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Popular Scientific Essay of 

”Hardware Implementation of Exponential Function 
using Taylor Series and Linear Interpolation” 

This Master thesis is about ASIC implementation of Exponential 
Function using two different approaches. Exponential functions are 
incremental functions which are useful in areas such as 
Communication circuits, computer graphics, signal and image 
processing applications. More precisely the unary functions such as 
sine, cosine, exponential, logarithmic functions are applicable in 
signal generational circuits such as oscillators, variable gain circuits. 
Sometimes software implementation does not meet the requirements 
in some applications, in case of speed is of utmost importance it has 
to be implemented in hardware. The two methods used for 
implementation of the function such as Taylor series method and 
Linear Interpolation.

In Taylor series approach two different solutions as suggested. 
Each one has its own advantages of its own. Linear Interpolation 
method is memory intensive design, in which pre-calculated values 
are stored in an Look-up Table for future calculations of unknown 
values.

A total of five designs are synthesized using synopsis Design 
Vision STM065nm process technology using two different methods. 
Both the architectures are mainly focused on low power, minimizing 
area and better performance. A comparison is made between these 
architectures. The target libraries used are high and low threshold 
voltage. Synopsis PrimeTime is used for the estimation of dynamic 
power consumption. 
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Abstract
This thesis work is targeted towards ASIC implementation of the 

exponential function. Generally, unary functions like trigonometric, 
logarithmic and exponential functions are useful in areas such as 
computer graphics, signal processing and image processing for high 
speed applications. Sometimes software implementation does not 
meet the requirements in some applications, in case of speed is of 
utmost importance it has to be implemented in hardware. In this work 
the exponential function is implemented using two different 
architectures that are using Taylor series and Linear Interpolation. 
Both architectures are mainly focused on low power, minimizing area 
and better performance. A comparison is done between the two 
architectures. The designs are synthesized in synopsis Design Vision 
STM065nm process technology with target libraries with high and 
low threshold voltage. Synopsis PrimeTime is used for the estimation 
of dynamic power consumption. 
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CHAPTER 1

1. Introduction
Unary functions i.e. trigonometric, logarithmic and exponential 

functions are very useful in digital design applications. Their 
applications can be found in digital signal processing, communication 
systems, robotics, computer graphics etc. Generally for high-speed 
applications a simple software solution does not necessarily meet the 
speed requirements. So in order to achieve the desired speed, a 
hardware solution is investigated. In this regard optimization for 
speed and area are the major design challenges in a digital application 
specific integrated circuits (ASIC) implementation.   

Researchers are currently trying to find out efficient hardware 
implementations of these functions to be used in signal and image 
processing applications.  In this thesis, hardware implementations for 
exponential function using linear interpolation method and Taylor 
series have been investigated.  

 Project Specification 1.1.
This thesis project is an investigation study and there are no fixed 

design specifications. The proposed design methods, which are 
explained in forthcoming chapters, are compared using parameters 
area, speed, and power consumption.  In the design process minimum 
area and low-power consumption has primarily been taken in account. 
Table I shows some of the fixed design specifications.   
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SPECIFICATIONS OF THE HARDWARE                               TABLE I.
IMPLEMENTATION OF EXPONENTIAL FUNCTION

Parameter  Value 

Supply Voltage    1.2V 
Accuracy     >15 bits 
Cell Library     LPHVT, LPLVT 
Temperature     25°C 
 Process  STM065nm CMOS process 

Thesis Organization 1.2.
This thesis report is comprised of ten chapters.  Chapter 2 

explains the theoretical aspects of Taylor’s series and interpolation. 
Chapter 3 discusses some error metrics required to qualify the 
designs.  In chapter 4 the proposed architectures are implemented on 
hardware level. In chapter 5 error metrics of implemented designs are 
demonstrated. Chapter 6 discusses and compares the results of 
proposed architectures behavioral models and hardware level 
implementations.  The thesis is concluded in chapter 7 and future 
recommendations are provided in chapter 8.   
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CHAPTER 2

2. Theory
The proposed architectures in chapter 3 use Taylor series and 

linear interpolation for implementing the exponential function.  Using 
Taylor series, complex functions are translated into series of low level 
functions (terms) which can be mapped on hardware. Whereas in 
interpolation a function is rebuilt using predefined data points which 
are stored in a memory. This chapter will explain the basics of Taylor 
series and the interpolation method to form a theoretical background. 

Taylor Series  2.1.
Taylor series is the representation of a function into an infinite 

summation of terms of function that are obtained by differentiating 
that function at any given value [1]. To represent a real function f(x)
at any arbitrary point x = a, is given by equation (2.1).   

                                               

                                                                    (2.1)           

The generalized notation of Taylor’s series is shown in (2.2). 

 

                                                                                                     (2.2)

Taylor series expansion of most common functions such as 
exponential, logarithmic and trigonometric functions are expressed as 
follows:  

The exponential function  is expressed in Taylor series as 
equation (2.3). 
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(2.3)

The Taylor series expansion of a logarithmic function is 
expressed as shown in (2.4):

(2.4)

Similarly trigonometric functions sin(x) and cos(x) can be 
expressed in Taylor series expansion as shown in equations (2.5) and 
(2.6).

(2.5)

(2.6)
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Interpolation2.2.
Interpolation is a process of estimating unknown values from a set 

of known values provided the unknown values are within the range of 
known values [2]. There are a variety of interpolation techniques 
among them the most common are linear interpolation, polynomial 
interpolation, spline interpolation and piecewise linear interpolation. 
These interpolation techniques are explained in detail in the following 
subsections [2].  

2.2.1. Linear Interpolation 
In this Linear Interpolation method the unknown value is 

estimated based upon known data points provided the unknown value 
is in between the two known points [2]. For example, consider two 
known data points   A(xa, ya) and B(xb, yb). A third unknown data 
point C(x, y) is to be calculated as shown in Fig. 1. C(x, y) can be 
calculated for a given value of x and y using equation (2.7) [2].

                                                                                                (2.7) 

xa xb

yb

ya

x

y

Point B

Point C

Point A

Fig. 1. The illustration of Linear Interpolation Method. 
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Suppose A(xa, ya) and B(xb, yb) represents A(1, 5) and B(2, 8). For 
x = 1.5 the value of y at point C can be calculated using equation (2.7) 
as shown as (2.8). 

                           (2.8) 

From the equation (2.8), the result of y-coordinate at x = 1.5 is 
6.5.

  This method is known for its simplicity of all interpolation 
techniques and noted for its accuracy and speed of retrieving results. 
This method is most commonly used in computer graphics. In this 
method, the intermediate intervals are chosen such that the number is 
a power of 2 such as 2, 4, 8, 16, 32, 64, 128, 256, in a linear 
interpolation method. 

The main advantages of this method are the computation speed of 
the operation and that it is easy to use. The gradient of difference 
plays an important role in evaluating the interpolating value. 

2.2.2. Polynomial Interpolation 
In Polynomial Interpolation method, a set of polynomial functions 

are used to solve the unknown interpolant value.
Consider a given set of (n+1) data points. Based upon these values 

there exists an interpolation polynomial function as shown in (2.9). 

                                                                                                  (2.9)
Upon construction of (n+1) equations based on the given set of 

data points, in generalized form as shown in (2.10). 

i     {0,1,2,……,n} 
                                                                                                (2.10) 
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Upon including all the polynomial equations into (2.10), a system 
of linear equations is formed. After arranging the set of (n+1) it 
deduces into three matrices as shown in (2.10). 

      *        =

              (2.10) 
In the above matrices the left matrix is known as Vandermonde 

Matrix [2]. Solving the equations, there exists a unique set of 
solutions for the derived matrices. The solution to the polynomial 
equation is achieved by solving the Vandermonde matrix.  

There are limitations related to the convergence of the polynomial 
equation. The uniform convergence cannot be guaranteed when the 
function is indefinitely differentiable. This condition leads to 
oscillatory form of solution and also complexity can be highly 
increased in-terms of functions where the order (n) of polynomial is 
large. 

2.2.3. Spline Interpolation  
In cases when the roots of polynomial interpolation are oscillatory 

in nature, then there is a solution for this equation which is known as 
the spline interpolation method [3]. In this interpolation method the 
interpolation is subdivided into various intervals or sub functions i.e., 
different polynomials define the nature of the function between each 
interval. The nature of the function is based upon the function 
between each interval.

There exists various forms of spline interpolation methods such as 
linear method, quadratic method, cubic method; in most cases spline 
interpolation refers to cubic method. Upon solving the coefficients of 
the functions leads to solution of the spline interpolation method. In 
this method it structures a smooth curve which is continuous in first 
and second derivatives of the function. This method also reduces 
complexity of computations in comparison with the polynomial 
interpolation method.  
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2.2.4. Piecewise Linear interpolation 
Piecewise linear interpolation is a broad method of applying a 

simple linear interpolation to all the continuous intervals in a series of 
given data points [2]. 

Piecewise linear interpolation is generally achieved by executing 
the process of linear interpolation between each interpolation interval. 
It is one of the quickest and simplest interpolation techniques. In this 
method the first step is to locate the interpolant value inside the 
interval, then apply linear interpolation procedure. The appearance of 
this method resembles a set of straight lines. 

Consider a given set of data points (1,20), (2,7), (3,4), (4,9), (5,7), 
(6,3) after interpolation the desired piecewise linear interpolations is 
shown in Fig. 2.

Fig. 2. Illustration of piecewise linear interpolation with given set of data 
points.
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CHAPTER 3

3. Performance Metrics
Performance of hardware architecture can be characterized by its 

error behavior and its power analysis. In this regard error 
characterization of any design generally uses five basic metrics. 
These metrics are maximum absolute error, mean error, median, 
standard deviation, root mean square error and error probability 
distribution. In power analysis, static power consumption, short 
circuited power consumption and dynamic power consumption are 
considered.     

Following sections will define these metrics very briefly. 

Maximum Absolute Error: 3.1.
The maximum Absolute Error is a metric which defines worst 

possible error in any design [4]. It is defined as the difference 
between the approximated value and actual value, as shown in (3.1).  

                                                                                                  (3.1) 
      Where,     is approximation value, 

   is actual value,  

Mean Error: 3.2.
Consider given n terms in a sequence of error approximating 

function. The Mean Error is defined as the average of the individual 
error of each specific quantity, as shown in (3.2) [4]. 

                                              (3.2) 
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   is  mean value 

Median:3.3.
Median is defined as the mid value of any sequence of sample 

errors. In case there is even number of error samples, median will be 
the average value of the two middle values in the sequence [4]. 

Standard deviation: 3.4.
The Standard Deviation is defined as the average of the square of 

the individual error term and mean error, as shown in (3.3). In simple 
words standard deviation represents how much error variations exist 
from the average value. Low standard deviation means that difference 
between any given value and the mean value is close to zero [4]. 

                                               (3.3) 

Root-mean-square (RMS) Error: 3.5.
The Root Mean Square value is defined as the square root of the 

average of the sum of the squared terms of individual errors, as 
shown (3.4).  

                                                                                                  (3.4) 
RMS error is very useful when the error is varying in positive and 

negative values.
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Error Probability Distribution3.6.
Error Probability distribution is a graph interpreting the error 

diagram to visualize the deviation of absolute error. This diagram 
simplifies the interpretation of standard deviation and RMS values 
[4]. 

The following Fig.3 shows an example of Error probability 
distribution diagram. 

Fig. 3. Error Probability distribution diagram 

Decibel (dB) 3.7.
In statistical measurement quantities dB scale is mostly used in 

order to provide greater accuracy, high resolution and easier 
understanding of the metrics. 
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 The dB-scale is generally used for power and amplitude 
measurements.  

3.7.1. Power measurement 
To analyze the power or intensity measurement of any device, in 

dB units [4], it is expressed as shown in (3.5) 

(3.5)

3.7.2. Amplitude measurement 
To analyze the amplitude measurement of characteristic such as 

voltage or current of any device, it is represented as shown in (3.6) 
[4]. 

(3.6)

3.7.3. Error in dB scale
Generally the Signal to Noise Ratio (SNR) is expressed in dB 

scale rather than linear scale to accommodate large error deviations 
ranging from tenth (10e-1) to billionth (10e-9) in order. The dB scale 
gives the freedom to express large variations in short notation. 
However, the error of dB scale can be further expressed in terms of 
number of bits as shown in (3.7). 

(3.7)
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Power Analysis: 3.8.
Power analysis is an important design parameter in which the total 

power consumption of a system is estimated. Enormous effort is 
invested in optimizing power utilization of ASIC devices. In this 
project designs are optimized for Low-power to ultra-low power 
design [6] [7].

 In this regard the total power consumption in any circuit is 
expressed as shown in (3.8): 

        P total      =    P leakage    +    P short-circuit    +   P dynamic 
                                                                                                (3.8) 

Where  
       P leakage         =     VDD*I leak    
       P short-circuit     =      I sc T sc VDD*  
      P dynamic         =     *CtotalVDD

2fclk 
Where, P leakage is leakage power consumption,  

P short-circuit is short circuit power consumption, 
           P dynamic is short dynamic power consumption, 
           VDD is supply voltage, 
           I leak  is leakage current,
           I sc is short-circuit current,  

                  T sc is short-circuit duration of the circuit, 
f clk frequency of clock 

3.8.1. Static Power Consumption: 
This is the power consumption of a circuitry during powered-ON 

state.  It is defined as shown in (3.9).  
       P static         =     VDD * (I substrate + I oxide) 

                                                                                                (3.9) 

3.8.2. Short-Circuit Power Consumption: 
The short-circuit power consumption can be expressed in (3.10):  
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                    (3.10)  
Where Isc is the short circuit current from VDD to ground, Tsc is 

the short circuit duration and is the switching factor.

3.8.3. Dynamic Power Consumption:  
Power consumption of logic circuitry during the transitional 

phases of a digital design is known as dynamic power consumption. It 
is expressed in (3.11):

            

                                                                                                (3.11) 
Where Ctotal is the total circuit capacitance, fclk is the switching 

frequency and VDD is the supply voltage.
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CHAPTER 4 

4. Hardware Implementation 
ASIC implementation of a digital design involves a design flow as 

shown in Fig. 4. It starts with design specifications which are often 
defined for a project. Then a reference model is created in MATLAB 
according to design specifications. In the next step a behavioral 
model is designed in Modelsim and its results are compared to the 
results of the MATLAB model. The behavioral model is fine-tuned 
duing functional verification to meet the design specifications. Once 
the functional requirements of the design are met the design is 
synthesized on gate level net-list in Synopsis design vision. After this, 
timing simulations are performed on the synthesized design during 
post-synthesis verification. In case the design doesn’t meet the timing 
requirements it is fine tuned in the behavioral model again and the 
process is followed until the timing requirements are met. When the 
design has acceptable performance it is ready for sign off.  
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Design Specifications

Making Reference Model
(MATLAB Model)

Behavioral Modelling
(VHDL model in
Modelsim)

Synthesis (Design Vision)

Power Estimation
(Synopsis PrimeTime)

Sign Off

Functional Verification
(VHDL Testbench)

Post Synthesis
Verification
(Modelsim)

Correct

Fault

Correct

Fault

Fig. 4. Flow Chart of ASIC Design. 

In this chapter two different techniques have been used to 
implement the exponential function on hardware level.  The first 
technique uses Taylor series expansion method whereas the second 
technique uses the linear interpolation method. The theoretical 
significance of these techniques has been discussed in Chapter 2. In 
this chapter, different hardware implementations using these 
techniques will be suggested to find a better compromise between 
area and speed. 
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Taylor Series Architectures 4.1.
In this section, two different architectures, architecture 1 and 2 are 

suggested using Taylor series expansion method. Architecture 2 is 
derived based on the limitations of architecture 1 and has reduced 
area and power consumption.  

4.1.1. Taylor Series Architecture 1 
To implement architecture 1 of exponential function, a Taylor 

series expansion is applied to exponential function ex, substituting f(x) 
=  in (2.1) reveals;

(4.1)

In (4.1) when factoring (x-a) out of all terms and rearranging their 
order we get, as shown in (4.2).   

                                                                                                  (4.2) 
The hardware of architecture1, having ‘x’ as input and ‘exp(x)’ as 

output, is generated based on equation (4.2) and is shown in Fig. 5. It 
has 7 multipliers and 7 adders. 
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Fig. 5. Hardware implementation of Exponential function using Taylor 
series architecture 1. 

In this architecture, the input x has been specified to vary between 
0 and 1. After MATLAB modelling of the design the estimated 
wordlength is 19 bits at each stage, to achieve desired precision. This 
architecture uses 2’s compliment fixed-point number representation 
for positive and negative values. The wordlength of each fixed 
coefficient of multipliers and adders is 18 bits. The precision 
achieved for architecture 1 is 15.72 bits. 
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4.1.2. Taylor Series Architecture 2 
To derive the hardware architecture 2 using Taylor series method 

consider (4.2). 

                                                               (4.2)
 Substituting the inner most part of (4.2) with ,

                   (4.3) 

              Where    

Equation (4.3) can be further reduced by substituting the inner-
most factor with k2 as shown in (4.4),  

                                                                                                      (4.4) 

Where
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Equation (4.4) can be re-arranged to a simpler form as shown 
(4.5).

                                                                                                      (4.5)
Where the constant values (Ci) are expressed in table II as follows: 

COEFFICIENTS USED IN TAYLOR ARCHITECTURE 2                                TABLE II.

In architecture 2, all the coefficients of ( ) can be hardwired in 
implementation. Equation (4.5) can be further reduced as expressed in 
(4.6),

                                                                                                      (4.6)

Constant                Coefficient Numerical Value 
  C0 2 3 4 5 6

1
2 6 24 120 720

a a a a aa 0.606532118055556

  C1 2 3 4 52 3 4 31 61
2 6 24 720 720
a a a a a 0.606597222222222

  C2 2 3 41 3 6 64 14
2 6 24 720 720

a a a a 0.302604166666667

  C3 2 31 4 66 16
6 24 720 720

a a a 0.103472222222222

  C4 21 34 9
24 720 720

a a 0.021180555555556

  C5 7 2
720 720

a
0.008333333333333
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Now the hardware of architecture 2, having ‘x’ as input and 
‘exp(x)’ as output, is generated based on equation (4.6) and is shown 
in Fig. 6. It has 6 multipliers and 5 adders. 

Fig. 6. Hardware implementation of Exponential function using Taylor 
series Architecture 2. 

The input x has been specified in ranges from 0 to 1. All the 
coefficients are positive in Taylor series architecture 2. In this 
architecture unsigned fixed point number representation is used. Each 
stage has a wordlength of 20 bits, 1 bit for integer part and 19 bits 
fractional part. The coefficients are specified in Table II and the word 
length of each coefficient is 20 bits. The wordlength at the output 
stage is 18 bits. The precision achieved is 16.33 bits.

Fig. 7 shows the partial synthesized hardware of Taylor series 
architecture 2 in stm65nm process.  This shows the gate level 
connections of all the components in architecture 2.
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Fig. 7. Synthesized design (partial) of Taylor series architecture 2. 

4.1.3. Taylor Series Architecture 2 with pipelined stage
Taylor series architecture 2 has a limitation of working up to a 

few MHz of frequency range. In order to calculate the dynamic power 
consumption of Taylor series architecture 2 up to 1 GHz it is 
pipelined as shown in Fig. 8.  
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Fig. 8. Taylor Series Architecture 2 with pipelined stage 

Fig. 8 shows that a pipeline stage i.e. registers, is inserted in the 
middle of Taylor series architecture 2 which divides the critical path 
into half. Taylor series architecture 2 with pipeline stage has 
increased operating frequency which enables the dynamic power 
analysis to be performed at frequency of around 1GHz.
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Linear Interpolation Architectures 4.2.
Besides Taylor series architectures, interpolation based 

architectures are implemented to compare various performance 
metrics. In this regard three different architectures are suggested. 
Implementing Linear Interpolation based architecture needs Look-up 
Table (LUT) to store the pre-calculated values. To understand the 
basic concept of using an LUT, for linear interpolation architecture, a 
simple example is demonstrated below.  

4.2.1. Example of a simple LUT: 
In this section a simple 8x8 LUT is demonstrated. Firstly an 8x8 

LUT is designed in VHDL. The design is synthesized in Synopsis 
Design Vision to generate the hardware architecture. 

The following VHDL code shows an LUT design: 

 type t_lut_data is array (0 to 7) of
std_logic_vector(7 downto 0); 
   constant data1:t_lut_data:= (

                            "01000000", 
                            "01000000", 
                            "01000001", 
                            "01000001", 
                            "01000010", 
                            "01000010", 
                            "01000011",
                            "01000011" 
                             ); 

List1: Listing of VHDL code for a single 8x8 LUT
This design is also synthesized at gate level in Design Vision 

which is shown in Fig. 9. 
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Fig. 9. An 8x8 LUT after synthesis in Design Vision. 

The gate-level net-list of the LUT is generated using LPHVT 
technology library of stm065nm process. The following table III 
shows the resources (cells used) in the hardware of an 8x8 LUT.

CELLS USED IN HARDWARE OF AN 8X8 LUT. TABLE III.

Cell
Attributes 

Reference Library Area   

U8 HS65_LH_IVX9 CORE65LPHVT 1.560   
U10 HS65_LH_IVX9     CORE65LPHVT 1.560   
t_reg[1] HS65_LH_DFPRQX4 CORE65LPHVT 10.400 
t_reg[2] HS65_LH_DFPRQX4 CORE65LPHVT 10.400 
x_out_reg[0] HS65_LH_DFPRQX4 CORE65LPHVT 10.400 
x_out_reg[1] HS65_LH_DFPRQX4 CORE65LPHVT 10.400 
x_out_reg[6]    HS65_LH_DFPRQX4 CORE65LPHVT 10.400 
Total 7cells        55.120 
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4.2.2. Linear interpolation Architecture with 1 LUT:   
In this architecture, the exponential function is implemented using 

linear Interpolation approach as described in section 4.3.  The 
following mathematical equation (4.7) is a starting point of hardware 
architecture 1.    

                                                                                                (4.7) 
Generally, in-terms of hardware implementation, division is a 

highly complex function because it demands more resources than any 
other logical or arithmetic function. In order to avoid direct division, 
there is more investigation in various techniques, to find a simple 
logical solution. As there are fixed number of intervals in the 
architecture which means that the denominator in (4.7) is always a 
fixed fractional number.  

The equation (4.7) is reformed as (4.8) after fixing the 
denominator as v which is the inverse of difference of intervals.

                                                                                                (4.8) 

Substituting      into (4.8).

                                                                                                (4.9) 
   The hardware of interpolation architecture 1 using 1 LUT, with 

x as input and y(n) as output, is generated based on equation (4.9). 
The architecture is shown in Fig. 10.
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Fig. 10. Hardware implementation of exponential function using Linear 
Interpolation with 1 LUT. 

 In this architecture, a single LUT is used to store the 256 
intervals of the exponential function. Each value has a precision of 18 
bits. The values of intermediate intervals are generated using 
MATLAB. Both the base value and gradient difference are deduced 
from an LUT.  



38

The designs are meant to verify 1024 intervals between 0 and 1.
From the input ‘x’ is of word length 20 bits, 8 Most Significant 

Bit (MSB) bits are used for fetching the base value and next base 
value.  The next base value is fetched out to evaluate the gradient 
difference which is multiplied with the 12 Least Significant Bit (LSB) 
bits of input ‘x’. The base value and gradient difference are evaluated 
using a single LUT as shown in Fig. 5. The hardware consists of an 
LUT, two adders and one multiplier. The precision at the output is 
17.73 bits.

4.2.3. Linear interpolation Architecture with 2 LUTs with 
256 Intervals:

After discussing the interpolation architecture with one LUT, a 
new architecture was proposed by thesis supervisor wherein the aim 
is to reduce the latency of the architecture. Upon investigation of the 
solution it is decided to use two LUTs in order to store base value and 
gradient difference separately. 

To implement Linear Interpolation architecture with 2 LUTs 
consider (4.9). 

In the first LUT base value is stored. Each value has a 
precision of 18 bits. 
In the second LUT gradient difference is stored. Each 
value has a precision of 12 bits. 

The hardware architecture generated using this scheme is shown 
in the Fig. 11. It has two LUTs, one multiplier and one adder. 
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Fig. 11. Hardware implementation of exponential function using                          
Linear Interpolation method with 2 LUTs and 256 intervals. 

The input x has a word length of 20 bits. The first 8 MSB bits are 
used to address the base value and gradient coefficient from LUT1 
and LUT2 respectively.  The remaining 12 bits of LSB of x are used 
to multiply with the gradient coefficient to form the gradient 
difference which has a word length of 19 bits.  The base value is 
added with the gradient difference to form the final result. The word 
length of the output is 19 bits. In this architecture, latency is reduced 
to large extent, however memory size is increased. The precision 
achieved is 17.27 bits, which is less than the precision of architecture 
1 of 17.73 bits.
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4.2.4. Linear interpolation Architecture with 2 LUTs with 
128 intervals: 

The precision achieved in the previous two architectures is more 
than 17 bits however the requirement of this work is 15 bits.

.

Fig. 12. Hardware implementation of exponential function using                          
Linear Interpolation with 2 LUTs using 128 intervals. 

In order to reduce the size of the memory used, the number of 
intervals in this architecture is reduced to 128, compared to 256 in 
architecture 2.  Both the base value and gradient difference are 
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calculated using two separate LUTs with 128 intervals in each LUT. 
The hardware of this method is shown in Fig. 12. 

In this architecture two LUTs are used, each with the size of 128 
intervals.  

In LUT1 base value is stored. Each value has word length 
of 18 bits.
In LUT2 gradient difference coefficients are stored. Each 
value has word length of 12 bits.   

The input x has a word length of 20 bits. First 7 bits MSB are used 
to address the base value and gradient difference coefficient in LUT1 
and LUT2 respectively. The gradient difference coefficient is 
multiplied with the 13 bits LSB of input x. The wordlength of 
gradient difference is 20 bits. The base value and gradient difference 
are added to form the final result. The output wordlength is 19 bits 
consisting 2 bits of integer part and 17 bits of mantissa part. The 
hardware resources used in this architecture is 2 LUTs, one multiplier 
and one adder. The precision achieved using architecture 3 is 15.72 
bits which is better than architecture 1 and architecture 2. Hence 
architecture 3 is a better compromise between size of memory and 
precision.
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CHAPTER 5

5. Estimation of Error 
In this chapter error estimation metrics, which measure the 

accuracy of a system, are summarized for the architectures designed 
in chapter 4. The error results discussed here are after post synthesis 
simulations of the architectures using Design Vision.  

Taylor series Architecture 1: 5.1.
The upper half of Fig. 12 shows the error difference in linear 

scale. Whereas, the equivalent number of bits of the Taylor series 
architecture 1 with respect to real function are shown in the lower half 
of Fig. 13.

Fig. 13. Error difference of Taylor series architecture 1 in linear scale and 
total number of bits. 
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The details of error metrics are shown in Table IV. 

ERROR METRICS OF TAYLOR ARCHITECTURE 1. TABLE IV.

System has mostly negative errors and the interesting thing is that 
the worst case error is equivalent to 15.71 which satisfies the system 
requirements. 

Fig. 14 shows the histogram of probability error distribution of 
Taylor series architecture 1. It can also be noticed in the figure that 
the errors terms are negative in this architecture. 

Metric Quantity in 
Linear scale 

Equivalent
bits

Max Error    0.00000165592    19.20 
Min Error   -0.00001857604    15.71 
Mean Error   -0.00000697915    17.13 
Median Error   -0.00000682426      
Standard
Deviation 

   0.00000314758   

RMS Error    0.00000765546   
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Fig. 14. Histogram of probability error distribution of Taylor Architecture 
1. 

Taylor series Architecture 2: 5.2.
The upper half of Fig. 15 shows the error difference in linear 

scale. Whereas, the equivalent number of bits of the Taylor series 
architecture 2 with respect to real function are shown in the lower half 
of Fig. 15.
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Fig. 15.  Error difference of Taylor series architecture 2 in linear scale and 
total number of bits.   
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ERROR METRICS OF TAYLOR ARCHITECTURE 2TABLE V.

Table V shows that the equivalent bits for the worst case error is 
16.33 which is better than Taylor’s series architecture 1. Also there is 
very small difference between standard deviation and RMS error 
which shows the distribution to be even.

Fig. 16 illustrates the probability error distribution of Taylor 
series architecture 2. The distribution is on both sides of zero, with 
more peaks in the negative side than on the positive side. 

Metric Quantity in 
Linear scale 

Equivalent
bits

Max Error  0.00000530197     17.53 
Min Error  -0.00001213279     16.33 
Mean Error -0.00000169389     19.17  
Median Error -0.00000247776   
Standard Deviation  0.00000287994       
RMS Error  0.00000333994   
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Fig. 16. Histogram of probability error distribution of Taylor Architecture 2 
for exponential function implementation.

Linear Interpolation architecture with 1 LUT: 5.3.
The upper half of Fig. 17 shows the error difference in linear 

scale. Whereas, the equivalent number of bits of the Linear 
Interpolation architecture 1 with respect to real function are shown in 
the lower half of Fig. 17.
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Fig. 17. Error difference of linear interpolation architecture (using 1 LUT) 
in linear scale and total number of bits. 
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ERROR METRICS OF LINEAR INTERPOLATION METHOD USING TABLE VI.
1 LUT

Table VI shows that the equivalent bits for the worst case error is 
17.73 which is better than Taylor’s series architectures. It can also be 
noticed that due to very small difference between standard deviation 
and RMS error, the distribution is more or less symmetric.  

But from Fig. 18 of probability error distribution the peaks are 
more in the negative side compared to positive.   

Metric Quantity in 
Linear scale 

Equivalent
bits

Max Error    0.00000432       17.82 
Min Error    -0.00000459       17.73 
Mean Error   -0.00000085       20.16 
Median Error   -0.00000091        
Standard Deviation    0.00000164         
RMS Error    0.00000184  
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Fig. 18. Histogram showing error distribution of interpolation                          
method for exponential function implementation using 1 LUT. 

Linear Interpolation with 2 LUTs and 256 5.4.
intervals:

The upper half of Fig. 19 shows the error difference in linear 
scale. Whereas, the equivalent number of bits of the Linear 
Interpolation with 2 LUTs and 256 intervals with respect to real 
function are shown in the lower half of Fig. 19.
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Fig. 19. Error difference of linear interpolation architecture (with 2 LUTs 
and 256 intervals) in linear scale and total number of bits. 
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ERROR METRICS OF LINEAR INTERPOLATION METHOD USING TABLE VII.
2 LUTS (256 INTERVALS)

Table VII shows that the equivalent bits for the worst case error is 
17.26 which is better than Taylor’s series architectures. The mean 
error is located in the negative side.  

The following histogram in Fig. 20 illustrates the probability error 
distribution of Linear Interpolation method with two LUTs (using 256 
intervals). The error distributions mean value is negative and hence 
the error peaks are also negative. 

Metric Quantity in 
Linear scale 

Equivalent
number of bits 

Max Error    0.000004323      17.82 
Min Error    -0.000006351       17.26 
Mean Error   -0.000001466      19.38 
Median Error   -0.000001443  
Standard Deviation    0.000001775        
RMS Error    0.000002302   
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Fig. 20. Histogram of probability error distribution of interpolation method 
with 2 LUTs (using 256 intervals). 

Linear Interpolation with 2 LUTs and 128 5.5.
intervals:

The upper half of Fig. 21 shows the error difference in linear 
scale. Whereas, the equivalent number of bits of the Linear 
Interpolation with 2 LUTs and 128 intervals with respect to real 
function are shown in the lower half of Fig. 21. 
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Fig. 21. Error difference of linear interpolation architecture (with 2 LUTs 
and 128 intervals) in linear scale and total number of bits. 
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ERROR METRICS OF LINEAR INTERPOLATION METHOD USING TABLE VIII.
2 LUTS USING 128 INTERVALS

Table VIII shows that the equivalent bits for the worst case error 
is 15.72 which satisfies the system specifications. The mean error is 
located in the positive side.  

Fig. 22 shows the probability error distribution which has more 
peaks on the positive side compared to the negative side of the 
distribution. 

Metric Quantity in 
Linear scale 

Equivalent
number of 
bits

Max Error  0.000018522     17.52 
Min Error  -0.000005334     15.72 
Mean Error  0.000004556     17.74 
Median Error  0.000004195   
Standard Deviation  0.000004827   
RMS Error  0.000006636   
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Fig. 22. Histogram showing probability error distribution of linear 
interpolation architecture with 2 LUTs and 128 intervals.  
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          CHAPTER 6

6. Results
In this chapter area, timing and power results of architectures 

based on Taylor series and Linear Interpolation methods are 
presented and discussed. In this regard Design vision tool is used for 
area, timing and power results. Apart from Design Vision, Primetime 
is used for more accurate power results. These results are described in 
the following sections.  

Area6.1.
Comparison of area between Taylor series architectures and 

Interpolations based architectures can be summarized as follows;  
Taylor series hardware architecture 1 consists of 7 
multipliers and 7 adders. 
Taylor series hardware architecture 2 consists of 6 
multipliers and 5 adders.     
Interpolation architecture with 1 LUT and 256 intervals 
has 1 LUT, 1 multiplier and 2 adders. 
Interpolation architecture with 2 LUTs and 256 intervals 
has 2 LUTs, 1 multiplier and 1 adder. 
Interpolation architecture with 2 LUTs and 128 intervals 
has 2 LUTs, 1 multiplier and 1 adder. 

In the Tables IX and X, the area occupied by each one of 
architecture is presented using the technology libraries Low Power 
High Threshold Voltage (LPHVT) and Low Power Low Threshold 
Voltage (LPLVT) respectively, at a supply voltage of 1.2V at an 
operating frequency of 10MHz.
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AREA REPORT USING LIBRARY LPHVT USING 1.2VTABLE IX.

Fig. 23. Area comparison using LPHVT library 
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Area using LPHVT

Design Minimum Area 
Occupied (µm2)

Cells  

Taylor Arch 1       22386           4949   

Taylor Arch 2       20692           4531 

1 LUT        6010        1566   

2 LUTs        4568           1297   

2 LUTs (128  
intervals) 

       4192           1157   
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AREA REPORT USING LIBRARY LPLVT USING 1.2VTABLE X.

Fig. 24. Area comparison using LPLVT library 
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Taylor Arch 1            22169      4917 

Taylor Arch 2            20652      4543 

1 LUT             6095      1588 

2 LUTs             4622         1335 

2 LUTs (128  
intervals) 

            4222      1161 
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The above Fig. 23 and Fig. 24 represent the area comparison 
graphs of all the designs using technology libraries LPHVT and 
LPLVT respectively. 

In the table XI and XII, it can be noticed that the size occupied by 
the architecture using 1 LUT is large compared to the architecture 
using 2 LUTs.  It is due to fact that during synthesis stage flatten 
process is duplicating one more LUT with 18 bits word length. It can 
be concluded that Taylor series architecture has approximately 4 
times more area than that of linear interpolation architecture. 

For further information about hardware resources of Taylor series 
architecture 2 and Linear Interpolation, Table XI and Table XII are 
presented. The operating frequency is 10MHz and supply voltage of 
1.2V using technology library LPHVT.

 RESOURCES USED FOR TAYLOR ARCHITECTURE 2 USING TABLE XI.
TECHNOLOGY LIBRARY LPHVT AT 1.2V.

Number of ports:        46 

Number of nets:                            4554 
Number of cells:                            4531 
Number of combinational cells:    4508 
Number of sequential cells:        23 
Number of buf/inv:                          500 
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RESOURCES USED FOR LINEAR INTERPOLATION TABLE XII.
ARCHITECTURE WITH 2 LUTS AND 256 INTERVALS  USING TECHNOLOGY 

LIBRARY LPHVT AT 1.2V.

Power6.2.
Low power consumption is an important design criterion in a 

hardware design. The power results presented in this section are 
approximated using Design Vision.   

The power consumption of a design consist of total dynamic 
power, cell internal power, and cell leakage power. Table XIII shows 
the approximate power consumption of all designs using technology 
library LPHVT.   

POWER REPORT USING LIBRARY LPHVT AT 10MHZTABLE XIII.

Table XIV shows the power consumption results using 
technology library LPLVT.  

Number of ports:        42 

Number of nets:                            1328 
Number of cells:                            1297 
Number of combinational cells:    1277 
Number of sequential cells:        20 
Number of buf/inv:                          208 

Design with Total power 
(uW)

Cell internal 
power (uW)

Cell leakage 
power   (nW)    

Taylor 1 117.6216 59.7387    75.4156 
Taylor 2 115.9396    57.6809    66.4293 
1LUT  20.5189 11.0545    22.6205 
2LUTs  16.3632  9.0386    16.8428 
2LUTs
(128 intervals) 

 15.7136  8.7496    15.4545 
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POWER REPORT USING LIBRARY LPLVT AT 10MHZTABLE XIV.

It can be deduced from Table XIII and XIV that Taylor series 
architecture has at-least six times more total dynamic power 
consumption than the linear interpolation architecture.  

Timing6.3.
Timing is one of the key parameters in analyzing the performance 

of a design. To estimate the maximum speed of a circuit, the critical 
path is crucial aspect of a digital hardware. Critical path decides 
maximum speed of a design. Tables XV shown the critical path of all 
the designs using LPHVT technology library. Also Table XVI shows 
the critical path of all the designs using LPLVT technology library. 

TIMING REPORT USING LIBRARY LPHVTTABLE XV.

Design Critical path (ns)

Taylor Arch1      49.77 

Taylor Arch 2      40.32 

Interpolation with 1 LUT        9. 77 

Interpolation with 2 LUT        7.23 

Reduced LUT (128 intervals)        7.23 

Design with Total power 
(uW)

Cell internal 
power (uW)

Cell leakage 
power   
(uW)    

Taylor 1  144.0615  75.9570  17.1698 
Taylor 2  144.5094  75.0068  15.8027 
1LUT    24.6240  13.3810   4.7604 
2LUTs    18.4378  10.1787   3.3317 
2LUTs  (128 
intervals) 

   17.7640    9.8814   2.8861 
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TIMING REPORT USING LIBRARY LPLVTTABLE XVI.

Design Critical path (ns)

Taylor Arch1       34.83 

Taylor Arch 2       24.84 

Interpolation with 1 LUT        7.17 

Interpolation with 2 LUT        5.17 

Reduced LUT (128 intervals)        5.17 

From the above tables it can be concluded that, interpolation 
method is approximately 5 times faster compared to Taylor series 
method. However, interpolation method is a memory based design. 
As the number of intervals are increasing, the area and complexity 
increases.

Power estimation of Taylor series architecture 6.4.
2 using PrimeTime: 

In this section, power estimations using Synopsis PrimeTime is 
utilized. A logarithmic scale of frequency vs power is estimated in 
PrimeTime for Taylor series architecture 2:  
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Fig. 25. A log-log graph of frequency versus power calculation for                          
Taylor series architecture 2. 

Fig. 25 shows logarithmic plot of frequency vs. power. The power 
calculations are estimated for cell’s internal power and leakage 
power. At low frequencies such as near DC level the cell leakage 
power is of significant value compared to its internal power. At 
higher frequencies the leakage power is constant but the cell internal 
power increases exponentially. Using same set of constraints the 
power consumption at low frequencies is only that of static power 
consumption. However with the increase in frequency the dynamic 
power consumption comes into effect. Dynamic power consumption 
exponentially increases at higher frequency ranges. 
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Power Estimation for Linear Interpolation 6.5.
with 2 LUTs using PrimeTime: 

Fig. 26 shows the power results of linear interpolation architecture 
2 (with 2 LUTs and 256 intervals) in PrimeTime.     

Fig. 26. A log-log graph of frequency versus power calculation for a linear 
interpolation architecture with 2 LUTs and 256 intervals.  

In Fig. 26 a logarithmic plot of power consumption using linear 
interpolation architecture with 2 LUTs and 256 intervals is plotted. In 
this plot the power consumption for frequencies below 1 KHz is 
static. At higher frequencies the dynamic power consumption 
increases at a rate of 10 times per 10 fold increase in frequency.  
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Comparison of Taylor series Approach and 6.6.
Linear Interpolation Approach   

To compare power consumption between interpolation and Taylor 
series method, a combined graph is plotted as shown Fig. 27. 

Fig. 27. Comparison of power estimation between Taylor series 
methodology and linear interpolation approach.  

From the Fig. 27 it can be noticed that the power consumption of 
Taylor series architecture method is approximately ten times that of 
linear interpolation method, at any given frequency. Table XVII 
shows the dynamic power consumption results of Taylor series 
architecture 2 and linear interpolation method.  



69

TABLE OF COMPARISON OF POWER CONSUMPTION OF TWO TABLE XVII.
ARCHITECTURES USING PRIMETIME.

Frequency
(MHz) 

Total power 
consumption in Taylor 
architecture 2 

(W)

Total power consumption 
Interpolation architecture 
with 2 LUTs (W)

0.000001 7.6885e-08 1.7047e-08

0.00001 7.7749e-08 1.7116e-08
0.0001 8.6383e-08 1.7809e-08
0.0002 9.5980e-08 1.8579e-08
0.0004 1.1516e-07 2.0118e-08
0.0005 1.2475e-07 2.0888e-08
0.001 1.7272e-07 2.4736e-08
0.002 2.6869e-07  3.2430e-08
0.005  5.563e-07  5.5520e-08
0.01 1.0361e-06 9.3999e-08

0.1  9.6698e-06 7.8664e-07
1  9.6007e-05 7.7130e-06
10  9.5938e-04  7.6977e-05
100  0.0096 7.6961e-04
1000 0.0959 0.0076
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CHAPTER 7

7. Conclusions
Hardware implementation of exponential function had been 

successfully implemented using two different methods. In the first 
approach two architectures were implemented using Taylor series 
expansions;

One with general expansion of Taylor series application. 
Second is a novel architecture with reduced number of 
multipliers and adders. 

The second one is a Linear Interpolation method which has three 
different approaches;

Architecture with one LUT and 256 intervals. 
Architecture with two LUTs and 256 intervals. 
The third architecture uses two LUTs and 128 intervals. 

The emphasis is laid on minimum area, low-power design and 
with desired performance. The main aim of the thesis is to achieve 
precision of 15 bits however the designed methods are able to achieve 
more than 17 bits of accuracy in various approaches and its error 
behavior is studied. All the designs are successfully synthesized in 
stm65nm for minimum area, low-power and possible maximum 
speed. The dynamic power is recorded using Synopsis PrimeTime. 
Comparison of novel methodology of Taylor series is compared with 
the Linear Interpolation techniques, conclusions are drawn in terms of 
area, speed and power. 

It can be concluded from this work that the Taylor series method 
is a less memory intensive design compared to the Linear 
Interpolation method. However the Taylor series architecture 
consumes an area five times that of Interpolation approach.  The 
dynamic power consumption is ten times more in the Taylor series 
architecture than the linear interpolation architecture.  The Linear 
Interpolation method is at-least five times faster than that of the 
Taylor series implementation.  
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CHAPTER 8

8. Future work 
By using the novel methodology of Taylor series approximation, 

there is scope of implementing various other unary functions such as 
logarithmic function or trigonometric function. The LUT approach 
can also be substituted by other highly advanced approach like 
improved parabolic synthesis technique to increase the efficiency of 
the algorithm.  
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VHSIC         Very High-Speed Integrated Circuit 
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