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Abstract

The growing demand of high quality software creates an increasing pressure on
software development organizations to increase test coverage in order to meet the
quality requirements. At the software company Qlik, automated testing helps im-
prove test coverage and allows development of multiple features in parallel while
maintaining a stable code base. In order to bene�t from the automated testing,
the results must be processed and analysed. This is currently done by an analyst
reading log �les, interpreting error messages and looking at screenshot images.
Automated tests run every night for up to twenty development branches, each
containing thousands of test cases - resulting in information overload. It is ex-
tremely di�cult and time consuming for a human to process the test results and
get an overview of the state of the development. Qlik is in desperate need of an
automated analysis approach. In this thesis we create NIOCAT, a tool that auto-
matically analyses test results. The output is an overview of all failed test cases,
where similar failures have been grouped together. To evaluate NIOCAT, experi-
ments on manually created subsets representing di�erent use cases are conducted.
To further enhance the evaluation methodology a focus group meeting is held with
test result analyst experts at Qlik. The experiments conducted in this case study
show that NIOCAT can create accurate clusters, in line with analyses performed
by humans. Further, the need and potential time-savings of our approach is con-
�rmed by the participants in the focus group. NIOCAT thus provides a feasible
complement to current automated testing practices at Qlik. Future work includes
deployment and calibration of the tool within the context of the company as well
as adding new desirable features discovered during the focus group session.
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Chapter1

Introduction

1.1 Background

Software systems play an important role in today's society [11]. The pressure
for the delivery of new functionality and applications has never been stronger
[17]. A software failure can result in huge losses, �nancially and socially [11].
The growing demand on high quality software creates an increasing pressure on
software development organizations to increase test coverage to meet the quality
requirements. At the same time, increasing competition between development
organisations has lead to the pressure of meeting shorter deadlines with static or
even declining resources [17].

The software company Qlik has adopted automated testing in order to save
time, improve test coverage and enable development of new features in parallel
while assuring a high quality product. At Qlik automated tests run every night
on multiple source code branches.

While automated testing provides the bene�ts of reducing manual testing,
minimizing human error, and enabling a higher testing frequency [11, p. 466], new
challenges are introduced. With higher testing frequency the volume of test results
also increases [1]. Automated test environments produce logs to help identify the
cause of failing test cases [28]. This also contributes to an increase in the results
quantity. At Qlik it has proven to be both di�cult and time consuming to manually
analyse the volume of test results. To help overcome the information overload,
Qlik has developed an automated bug report generation tool, that clusters failures
based on exact textual similarity of certain test case features. Although this tool
has provided a starting point for further analysis there are still several challenges
with the analysis of test results.

There is currently no way to get an overview of which branches that failed
the same test case. Intermittent failures due to the testing environment make the
results unreliable unless the same tests are run multiple times, resulting in more
time spent on testing. Another challenge is the identi�cation of a unique problem.
Two separate tests failing due to the same root cause should ideally be grouped
together. Similarly should a test case that failed in di�erent steps of the test case
not be considered the same problem. A code base that is constantly growing and a
constantly increasing number of test cases, result in large quantities of test results
produced each day. The situation for the test result analyst could be characterized

1



2 Introduction

as information overload. The challenges with the analysis become impossible to
overcome manually and an automated approach is needed.

1.2 Proposed Solution

An automated analysis approach to analysing test results could potentially save a
lot of time [28]. At Qlik there is a demand for an intelligent analysis tool that could
process the large amount of data, cluster failures which are similar, and separate
test cases which fail di�erently on di�erent branches. Being able to cross reference
what problems exist on which branches could decrease the time spent on localizing
the origins of a certain bug. Having the ability to easily compare problems that
are occurring in di�erent branches could also help identifying intermittent failures,
without having to rerun the tests. Our goal with this thesis is to create a tool of
this kind that can simplify the analysis of results from automated testing. The
tool should be able to navigate test results from one or multiple branches over
varying time spans and by using information retrieval techniques be able to group
similar failures together.

1.3 Research Questions

The background and challenges described in this chapter has lead us to use the
following questions as a basis for our master thesis.

• How can automated analysis of test results help Qlik with the manual nav-
igation of the information overload caused by automated testing?

• How can information retrieval techniques be incorporated into the auto-
mated analysis to simplify the process of identifying di�erent problems found
in test results?

• Can consideration of a combination of execution data and textual infor-
mation improve the accuracy of the test failure clustering compared to a
clustering based on textual information alone?

1.4 Outline of the Report

The Background chapter contains a theoretical background of all the di�erent con-
cepts that this thesis is based on, mainly automated testing, information retrieval
and clustering. Next chapter is a description of the case we have been working on,
i.e. the situation for a test results analyst as Qlik. In this chapter we dig deeper
into the challenges that the analyst is facing. Following the Case Description is
the Methodology chapter, where we outline our solution idea, the clustering algo-
rithm and our methods of evaluation. The results are presented in the following
chapter and further discussed in the Discussion chapter. The report ends with our
conclusions and future work.
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1.5 Contribution Statement

Throughout the whole process we have worked closely together. All implementa-
tion design decision were made together even though we divided the implementa-
tion and report writing work load.

Nicklas Erman worked with the test results data collection. He conducted
analysis around the build scheduler API and Qlik's automatic bug report creation
tool in order to implemented methods for calling the build scheduler API, download
and save the test results artifacts.

Vanja Tufvesson implemented methods that processed the downloaded arti-
facts, created the data structures for the failure data and saved the data in memory.
Vanja Tufvesson also implemented methods for processing of the log �les in order
to extract test case names and error messages, while Nicklas Erman implemented
the HTML extraction.

A program for calculation of the adjusted rand index was implemented by
Nicklas Erman, while Vanja Tufvesson worked with visualisation of the data. The
work with visualisation included writing the output to an excel �le, loading the
�le into QlikView and creating QlikView applications based on the data.

As to the report writing, we have written most sections together. The struc-
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for the creating the tables and formulating the mathematical equations.
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Chapter2
Related Work

Our work is related to information overload within software engineering projects.
In the �rst part of this chapter we present previous studies that have addressed
challenges with information overload in software engineering projects and proposed
ways to manage the challenges. Also, our proposed solution is related to previous
work on duplicate detection of bug reports which is also presented in this chapter.
We conclude this chapter by describing our work in the light of previous studies.

Robillard et al. suggest using recommendation systems to navigate information
overload in the context of software development in their article Recommendation
Systems for Software Engineering [24]. The authors explain that information over-
load is a problem within software engineering. Software engineers need to have
knowledge about many large code libraries and the dependencies between them.
To manage large quantities of information the authors present di�erent recommen-
dation systems for software developers. The tools may assist with recommending
which �les to edit in order to accomplish a certain task or to reveal patterns for
how to work with certain objects.

A case study spanning six companies was conducted by Bjarnason et al. in
order to investigate challenges and practices in aligning requirements with veri�-
cation and validation [10]. The authors express the importance of testers knowing
when and how a requirement changes so that the testing may be aligned with the
updated requirement speci�cation. As a consequence of updated requirements old
test cases may need to be deleted or updated as well as new test cases introduced.
The alignment process between requirements and veri�cation and validation is
thus highly dependant on communication and traceability practices. The study
also identi�es one of the challenges with the alignment process as managing large
quantities of requirements and test cases.

Feldt performed a study to investigate if test cases in automated testing suites
grow old [15]. The study compared test case failures with hardware component
failures. It is known that hardware component failures are more frequent early
in their lifetime, components that survive their infancy will most likely not fail
until age begins to deteriorate the component. The paper continues to search
for a similar relationship for test cases. The author shows that test case failure
frequency is higher in the infancy time of the test case and slowly decreases as the
software matures. According to the study test cases do not seem to wear out in the
same manner as a hardware component would. As long as the test case remains
in use over time the amount of failures caused by the test case will decrease to

5



6 Related Work

zero and remain stable. The author points out that as a system keeps growing
and evolving, the number of test cases also typically increases since new test cases
are added.

Previous research has shown that it is possible to identify duplicate bug reports
in a bug tracking system using Information Retrieval techniques on the natural
language text in the report. Runeson et al. developed and evaluated a prototype
tool during a case study at Sony Ericsson [25]. Using the Vector Space Model
on the textual content in the reports the authors were able to �nd up to 2/3 of
the duplicates. The tool ranked the most relevant duplicate report candidates
and presented a list of them to the user. Lists of size 5, 10 and 15 were used
in the evaluation. The evaluation was based on a measurement called recall, i.e.
the number of duplicate bug reports whose target reports are in the suggested
list divided by the total number of duplicates in the experiment. The evaluation
showed a recall of 40% for a list of size 10.

Multiple projects have addressed the problem of duplicate bug reports by
introducing recommendation tools that let the bug reporter view a list of existing
reports similar to the new one, so that the new bug can be discarded if it is a
duplicate of an existing one. In order to enhance the quality of the list, Wang et
al. added consideration of the execution information of runs that cause a bug to
be reported [29]. The authors used a machine learning approach that was �rstly
calibrated using the Eclipse project. It was then evaluated using a subset of the
Firefox bug repository and compared with approaches only using textual similarity.
The recall for lists of size 1-10 ranged 67%− 93%, compared to 43%− 73% using
natural language data alone.

Lerch et al. have addressed in a study that it can be frustrating for reporters
to compose a whole bug description and later discard it anyway [20]. The authors
present an approach based on stack traces alone, which does not require the user
to write a whole new bug description unless it is determined that the bug is not
a duplicate. To asses the performance of the duplicate detection it was compared
to a baseline text-based implementation. The authors observed that the baseline
performed much better on reports containing stack traces, which corresponds to
what was shown by Wang et al. earlier. The recall was 30% − 50% higher. Du-
plicate detection based on stack traces alone had slightly better performance than
the baseline approach. The authors argue that an approach like this would require
much less e�ort from the reporting user though. Experiments on what part of
the stack trace are most important for duplicate detection showed that method
calls are the most e�ective. This approach di�ers from most previous work since
it does not require the user to type a whole bug description before it can provide
duplicate suggestions.

The study by Bjarnason et al. indicates that information overload is a chal-
lenge within software engineering and Robilliard et al. suggests using recommen-
dation systems to manage the challenge. As far as we know, there has not been
any previous research done on managing large amounts of automated test results
using information retrieval techniques. Our project is inspired by the ability to
use information retrieval techniques to �nd duplicate bug reports, i.e. to cluster
similar software failures together. The work done by Wang et al. and Lerch et
al. showed that execution data combined with natural language outperforms the
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natural language approach. We chose to focus only on failures found through
automated testing, which data presentation have slightly di�erent characteristics
compared to the bug reports. The text is machine generated and not written by
a human reporter. However, this thesis will investigate further if execution data,
in this case an HTML snippet, can be incorporated into the analysis in order to
improve the accuracy of the clustering of software issues, compared to focusing on
textual information alone.
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Chapter3
Background

This chapter contains two sections, Software Testing and Information Retrieval.
The �rst section begins with a de�nition of testing and how testing needs to be
done in an Agile development environment. The concept of Automated Testing
is then introduced and its two main parts, driving the software and validating
the results, are described. The second section introduces the problems with Infor-
mation Overload and some Information Retrieval techniques. The Vector Space
Model is presented, followed by the concept of Clustering. The section ends with
a presentation of measurements of similarity between di�erent clusterings.

3.1 Software Testing

To ensure that a software product behaves as it is expected to, software testing is
needed.

Testing

Testing is the process of exercising a software component using a selected
set of test cases, with the intent of (i) revealing defects, and (ii) evaluating
quality [11].

Software testing can generally be divided into di�erent levels, or phases, as shown
in Figure 3.1. At each level there are speci�c goals. At unit test, single compo-
nents are tested separately. The focus at this level is on functional and structural
defects. At integration, the units are assembled and tested together as a group.
Here the goal is to investigate interactions between di�erent components. The
system as a whole is tested at the System level, where reliability and performance
are important attributes under investigation. At the Acceptance Test level the
software is tested against the requirements. This can often involve actual users of
the system and/or clients' approval [11].

3.1.1 Test Execution

The usual approach of testing a piece of software is to execute a Test Case.

Test Case

A set of test inputs, execution conditions, and expected results developed

9



10 Background

Figure 3.1: Levels of testing. Adopted from Collard et al, Practical
Software Testing [11].

for a particular objective, such as to exercise a particular program path or
to verify compliance with a speci�c requirement [6].

In a practical matter, a test case needs to contain three pieces of information. The
�rst is a set of inputs. This is data received from an external source, like hardware,
software or a human, during the test. The next is the execution conditions required
for the test to be able to run, for example a certain state of a database. The last
information is the expected outputs, which should be compared to the results
produced during the test. Related test cases are usually run together and can be
referred to as a test suite [11].

3.1.2 Testing in an Agile Environment

The Agile software development methodology is based on iterative and incremental
development, where the customer is involved all the way through the process.
There are several approaches that could be considered Agile, but they all have
iterative development cycles with signi�cant testing and customer involvement. In
Agile testing the key is to involve the customer in an early stage of the development
cycle. As soon as there is a stable code base, customers should begin testing and
the developers should be given feedback. This means that testing is not a separate
phase of the development life cycle, instead it is integrated along the way to ensure
progress and customer satisfaction. Since the development cycles are short, timely
feedback is required [23]. Manual testing is time-consuming and labour-intensive,
especially if done thoroughly and repetitively [17]. For a large application there
might be thousands of unit tests. But even for the smallest application testing can
be a daunting task [23].

3.1.3 Automated Testing

Adopting Automated Testing is a way to reduce testing time and save money [17].

Automated Testing

Automated Testing is the use of special software (separated from the soft-
ware being tested) to control the execution of the tests and the comparison
of actual outcomes to predicted outcomes [19].
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Automated testing can help increasing the test coverage so that errors can be
detected before they have a chance to do real damage in production. The tests
are repeatable and reusable and thus helps save time testing [17]. As suggested
by Chris Dickens at Microsoft O�ce Test, Automated Testing can be divided into
two big parts: driving the software and validating the results [12].

The concept of driving the software is basically about making the test run
the software in the intended way. For example, in order to test that a button
works correctly, the test needs to press the button. This could be done in few
di�erent ways. The button click event handler code typically calls an API upon a
button click in the software. The test could either call the API directly or it can
override the system and move the mouse to the corresponding screen coordinates
of the button and send a click event, so that the event handler code gets executed.
Calling the API might be the easiest approach to implement, while the drawback
is that the user interface (UI) testing needs to be done manually. Simulating
a mouse click requires that the coordinates of the button are known or can be
calculated [12].

Every automated test script needs a veri�cation step, where the test outputs
are compared to the expected outputs. If the produced and expected outputs
match, the test case passes. The mechanism for determining if a test case has
passed or failed is called an oracle [11]. There are di�erent approaches to do the
veri�cation. By assuming that some of the functionality is working as intended,
the veri�cation can be limited to parts of the functionality thus making tests easier
to verify. This approach would ensure test coverage of part of the functionality
but some of it would still need to be tested manually. Another approach is to do
the full veri�cation manually. This approach is suitable when it is complicated to
construct an oracle. A big suite of tests can be complicated and time-consuming to
set up. The manual approach enables taking advantage of the time saved in setting
up and running the tests automatically, while time is not spent on implementing
a meaningful oracle. Using a comparison tool as an oracle can help, but even an
advanced comparison tool can fail a test because of a small di�erence in the output
that a human would consider meaningless [12].

The use of automated test tools can reduce some of the work within the test-
ing process. For instance, there are test tools that provide a driver module that
runs the tests. Flow-analysis tools enumerate paths through a program, �nd state-
ments that can never be executed (�unreachable� code) and identify places where
a variable that has not been assigned a value is used [23].

3.1.4 Test Case Speci�cation

Behaviour Driven Development

Behaviour Driven Development (BDD) is a speci�cation technique that au-
tomatically certi�es that all functional requirements are treated properly
by source code, through the connection of the textual description of these
requirements to automated tests [7].

BDD is based on Test Driven Development (TDD), which in turn is a development
practice that implies the writing of test cases before the actual implementation of
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a certain task [7]. BDD lets developers specify test cases in structured natural
language in a Given-When-Then format as seen in the following listing.

Listing 3.1: Example of test case speci�ed with behaviour driven
development.

Scenario 1: E-mail application should let a user read a new e-mail

Given there is a new e-mail

When the user clicks on the new e-mail

Then the contents of the new e-mail should be displayed

The behaviour of an application is speci�ed in a structured manner which
enables source code to be attached to statements. Test cases speci�ed this way
lets less technical oriented stakeholders participate in the process of formulating
test speci�cations and application behaviour.

3.2 Information Retrieval

The age of information technology has provided the means for almost anybody
to distribute content to all of the world without much e�ort. Because of ease of
distribution, �nding things you are looking for on the Internet can be a challenging
task. Because resources available on the Internet varies a lot, both in content and
in quality, and because of the sheer amount of information available one could say
the Internet is plagued by Information Overload [9].

Information Overload

Information Overload, a state where individuals do not have time or capacity
to process all available information. [13]

Yet the problem with Information Overload on the Internet is not something
that most people experience nowadays. The problem did not just go away, search
engines based on techniques for navigating information overload emerged. The
techniques used by search engines belong to a �eld of study called Information
Retrieval. Thus reduction of information overload can be achieved by using Infor-
mation Retrieval [4].

Information Retrieval

Information Retrieval deals with the representation, storage, organization of,
and access to information items such as documents, web pages, online cat-
alogues, structured and semi-structured records, multimedia objects. The
representation and organization items should be such as to provide the users
with easy access to information of their interest [8].

In this section we aim to describe some Information Retrieval concepts that
will be used later in the report.

3.2.1 Textual Similarity Measure

A common way to measure similarity between objects is to use the vector space
model. In the vector space model, similarity can be computed as the cosine sim-
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ilarity between two vectors. This can be applied to di�erent kind of objects, but
one common type of object is text documents. The main requirement to be able
to use the vector space model for a certain kind of objects is that a comparable
vector representation can be created for a given object. When comparing text
documents, the di�erent terms within a document are usually considered the com-
ponents of the vector. The size of an individual component can be determined by
the frequency of the corresponding term within the document.

Once vectors have been established the similarity between two objects can be
determined by calculating the cosine similarity. Cosine similarity between two
objects can be computed with the following equation, where a and b are vector
representations of two objects.

cos(θ) =
~a ·~b

‖~a‖ × ‖~b‖
(3.1)

The equation can be derived to a more practical form which is displayed in
equation 3.2. The subscript i for vectors a and b represent the component index
for the vectors respectively and N is the number of components.

sim(a, b) =

∑N
i=1 aibi√∑N

i=1 a
2
i

√∑N
i=1 b

2
i

(3.2)

The cosine similarity is the cosine value of the angle between two vectors.
Because cosine similarity is used in positive space the value ranges between zero
and one where a value of one indicates that two vectors aligned and thus both
objects include the same components [8]. Figure 3.2 illustrates two vectors, with
two components each, but in reality more dimensions are usually used, typically
one dimension for each term in the text. The cosine of the angle θ between the
vectors can be calculated with the equation 3.1.

Figure 3.2: Vector Space Model.
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3.2.2 Clustering

The concept of grouping similar items together is called clustering. A similarity
measure between two items is typically computed using associations and similar-
ities among di�erent features of the items. In a text collection, features can be
words or phrases. If there is a way to calculate a similarity between two items, it
is possible to automatically create clusters of the items in the collection. Apart
from the advantage of being unsupervised, clustering can potentially reveal trends
in a group of documents, that would have been di�cult to �nd otherwise. The
disadvantages of clustering are that it can be hard to predict the form and the
quality of the outcome and that it can be di�cult to label the groups automat-
ically [8]. For example, a clustering algorithm for restaurants, might manage to
cluster restaurants that serve the same type of food, i.e. Italian, Chinese or fast
food, without being able to name the food category. Although automatic labelling
of the clusters might be a di�cult problem, clustering has the potential to give
insight to the data by revealing natural patterns that exist in the data [8]. While
clustering refers to the grouping of similar items, the concept of breaking down a
set of items to multiple non-overlapping subsets (or clusters) is called partitioning.
The set of all clusters can thus be referred to as a partition [16].

3.2.3 Clustering Similarity Measurements

The rand index is a statistical method for determining the similarity between two
di�erent partitions of the same data set. More speci�cally it is a measurement
of the fraction of pair wise agreements between two clusterings. The rand index
between two partitions range between 0 and 1, with 1 indicating that the partitions
are identical.

To compute the rand index each pair of data points are considered. A pair of
data points can either be in the same cluster or not. When comparing a partition
to a control set, each pair can be classi�ed as either of the following classi�cations:

True Positive The pair of data points are correctly clustered together.

True Negative The pair of data points are correctly separated from each other.

False Positive The pair of data points are falsely clustered together.

False Negative The pair of data points are falsely separated from each other.

The rand index, RI, is then calculated using the equation

RI =
tp+ tn

tp+ tn+ fp+ fn
(3.3)

where tp, tn, fp and fn are the number of pairs classi�ed as true positives, true
negatives, false positives and false negatives respectively. Thus, the rand index is a
measurement of the fraction of correctly classi�ed pairs of data points to all pairs
of data points. [21].

The rand index is intuitive but has several known drawbacks, such as the fact
that the index of two random partitions does not yield a constant value. It is
also highly dependent on the number of clusters. A completely random clustering
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could end up with a high index if it happens to have a large number of clusters [27].
The Adjusted Rand Index was proposed by Hubert and Arabie with the intention
of overcoming these issues [18]. Accordning to Milligan and Cooper, ARI is the
best suited index to use for measuring similarity between partitions with di�erent
number of clusters [22].

As suggested by Santos and Embrechts, ARI can be calculated based on the
variables within equation 3.3 for RI [27]. ARI can thus be computed with the
following equation

ARI =
ab− c
a2 − c

, (3.4)

where a, b and c are de�ned as:

a = tp+ fn+ fp+ tn, (3.5)

b = tp+ tn, (3.6)

c = (tp+ fn)(tp+ fp) + (fp+ tn)(fn+ tn). (3.7)

3.3 Application

In this thesis we develop a tool that helps navigating information overload caused
by automated testing. The tool clusters similar test case failures together using a
similarity measurement that is based on the vector space model. The output of
the tool is evaluated using the adjusted rand index.
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Chapter4

Case Description

We have conducted a case study at the research and development department at
Qlik. The �rst section of this chapter contains a brief description of Qlik, the
software it provides and its development project. The next section is about the
con�guration management of the development project, followed by an introduction
of the tools used for automated testing and the process of analysing the test results,
as of the time of writing this thesis.

4.1 Qlik

Qlik is a software company that delivers a product called QlikView, which is a
business intelligence1 solution. QlikView is used world wide for decision support
at di�erent functions within a wide range of industries, such as banking, life sci-
ence, retail, and telecommunications. For example, banks can use QlikView to
manage cost and risks and meet regulatory compliance while life science compa-
nies can use the product for improvement of physician feedback to manufacturers.
The company has more than 31000 customers in 100 countries. QlikView helps vi-
sualizing data from multiple sources into an application so that users can analyze,
search, explore associations and uncover trends within the data. Users can create
and share apps and access QlikView from computers or a mobile devices [2].

QlikView has been under continuous development since the company was
founded in Lund, Sweden in 1993. More functionality and features have been
added and the complexity has grown. A few years ago, Qlik began clean slate
development of the next major release of QlikView, a development project called
QlikView.Next. One of the visions for QlikView.Next is �One client to rule them
all�. All user interactions with QlikView.Next will be performed through a web
browser. Previous versions of QlikView featured a wide array of di�erent clients;
Desktop client, Internet Explorer plugin client and the AJAX Browser client. Hav-
ing many clients often resulted in inconsistent behaviour among di�erent clients
and higher complexity in the maintenance work. Standardizing on a single client
should make it easier to develop QlikView apps and give users a consistent expe-
rience across all devices and platform [5]. Internally, the standardization has lead

1Business Intelligence is a set of methodologies and techniques to transform data into
useful information for strategical business decisions [14].
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to the possibility to have a higher test coverage with one single automated test
framework.

4.2 Software Con�guration Management at Qlik

Figure 4.1: Branch A passed all tests and is allowed to deliver its
changes to the main branch. Branch B still has failing tests and
is therefore not allowed to deliver.

The development of the QlikView.Next project is divided into several feature
teams. To allow teams to develop and maintain the same code base in parallel,
a branching strategy is in place where each team has at least one development
branch. When a team has successfully completed a development iteration the new
code will be delivered to the main branch. Automated testing is scheduled to
run regularly for all active branches. Normally this means that a full system and
integration test run every night for every branch. This enables the teams to detect
regression in the software at an early stage. By constantly keeping the software in
a stable state it is easier to provide continuous integration, which means making
small and regular deliveries from the team branches to the main branch. The
teams are not allowed to deliver their code changes of a completed development
iteration to the main branch unless all tests have passed.

In �gure 4.1, an example of the branching strategy is illustrated. For simplicity,
only two branches are shown, but in reality there are up to thirty branches which
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code continually integrates with the main branch. In the example, Branch A has
completed a development iteration and all the automated tests have passed. This
means that the branch is allowed to deliver its code changes to the main branch.
The testing works like a wall around the development branch with a closed door.
Once all the tests pass, the door opens and there is a road to the main branch.
Branch B on the other hand, has also completed a development iteration but some
of the tests failed. The wall around the branch now stops the delivery to the main
branch by keeping the door closed. Branch B is not allowed to deliver its changes
until all the tests pass.

While the teams work with their development, the development branches are
kept up to date with the main branch by regularly performing a forward merge
from main. This is illustrated by the thin arrow from main to the two branches in
�gure 4.1.

4.3 Automated Test Development at Qlik

The development of test cases is performed simultaneously on the di�erent branches.
New test cases are continuously checked in to the development branch during a
development iteration. This leads to an increasing amount of test cases as develop-
ment continues. Figure 4.2 illustrates the overlap between test cases being run on
the main branch and test cases being run on a development branch. This means
that all previous functionality is continuously tested on all branches. The new test
cases are delivered to the main branch together with the rest of the code. Once
the test cases have been delivered they are immediately adopted into the testing
suite for the main branch. The other teams will not see the new test cases until
they perform a forward merge from the main branch to their development branch.

Figure 4.2: An illustration of the overlapping tests runs between
branches.
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4.4 Tools for Automated Testing at Qlik

As described in section 3.1.3 about automated testing, a tool that can drive the
software is necessary for automated testing. Qlik has developed their own auto-
mated testing framework, Horsie, that drives the software according to test cases
speci�ed by scenarios written in structured natural language. In order to allow
the developers to specify test cases in structured natural language, Qlik uses be-
haviour driven development, see section 3.1.4. The di�erent steps speci�ed in the
scenarios are implemented with the help of Horsie's capability to control the soft-
ware and access the QlikView API. Horsie thus provides an integration between
test speci�cation and test execution. Controlling software the way a user would
control it provides the possibility to run automated system tests. The relationship
between Horsie and QlikView is illustrated in �gure 4.3.

Figure 4.3: Horsie provides an integration between test speci�cation
and test execution within QlikView

Qlik uses a continuous integration system from Atlassian called Bamboo to run
the automated tests. Bamboo is used to run scheduled tests for all development
branches of the source code [3]. Upon �nishing a test suite, the produced artifacts
are made available through Bamboo's web interface.
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4.5 Test Results Artifacts

The artifacts are �les such as log �les providing detailed summaries of what ac-
tions the test framework has performed to drive the software in the way speci�ed
by the test case. The artifacts are created by the QlikView software and the test
framework, Horsie. QlikView produces log �les directly tied to its execution and
Horsie produces log �les and screenshots which represent problems found exter-
nally through testing. For example, if QlikView crashes, the QlikView log �le could
contain a stack trace. The Horse log �le on the other hand, could in that case
contain information about the symptom, such as the user interface malfunction-
ing. Figure 4.4 shows an excerpt of a Horsie log �le for a failing test case. An
entry marked with INFO (yellow) contains information of the test case step cur-
rently being executed. If something goes wrong, the entry will have a tag ERROR
instead and the entry will contain an error message. The red background color
of such entry indicates that it is an error. Horsie creates a log �le of this kind
for each failing test case, as well as screenshots and multiple other log �les with
information in di�erent formats.

Figure 4.4: Excerpt of a log �le produced by the Horsie framework.

The artifacts also contain a �nal error message from the failing test case and
an HTML dump of the last element the test framework managed to successfully
interact with before failing. An example of what an HTML dump can look like is
shown in listing 4.1. The HTML dump is simply a linked list with HTML elements
starting with the top level parent element, namely the HTML tag. Following the
HTML element is a list of children down to the speci�c element the test framework
interacted with. Every element holds the same set of attributes that the real
element held in the web browser during the test execution.
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Listing 4.1: Example HTML dump

<html class="touch-off" lang="sv">

<body style="-ms-touch-action: none;">

<div class="qv-hub-container">

<div class="hub-content ng-scope" ng-class="{'hub-global-search':

isGlobalSearch}">

<div class="hub-sidebar ng-scope" ng-if="!isGlobalSearch">

<div class="hub-myw-fav">

<ul class="hub-ul">

<li class="hub-li myWork-li qv-active" ng-class="{'qv-active':

activeKey === 'my-work' }" qva-activate="gotToUrl('my')">

<div class="hub-div hub-s-name-style"

q-translation="Hub.NavigationPanel.MyWork">

4.6 Analysis of Test Results

There are multiple types of challenges that are associated with the test result
analysis at Qlik. This section aims to describe three of the biggest challenges with
the analysis of the test results. These three are:

• Inability to cross reference test case failures

• Intermittent failures

• Determination of problem uniqueness

These challenges can seem trivial in theory but become harder to deal with when
plagued with Information Overload.

4.6.1 Cross Reference Failures

Since automated testing at Qlik runs on multiple development branches, each
branch produces its own set of test results. Currently there is no easy way to get
an overview of what failures that have occurred on which branches, although an
overview would be valuable for the results analysis. The number of test cases for a
branch can typically exceed a few thousand, where the number of failing test cases
may range between zero and a few hundred. With automated tests that run every
night for between ten and �fteen branches the amount of test results produced can
make it impossible for a human to get an overall overview of the current problems.
A manual investigation of the test results would also be very time consuming.
See �gure 4.5 for an excerpt of the overview of the latest test results for each
branch, as it is presented in Bamboo. From the excerpt we can conclude that
we have multiple failing branches. Three of the failing branches have only one
failure, �Ver12.00-dev-ft-personal�, �Ver12.00-dev-ft-ratatosk� and �Ver12.00-dev-
ft-ratatosk-responsive-grid�. Bamboo does not provide a way to cross reference
test failures between the branches. Thus, it is not possible to determine if the
same test case has failed on all three branches without manually navigating into



Case Description 23

each branch and do further investigation. If we would instead want to analyse ten
di�erent branches, with tens or hundreds of failing test cases it would be nearly
impossible to accomplish an overview by manually navigating to each failure on
each branch. The di�culty of �nding if a problem exists on multiple branches
increases as the amount of results increase, thus we can say this is a challenge that
has its root in Information Overload.

Figure 4.5: An excerpt of the overview showing test results of the
latest test run from each branch.

4.6.2 Intermittent Failures

One of many challenges with the test results at Qlik is the management of intermit-
tently failing test cases. For example, timing issues when interacting with external
dependencies such as browsers or overloaded testing machines might cause a test
failure one day but not the day after. When we mention intermittent failures in
this thesis it will refer to false negatives caused by the testing environment and
not actual intermittent failures in the software. In �gure 4.6, it is shown that
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several test runs of the branch �main for stability testing� yield di�erent results.
Note that neither the code being tested nor the test cases have changed between
the di�erent runs.

Figure 4.6: The same code base tested nine times yields di�erent
results due to intermittent failures

Code changes from the main branch are continuously being merged into the
development branches on a daily basis. This can lead to an intermittent failure
that originated from one branch, being copied to other branches. Without the
overview of failures across branches, each team might think they are responsible
for the failure, although it had nothing to do with their development. Thus,
analysing intermittent failures becomes an even bigger challenge because of the
inability to cross reference failures (see section 4.6.1).

Currently, to be con�dent when deciding if a test case failure is due to a real
problem on a branch or to an intermittent failure, the most common procedure
is to run the tests several times. If an overview of all branches with a particular
failure was available, the time spent running the tests again could be saved.
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4.6.3 Determination of Problem Uniqueness

Besides examining single failures there is an issue with test cases failing in di�erent
ways, i.e. a test case may fail di�erently from branch to branch. A naive success/
failure comparison based on test cases between two branches will indicate that the
same problem is present in both branches, but this may not be the case if the test
case failed di�erently in the two branches, i.e. at di�erent stages within the test
case. For example, a test case with six steps, could fail at the �rst or the last step
but it will be the same test case name appearing in the logs for both scenarios. In
order to discover the di�erence between the two failures, additional information
about the failure, such as the error message, has to be taken into account. This
information could be extracted from the test result artifacts. Because of the high
amount of test runs and test cases it is hard to manually look up all the relevant
information for each test case.

Similarly there is the situation where two di�erent test cases fail in the same
way, for example during a setup phase which both test cases have in common.
Then there is no need to treat the problem as two di�erent issues just because
they originated from two di�erent test cases. The real issue is still in the setup
phase in this situation. Once again, a naive comparison based on the test case
name would not reveal the pattern of the problem. A clustering of all the test
cases that failed because of the same cause, would help with the identi�cation of
the actual problem.

4.7 Bug Report Creation Tool

Qlik has developed a tool that automates the process of creating a bug report
in their bug tracking system from automated test failures on the main branch.
The code on a development branch is not considered complete until it has been
delivered to the main branch. Thus, it is not desirable to generate bug reports
based on failures on the development branches. The tool downloads the test result
artifacts from all the failed tests associated with the main branch. Each of the
failed tests is then investigated by the tool. The process is illustrated in �gure
4.7. A failed test contains an error message generated by the Horsie framework.
The error message is considered an identi�er for the problem which caused the
test case to fail. The tool then proceeds to check if this error message has been
encountered before by making a search in the bug tracking system for any bug
reports with the same error message as the title. If the error message has not been
previously encountered, the tool submits a new bug report to the bug tracking
system. In the case where a report already exists with the error message as the
title, additional information about the current failure is attached to the already
existing bug report. A bug report can thus be considered a group, or a cluster of
test case failures, as in the concept of Clustering, presented in section 3.2.2. The
similarity measure sim(f1, f2) between two failures, f1, f2, with error messages
err1, err2, would then have two possible outcomes, 1 if the error messages are
strict equal or 0 if they are not equal.
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sim(f1, f2) =

{
1 if err1 = err2

0 otherwise
(4.1)

Although the automatically generated bug reports provide a starting point for
investigations of bugs for the main branch, some of the issues with the analysis still
need to be taken care of. The tool only processes the failures for the main branch
and thus, there is still no way to cross-reference the failures. Additionally, if the
bug reports are considered as clusters of failures, there is still no way to cluster
failures without creating bug reports. There is also a problem with the determi-
nation of unique problems. The error message comparison has resulted in many
similar failures not being clustered together because their error messages have not
been identical. Listing 4.2 shows an example of three typical error messages. Two
of them are very similar but using an exact string match they would be separated.
Additionally, usage of the tool has introduced false duplicates. Failures that have
identical error messages could potentially have di�erent root causes and should
thus ideally be described in di�erent bug reports.

Listing 4.2: Two of the three error messages have the same base
with di�erent variables and the third error message is completely
di�erent.

[The HTTP request to the remote WebDriver server for URL
http://localhost:7055/hub/session/d111075b−c10b−4da6−bd7a−a3509f208b5e/elements timed out
after 60 seconds.]

[The HTTP request to the remote WebDriver server for URL
http://localhost:7055/hub/session/2d87ed00−b432−4e8f−9c5e−cc1b1c25b500/elements timed out
after 60 seconds.]

[ Selection bar did not close after con�rming selection ]

Figure 4.7: Automated bug report creation tool. If a new error
occurs a new bug report is created. If a bug report already
exists for a certain error message the tool will attach data about
the new failure to the existing bug report.
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4.8 Case Summary

At the software company Qlik, automated tests run every night for multiple
branches, resulting in information overload. The test results are available through
a web interface, but for a human the analysis is very challenging and time consum-
ing. There is currently no way to cross reference failures across branches, determine
speci�c problem areas or identifying intermittent failures. Qlik has developed a
tool that automatically generates bug reports based on the error message of the
test case failure. The tool has limitations and has also introduced false duplicates.
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Chapter5

Methodology

In this chapter we outline our methods for approaching the problems de�ned in
section 1.3. The overall idea of the solution is presented in the �rst section. Our
choices of which components of a failure to take into account are discussed in the
next section, followed by a description of how the test failure data was collected.
The Implementation section is the core of this chapter. The algorithm and the
formulas used for our computations are presented here. The last section of this
chapter is about how we conducted the evaluation of our tool and all the steps
involved in that process.

5.1 Solution Idea

The aim of this project is to create a tool that analyses the artifacts created
by Horsie during test runs. We choose to call the tool NIOCAT � Navigating
Information Overload Caused by Automated Testing. The output of NIOCAT is
a �le containing the partition of the failed test cases. The output �le should thus
de�ne di�erent clusters of test case failures from the input data. We would like
to cluster test cases which have failed because of the same problem. Each cluster
would thus represent a unique problem with the software based on the input data.
A problem can contain one or multiple test case failures.

Figure 5.1 illustrates a solution that processes test results and produces a
clustering of failures. Each of the small circles represent a failed test case where
the larger circles illustrate which failed test cases that have been grouped together.
As can be seen in �gure 5.2 the test cases that are grouped together should be
similar. In the �gure three failures are highlighted, two of them are caused by the
inability to read a new e-mail while the third test case has failed when downloading
an attachment on an iPad-device. The two test cases regarding the ReadEmail-
feature have been grouped together because they represent the same problem even
though they failed in di�erent web browsers. From now on we will refer to a group
of similar test case failures as a problem and a single test case failure is called a
failure.

The partition of the failed test cases is aimed to serve the test results analyst
with a starting point for further investigation and analysis. The input could be
data from test runs on a single branch or multiple branches. The use case for a
development team leader might be to analyse data from test runs within the last

29
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Figure 5.1: NIOCAT outputs a partition of failures based on the
test results input

seven days, for the team's branch only. The partition would then help identifying
which failures that are related to the same problem and which problems that have
been introduced or �xed. A con�guration manager though, might look for a bigger
picture and a use case could be to analyse the latest test run for each development
branch. Since there is currently no way to get an overview across multiple branches,
even a naive clustering based on the test case names has potential to support the
results analyst.

5.2 Selection of Components of a Test Case Failure

A tool that provides an overview of failed test cases across branches would be
helpful in the analysis of test results. Although, as explained in section 4.6.3, a
clustering based on the name of the test case alone would not be ideal for the
needs at Qlik. Further components of a failure needs to be taken into account.

A tool currently being used for automatic bug report creation was presented
in section 4.7. The tool uses the error message as identi�er instead of the test
case name. We wanted our tool to overcome the issues introduced by their current
bug creation tool. Not only did we want to allow cross referencing test case
failures between branches, we also wanted our tool to achieve a more accurate
clustering, by which we mean a more accurate grouping of failures that are similar.
In order to achieve the improvement, we decided that our tool should account for
a combination of the test case name and the error message.

In addition, we wanted to investigate if any additional information about the
failure could improve the accuracy of the clustering further. Both the error message
and the test case name are components that contain textual information about the
failure. Inspired by related research, we wanted to go beyond the textual infor-
mation and add a component consisting of execution data. In the Qlikview.Next
project, the only client that the user interacts with is the browser (see section 4.1
about Qlik). Therefore we chose to consider the underlying HTML structure of
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Figure 5.2: Each small �lled circle in the partition is a failed test
case. The test cases are grouped by similarity. Each group is
referred to as a problem.

an element interacted with in the browser as a representation of the current state
of the QlikView application. Thus, the three components we used as a basis for
our clustering of failures were:

• the test case name

• the error message

• the HTML structure for the last element that was interacted with before
the test failure occurred.

5.3 Data Collection

We created a tool that via a Bamboo API downloaded all the artifacts produced
during test runs for all the development branches. For more information about
the artifacts, see section 4.5. The artifacts are only available with the Bamboo
API for one week. Artifacts older than one week are removed. Thus we needed
this tool to be able to store artifacts over a longer period of time and to be able
to access and review the same data over the course of a longer period.

From the start of the project there were some uncertainty about how our
methods were to be evaluated, thus we decided to save all the possible data to not
limit our future opportunities.



32 Methodology

5.4 Implementation

NIOCAT processes artifacts placed in a certain input directory. The directory
structure provides information about which branch artifacts belong to and which
test run is associated with what artifacts. The mission of NIOCAT is to distinguish
di�erent problems throughout a set of artifacts. To be able to cluster failures
together we introduced a similarity measure between two failures and then de�ned
a threshold for how similar two failures had to be in order to be clustered together.
NIOCAT will automatically create its own grouping of failures based on the input
data.

In order to cluster one or several test failures into groups, or problems, we
used an algorithm that processed all the failures and calculated the similarities
between them. When assigning a failure to a cluster, we did not want to favour
large clusters. Therefore, we de�ned the similarity between a failure and a cluster
as the average of the similarities between the new failure and all failures already in
the cluster. The similarity measure between two failures was based on a weighted
average of the cosine similarity of the di�erent components of a failure. The
components we chose to take into account was the name of the test case that failed,
the error message extracted from the log �le and the underlying HTML structure of
the element that was last interacted with before the failure occurred, as discussed
previously in section 5.2. The weighted average thus introduces a possibility to
put more emphasis on a certain part of information about the failure. We will
come back to our tuning of weights in section 5.5.5. The algorithm NIOCAT used
to cluster similar failures follows.

Algorithm

1. Receive the input as a collection B = {b1, b2, ..., bn} of branches, with their
respective test results for the set of test runs biR = {bir1, bir2, ..., birl},
where n is the number of branches and l is the number of runs for branch
bi.

2. Represent each failed test case as a document d, so that a cluster c of
documents will represent a problem with the software. A document can only
be present in one cluster. The set D of documents represents all documents
within the whole collection of test runs for all branches. Let the set C
represent all clusters.

3. For each document di ∈ D do

(a) Represent the document with three vectors ~di1, ~di2 and ~di3, one for each
component. Each vector is built using the terms within the document
for that component, as in the Vector Space Model described in section
3.2.1.

(b) Retrieve the clusters cj ∈ C that have been created so far. Let the
documents Dj = d1j , d

2
j , ...d

k
j be all the documents belonging to cluster

cj .

(c) For each pair (di, cj), compute a similarity score sim(di, cj) between
the document and the cluster. The score is based on the average
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similarity score between the document di and the documentsDj within
the cluster cj , such that

sim(di, cj) =

∑k
t=1 docSim(di, d

t
j)

k
(5.1)

where

docSim(di, d
t
j) =

∑3
l=1 wl · cosSim(dil, d

t
jl)∑3

l=1 wl

. (5.2)

The document to document similarity score is based on a weighted
average similarity score cosSim(a, b) for each document component
and wl are the weights for the components, respectively. The com-
ponent similarity cosSim(dil, d

t
jl) is computed according to the cosine

similarity, as in section 3.2.1

cosSim(dil, d
t
jl) =

~dil · ~dtjl
‖ ~dil‖ × ‖ ~dtjl‖

(5.3)

(d) Retrieve the cluster cmax with the highest value of sim(di, cj). If
sim(di, cj) is greater than a prede�ned threshold T , add di to the
cluster cmax.

5.5 Evaluation Based on Accuracy of the Output

Since there is currently no way to cross reference test case failures between dif-
ferent branches NIOCAT would provide a new feature to the test result analysis.
Currently, when processing the test results presented by Bamboo, the information
about a problem is based on the name of the test case. The automatic bug report
generation tool used on the main branch is based on the error message. NIO-
CAT creates a clustering based on a combination of those two components and
an HTML dump. We wanted to determine if NIOCAT was more accurate than
the current tools being used. Thus, we needed a way to compare the accuracy of
our produced partition and the two baseline partitions created using exact string
comparisons of the test case names or the error messages.

To evaluate the accuracy of the di�erent clusterings we chose to calculate
a similarity measure between the di�erent clusterings and their corresponding
reference clusterings for those particular input data sets. Currently there are no
such reference sets available, thus part of our work was to create the reference
partitions manually. Similarity measures between a produced partition and its
corresponding reference partition would provide us with a measurement for how
well NIOCAT manages to automatically classify the failures. This measurement
could then be compared to the same measurement for a clustering based on the
test case name and a clustering based on the error message.

At the start of this project we found that the most intuitive similarity measure
for di�erent partitions of the same data set was the Rand Index, presented in
section 3.2.3. Because of some �aws of this index which were also presented in
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the same section, we have chosen to use the Adjusted Rand Index as similarity
measure instead, which was introduced with the intention of overcoming these
issues. Computing the adjusted rand index between an established control set and
a set generated by NIOCAT will give us the percentage of correct decisions and
thus provide us with a benchmark for our method.

5.5.1 Creation of Subsets for Reference

NIOCAT is intended to be used to support the daily analysis of test results from
the di�erent development branches. The daily analysis can involve test runs from
a single, multiple or all branches. The total amount of test cases on a normal run
ranges in the tens of thousands, where typically zero to a few hundred fail. There
is no speci�c requirement for the size of the subset for reference, but it should be
a representative of the output from a normal test run. It is desired that the subset
contains both failures that can be clustered together as well as failures which
represent a unique problem. We wanted to evaluate NIOCAT against a typical
use case but found it impossible to de�ne a single representative reference data
set. Therefore we chose to create several reference sets, that would represent a few
slightly di�erent use cases. Three di�erent points in time were selected randomly
from a recent timespan. We wanted to use recent data so that it would be familiar
to the expert during the analysis and thus allow a more accurate creation of the
reference subsets .To create the subsets, data from test runs at each point in time
was extracted. A brief description of each of the data sets follows in the next three
sections and a summary of their properties can be found in table 5.1.

The clustering of failures within each set was done by evaluating each failure
manually and comparing it to the other failures within the set. Manual evaluation
at Qlik basically means going through the produced artifacts for the failed test
cases. The work includes looking at screen shots, reading log �les and interpreting
error messages. This procedure is currently the way the analysis is performed and
is thus a good baseline for our reference set. To help perform the analysis, we
acquired assistance from an expert within the domain, who works with the test
analysis at Qlik on a daily basis.

Subset 1 Subset 2 Subset 3

First Test date 2014.03.27 2014.03.23 2014.03.28
Sample period 1 day 1 day 1 week
Number of branches 2 10 1
Total number of test runs 2 10 9
Total number of test cases 6696 33160 26464
Failing test cases 25 11 61
Number of clusters 4 9 13

Table 5.1: Properties of the three di�erent data subsets used for
reference
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5.5.2 Subset 1 - Main and Development Branch

The �rst subset consisted of data from two di�erent branches, the main branch and
a development branch. A test run from each of the two branches was selected so
that both runs had been run simultaneously in time. The test runs for the main and
the development branch resulted in 6 and 18 failed test cases, respectively. When
the manual evaluation of the results was done we could conclude that the set only
contained four distinct problem areas. As seen in �gure 5.3, one of the problems
caused ten test case failures across the two branches while another problem caused
only one failure in one branch. Two of the problems caused seven failures each.

Figure 5.3: Illustration of the manual partition of reference set 1.

5.5.3 Subset 2 - All Branches

For the second subset, data from one run from each of the development branches
was selected. Although the total number of test cases exceeded 30000, only 11
of them failed. Note that even though Subset 2 contains almost 5 times more
test cases than Subset 1, the number of failing test cases is lower. Since the two
subsets are from di�erent points in time, the software is in a di�erent state and
thus results in completely di�erent test results.

In contrast to the previously described subset, which had only four problem
areas, with multiple failures for each one, Subset 2 has a large spread of problems
for its included failed test cases. Nine out of the eleven failing test cases in Subset
2 originated from unique problems. Thus, subset 2 provides us with a reference set
with characteristics di�erent from Subset 1. The partition is illustrated in �gure
5.4.

5.5.4 Subset 3 - Single branch

Data for the third subset was selected from one week's testing on a single develop-
ment branch. The scheduled nightly tests and a few manual test runs added up to
9 runs and 61 failed test cases in total that week. The manual partition resulted
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in 13 di�erent clusters, of various sizes. Figure 5.5 contains an illustration of the
partition. The largest three clusters contain 18, 11 and 8 failures, respectively,
while the remaining 10 clusters contain only 5 failures or less each. Subset 3 thus
provides us with a data set containing multiple problems, resulting in single or
multiple test failures.

5.5.5 Component Weight Tuning

The speci�ed algorithm requires four prede�ned parameters, the weight for each
component of the failure and the similarity threshold. Figure 5.6 illustrates two
di�erent con�gurations in the space of weight components. The circular marker
indicates a con�guration with weights equally distributed between the di�erent
components while the diamond represents a con�guration where more weight is
placed on the error message and the rest is equally distributed between the HTML
and the test case name. The adjusted rank index was calculated for the output for
all three subsets in order to �nd the combination of values that would yield the
highest adjusted rand index. Each combination of parameter values from 0.0 to
1.0 with incrementation size of 0.05 was evaluated. The total of all three weights
added together during the computation was 1, which for all possible threshold
values resulted in almost 5000 di�erent combinations of parameters. The weight
combinations corresponding to the highest found index for each subset are pre-
sented in section 6.1 in the Results chapter.

5.6 Evaluation Based on Qualitative Feedback

As stated by Runeson et al. much of the knowledge that is of interest for a case
study researcher is possessed by the people working in the case [26]. Thus, as a
complement to the evaluation based on the pairwise agreement between the output
and the reference partition, we conducted a focus group to receive qualitative
feedback of our work. A focus group is basically a session where data is collected
by interviewing several people at the same time [26].

Three people from the research and development department at Qlik partici-
pated in the focus group. Two of them work with con�guration management and
process automation, and their daily work involves analysis of results from auto-
mated testing. The third participant works with development of the automated
testing framework and is also working with analysis of test results on a regular
basis.

As suggested by Runeson et al. we conducted the focus group by executing
a number of phases. Firstly, we explained the concepts of a focus group to the
participants, followed by a brief description of our purpose with our work. In the
next phase we explained how NIOCAT works and demonstrated an example of how
to navigate the output within QlikView. After the demonstration the participants
got to navigate and play around with the application within QlikView themselves.
The interview phase, which is the main part of the focus group, was based on
�ve questions. The purpose of the �rst three questions was to investigate the
usefulness of NIOCAT. The forth questions was asked in order to open up for
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suggested improvements and the last question was there to cover everything that
did not �t in under the previous questions. The �ve questions were:

1. Do you have a clearer overview of the test results now than you had before?

2. Looking at the result you can see and navigate through in QlikView, can
you draw any conclusions?

3. Would NIOCAT be of use for you in your daily work?

• If yes, how?

• If no, what is needed for you to use it in your daily work?

4. Is there anything else that you would have wanted to see, or anything you
would have liked to change?

5. Do you have any other comments?

After conducting the interview we summarized our major �ndings in order to
con�rm that the opinions and ideas had been properly understood.

5.7 Visualization in QlikView

NIOCAT will group test case failures found in the test result artifacts according
to the algorithm described in this chapter. To be able to visually represent the
partitions created by NIOCAT we used QlikView. The choice of data discovery
software came naturally since it is the product of Qlik. An advantage of this choice
is that all possible users of NIOCAT are familiar with QlikView. QlikView enables
a user to interactively explore large quantities of data. By combining the analysis
from NIOCAT with QlikView, it becomes possible to browse among problems and
failures found in analysed test artifacts. QlikView allows creation of charts and
other visualization items. In QlikView, the user can make selections of one or
multiple items in order to examine data related to the selected items. The related
items will be displayed with a white background and the excluded items will have
a grey background.

In �gure 5.7 an example is shown of how a QlikView application with NIOCAT
data could look. In the �gure a problem (with id 7) is selected and the items with
white background are related to the selected problem. A lot of information can be
obtained using QlikView. For example, in the list of branches to the top left in the
�gure we can see that the selected problem is occurring on four di�erent branches.
More speci�cally two separate test cases failed with the same error message, which
is seen in the lists of error messages and test cases that have one and two white
items respectively.
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Figure 5.4: Illustration of the manual partition used for reference
set 2.

Figure 5.5: Illustration of the manual partition used for reference
set 3.



Methodology 39

Figure 5.6: Two di�erent con�gurations in the failure component
con�guration space.

Figure 5.7: An output of NIOCAT visualised in QlikView
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Chapter6

Results

In this chapter, results for the two di�erent evaluation techniques will be presented.
We will present the highest achieved adjusted rand index for each subset and the
corresponding weights retrieved through the weight tuning for each speci�c subset.
A comparison of the accuracy of the output of NIOCAT compared to the existing
clustering approaches will summarise the �rst evaluation. The chapter ends with
the results from the second evaluation, the focus group.

6.1 Similarity Between NIOCAT and Manual Analysis

6.1.1 Subset 1

The highest achieved value of the adjust rand index for Subset 1 was 0.59, more
than half of the pairs were classi�ed correctly. This value was achieved with 22
di�erent combinations of parameters. The threshold value varied from 0.55 to 0.85.
The combinations for each threshold corresponding to the highest rand index are
shown in �gure 6.1. As seen in the �gure, the highest rand index was achieved by
con�gurations where more weight was placed on test case name and error message
than on HTML. Another observation from the �gure is that the best con�gurations
for this subset tend to move from test case name to error message as the threshold
rises.

6.1.2 Subset 2

The output of NIOCAT for Subset 2 reaches the adjusted rand index value of
1 which corresponds to a produced partition identical to the reference partition
created manually. There are almost 400 combinations of parameters that yield
an identical partition. The threshold can vary from 0.6 to 0.95. The weight
combinations for each threshold that give an adjusted rand index value of 1 are
shown in �gure 6.2. In the �gure we can see that as the threshold increases the
weight of the con�gurations tend to move from test case name towards HTML and
error message
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6.1.3 Subset 3

The adjusted rand index for the output of NIOCAT for subset 3 reached 0.96 for 4
di�erent combinations of component values. The combinations for each threshold
value are shown in �gure 6.3. It is shown that the value of the threshold component
can be either 0.65 or 0.7 for the output to correspond to the highest index. The
weight con�gurations that produced the highest adjusted rand index were mostly
equally distributed among the three components, with a slight movement towards
the error message.

6.1.4 Comparison Against Current Approaches

As seen in table 6.1, NIOCAT performs better than approaches currently being
used at Qlik, when it comes to accuracy of clustering compared to the manual
approach for our three chosen subsets.

Subset/Approach Error Message Test Case Name NIOCAT
Subset 1 0.15 0 0.59
Subset 2 0.65 0 1
Subset 3 0.5 0.2 0.96

Table 6.1: Adjusted rand index for clusterings of each subset and
clustering approach

In the table we can see that the adjusted rand index for Subset 1 is 0.15
for the error message approach and 0 for the test case name approach, meaning
that neither of the baseline approaches manage to create a partition close to the
partition created manually. NIOCAT, on the other hand, reaching the index 0.59
for Subset 1, manages to classify more than half of the failure pairs correctly.

The test case name approach does not yield a better result for the second
subset, although the error message approach reaches the index 0.65. NIOCAT still
outperforms the error messages approach with the ability to produce an output
identical to the manual partitioning.

Even for subset 3 NIOCAT outperforms the current approaches. The adjusted
rand index 0.96 indicates that almost all of the failure pairs have been classi�ed
correctly. The error message approach results in half of the pairs correctly classi�ed
and the test case name approach only manages to classify 20% of the pairs correctly.

6.2 Feedback from the Focus Group

6.2.1 Purpose Accomplishment

The answers to all the questions regarding the usefulness of NIOCAT were positive.
All the participants expressed that after viewing the output of NIOCAT they had
a clearer overview of the current development status.
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6.2.2 Identi�ed Use Cases of NIOCAT

Regarding what conclusions could be drawn by exploring the output in QlikView
(the second question), the participants con�rmed that being able to cross-reference
failures and problems across branches, enabled drawing conclusions, which in turn
can help making decisions. The participants further identi�ed three additional use
cases of NIOCAT that we had not previously thought of. These use cases will be
presented in this section.

An intended characteristic that the participants observed was the wide spread
of problems through the software, meaning that, given a speci�c problem, an
analyst can quickly �nd how many branches that are a�ected. This applies to
both problems or speci�c failing test cases. It is possible to see on how many
branches a NIOCAT-classi�ed problem is occurring as well as to see on how many
branches a speci�c test case has failed.

Global frequency for either a speci�c test case or for a particular problem was
mentioned as a further bene�t of NIOCAT, where global frequency means how
often a problem is occurring or how often a speci�c test case fails across all of
the branches. A participant mentioned that there is a value in seeing how many
failures in total that a problem has caused. This would not have been possible
without being able to cross-reference failures across branches.

One of the participants is responsible for deciding if a development team is
allowed to deliver its code changes to the main branch or not. Sometimes a team
is allowed to deliver its changes even though all the tests have not passed. Using
NIOCAT, the participant could quickly determine which problems only occurs on
one branch. If the problem only occurs on one branch, that team is obviously
responsible for the failure and thus may not deliver its changes to main. The
participant expressed that the decision, that was previously challenging to make,
could quickly be made using NICOAT.

The overview provided by NIOCAT introduced the possibility to see what
problems were most common across all branches and test runs. The participants
quickly �gured out that a measurement of priority thus could be established, which
was not previously possible. This is a use case we had not previously though
of. The participants had slightly di�erent ideas of how to de�ne the priority
order. One of the participants considered the problem that were occurring at
most branches the most important to resolve, while another participant wanted to
prioritise the problem that caused the most test runs to fail.

Another comment from the group was that the information provided by NIO-
CAT could be useful for the development teams as well as the test results analysts.
The teams can now quickly determine if a test case failure is occurring on other
branches. This could help them determine if they should invest more resources
in investigating the failure or if it originates from another team. Yet another use
case that we had not had in mind.

The third use case that was new to us was suggested as a long term perspective
of the tool. A participant pointed out the possibility to identify problem areas
with the help of NIOCAT. The test developers could then extend their test suites
around the areas where a lot of problems occur. Even the manual testing could
be extended around these areas identi�ed by NIOCAT.
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6.2.3 Potential Usage

Regarding the potential usage of NIOCAT, two of the three participants explicitly
stated that they would use NIOCAT in their daily work if it was available to them.
The third participant estimated that his potential usage would be on a daily to
weekly basis.

6.2.4 Suggested Improvements

All the participants had ideas and suggestions for how the work with NIOCAT
could be continued. One suggestion was to incorporate the analysis done with
the vector space model with the current automatic bug creation tool. Another
suggestion was to keep NIOCAT separate from the current bug report creation
tool but still create a connection to the bug repository so that unique problems
could be referenced with an ID from the repository and that failures could be tied
to them.

To further bene�t from the output of NIOCAT the focus group would like to see
direct links to even more information about the test case failures. This information
could include the original log �les and screenshots generated by Horsie.

6.2.5 Additional Findings

The group members were positive about including the HTML data in the analysis,
since they experience that there are a lot of failures residing in the user interface.

During the focus group meeting, the participants acknowledged the potential
of NIOCAT and requested a full analysis across all development branches with
data from a week back from the time of the meeting. During a short break we let
NIOCAT perform an analysis of the requested data and presented the output to the
group. The group members were fascinated by what could be accomplished within
a few minutes and the results caused an intense discussion. Based on the output,
participants were eager to take action and discuss problems with development
teams. A quote from one of the participants was �an overview like this does not
currently exist�. Another participant expressed immediate need and eagerness to
start using the tool. Other quotes from the group members were �the following
few weeks until the tool is put into production will be painful since we know how
much the tool could help us� and �imagine all the noise and administration you
would get rid of using this tool�.
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Figure 6.1: The weight con�gurations for subset 1 that yeilded the
highest adjusted rand index.
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Figure 6.2: The weight con�gurations for subset 2 that yeilded the
highest adjusted rand index.
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Figure 6.3: The weight con�gurations for subset 3 that yeilded the
highest adjusted rand index.
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Chapter7
Discussion

7.1 Threats to Validity

As seen in the results chapter, NIOCAT performs exceptionally well on the three
chosen subsets, compared to the baseline approaches. Although, there are many
di�erent methods of measuring clustering similarity. The results could possibly
be di�erent if measurements other than the adjusted rand index were used. Addi-
tionally, the reference sets that were created through manual analysis may contain
faults. Human error and the �aws of the current manual analysis approach might
have caused incorrect clusterings.

The analysis of the feedback from the focus group provided a complement to
the results based on the adjusted rand index. Apart from being able to accurately
create clusters in line with a manual analysis, NIOCAT's potential to save time
and support analysts in making decisions was con�rmed. Although it became clear
that deploying the tool at Qlik was greatly desired, one should take into account
that this study was speci�c for the context at Qlik. The results do not prove the
usefulness of NIOCAT in another context. More research and analysis might be
needed to investigate if NIOCAT could be useful outside Qlik.

7.2 Discussion of Results

The results for Subsets 2 and 3 exceeded our expectations by receiving the adjusted
rand indices of 1.0 and 0.96 respectively. Subset 1 on the other hand received a
lower adjusted rand index of 0.59. The varying results between the subsets can
have many reasons. One reason for subset 1 receiving a lower adjusted rand index
might be that several of the test case failures which the expert from Qlik identi�ed
as distinct problems had similar error messages. The expert identi�ed the failures
as di�erent to each other by investigating events in the log �les. NIOCAT fails to
separate these problems since a deeper log �le analysis is not implemented.

One should keep in mind that while Subset 1 was the most challenging subset
for NIOCAT it was also the most challenging subset for the baseline approaches to
partition into problems. Even though the adjusted rand index for the output from
NIOCAT is lower compared to the other subsets, it is still much higher than the
baseline approaches, that yield the indeces 0.15 and 0. The weight tuning results
showed that in order for NIOCAT to achieve the highest accuracy the HTML
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should be given lower weight. But even with the HTML weight being lower than
the other weights, the vector space model implemented in NIOCAT that uses a
combination of the failure components, results in a much more accurate clustering
compared to exact string comparisons of individual components in the baseline
approaches.

Subset 2, which attained the adjusted rand index of 1.0, had only 11 failures,
where most of the failures represented a unique problem. During the manual
analysis of this subset we noticed that the problems seemed to be of quite di�erent
character to each other and thus, easier to distinguish. It seems that this was also
the case for NIOCAT, since 400 di�erent combinations of parameter values yielded
an output identical to the reference partition. The failures were simply so di�erent
compared to each other that it was easy to separate them. Most of the failures
for this subset had very distinct error messages, which in combination with the
test case names made it easy for NIOCAT to achieve the perfect partition. But
the results from the weight tuning also shows that the perfect partition could be
achieved with higher weight on the HTML. Since the problems were distinct, one
can imagine that the underlying HTML for the di�erent problems di�ered enough
for NIOCAT to be able to separate the problems based on higher HTML weight.

The output of NIOCAT yielded the adjusted rand index value 0.96 for subset 3
and was thus almost identical to the reference partition. The few test case failures
that were incorrectly classi�ed for, were probably because of the same reason as for
subset 1. One theory as to why separate problems with similar error messages did
not impact the result as much for subset 3 as it did for subset 1, is dependencies
on the characteristics of the data set. Subset 3 was extracted from test runs on
an individual branch. The branch belongs to a team working exclusively with the
user interface, thus resulting in most failures being closely tied to the HTML. Our
theory is that the HTML helped distinguish separate problems even though the
error messages were similar. This can be con�rmed in �gure 6.3 as well, the weight
of the HTML component is still a rather large factor in the total feature selection
for determining similarity between failures in subset 3.

The weight tuning performed for each subset showed that the weight con�gu-
ration is highly dependent on the data being analysed. Although, we noticed that
the threshold value for the combinations yielding the highest rand indices varied
from 0.55 to 0.85 for subset 1, 0.6 to 0.95 for subset 2 and 0.65 to 0.7 for subset 3.
Thus, this gives us an indication that a threshold with a value between 0.65 and
0.75 is a good starting point.

The weight con�guration being highly dependent on the data being analysed
has the unfortunate impact that performing analyses on unknown data may not
yield partitions of the same quality shown in this study. Although, an analyst using
NIOCAT could possibly use its knowledge about the data to tune the parameters
accordingly. For example, if an analyst is currently investigating problems that are
suspected to be related to the back end, the HTML weight could be turned down,
since it probably would not add value to the analysis. On the other hand, if the
data to be investigated comes from a team working mostly with front end features,
the analyst could choose to turn up the HTML weight. Furthermore, the output
from NIOCAT is not intended to be considered as a �nal reference partition for
the analyst. It should serve as a starting point for further investigation. At Qlik,
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their automated bug report creation tool does not manage to group all duplicates
together and yields many false duplicates but it still a valuable tool for results
analysts and team members. As stated by the members of the focus group there is
currently no overview, like the one from NIOCAT, available and usage of the tool
would thus help in the daily work, even if the clustering accuracy is not perfect.
Keep in mind that the way to navigate among failures in Bamboo is based on
the test case name approach where the only identi�er is the test case name. One
can imagine the frustration for an analyst trying to get an overview of current
problems, by manually navigating through test case names branch by branch.

7.3 Future Work

While working with this thesis, many thoughts and ideas for further research
came up, but due to the time frames, we had to restrict ourselves. Early on
we considered taking more information about the failures into account. We were
especially interested in analysing the log �les. During the focus group, considering
the log �les came up as a suggestion, as well as considering the test agents. The
log �les contain a lot of information that could be useful, but requires speci�c
handling. The name of the test agents could be added to the similarity comparison
and thus provide the human analyst with more useful information and connections
between failures. A test agent that keeps having failing test cases might itself be
malfunctioning and thus be the reason why the tests are failing while the software
is functioning correctly.

Di�erent methods of measuring similarity between failures could also be further
investigated. In this thesis we used a fairly naive implementation of the vector
space model which only takes the term frequency into account. There is thus much
room for improvement in this area of the project. Only adding consideration of
the Inverse Document Frequency (IDF) to the current computations could possibly
improve the results. Other similarity measures such as the Okapi BM25 function
could possibly yield a di�erent result as well.

Furthermore, it would be interesting to research if considering the order of the
terms within the di�erent components could improve the clustering. Perhaps the
ordering could be important for some of the components but not necessarily all of
them.

The whole solution could even be implemented using a completely di�erent
approach, such as machine learning. When we analysed the log �les manually,
we could see clear patterns for each distinct problem. If a human �rst classi�es a
certain amount of errors, perhaps a machine can take over. The downside of this
approach is that the machine needs to continuously be recalibrated and thus limit
the time savings of the automated tool.

At Qlik, the next step for NIOCAT is deployment, which includes streamlining
the whole process, from selecting data to analysing, to visualizing the results in
QlikView. After deployment, the real world evaluation can begin. The system can
then be used on a daily basis, on real data, by analysts required to make decisions.
The usefulness of NIOCAT and the correctness of its partitions will be put to test
in a real world environment.



52 Discussion



Chapter8
Conclusion

The overall research questions of this thesis is how to help Qlik address the infor-
mation overload caused by automated testing. To help the results analyst navigate
the results we developed NIOCAT, a tool which analyses test result and produces
a partition of the failed test cases that can visualised in QlikView. Using QlikView,
a user can navigate the analysed test results in a much simpler manner than what
was previously possible. The partitioning created by NIOCAT allows a user to
quickly discover information such as on what branches a problem is occurring on
and how many test runs failed because of a certain problem. Qlik currently uses
an automatic bug creation tool that provides a starting point for investigation of
failures on the main branch. NIOCAT on the other hand produces a much more
accurate partition and enables utilisation of data from both the main and the devel-
opment branches. The members of the focus group con�rmed that with NIOCAT
the test results were much easier to interpret compared to current methods.

To be able to create the partitioning of problems NIOCAT uses an analysis
based on an information retrieval technique called the vector space model. Even
though a somewhat naive implementation is used, the results shows that NIOCAT
manages to produce partitions in line with manual analyses by experts. Regard-
less of size and character of the input data, NIOCAT outperforms the two baseline
approaches by a large margin in regards to partitioning the failures into clusters
of problems. Thus, considering a combination of execution data and textual infor-
mation improved the accuracy of the clustering compared to clustering based on
textual information alone.

The participants in the focus group expressed that NIOCAT provides an
overview that currently does not exist and they are eager to start using the tool in
their daily work. Although there is room for further improvements and enhance-
ments the feedback was exclusively positive and the life of NIOCAT will continue
with deployment and real world evaluation.
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