Gradient Descent: 0.0860555 mm
Mean error for ML Brute Force: 0.588426 mm
Mean error for Weighted Centroid: 0.0844301 mm
Mean error for Non-Weighted Centroid: 0.0927672 mm

Number of times a distance was not found: 4
Number of positions not found for ML Gradient Descent: 4
Number of positions not found for ML Brute Force: 4
Number of positions not found for Weighted Centroid: 4
Number of positions not found for Non-Weighted Centroid: 4

 6/23/2014

90

Average runtime for TDE using Covariance: 95.3098 ms
Average runtime for ML Gradient Descent: 6.57147 ms
Average runtime for ML Brute Force: 44.8017 ms
Average runtime for Weighted Centroid: 1.24765 ms
Average runtime for Non-Weighted Centroid: 0.845018 ms

Std for ML Gradient Descent: 0.286488 mm
Std for ML Brute Force: 0.7878 mm
Std for Weighted Centroid: 0.224871 mm
Std for Non-Weighted Centroid: 0.165998 mm
Std for Covariance: 0.0432456 mm

Three dimensions:

Mean error for ML Gradient Descent: 0.115921 mm
Mean error for Weighted Centroid: 0.118677 mm
Mean error for Non-Weighted Centroid: 0.117067 mm

Number of times a distance was not found: 10
Number of positions not found for ML Gradient Descent: 10
Number of positions not found for Weighted Centroid: 10
Number of positions not found for Non-Weighted Centroid: 10

Average runtime for TDE using Covariance: 130.559 ms
Average runtime for ML Gradient Descent: 5.27132 ms
Average runtime for Weighted Centroid: 0.679709 ms
Average runtime for Non-Weighted Centroid: 0.229833 ms

Std for ML Gradient Descent: 0.141178 mm
Std for Weighted Centroid: 0.148015 mm
Std for Non-Weighted Centroid: 0.143537 mm
Std for Covariance: 0.0629875 mm

Two-step two objects:

Two dimensions:

2 Objects placed and 1000 iterations:

Average runtime TDE: 51.4385 ms
Average runtime positioning: 1.87006 ms
Number of times a distance was erroneously estimated: 71
Number of times no object was found: 0
Number of times an object was not found: 0
Number of times more than 2 objects was found: 0
Number of times an error was larger than 3 cm: 0
Percentage completely successful estimations: 92.9%
Percentage fairly successful estimations: 93.8%
Average distance error: 0.0506116 mm

 6/23/2014

91

Average position error: 0.107519 mm

Three dimensions:

2 Objects placed and 1000 iterations:

Average runtime TDE: 68.5043 ms
Average runtime positioning: 4.01215 ms
Number of times a distance was erroneously estimated: 123
Number of times no object was found: 0
Number of times an object was not found: 0
Number of times more than 2 objects was found: 95
Number of times an error was larger than 3 mm: 95
Percentage completely successful estimations: 78.2%
Percentage fairly successful estimations: 90.4%
Average distance error: 0.0505353 mm
Average position error: 33.415 mm

M
u

ltio
b

je
ct lo

ca
lizatio

n
 u

sin
g

 w
ave

le
t ra

d
a

r se
n

so
rs

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, June 2014.
In cooperation with Acconeer AB.

Multiobject localization using
wavelet radar sensors

Per Atlevi

http://www.eit.lth.se

Pe
r A

tlevi

Master’s Thesis

