
A
u

th
o

rizatio
n

 fo
r In

d
u

strial C
o

n
tro

l System
s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, September 2014.

Authorization for
Industrial Control Systems

Niklas Hjern
Jonas Vistrand

N
.H

je
rn

 &
 J.V

istran
d

Master’s Thesis

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2014-409

http://www.eit.lth.se

Authorization for Industrial Control Systems

Niklas Hjern
hjern.niklas@gmail.com

Jonas Vistrand
ael09jvi@student.lu.se

Department of Electrical and Information Technology
Lund University

Advisor:
Martin Hell

EIT
Ludwig Seitz

SICS
Andreas Bäckman

ABB

September 24, 2014

Printed in Sweden
E-huset, Lund, 2014

Abstract

Every day more and more devices are getting connected to the Internet, a phe-
nomenon commonly referred to as the Internet of Things[1]. Since security and
privacy are more important than ever before this presents an interesting prob-
lem. Suddenly devices with not even near as much computing power as a desktop
computer are tasked with performing heavy security computations designed to be
used in powerful systems with little resource and power limitations. This thesis
presents a solution for performing authorization for a resource limited system us-
ing a trusted third party, thus transferring the usually quite heavy authorization
computations from a resource constrained device to another device where no such
restrictions exists. When a client wishes to request a resource on the constrained
device it must first retrieve authorization information from the third party and
include this in the request. The authorization information is then validated by
confirming that it originates from the trusted third party using a shared secret.
In this thesis the constrained system is represented by an ABB control system
of model 800xA and by transferring the authorization cost to another system the
increased amount of resource usage on this device is kept to a minimum. It is also
shown that this increase is negligible compared to the increase in resource usage
when authentication and message protection in the form of TLS was implemented.

i

ii

Sammanfattning

Varje dag kopplas fler och fler apparater upp till internet, ett fenomen som van-
ligtvis kallas för Sakernas Internet[1]. Eftersom att säkerhet och integritet är
viktigare än det någonsin varit förut bidrar detta till ett intressant problem. Plöt-
sligt måste apparater med långt ifrån lika mycket processorkraft som en dator
utföra tunga beräkningar som är designade att användas i kraftfulla system med
små resurs- och kraftbegränsningar. Detta examensarbete lägger fram en teori
om hur man kan implementera ett åtkomstsystem på ett resursbegränsat system
genom att använda en betrodd tredje part och således överföra de vanligtvis tunga
beräkningarna från det resursbegränsade systemet till ett annat system utan så-
dana begränsningar. När en klient vill begära åtkomst till ett begänsat system
måste den först hämta behörighetsinformation från den tredje parten och inklud-
era denna information i begäran. Behörighetsinformationen valideras sedan genom
att verifiera att resultatet härstammar från den tredje parten med hjälp av en
delad hemlighet. I det här examensarbetet representeras det resursbegränsade
systemet av ABBs kontrollsystem 800xA och genom att överföra kostnaden för
åtomstberäkningarna till ett annat system hålls den ökade resursförbrukningen
till ett minimum. Det visas också att denna ökning är försumbar jämfört med
ökningen av resursförbrukning när autentisering och meddelandeskydd i form av
TLS implementerades.

iii

iv

Contents

1 Introduction 1
1.1 Purpose and Goals . 1
1.2 About SICS . 2
1.3 About ABB . 2
1.4 Report Structure . 3

2 Background Theory 5
2.1 Message Authentication Code . 5
2.2 Transport Layer Security . 6
2.3 Public Key Certificate . 7
2.4 Manufacturing Message Specification 8

3 Proposed Framework 9
3.1 Proposed Solution . 9
3.2 Design Goals . 10

4 Choosing Technologies 13
4.1 Hardware . 13
4.2 Software . 13
4.3 Security Considerations . 14
4.4 Summary . 16

5 Implementation 17
5.1 Delimitations . 17
5.2 Communication between Involved Parties 17
5.3 Token . 18
5.4 Access Control Server . 20
5.5 Client - Control Builder . 20
5.6 Service Provider - Controller . 23

6 Evaluation of the Implementation 27
6.1 Method . 27
6.2 Results . 29

v

7 Discussion 33
7.1 Memory Usage . 33
7.2 Token Processing . 34
7.3 Accessing Protected Resources . 35

8 Conclusions 39
8.1 Summary . 39
8.2 Suggestions of Future Work for ABB 40
8.3 Related Work . 41
8.4 Future Work . 43

A Division of work 51

B Test Results 53

vi

List of Figures

3.1 A graphical overview of Trinity . 10

5.1 The communication stacks of the involved parties 18
5.2 Sequence diagram of communication in Trinity 21
5.3 Token reception . 24

6.1 Controller 1 - Connection time . 31
6.2 Controller 2 - Connection time . 31
6.3 Controller 3 - Connection time . 32

7.1 Sequence diagram of communication in Trinity with a piggybacked token 36

8.1 Example of a token in bit format 45

vii

viii

List of Tables

5.1 Token description . 19

6.1 Size of firmware in different configurations 29
6.2 Token processing, mean of 100 measurements 30
6.3 Token validation, mean of 100 measurements 30

B.1 Trinity firmware - Connection duration during Show Downloaded Items 53
B.2 Trinity firmware - Token connection duration during Show Downloaded

Items . 54
B.3 Trinity firmware - Connection duration during Show MMS Variables . 54
B.4 Trinity firmware - Token connection duration during Show MMS Vari-

ables . 55
B.5 Trinity firmware - Connection duration during Show MMS Connections 55
B.6 Trinity firmware - Token connection duration during Show MMS Con-

nections . 56
B.7 Trinity firmware - Connection duration during Show Firmware Infor-

mation . 56
B.8 Trinity firmware - Token connection duration during Show Firmware

Information . 57
B.9 TLS firmware - Connection duration during Show Downloaded Items 57
B.10 TLS firmware - Connection duration during Show MMS Variables . . 58
B.11 TLS firmware - Connection duration during Show MMS Connections 58
B.12 TLS firmware - Connection duration during Show Firmware Information 59
B.13 Original firmware - Connection duration during Show Downloaded Items 59
B.14 Original firmware - Connection duration during Show MMS Variables 60
B.15 Original firmware - Connection duration during Show MMS Connections 60
B.16 Original firmware - Connection duration during Show Firmware Infor-

mation . 61

ix

x

Chapter1
Introduction

In a world where the Internet usage is growing at a rate never before seen along
with more and more devices getting connected to the Internet, the need for security
and privacy has never been greater. This relatively new occurrence of connecting
devices other than computers to the Internet, like e.g. cellphones, alarms and
game consoles, is commonly known as the Internet of Things [1]. Connecting these
devices to the Internet provides a challenge not only because that they are much
more resource limited than the standard computer but also because of the number
of devices connected to networks will greatly increase, increasing the load on said
networks, leading to further constraints. Despite their resource constraints many
of these devices are perfectly capable of handling security measures, but doing so
will impede the devices regular functionality making implementing them infeasible.
Therefore any costly security measures on these devices must be streamlined or
kept to a minimum, security measures that in many cases are an absolute necessity.
Imagine having your pacemaker, a very resource constrained device, connected to
a network. It would then be of utmost importance to implement some sort of
authorization scheme on the device, deciding who should gain access to the device
and what resources users should have access to. An authorization scheme for the
previously mentioned example could consist of giving your doctor access to the
device’s read and write resources, you as a user access to the read resource and
deny access to all the resources for everyone else. This means that your doctor
would both be able to read your heart-rate data and set the pacing mode of your
pacemaker, whereas you would only be able to read your heart-rate data.

1.1 Purpose and Goals

The purpose of this project is to construct and implement an authorization system
with secure communication on a system with constrained resources, such as RAM,
flash memory and network capacity. The access control mechanism is based on a
design suggested in [2] and is to be implemented on a control system provided by
ABB. Traditionally when a user tries to access a protected resource on a remote
system, the access control evaluation is done on the protected system itself, an
evaluation that can be quite costly in terms of computing time. In many cases the
remote system will be a computer without any real resource limitations, thus per-
forming such an evaluation would not present a problem. However in the world we

1

2 Introduction

live in now, not only computers are connected to the Internet but also embedded
systems designed to perform specific tasks and to be power efficient while doing
them, making resource limitations an impending problem. In [2] it is therefore
suggested that the costly access control evaluation is to be done on a trusted third
party, thus transferring this cost onto a system with no resource limitations.

The theory tested in this project is that this authorization system is much more
cost efficient for a resource limited system to perform than doing a traditional
access control policy evaluation. Hopefully this cost can be shown to be negligi-
ble compared to the cost of authenticating a client, which is a prerequisite for an
authorization system, and encrypting the communication, preventing man-in-the-
middle attacks. The cost of performing the evaluation will be measured in time,
heap utilization and program size on the control system provided by ABB.

1.2 About SICS

This Master Thesis was conducted in collaboration with the Swedish Institute
of Computer Science (SICS). SICS is a non-profit research institute for applied
information and communication technology. By conducting research in the afore-
mentioned fields, in collaboration with small and large companies, their goal is to
strengthen the competitiveness of industrial companies located in Sweden. These
goals are to be achieved by suggesting, developing and promoting new research
technologies, both towards the industry but also towards society at large.[3]

1.3 About ABB

This Master Thesis was also conducted in collaboration with ABB, one of the
largest power and automation companies in the world with approximately 150,000
employees worldwide. ABB’s activity can be divided into five different divisions
that all cater to specific industries. ABB has a long history of inventing and
creating new technologies that now form the basis of our modern society. As of
now they are the worlds largest supplier of e.g. industrial motors and drives,
generators to the wind industry and power grids worldwide.[4]

Introduction 3

1.4 Report Structure

Chapter 2 - Contains the background theory of several different technologies used
in this thesis.
Chapter 3 - Contains a proposal of the solution to the presented problem.
Chapter 4 - Contains the reasoning behind why specific technologies were used
in this thesis.
Chapter 5 - Contains an explanation of the implementation of the proposed
system.
Chapter 6 - Contains the result of the tests performed on the system.
Chapter 7 - Contains the discussion of the results.
Chapter 8 - Contains the conclusion of the thesis.

4 Introduction

Chapter2
Background Theory

In order to realize a fully functioning access control system several different tech-
niques have been used. In this chapter a brief overview is given of these different
techniques.

2.1 Message Authentication Code

A Message Authentication Code (MAC [5]), is used as a way of authenticating a
message received digitally. It provides a way of detecting if the message has been
changed or tampered with in any way by adding a piece of information to the end
of the message. This piece of information has been calculated using the message
and a secret key that is shared between the sender and the receiver. The defini-
tion of MAC does not specify the means of calculation and a number of schemes
has been proposed and implemented, including Hash-based MAC (HMAC [6]) and
Universal MAC (UMAC [7]) . A MAC differs from other message authentication
schemes such as Digital Signatures, e.g. DSS [8], as it uses symmetric keys instead
of asymmetric keys. This leads to a loss of some of the functions of e.g. DSS such
as non-repudiation, where a public key of a sender can be used to prove to others
that the information was actually signed by him/her. Should a conflict arise in
symmetric key cryptography one party can always claim that the information was
created by the other as no personal information is put on the message, anyone in
possession of the shared secret can create exactly the same message. Using sym-
metric keys however leads to much less demanding calculations and are therefore
suitable for cases where computational power is limited. [5]

2.1.1 HMAC

Hash-based Message Authentication Code (HMAC), is an implementation of MACs
that uses cryptographic hash functions to calculate the MAC. Any iterative hash
function can be used, e.g SHA-1 [9] or MD5 [10], making it a very flexible imple-
mentation with many uses. The message is hashed using the function of choice
together with a secret key, a key that has been pre-shared with the recipient of the
message. The string of information, the MAC, created by doing this is appended
to the message and upon receiving the message the recipient is then able to use
the pre-shared key to perform the same hash function on the message to verify

5

6 Background Theory

that this gives the same MAC. If it should differ from the one received with the
message the recipient knows that the message has changed along the way or that
has been generated by an unauthorized party.
The security of HMAC depends both on the choice of hash function and the
choice of the secret key. The strongest possible hash function should be chosen in
all cases apart from where other criteria dictates otherwise, such as e.g. limited
computational power. The key should be chosen at random to prevent key forgery
attacks and should be at least as long as the output byte-length of the chosen hash
function, e.g. 20 bytes for SHA-1. Using a longer key than the output length will
not improve the strength of the function considerably. [6]

2.2 Transport Layer Security

Transport Layer Security (TLS) is a cryptographic network security protocol that
consists of two layers, the TLS Record Protocol and the TLS Handshake Protocol,
that provides privacy and message integrity over a network. An important prop-
erty of TLS is that it is application layer independent, meaning that higher level
protocols can be layered on top of TLS transparently.[11]

2.2.1 TLS Record Protocol

The TLS Record Protocol is located on top of a reliable transport layer protocol
(e.g. TCP [12]) and is what provides the connection with privacy and message
integrity.[11]

• Privacy is achieved by encrypting the data to be sent with symmetric keys
that are generated, uniquely for each session, from a master secret agreed
upon using the TLS Handshake Protocol.

• Message integrity is provided by including a message check in the form of a
keyed MAC generated through a secure hash function. This step is optional.

2.2.2 TLS Handshake Protocol

Before a TLS connection is established the communicating parties must perform
a handshake with each other. During the handshake the parties authenticate
themselves to each other using asymmetric keys1 that is often part of a certificate
(e.g. X.509) and exchange necessary security parameters needed for the TLS
Record Protocol. The steps performed during this handshake are as follows [11]:

• The parties exchange hello messages agreeing on algorithms, exchange ran-
dom values and check if there is an old session waiting to be resumed.

• The parties exchange the cryptographic parameters necessary to agree on a
premaster secret.

1Mutual authentication is in fact optional, often only server authentication is per-
formed.

Background Theory 7

• Authentication is performed by the parties exchanging certificates and cryp-
tographic information with each other. This step is optional.

• With the premaster secret and the random values exchanged earlier a master
secret is generated.

• Security parameters is provided to the TLS Record Layer.

• The communicating parties verify that they have generated the same secu-
rity parameters and that no tampering was done to the handshake by an
attacker.

2.3 Public Key Certificate

A public key certificate is an electronic document that is used to identify users on a
network. The certificate binds a public key to an identity, containing information
such as a name and an email address, using a digital signature. Typically this
signature will be of a certificate authority (CA), a highly trusted third party, that
guarantees that the public key and the identity belong together. [13]

2.3.1 X.509

X.509 is an ITU-T 2 standard in cryptography for Public Key Infrastructure and
Privilege Management Infrastructure which specifies, for example, standard for-
mats for public key certificates and certificate revocation lists. The X.509 system
makes use of a CA, an entity which issues digital certificates binding a public key
to a particular distinguished name. In an X.509 system the validity of the certifi-
cate is checked by verifying that it is signed by a CA for that system and also that
it has not been revoked. [13]

2.3.2 Certificate Structure

The structure of the X.509 certificate v3 is defined as follows [13]:

• Certificate

• Version
• Serial Number
• Algorithm ID
• Issuer
• Validity

• Not Before
• Not After

• Subject
• Subject Public Key Info

• Public Key Algorithm

2A sector of the International Telecommunication Unit that makes standards for
telecommunication

8 Background Theory

• Subject Public Key
• Issuer Unique Identifier (Optional)
• Subject Unique Identifier (Optional)
• Extensions (Optional)

• Certificate Signature Algorithm
• Certificate Signature

2.4 Manufacturing Message Specification

The Manufacturing Message Specification (MMS) is a standardized system for
exchanging real-time data between networked devices. It defines a set of standard
objects such as variables, domains and journals on which operations like read
and write can be performed, a set of standard messages to be exchanged and
a set of standard encodings for these messages. MMS is designed to function
independently, both of the tasks being performed and the developer of the device
in question and is therefore the protocol of choice for many makers of industrial
networked devices. The task independence means that e.g. production data is
accessed in exactly the same way as energy management data, which is something
that greatly streamlines the process of adding additional devices such as sensors
to an existing network. [14].

Chapter3
Proposed Framework

As proposed in [2] the access control system will be implemented according to the
following description. For the purpose of this report and for the simplification of
comparisons with other similar systems the system implemented and tested in this
project will be referred to as Trinity.

3.1 Proposed Solution

A client wishes to gain access to a service provider (SP). This can be any machine
capable of delivering a service to a user but in this project the SP is considered
as having constrained resources in the sense that it should focus all its memory
and processing power on its designated tasks. As a result of the lack of available
resources the SP is assumed to be unable to run any kind of additional heavy
processes such as the parsing of user databases. This is however necessary in order
to perform access control evaluation on a user, which is why in this system there
exists a third party known as an Access Control Server (ACS). This ACS is trusted
by the SP hence it is possible to let the ACS perform the access control on behalf
of the SP. A graphical overview of a typical scenario is given in figure 3.1.

0. Secret keys are distributed to the ACS and SP creating a trusted relationship
between the two. The ACS is also configured with the access control policies
of the SPs it services.

1. A client sends a request to the ACS detailing which SP and which service
on this SP it wishes to gain access to.

2. The ACS checks the client request and if access is granted responds by
sending a ”token” to the client. This token contains a representation of
the ACS’s access control decision. The tokens integrity is protected by a
Message Authentication Code (MAC) created by the ACS using a secret
known only by the ACS and the SP.

3. The client sends a request and the token to the SP.

4. The SP verifies that the token has come from the ACS using the aforemen-
tioned shared secret and checks that the token was indeed issued to the
requesting client and for the requested resource. Finally the SP responds
by giving the client access to the requested service.

9

10 Proposed Framework

0

0

1

2

34

Client

ACS

SP

Figure 3.1: A graphical overview of Trinity

3.2 Design Goals

When designing Trinity the following aspects will be considered.

• The size of the token should be kept to a minimum, both during transmission
and in storage on the SP.

• The user experience should remain unchanged, an end user should not have
to learn how to use Trinity.

• Token processing on the SP should be executed as efficiently as possible
with little to no impact on the normal operating procedures of the system.

• The impact on the size of the firmware of the SP should be minimal.

• Token transmission from the Client to the SP should be done with as little
impact on the SP as possible.

3.2.1 Security Considerations

The security considerations of Trinity match those presented in [2] and can be
summarized by the following points.

• Trinity aims to protect both the services given by the SP and the SP itself.

• There must exist a trusted relationship between the SP and the ACS.

• The shared secret between the SP and the ACS must be protected.

• The ACS is considered a single point of failure of the system, should this be
compromised Trinity can no longer be trusted. The ACS must therefore be
very well protected against all sorts of attacks.

Proposed Framework 11

• In order to properly authenticate clients the ACS and the SP must be able
to identify them.

• To protect against eavesdropping and traffic manipulation the communica-
tion in Trinity should be encrypted and integrity protected.

• The token must be integrity protected in order to guarantee correct autho-
rization.

• The tokens being sent to the SP should be stored securely on the machine.

12 Proposed Framework

Chapter4
Choosing Technologies

4.1 Hardware

The hardware used in this project is an 800xA controller provided by ABB. The
hardware specifications of this product are a trade secret but for all intents and
purposes it can be considered to have considerable resource constraints. Not in
the traditional sense, since it does have adequate processing power, but more in
the sense that all its resources should go to running the applications on it which
leaves a very constrained share for security measures. The controller has built in
support for communication encryption and client authentication using SSL/TLS
by using the OpenSSL library since this has been implemented by ABB in a
previous research project. This controller will serve as the resource limited service
provider (SP).

4.2 Software

4.2.1 Control Builder

This is a Windows application written by ABB that is used to program and perform
general operations on their controllers. Originally the communication between the
controller and the Control Builder offered no authentication or authorization in
any form. However for this thesis a Control Builder version with TLS-support will
serve as the client.

4.2.2 Access Control Server

There exist many different implementations of an Access Control Server1. Not only
would implementing one of these systems add no scientific value but it would also
be infeasible to do so due to the limited scope of this thesis. Instead a simplified
version will be written that includes only the options needed for this thesis. The
interface between the client and the ACS will however have full functionality so
that the simplified ACS can be easily replaced by a real ACS.

1DIAMETER AAA[15], RACF[16]

13

14 Choosing Technologies

4.2.3 OpenSSL

OpenSSL is an open source cryptographic library that implements full support for
the SSL (v2/v3) and TLS (v1) protocols. The project is volunteer-driven and can
be used freely for both commercial and non-commercial purposes[17]. It is the most
widely used cryptographic library on the Internet and offers both full support of
TLS and a large library of cryptographic functions, including HMAC. This added
to the fact that the hardware provided by ABB already includes support for this
library makes it ideal for this project.

4.3 Security Considerations

4.3.1 Encrypted Communication

An important feature for Trinity to provide proper security is that the communica-
tion between the different parties can be done securely, i.e. that the communication
is encrypted in some way. There are several reasons as to why this is important.
An attacker is able to listen to traffic that is not encrypted, known as eavesdrop-
ping, thereby possibly finding high-value information such as the type of services
a SP is able to perform (useful when doing searches for possible high-value targets
where e.g. the service ”SetReactorTemp” would make the attacker able to guess
that the SP is used in a nuclear power plant). This also means that an attacker can
get his hands on a valid token. These tokens might later be used to impersonate an
authorized client, which would be very bad as this enables an attacker to actually
interact with the system thereby breaking the actual access control mechanism.

There exist many technologies for encrypting communication over networks where
one of the most widely used is TLS. TLS is as mentioned above supported in the
800xA controller through OpenSSL and will therefore be used in this thesis.

4.3.2 Trusted Relationship SP-ACS

As mentioned in the proposed solution there needs to exist a trusted relationship
between the Service Provider and the Access Control Server. This is achieved by
letting them share a secret, which here consists of a pre-shared key. As this key
is such an important requirement for the system it should be protected by various
layers of security in order to prevent it from being stolen. This is however consid-
ered as not part of this thesis and is left for future implementations.

The trusted relationship exists partly to ensure that the token used by the client
to access the SP is in fact issued by the ACS. This is done by adding a MAC to
the end of the token. This MAC also ensures that the token is integrity protected.
The reason for using a MAC over e.g. Digital Signatures is explained further in
section 2.1 but involves computational power. There exist many different types of
MACs and the one used in this solution is a SHA-1 based HMAC, mainly because

Choosing Technologies 15

of the built in support for this scheme in OpenSSL2. The choice of the SHA-1 hash
algorithm sets the length of the pre-shared key to 160 bits, the output hash length
of SHA-1.

4.3.3 Securing Identities

In an access control scheme the identities of the users needs to be well defined
and impossible to fake. If the only criteria had been that each user should have
a unique identity any naming or numbering scheme could have been used in this
solution. However, since each by the ACS issued token has to be linked to a user
identity, each user identity has to be linked to the actual user and consist of some-
thing that is not possible for an attacker to modify in order to use a token that
was not intended for him/her. One might argue that since the communication is
encrypted there is no way for an attacker to intercept a token anyway, so why
bother with a complex naming scheme? This is of course true, but on the Internet
today this extra layer of security can still be considered necessary as an encryption
can be circumvented.

A way of ensuring that the identities can still be used even if the encryption
is broken is to use the X.509-certificates from the TLS-connection between the
user and the ACS as user identities. As these are issued by a trusted Certificate
Authority they are very hard to fake and thus fulfill both of the presented require-
ments. Should the encryption of the communication fail the system is susceptible
to eavesdropping, but the fact that the attacker cannot fake his/hers own iden-
tity ensures that no actual modification of the traffic is possible, keeping the core
function of the system intact. The X.509-certificates contain a parameter called
Distinguished Name, which can be extracted using OpenSSL functions. These are
what will serve as client identities in this thesis.

4.3.4 Protection of Involved Nodes

The nodes that are most prone to become targets of a coordinated attack are the
Service Provider and the Access Control Server. These must therefore be well
protected by different levels of security. Possible attacks on these nodes include
the use of a Denial-of-Service attack [18] in order to overload them, the extraction
of secret information stored on them and, in the case of the ACS, physically dis-
connecting the node in order to shut down the entire system.

In order to initiate communication with any of these nodes a client must first
set up a valid TLS-connection with it, which gives an inherent protection against
DoS-attacks that center on sending multiple requests or fake tokens. If a client is
not able to set up the TLS-connection, which implies that the client has not been
authorized by a trusted Certificate Authority, it will not be able to send neither
requests nor tokens to any node. Apart from this no other protection has been
implemented against DoS-attacks.

2Note that SHA-1 is no longer considered secure, other possibilities are examined in
chapter 8.

16 Choosing Technologies

Extraction of secret information from the nodes such as pre-shared keys and user
access data would lead to the whole system being compromised, as an attacker
would then be able to generate valid tokens and gain access to any service present
on the SP. However, protection of this information on these nodes is not considered
a part of this thesis and is left for future implementations.

Being a single point-of-failure the ACS would be considered a high-value tar-
get. The implementation of a secure ACS is however not considered a part of this
thesis and it is henceforth assumed when discussing the ACS that, since it is not
resource constrained, it is possible to implement sufficient security measures on
this machine.

4.4 Summary

• An ABB 800xA controller will serve as the Service Provider.

• The Control Builder application from ABB will serve as the Client.

• An Access Control Server will be written solely for this thesis.

Based on the security considerations mentioned above the following techniques
will be used:

• TLS to encrypt communication between nodes. OpenSSL to implement
TLS.

• The Distinguished Name from the X.509-certificates as identification of
clients.

• HMAC to ensure message integrity of token.

Chapter5
Implementation

The system consists of 3 parties: the Service Provider (Controller), the Client
(Control Builder) and the Access Control Server. An overview of the implemen-
tation is given below.

5.1 Delimitations

The controller and the CB communicate through an application level protocol
called MMS that is layered on top of TCP. Due to time limitations and the fact
that the system is only a prototype it was decided that only two different MMS
resources were to be protected by the authorization system, namely the initiate
Upload and Download requests.

For the purpose of this project there is no need to implement the ACS as a realistic
access control engine, since this adds no scientific value and such products are well
known. Instead the ACS simply parses a text file containing a few identities with
their respective authorization as a simulation of an actual access control engine.
The interface between the client and the ACS is however built with full function-
ality so that the simplified ACS can easily be replaced with a real access control
engine.

5.2 Communication between Involved Parties

Many choices made in the implementation of Trinity are based on the structure
of the existing communication between the Control Builder and the controller.
The following section describes the communication between a controller and the
Control Builder where TLS has been implemented.

All communication between the two parties is done using the MMS protocol. For
each MMS request made by the the Control Builder to a controller a full TLS
handshake is performed, the MMS request is sent and the TLS connection is torn

17

18 Implementation

Data Link

IP

TCP

TLS

MMS

Data Link

IP

TCP

TLS

MMS

Data Link

IP

TCP

TLS

""

Data Link

IP

TCP

TLS

""

Controller ACSControl Builder

Physical Layer Physical Layer

Figure 5.1: The communication stacks of the involved parties

down1. Should the request consist of multiple MMS messages a single TLS connec-
tion is still made. Wishing to preserve as much of the original design as possible
Trinity will have to work using this communication structure.

The Control Builder, which serves as the client, will apart from being able to
communicate with the controller also have to be able to communicate with the
Access Control Server. Only being used to request and send tokens, this commu-
nication requires no additional upper layer protocols above TLS and will therefore
be implemented separately from the rest of the communication done by the Con-
trol Builder.

Figure 5.1 depicts how the different communication stacks interact in all involved
parties.

5.3 Token

The structure of the token implemented in Trinity is based on the one presented
in [2] and consists of a string with the following characteristics, further described
in table 5.1:

{SN:xx;IS:xx;SI:xx;TA:xx;VF:time_int;VU:time_int;AC:11111111}HMAC:xx

1This actually depends on the operation mode of the Control Builder. Should it be
”online” with a controller the TLS connection is not always torn down when a request
has been processed, this varies between different requests. Being ”online” is however not
considered as the normal working scenario of Trinity as it is a time consuming process
used mainly when doing more substantial controller configuration.

Implementation 19

Table 5.1: Token description

Encoding Description Size (Bytes)
SN Sequence Number 8
IS ISsuer 10
SI Subject Identifier 200
TA TArget 15
VF Valid From 10
VU Valid Until 10
AC ACcess 1
HMAC HMAC value 20

Each new value begins with the description of the value followed by a colon and
ends with a semicolon. The entire token is surrounded by braces in order to easily
be able to extract the parts of the token upon which the HMAC should be cal-
culated. The decision to have the token be a string value is based partly on the
fact that the 800xA controller implements a string library in its original configu-
ration, but also that it increases readability and thereby eases debugging. Other
possible structures are discussed in chapter 8. The Sequence Number of the to-
ken is used for token revocation, although no such functionality is implemented in
Trinity. The Issuer is the identity of the ACS and can be used to quickly verify
if the token is issued by a valid ACS, something that will otherwise reveal itself
upon calculation of the HMAC. The issuer can also be used if there exist multiple
issuers in order to know which pre-shared key to use when calculating the HMAC.
The Subject Identifier is the identity of the client to which the token is intended.
In Trinity the Subject Identifier is the distinguished name of the X.509 certificate
used by the client to set up the TLS connection with the ACS and later with the
controller. As the length of the distinguished name can vary between certificates
a redundancy has been built in that allows for names to be as long as 200 bytes.
The Target is the IP address of the controller on which the token is intended to
be used. The values Valid From and Valid Until present the validity time of the
token in UNIX time. The Valid From value presents the possibility to give out
tokens ahead of time. Possible use cases for this might include a system engineer
getting access to perform system updates only after a certain time has passed to
allow users to complete their current work.

The design of the Access part of the token has gone through a number of dif-
ferent iterations. It bases itself on how token exchange is performed between the
involved parties. If a unique token is requested and sent to the controller for ev-
ery request sent by the Control Builder the token has to grant access to a single
resource. This was the initial plan, however because of the structure of the exist-
ing MMS communication this proved to be an inefficient solution. It was instead
decided that a token should be sent once and then stored on the controller to be
retrieved and checked every time the Control Builder requests access to a protected

20 Implementation

resource. The Control Builder will then in turn remember if a token has been sent
in order to avoid sending unnecessary tokens. To handle this a single token can
grant or deny access to a number of resources. In Trinity the total number of re-
sources is eight as they are represented as particular bits in one byte. This number
is however very easily increased should it be needed for future implementations.
If access is granted to a resource the bit in question is 1, otherwise it is 0. The
HMAC is calculated on the part of the token surrounded by the braces, including
the braces themselves, and appended to the end of the token string.

5.4 Access Control Server

The ACS is a written entirely for the purpose of this project. It has the properties
of a basic TLS server that waits for an incoming TLS connection from a client.
During the TLS handshake the client and server authenticate each other using
X.509 certificates that were generated by the OpenSSL library and signed by
a certificate authority. After the connection is established the server waits for
a token request from the client. When the request is received the ACS parses
through a text file containing all authorization information looking for the access
rights for the identity given by the certificate. If the CB has any access rights on
the controller a token is created and integrity protected with a HMAC, created
using a shared secret between the ACS and the controller, and sent as a response
to the client. If no access rights can be found the connection is terminated and
the client receives no access token.

5.5 Client - Control Builder

For this implementation of Trinity the Control Builder will serve as the Client that
is trying to get access to a protected resource in a Service Provider (Controller).
At the start of this project there was no support for access control implemented
in the CB that could be built upon. Thus the access control system needed to be
implemented from scratch and integrated into the existing communication proto-
cols of the CB and the controller. When implementing the access control system it
was important to remember that for the purpose of this thesis the CB, unlike the
controller, is considered to have unlimited resources. This means that as much of
the workload as possible should be distributed to the CB and not the controller,
and that this work should be done before a connection is established with the
controller, affecting the controller as little as possible. One important aspect of
limiting the workload on the controller is to avoid unnecessary transmissions of
tokens. This is accomplished by letting the CB perform simple checks on the plain
text part of the token before it is sent and also having it keep track of what tokens
the controller already has that belongs to the CB in question. With respect to all
this, the functions that needs to be implemented on the CB are:

• Retrieval of a token from the ACS.

• Storage of that token on the CB.

Implementation 21

ACS Control Builder Controller

Access request

Token

TLS teardown

TLSTLS Encrypted communication

Token

MMSMMS

TLSTLS Encrypted communication

Request
Response

MMSMMS

TLSTLS Encrypted communication

TLS setup

TLS setup

MMS setup

MMS teardown

TLS teardown

TLS setup

MMS setup

MMS teardown

TLS teardown

Figure 5.2: Sequence diagram of communication in Trinity

22 Implementation

• Check if the token should be sent to the controller.

• Sending the token to the controller.

5.5.1 Retrieving Token from the Access Control Server

To be able to connect to the ACS from the CB the original protocol layers on the
CB were circumvented as they rely on the communication being done using the
MMS protocol, whereas the top layer protocol of the ACS is TLS. Therefore a
separate communication stack was implemented on the CB that has TLS as the
top layer protocol. When the CB needs to retrieve a token it generates a token
request that consists of a string that contains the IP address of the controller that
the CB want to gain access to. The characteristics of this request can be seen
below.

{TA:xxx.xxx.xxx.xxx}

After the request is generated a TLS connection is established between the CB
and the ACS and the request is sent. If any kind of access is granted a token is
generated in the ACS containing all the authorization information that the CB in
question has on the controller that it wanted access to. If no access is granted the
ACS terminates the connection and an error message is displayed for the user on
the CB.

5.5.2 Token Validation

When a token is retrieved from the ACS it is reasonable, although not mandatory,
that the CB performs some checks to see if the token received should be sent to
the controller. The check implemented in this project is that the CB verifies that
the token has become valid and that is it not yet expired. If the token should have
expired it is to be discarded but if the token is not valid yet it is stored in the token
storage to avoid additional retrievals from the ACS, since a new retrieval will only
result in the same token. The not yet valid token is not sent to the controller until
it is valid, instead when the CB tries to access a protected resource with a token
that is not yet valid, a pop-up will appear on the CB telling the user when access
will be granted. This means that no token will be requested from the ACS or be
sent to the controller until the token has become valid. It is important to note
that there is no need to check if the token grants access to the controller in the
CB since the ACS only sends a token if any kind of access is actually given. There
is also no to need check which access has been given. This is due to the fact that
the properties of the resource request is unknown to the operating layer of Trinity
at the time when the MMS connection is established. Hence it is not possible for
the CB to check if it has access to the resource it is going to request before the
MMS connection is set up. The request call could still be blocked from the CB
but since the MMS connection is set up anyway and the connection is by far the
most resource consuming operation it was deemed unnecessary to implement such
a check on the CB.

Implementation 23

5.5.3 Token Storage

Storing tokens not only on the controller but also on the CB allows the CB to keep
track of the tokens already stored on the controller concerning the CB in question,
thus avoiding unnecessary retransmissions of tokens. The tokens are saved in a
hash table with the token request as the key and a struct, containing the entirety
of the token and also a flag if the token has been sent or not, as the value. The
reason for saving the tokens in a hash table is that this structure provides the
needed functionality, as one value can be mapped to another. An implementation
of a hash table already exists in the original firmware. Saving the entire token
drastically reduces the amount of retransmissions needed between the ACS and
the CB. Now if the token lists on the CB and the controller should become out of
sync and the CB thinks that the controller has a token that has in fact been lost,
the CB can simply retrieve the token from its own list and retransmit it instead
of requesting a new one from the ACS.

5.5.4 Token Transmission

An intricate part of Trinity is the token transmission between the involved parties.
The first thought was to send it using only TCP messages, not involving the higher
level protocol MMS at all, as it was considered effective to be able to deny access
as early as possible in the connection. This proved a difficult task since the TCP
layer is heavily integrated with the MMS protocol and the TCP buffer is not really
analyzed before it reaches the application layer. Therefore it was deemed infeasible
to make any sort of changes to the TCP buffer without affecting the upper protocol
layers. The second and more successful idea was to use an existing functionality
called MMS variables in the MMS protocol to send the tokens. These variables
can, after being defined in both the CB and the controller, be easily transmitted
between the two devices which is exactly the functionality sought after. The
transmission is done by using an existing functionality in the CB that sets up
an MMS connection with the controller and sends the variable as a string. This
way of transmitting tokens was deemed to be the most effective since it required
very little changes to the existing code. A sequence diagram showing a typical
connection scenario is shown in figure 5.2. Also shown here is how the CB before
connecting to the controller requests an access token from the ACS.

5.6 Service Provider - Controller

As mentioned before a 800xA controller will serve as the resource constrained
service provider in this thesis. Originally not having any support for access control
over a network 2 the difficulties lie in finding a way to integrate Trinity into the
existing system with as little impact as possible on the way it normally operates.

2Access control does exists in the form of a physical key that can be used to ”lock”
certain functions on the controller. This access control is however not user specific in
any way.

24 Implementation

Controller
Control Builder

SET MMSTokenVar=value

Is MMSTokenVar?

Yes No

SET
LocalTokenVar

=
value

SET
MMSVariable

=
value

SetMMSVariable(MMSTokenVar,value)

Figure 5.3: Token reception

The functions that need to be implemented are:

• Receiving a token from a client and storing this token on internal memory.

• Validating tokens.

• Parsing requests from a client in order to grant or deny access.

• In case of denied access: Replying the client with reason for denial.

5.6.1 Receive Token

As mentioned before MMS variables will be used to transfer the token from the CB
to the controller. An MMS string variable was therefore created on the controller
that is accessible from the CB and when sending a token the CB connects to the
controller and sends an MMS request to change the value of this variable to that
of the token. Note here that access to this token variable must not be and is not
protected by Trinity. The controller monitors the variable and when receiving the
command to set it to a certain value, the value is instead stored in a different, non-
MMS variable. This way the token is never actually stored in the non-protected
MMS variable. A graphical overview of this procedure can be seen in figure 5.3.

5.6.2 Token Validation and Storage

An important consideration when implementing the token validation is that should
this turn out to be a demanding task, it must not hinder the controller in any way
by preventing it from performing other more important tasks. With this in mind
it was quickly decided that the token validation should not occur directly after
receiving the token, as a client has no way of knowing which tasks the controller is
currently executing and therefore does not know when it can send a token without
disturbing the system. The controller performs tasks by periodically polling a list
of subsystems in the order that matches their priority. By adding a subsystem
to the end of this list, thereby giving it the lowest priority, it is possible to have
the controller perform the token validation only when tasks with higher priority

Implementation 25

have been completed. This subsystem then has to check if a token has been stored
internally and if so, perform the necessary checks in order to validate it. The
validation steps performed in Trinity are:

1. Check if the token is valid in time by using the internal clock.

2. Check if the token is issued by a trusted ACS and which pre-shared key to
use3.

3. Check if the target of the token matches the intended target, i.e. itself.

4. Check if the identity of the connected client matches that in the token.

5. Calculate the HMAC of the token and verify with the value present at the
end of the token.

The order in which these checks are performed is of importance. The most likely
error scenario is considered to be that a client sends a token that has expired 4.
Therefore the first check should be if the token has expired or not. The remaining
checks are performed in an order of decreasing priority up until the calculation
of the HMAC. This is a very important check, however it is also theoretically the
one that uses the most computing power. Should a token be invalid in any of the
other checks it is good to be able to deny access before having to calculate a then
unnecessary HMAC. If a token passes all checks it is to be stored on the heap of the
controller in a hash table. Storing the entire token would however be unnecessary;
only the most essential parts need to be stored in order to save memory space.
The Subject Identifier (SI) from the token is used in the hash table as the key
that links to the expiration date and the access parameters of the token. When
later retrieving a token from the table in order to check the access of a client, the
controller can check if the token has expired and if the client in question has the
requested access. If the token is expired it is removed from the hash table.

5.6.3 Authorization

The controller monitors all MMS requests and when a CB requests access to a pro-
tected resource the controller uses the distinguished name from the TLS-connection
set up with the CB to retrieve a stored token from the hash table. Should a to-
ken not be found or should the retrieved token not grant access to the requested
resource the MMS request is aborted and an error message it sent to the CB us-
ing existing MMS functions with the addition of the messages TokenRequired and
TokenDenied. If access is granted the request is handled as it normally would
with no further changes to the framework. This way the impact on the ordinary
operations of the controller is kept to a minimum.

3This functionality is not used in this implementation as there only exists one ACS.
4This considers only benign access attempts, attacks using e.g. fake tokens is also an

issue but is not the primary concern of the framework.

26 Implementation

Chapter6
Evaluation of the Implementation

To measure the success and usefulness of Trinity it was important that measure-
ments were taken from all areas where the 800xA controller is considered to be
resource limited. The controller is resource limited in the sense that is has limited
memory and most of all that it is very sensitive to time delays. The reason for
the controller being time delay sensitive is that it is very important for it to be
able to run its designated tasks, that are very often in charge of running expen-
sive and important machinery, without any interruptions. Hence it was of utmost
importance that the performance tests of this implementations were performed on
a system running a real life application, limiting the resources available for addi-
tional computing, thus giving a better understanding of how Trinity works in a
resource constrained environment.

No measurements were taken from the Control Builder and the ACS as their
performance is of no interest to this project. Both of these parties are considered
to have unlimited resources and therefore it is not important how long it takes for
them to perform an operation or how much memory this access control system uses
on them. Both the ACS and the CB can devote all of their available resources to
the access control system since neither of them run any high priority applications
like the controller does. Therefore the controller is the only part of this system
where it was measured how resource consuming this access control system is.

6.1 Method

6.1.1 Test Setup

There were two different test setups used during these tests. One that consists of an
empty controller running no application and one that consists of 3 interconnected
800xA controllers running an emergency shutdown application from a real life oil
rig. When running the aforementioned application the controllers perform several
different operations as well as communicating amongst each other, mimicking a real
life situation for these controllers and thereby making it a suitable test environment
for this project. The tests were done with three different firmwares for comparison:

27

28 Evaluation of the Implementation

• The Original firmware, performing no authentication, encryption or autho-
rization.

• The TLS firmware, performing authentication and encryption but no au-
thorization.

• The Trinity firmware, performing authentication, encryption and authoriza-
tion.

6.1.2 Memory Usage

There are two types of memory on the controller that are of interest for this
project, the RAM and the ROM. The ROM is where the firmware is stored and
what affects the memory usage in it is how much bigger the firmware has gotten
from the addition of the access control system. The RAM is where the heap and
stack is allocated to, meaning that the program will dynamically allocate memory
there during run time.

The effect on the memory usage in the ROM by the addition of Trinity was
measured by simply looking at the size of the compiled code with and without
it. This test was performed because it is important to know how much size the
access control system adds to the original source code. In the controller the ROM
is a constrained resource and therefore it is important that the implementation of
the access control system on the controller is kept short and concise.

During the firmwares run time, memory is dynamically allocated and de-allocated
to the RAM of the controller. Since RAM also is a limited resource on the con-
troller it is important to measure how the RAM usage differs when the access
control system is turned on and off. The heap and thus the RAM usage was
checked using the "Get Heap Statistics" option in the CB which retrieves a list of
what elements are allocated on the heap and how big they are. The values that
are of interest from this list are how much space the token takes on the heap. This
test is performed on a single empty controller since the heap space the token uses
does not vary depending on the application the controller is running.

6.1.3 Token Processing

To find out the impact the different token operations performed in Trinity has on
the system the time it takes for the controller to perform these different opera-
tions is measured on an empty system running the Trinity firmware. An empty
system means that it will not abort the operations performed in Trinity to execute
some other operation with higher priority, meaning that the time measured will
be solely caused by Trinity itself. Only the execution time of the operations will
be measured, meaning that no token transmission time is included in the measure-
ments. The operations in question are validating a token, storing a token on the
heap and retrieving a token from the heap. The validation will also be measured
in cases where the token is not valid and therefore rejected. The invalid cases are
where tokens contain an invalid subject identifier or are expired. The reason for

Evaluation of the Implementation 29

Table 6.1: Size of firmware in different configurations

Firmware conf. Size [KB]
Trinity 2181
TLS 2177
Original 1588

choosing these particular cases is that the expiration check is the first one done
in the validation process and the check of the subject identifier is the one done
before the calculation of the HMAC, which is the final step. A mean value of 100
measurements will be presented.

6.1.4 Accessing Protected Resources

To see how different firmwares affect the workload of a real system the aforemen-
tioned emergency shutdown setup was used for this test. Measurements were taken
of the total TCP connection time when accessing different protected resources on
the controllers from a CB. This value gives a good insight of the workload, as a
connection is set up upon the first request from the CB and not torn down until
all operations have been performed. Four different resources were accessed ten
times each on all three controllers for every firmware. In the case of the Trinity
firmware a new token was sent for every request to also measure how much the
token processing affects the system. The resources in question all use operations
that have been restricted by Trinity and are called Show downloaded items, Show
firmware information, Show MMS connections and Show MMS variables.

6.2 Results

6.2.1 ROM

How the file size differs between the original firmware, the firmware with TLS and
the firmware with TLS and Trinity can be seen in 6.1.

6.2.2 RAM

It was found that one token takes up 0.00398 % of the available heap space on a
controller running the Trinity firmware.

6.2.3 Token Processing

The result of the token operation measurements can be seen in 6.2 and 6.3.

30 Evaluation of the Implementation

Table 6.2: Token processing, mean of 100 measurements

Task Time (ms)
Validating token 1.673
Storing token on heap 0.344
Retrieving token from heap 0.085

Table 6.3: Token validation, mean of 100 measurements

Token status Time (ms)
Valid token 1.673
Invalid subject 0.122
Expired token 0.100

6.2.4 Accessing Protected Resources

The results when accessing the protected resources on all three controllers with
different firmwares can be seen in figures 6.1, 6.2 and 6.3.

Evaluation of the Implementation 31

T
ri
ni
ty

T
LS

O
ri
gi
na

l

T
ri
ni
ty

T
LS

O
ri
gi
na

l

T
ri
ni
ty

T
LS

O
ri
gi
na

l

T
ri
ni
ty

T
LS

O
ri
gi
na

l

0

1,000

2,000

Items Firmware MMS Con MMS VarResource

T
im

e
(m

s)

Accessing resource
Sending token

Figure 6.1: Controller 1 - Connection time

T
ri
ni
ty

T
LS

O
ri
gi
na

l

T
ri
ni
ty

T
LS

O
ri
gi
na

l

T
ri
ni
ty

T
LS

O
ri
gi
na

l

T
ri
ni
ty

T
LS

O
ri
gi
na

l

0

1,000

2,000

Items Firmware MMS Con MMS VarResource

T
im

e
(m

s)

Accessing resource
Sending token

Figure 6.2: Controller 2 - Connection time

32 Evaluation of the Implementation

T
ri
ni
ty

T
LS

O
ri
gi
na

l

T
ri
ni
ty

T
LS

O
ri
gi
na

l

T
ri
ni
ty

T
LS

O
ri
gi
na

l

T
ri
ni
ty

T
LS

O
ri
gi
na

l

0

1,000

2,000

Items Firmware MMS Con MMS VarResource

T
im

e
(m

s)

Accessing resource
Sending token

Figure 6.3: Controller 3 - Connection time

Chapter7
Discussion

7.1 Memory Usage

7.1.1 ROM

What can be seen in table 6.1 is that the smallest firmware is the original, which
is an expected result. The rather big increase in size from the original to the TLS
firmware, 37%, is mostly due to the inclusion of the OpenSSL library in the TLS
firmware. The addition of Trinity to the TLS firmware does however not cause
that big of a change in size, only an increase of 0.2%. This is also an expected
result as the amount of code added in order to implement the functions needed
for Trinity is rather small.

It was always assumed that adding authentication in the form of TLS would affect
the system in a big way. This is seen when looking at the 37% increase in firmware
size with the addition of OpenSSL. However, since the actual size added by Trin-
ity is very small, the design goal of having the firmware be as small as possible is
considered met.

7.1.2 RAM

As can be seen in section 6.2.2 a single token uses 0.00398% of the available heap
space. This means that a total of 25125 tokens can be stored on the heap with
the assumption that nothing else affects the heap during run time. We would like
to suggest that this is more than enough. A single token contains all the access
information of an authorized client, which means that the number of tokens in
a running system equals the number of clients that has been authorized on that
particular system at any given time. In the case of a control system working in
a real life environment it is in our opinion likely that the number of authorized
clients is no more than 100, not even close to the theoretical limit of over 25000.
Note also that Trinity makes use of certificates on the client machines as opposed
to personal user login which means that one authorized client does not equal one
authorized user; there can be many users working from a single client. Had the
token instead been designed to give access to a single resource, the number of to-
kens stored on the system would have been much higher as every client would need
as many tokens as the number of resources it has access to. Although the tokens

33

34 Discussion

designed in that way could have been smaller, we believe that what is gained in
size reduction is no way near as significant as what is gained in the current design
by decreasing the number of tokens.

Based on this reasoning, the design goal stating that the total size of the stored
tokens should be kept to a minimum is therefore considered met.

7.2 Token Processing

When disregarding the token transmission and the connection that is set up for
this purpose, table 6.2 shows the total time needed by the controller to perform
the operations processing the token. We can clearly see that the most demanding
operation is validating the token, which takes 1.673 ms, compared to storing the
token on the heap, 0.344 ms, and retrieving the token from the heap, 0.085 ms.
This is an expected result, as the validation contains calculation of a HMAC, the
operation that was initially assumed to be the most resource consuming when it
comes to token processing. Storing a token takes longer than retrieving a token
from the heap. One might assume that these values should be roughly the same,
since a hash table is used to store tokens and an inherent property of a hash table
is that inserting and searching the table both have a complexity of O(1). The
reason for this difference is that when storing the token it is not only inserted into
the hash table but also formatted into a ”Hash entry” containing only the most
vital values.

Table 6.3 shows the duration of a token validation depending on the state of
the token. When a token is denied due to the reasons shown in the table, it takes
a considerably shorter amount of time to perform the operation. To deny access
to a token that has expired takes the shortest amount of time, 0.100 ms. As this
is the very first validation step it should also be able to reject tokens the fastest,
which we can see is the case. A number of other steps are performed ending with
checking if the subject matches that of the connected client. However, it can
clearly be seen that these steps are done very rapidly, since it only takes 0.022 ms
longer to deny access should the subject be invalid. The validation steps up until
now are checks of the authorization information of the token. The next and final
step is to verify the message integrity of the token, which is done by calculating
a HMAC. This was initially assumed to be the most resource consuming step of
the validation and that is the reason it was placed last in the validation process.
The results from the table verify these assumptions since it takes 1.551 ms, 92%
of the total validation process, to calculate the HMAC and thereby completing
the validation. We feel that this proves the statement that the order in which the
different validation steps are performed is important.

Discussion 35

7.3 Accessing Protected Resources

What we see in figures 6.1, 6.2 and 6.3 is the total duration of the TCP connection
on three different controllers when accessing different protected resources on the
controller from the client. These tables give a good insight into how the workload
differs depending on the firmware of the controller. As can be seen in all figures
the original firmware is the least time consuming, i.e. has the smallest workload.
This is an expected result as both other firmwares add functionality to the system
and removes nothing. The interesting results appear when looking at the TLS
firmware. In all cases the increase in time compared to the original firmware is
quite significant, around 500 ms. This increase must be the result of the addition
of the TLS protocol to the TCP connection since this is the only thing added to
the original firmware. This tells us that the TLS protocol is very costly to imple-
ment, something that we assumed would be the case from the beginning.

When looking at the Trinity firmware we see two different columns, the lower
of which shows the connection time when accessing a protected resource and the
upper of which shows the connection time when sending and verifying a token.
The sum of these represent the scenario where a client connects to a controller for
the first time and has to send a token to be given access. This total connection du-
ration is significantly larger than that of the TLS counterpart, often doubling that
value. However, this scenario only occurs when a client connects to a controller
for the first time or when a token needs to be re-sent1, a very rare occurrence. All
other resource requests after this initial connection have a duration of that seen
in the lower column. Comparing this one to that of the TLS firmware shows a
different result. In all of the cases the increase in connection duration is negligi-
ble, giving the result that the impact Trinity has on the controller in normal use
cases is in fact negligible. In table 6.2 we can see that retrieving a token from the
heap and verifying the access of a connected client takes 0.085 ms in an empty
controller. This token retrieval is the only operation performed by Trinity in cases
where no token is received from the client and even though this value might be a
bit higher in a controller simultaneously performing other tasks, it still shows that
it is not a demanding operation for the controller to perform, further verifying this
result.

The results seen when sending and verifying a token is based on the fact that
a separate connection has to be made in order to send the token. This is due
to the design of the existing communication framework and for this thesis it was
not feasible to look at ways of circumventing this. However, it might be possi-
ble to piggyback a token on the initial request from a client. This would elimi-
nate the need to do a separate connection and would thereby reduce the impact
made by Trinity compared to the TLS firmware, making them practically identical
performance-wise. Figure 7.1 demonstrates the connection procedure where the
token is piggybacked on the request and it is clear when comparing it to figure 5.2
that this reduces a large amount of overhead from the different connection setups.

1This could happen if the controller heap is corrupted or if the token has expired or
been revoked

36 Discussion

ACS Control Builder Controller

Access request

Token

TLS teardown

TLSTLS Encrypted communication

Token
Request
Response

MMSMMS

TLSTLS Encrypted communication

TLS setup

TLS setup

MMS setup

MMS teardown

TLS teardown

Figure 7.1: Sequence diagram of communication in Trinity with a
piggybacked token

Discussion 37

What we see from the results gathered in this test is that the increase in workload
from the original firmware to a firmware with TLS protocol is quite large. However,
should this protocol be implemented, the workload added by Trinity is negligible
under normal working conditions and we therefore see no disadvantage of also
adding access control with Trinity to the system. These results are in line with
the findings in section 7.1.1, where we saw that the firmware size increased a lot
when including the OpenSSL library, however the increase when adding Trinity
on top of this was very small.

38 Discussion

Chapter8
Conclusions

8.1 Summary

The work in this thesis has been about implementing an access control system
suitable for systems with constrained resources. The theory behind the access
control system is presented in [2] and the goal of this thesis has been to imple-
ment the key aspects of this system in a real working environment, in this case an
ABB control system. By measuring the performance of this system it was shown
that implementing this access control scheme on top of client authentication, a
prerequisite for an access control system, gives a negligible increase in resource
consumption, successfully proving our initial thesis. This means that if you are
going to add authentication to a system, you might as well also add access control
in the form of Trinity.

Working on this master thesis has been interesting, challenging and rewarding.
The biggest challenge was by far to get acquainted with the source code of the
ABB system and to figure out how to implement Trinity into this existing frame-
work. Design changes had to be made to accommodate this, however we have still
been able to implement the core functionality of the original design as proposed
in [2]. As we designed the system ourselves we also had to consider testing, both
what was to be tested and how these tests would be performed. This was a new
experience for both of us and is something we learned a lot by doing. Unfortu-
nately we were not able to get as large a sample size as we initially wanted due
to a memory leak in the TLS implementation, causing the heap to overflow after
a number of TLS connections. We still feel however that we are able to show
tendencies from which we are able to draw a fair conclusion. We are very pleased
with both how the work has progressed and the final outcome of this thesis and
we hope that the results gained can be used for future work in the field.

39

40 Conclusions

8.1.1 Contributions

All the design and implementation choices detailed below are original ideas that
the authors have contributed to this thesis.

• A token was designed by us that would suit the ABB environment with the
following properties:

– It uses the distinguished name from X.509 certificates as subject iden-
tifier.

– It gives access to multiple resources.

– It is sent when a connection is first established between the controller
and the CB and not when the protected resource is accessed.

– It is sent using MMS variables.

• Token handling for the controller and the Control Builder was designed and
implemented by us. This also includes adding an additional TLS stack to
the CB for communication with the ACS.

• We chose to store the token as a specially designed ”Hash entry”, containing
only the most necessary values, in hash tables. We also chose to store the
token not only on the controller but also on the Control Builder in order to
avoid unecessary token transmissions.

• We designed the interface for token transmission between the ACS and the
CB.

• Error handling for Trinity was integrated into the existing error handling
functionality of the controller and the CB.

• We decided which resources on the control system were best suited for access
protection.

• We decided on using TLS for authentication and HMAC for token integrity.

8.2 Suggestions of Future Work for ABB

Since ABB has included authentication in their control system we would like to
suggest, based on the results of this thesis, that ABB also implements Trinity.
Doing so will give the system the extra functionality of authorization at basically
no performance cost at all. We also feel that implementing Trinity to a production
version of the control system would be beneficial for ABB as it would present op-
portunities for new use cases that would make the 800xA system more attractive
to customers. Consider the scenario where the 800xA is used to control an oil rig
in the middle of the North Sea. Should some error occur or system parameters
need to be changed this might require the work of a special system engineer. This
engineer is normally not stationed on the platform itself but would rather need to
be flown in by helicopter, a time consuming and expensive process. Had it instead
been possible to connect the control system to the Internet the maintenance could
have been done by an engineer from his office on the mainland. This of course

Conclusions 41

presents problems regarding network security and this is where we feel Trinity
could be used in order to only give access to the system engineer and stop all
other attempted attacks.

Given below are some of the steps we feel need to be taken by ABB in order
to implement a fully functioning version of Trinity to the control system.

• Improve on the structure of the code that implements the functionality of
Trinity in order to make it more secure and more optimized, both on the
controller and the Control Builder.

• Improve on the structure of the TLS implementation in order to make it
more optimized.

• Investigate possible locations for the Access Control Server. There may exist
suitable network locations already present in the framework to which this
functionality could be integrated.

• Investigate different implementations of Access Control Servers. We do not
recommend using the version written in this thesis for anything other than
demonstration purposes.

• Design a structure for certificate distribution and access handling. This
includes appointing a Certificate Authority and someone who maintains the
ACS and decides upon an access hierarchy.

• Design and implement the functionality of token revocation, a feature cur-
rently not present in the system but one that is needed in order for the
system to work in a real environment.

8.3 Related Work

The following section details related work that has been done in the field, but
differ from the work done in this thesis in some key aspects.

8.3.1 Kerberos

Kerberos is an authentication protocol that provides a secure way of authenti-
cating nodes over a non-secure network by use of a trusted third party. A brief
summary of the protocol will be presented here, for the full specification we refer
to [19].

When a client wishes to access a server it sends a request to an Authentication
Server (AS) in plaintext. The request only consists of the client ID and when the
AS receives this it searches its own database for the password matching this client
ID. If found, a response is sent to the client consisting of a Client/TGS Session
Key encrypted with the password found by the AS and a Ticket-Granting Ticket
encrypted with the secret key of the TGS. TGS in this case stands for Ticket
Granting Service, which may or may not be on the same machine as the AS.

42 Conclusions

The client decrypts the message containing the Client/TGS Session Key and sends
a request containing the ID of the requested service to the TGS encrypted with
this key along with the still encrypted Ticket-Granting Ticket. The TGS responds
with a Client-to-Server ticket, including among others the Client-Server Session
key, encrypted with the secret key of the requested service and a Client-Server
Session Key, encrypted using the Client-TGS Session Key.

The encrypted Client-to-Server ticket is sent to the requested server along with an
identifier of the requested service on the server, encrypted using the Client-Server
Session Key. The server is able to decrypt these messages and the requested service
is performed.

Differences to Trinity

Like Trinity, Kerberos uses a trusted third-party. The biggest difference is that in
Trinity the third-party performs authorization, whereas in Kerberos it performs
authentication. In Kerberos a client is given access to a server through a ticket,
much like the tokens proposed in our system. However, upon receiving the ticket
the client can request any of the possible services on the server and it is then, if
necessary, up to the server itself to perform authorization of the client. As Trinity
is designed to work in environments where the server might not have the resources
to perform this type of authorization, this responsibility is instead given to the
trusted third-party, the ACS.

A big drawback when using Kerberos in a constrained environment is that it
is designed to incorporate message encryption through the use of symmetric keys
for its protocol messages. In an environment where message encryption is not nec-
essary this induces a lot of overhead to the communication, which is why Trinity
does not in itself provide message encryption but instead relies on secure transport
protocols to provide this service should it be needed. Should message encryption
be left out altogether, Trinity will still be able to provide message integrity.

8.3.2 OAuth

OAuth is a protocol that provides a way for a client to access resources on behalf
of a resource owner without the resource owner having to share its login creden-
tials with the client. This is done by using a trusted third party, an authorization
server, that issues access tokens that the client then uses to authenticate itself to
the resource server and authorize access to the resources. A brief example of the
usage of the protocol will be presented here, for a more thorough description of
the protocol we refer to [20].

A user, resource owner, wants to use a mobile application, client, to access her
photos that are stored on a server. The application requests access to these photos
from the user, i.e. through a pop-up window that the user has to approve.

The application then requests access from the authorization server (AuthZ) us-

Conclusions 43

ing the access grant from the user as a parameter. The AuthZ responds with an
access token containing the lifetime and scope of the access. This token is then
used by the application when requesting access to the photos from the server. By
using this protocol the user never has to give the application access to its full user
credentials such as usernames and passwords, very useful in the internet today,
where web pages often use logins of other services to provide their own services,
e.g. news pages where you can log in to your Twitter account to comment on the
news.

Differences to Trinity

The main difference between OAuth and Trinity is that in OAuth the user is ac-
tually the owner of the desired resources, she has simply outsourced her rights to
grant access to these resources to a trusted third party. The AuthZ does not per-
form any authorization on the requesting client, it simply authenticates the client
and then validates the request parameters to check if the request has been autho-
rized by the resource owner, the user. The authorization is thereby done by the
user, not the third party. In Trinity, neither the user nor the client is the owner of
the desired resource and the trusted third party, the ACS, performs both authen-
tication and authorization of the client to see if it has access to the desired resource.

A drawback of OAuth is that it does not provide message integrity on its tokens
but instead relies heavily on secure transport protocols to avoid token intercep-
tion. As mentioned above, Trinity applies the HMAC scheme to provide message
integrity in such a way that should a token be intercepted by a malicious user, no
information required to generate a new valid token can be extracted from this one.
Message integrity for OAuth has been proposed in [21] that like Trinity involve
adding a HMAC to the token.

8.4 Future Work

8.4.1 HMAC

HMAC was used in this thesis as a way of calculating MACs, mainly because of
the built-in support in OpenSSL. However, there are a number of other schemes
that might be more suitable for a real-world application. HMAC uses a relatively
demanding hash-function in its calculations, something that might not be prefered
in cases where the hardware in question is even more limited than the one used for
this thesis. Such more optimized schemes include UMAC and Poly1305 [22]. By
using one of these it is possible to decrease the load put on the hardware, however
none of these have been tested. The use of HMAC is however justified by the fact
that more and more constrained systems today feature dedicated cryptographic
co-processors with support for SHA hashing. In order to support interoperability a
SHA based HMAC is then still a valid choice. In this thesis SHA-1 hashing is used.
For future implementations it is recommended to use stronger hash algorithms such
as SHA-256, however the OpenSSL library used here did not support this newer
version.

44 Conclusions

8.4.2 Clock Synchronization

As all access given to users in Trinity is time limited, it is very important that the
internal clocks of all involved parties are synchronized. As this is not investigated
in this thesis this is something that has to be considered in future implementations.
The action of setting the internal clock of the Service Provider also provides the
ability to manipulate the access control system as you are able to set the clock
to a time where previously invalid tokens and X.509 certificates are now valid.
This action thereby has to be protected in order to prevent these ”attacks” and
a possible protection is Trinity itself, a valid token is needed in order to set the
clock of an SP. Possible entities that would be given this access include the Access
Control Server, as a trusted relationship is already established between it and
the SP. This action should preferably be done periodically as often as needed
in order to keep all clocks as synchronized as possible. This however presents
the problem of initial clock synchronization, where it is possible that tokens and
certificates might not yet have been distributed. A solution to this problem would
be to have a trusted authority manually set the clock to the current time upon
initially distributing certificates and shared secrets to the system and only after
that initiate the periodical clock update from the ACS. This is considered a viable
solution as most systems require some form of manual bootstrapping anyway for
other purposes.

8.4.3 Token Formats

In Trinity the token consists of a string that is parsed by the controller upon
validation. As mentioned before in this report this design choice is primarily based
on the fact that the controller contains a string library and a way of transmitting
string values easily in its original configuration. A different solution would have
been to interpret the token as a bit value and use bit shifts of fixed lengths and
other bit operations to compare values and thereby validate the token. Using string
functions to compare values is quite heavy compared to simple bit operations,
which is why this solution might be more cost effective than the one implemented
in this thesis. The string library might also not always be implemented in systems
with constrained resources as it might prove too large, another reason as to why
bit operations might be preferred. A token might then have the characteristics
shown in figure 8.1.

8.4.4 Token Storage

The tokens are currently stored by both the controller and the Control Builder.
However, none of them make any effort to store the token should the system be
turned off, meaning that in case of power outage for the controller and program
termination for the CB, all stored tokens are lost. This is not an ideal scenario
for any of them but it is especially bad for the CB. Being a Windows application
chances are that it will be turned on and off several times each day, thereby
increasing the number of unnecessary token transmissions to the controllers due
to the fact that the CB no longer remembers which tokens have already been sent.
On the controller the problem is not as prominent as this machine is designed and

Conclusions 45

0 4 8 12 16 20 24 28 32

SN IS AC
TA
VF
VU

SI

HMAC

Figure 8.1: Example of a token in bit format

built to be run for very long periods of time without being turned off. A solution
to this problem would be to copy the stored tokens to a non-volatile memory
location when the system is turned off. In the CB this could mean adding code
to the shutdown routine of the program that copies the token information to a file
stored in a non disclosed folder, a file that is read upon every start-up. The same
would apply for the controller, but here code would also need to be added to the
emergency routines as a controller might suffer from unplanned power outages.

8.4.5 Token Revocation

This implementation of Trinity does not include token revocation, however there
exist the possibility of expanding the system to also include this procedure. In a
real implementation this functionality is a necessity, as access policies may change
over time. One way of doing token revocation would be to have the ACS send the
Sequence Numbers of the tokens being revoked to all connected controllers. These
controllers could then parse through all their stored tokens until a match is found
and then remove this token from the system. The Sequence Number is already
present in the token, the changes needed in order to implement the revocation
procedure lie elsewhere. First of all a structure of how the revocation should be
done has to be designed, meaning when and how revocations are to be done and by
whom. This functionality then needs to be added to the ACS and the controller.
Changes also has to be made to the Control Builder in order to deal with error
messages from the ACS regarding revocation.

46 Conclusions

Bibliography

[1] F. Mattern and C. Floerkemeier. From the internet of computers to the
internet of things. Technical report, Distributed Systems Group, Institute
for Pervasive Computing, ETH Zurich. URL http://www.vs.inf.ethz.ch/
publ/papers/Internet-of-things.pdf.

[2] G. Selander, M. Sethi, and L. Seitz. Access Control Frame-
work for Constrained Environments. Internet-Draft, CoRE Work-
ing Group, February 2014. URL https://tools.ietf.org/html/
draft-selander-core-access-control-02. Work In Progress.

[3] About SICS Swedish ICT. URL https://www.sics.se/about-sics. Last
checked: 2014-04-23.

[4] Who we are - ABB in brief. URL http://new.abb.com/about/
abb-in-brief. Last checked: 2014-04-23.

[5] D. Ince. Message Authentication Code. Oxford University Press. ISBN
9780199571444.

[6] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Mes-
sage Authentication. Request For Comments (RFC) 2104, Internet Engineer-
ing Task Force (IETF), February 1997. URL http://www.ietf.org/rfc/
rfc2104.txt.

[7] T. Krovetz. UMAC: Message Authentication Code using Universal Hashing.
Request For Comments (RFC) 4418, Internet Engineering Task Force (IETF),
March 2006. URL http://www.ietf.org/rfc/rfc4418.txt.

[8] P. Gallagher. Digital Signature Standard (DSS). Federal Information Process-
ing Standards Publication (FIPS) 186-4, National Institute of Standards and
Technology (NIST), July 2013. URL http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.186-4.pdf. p. 9.

[9] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). Request For
Comments (RFC) 3174, Internet Engineering Task Force (IETF), September
2001. URL http://www.ietf.org/rfc/rfc3174.txt.

47

http://www.vs.inf.ethz.ch/publ/papers/Internet-of-things.pdf
http://www.vs.inf.ethz.ch/publ/papers/Internet-of-things.pdf
https://tools.ietf.org/html/draft-selander-core-access-control-02
https://tools.ietf.org/html/draft-selander-core-access-control-02
https://www.sics.se/about-sics
http://new.abb.com/about/abb-in-brief
http://new.abb.com/about/abb-in-brief
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc4418.txt
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.ietf.org/rfc/rfc3174.txt

48 BIBLIOGRAPHY

[10] R. Rivest. The MD5 Message-Digest Algorithm. Request For Comments
(RFC) 1321, Internet Engineering Task Force (IETF), April 1992. URL http:
//www.ietf.org/rfc/rfc1321.txt.

[11] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)Protocol
Version 1.2. Request For Comments (RFC) 5246, Internet Engineering Task
Force (IETF), August 2008. URL http://www.ietf.org/rfc/rfc5246.txt.
p. 3-4, 14-15, 25-26.

[12] Information Sciences Institute University of Southern California. Transmis-
sion Control Protocol (TCP). Request For Comments (RFC) 793, Internet
Engineering Task Force (IETF), September 1981. URL http://www.ietf.
org/rfc/rfc793.txt.

[13] S. Farrell S. Boeyen R. Housley W. Polk D. Cooper, S. Santesson. Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. Request For Comments (RFC) 5280, Internet Engineering
Task Force (IETF), May 2008. URL http://tools.ietf.org/rfc/rfc5280.
txt.

[14] SISCO, INC. Overview and Introduction to the Manufacturing Message
Specification (MMS). Technical report, August 1995. URL http://www.
sisconet.com/downloads/mmsovrlg.pdf. p. 1-3.

[15] J. Loughney G. Zorn V. Fajardo, J. Arkko. Diamater Base Protocol. Request
For Comments (RFC) 6733, Internet Engineering Task Force (IETF), October
2012. URL http://tools.ietf.org/html/rfc6733.

[16] IBM, Corp. Security Server (RACF) Introduction. Technical report, Septem-
ber 1999. URL http://publibz.boulder.ibm.com/epubs/pdf/ich1a510.
pdf.

[17] R. Engelschall. Openssl: The open source toolkit for ssl/tls. URL http:
//www.openssl.org/about/. Last checked: 2014-03-28.

[18] M. McDowell. Understanding Denial-of-Service Attacks. URL http://www.
us-cert.gov/ncas/tips/ST04-015. Last checked: 2014-04-23.

[19] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network
Authentication Service (V5). Request For Comments (RFC) 4120, Internet
Engineering Task Force (IETF), July 2005. URL http://www.ietf.org/
rfc/rfc4120.txt.

[20] D. Hart. The OAuth 2.0 Authorization Framework. Request For Comments
(RFC) 6749, Internet Engineering Task Force (IETF), October 2012. URL
http://www.ietf.org/rfc/rfc6749.txt.

[21] M. Jones and D. Hart. The OAuth 2.0 Authorization Framework: Bearer
Token Usage. Request For Comments (RFC) 6750, Internet Engineering Task
Force (IETF), October 2012. URL http://www.ietf.org/rfc/rfc6750.
txt.

http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://tools.ietf.org/rfc/rfc5280.txt
http://tools.ietf.org/rfc/rfc5280.txt
http://www.sisconet.com/downloads/mmsovrlg.pdf
http://www.sisconet.com/downloads/mmsovrlg.pdf
http://tools.ietf.org/html/rfc6733
http://publibz.boulder.ibm.com/epubs/pdf/ich1a510.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ich1a510.pdf
http://www.openssl.org/about/
http://www.openssl.org/about/
http://www.us-cert.gov/ncas/tips/ST04-015
http://www.us-cert.gov/ncas/tips/ST04-015
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6750.txt
http://www.ietf.org/rfc/rfc6750.txt

BIBLIOGRAPHY 49

[22] D. Bernstein. Poly1304-aes: a state-of-the-art message-authentication code.
URL http://cr.yp.to/mac.html. Last checked: 2014-03-28.

http://cr.yp.to/mac.html

50 BIBLIOGRAPHY

AppendixA
Division of work

The following sections have been written jointly:

• Chapter 7 (Discussion)

• Chapter 8 (Conclusions)

The following sections have been written by Niklas:

• Section 2.1 (Message Authentication Code)

• Section 2.4 (Manufacturing Message Specification)

• Chapter 3 (Proposed Framework)

• Section 4.3 (Security Considerations)

• Section 4.4 (Summary)

• Section 5.2 (Communication between Involved Parties)

• Section 5.3 (Token)

• Section 5.6 (Service Provider - Controller)

• Section 8.3 (Related Work)

• Section 8.4 (Future Work)

The following sections have been written by Jonas:

• Chapter 1 (Introduction)

• Section 2.2 (Transport Layer Security)

• Section 2.3 (Public Key Certificate)

• Section 4.1 (Hardware)

• Section 4.2 (Software)

• Section 5.1 (Delimitations)

• Section 5.4 (Access Control Server)

• Section 5.5 (Client - Control Builder)

• Chapter 6 (Evaluation of the Implementation)

51

52 Division of work

AppendixB
Test Results

Table B.1: Trinity firmware - Connection duration during Show
Downloaded Items

Connection duration (ms)
Controller 1 Controller 2 Controller 3
1245.93 1275.55 1322.29
1225.86 1263.61 1267.53
1224.19 1280.26 1282.36
1213.4 1277.32 1266.3
1122.84 1273.22 1271.77
1222.91 1230.27 1284.45
1223.89 1280.3 1276.33
1235.86 1269.17 1277.01
1224.99 1268.92 1271.98
1274.04 1290.58 1276.02
1225.09 1277.73 1293.69
1253.85 1294.11 1269.38
1224.47 1277.3 1334.83
1200.68 1293.07 1277.19
1262.69 1278.86 1272.28
1244.35 1283.03 1272.9
1233.81 1317.43 1323.43
1223.55 1285.14 1273.43
1223.45 1372.87 1260.76
1224.27 1273.63 1326.39

53

54 Test Results

Table B.2: Trinity firmware - Token connection duration during
Show Downloaded Items

Connection duration (ms)
Controller 1 Controller 2 Controller 3
1235.36 1397.01 1326.52
1216.15 1337.64 1326.41
1265.75 1392.16 1316.51
1275.82 1345.24 1304.12
1236.02 1382.69 1326.22
1213.42 1344.81 1306.57
1234.57 1396.03 1337.25
1215.32 1364.77 1345.38
1194.88 1396.23 1364.59
1266.36 1385.85 1315.99
1270.38 1476.56 1325.64
1276.52 1370.6 1376.76
1206.66 1377.49 1345.15
1203.05 1395.88 1337.63
1286.18 1386.37 1374.96
1288.8 1397.46 1326.49
1285.92 1407.23 1336.03
1246.43 1393.06 1305.57
1215.29 1396.55 1320.65
1235.66 1319.28 1305.96

Table B.3: Trinity firmware - Connection duration during Show
MMS Variables

Connection duration (ms)
Controller 1 Controller 2 Controller 3
634.242 651.259 636.623
574.189 651.71 615.356
565.922 645.139 613.3871
564.061 639.134 600.503
567.069 646.761 605.592
545.647 645.44 596.422
575.334 648.681 604.755
576.42 636.617 615.184
577.157 642.527 630.368
596.267 643.579 652.261

Test Results 55

Table B.4: Trinity firmware - Token connection duration during
Show MMS Variables

Connection duration (ms)
Controller 1 Controller 2 Controller 3
1015.37 1174.61 1097.2
1013.19 1168.52 1095.48
1045.52 1159.62 1114.74
1025.99 1183.1 1114.85
1014.23 1135.87 1117.85
1015.19 1145.66 1137.73
1012.41 1239.74 1113.48
1085.62 1145.39 1196.99
1035.09 1155.73 1103.78
1015.78 1123.82 1141.44

Table B.5: Trinity firmware - Connection duration during Show
MMS Connections

Connection duration (ms)
Controller 1 Controller 2 Controller 3
585.711 642.956 615.603
573.556 628.709 633.321
554.792 626.593 639.887
565.482 656.986 629.397
575.546 635.203 615.803
575.584 629.707 626.448
585.296 636.535 605.566
603.167 631.589 615.983
596.233 639.335 607.555
566.764 639.76 634.876

56 Test Results

Table B.6: Trinity firmware - Token connection duration during
Show MMS Connections

Connection duration (ms)
Controller 1 Controller 2 Controller 3
1025.69 1144.49 1124.94
1025.29 1141.33 1111.18
1044.84 1148.35 1134.56
1033.22 1154.21 1121.11
1034.23 1153.81 1105.34
1013.42 1150.81 1159.17
1034.58 1141.07 1124.74
1025.3 1158.14 1122.36
1036.62 1164.93 1120.83
1027.79 1156.99 1126.18

Table B.7: Trinity firmware - Connection duration during Show
Firmware Information

Connection duration (ms)
Controller 1 Controller 2 Controller 3
1025.53 1090.43 1096.26
1045.9 1045.15 1096.09
1043.81 1095.98 1103.72
993.818 1138.06 1095.44
1043.59 1093.73 1085.62
1043.39 1064.92 1056.39
993.264 1098.81 1094.59
992.879 1085.51 1043.9
993.151 1098.47 1095.42
993.053 1094.26 1093.95

Test Results 57

Table B.8: Trinity firmware - Token connection duration during
Show Firmware Information

Connection duration (ms)
Controller 1 Controller 2 Controller 3
1273.7 1102.34 1343.12
1225.57 1122.67 1337.68
1216.86 1122.22 1315.55
1296.5 1168.8 1434.28
1226.01 1121.82 1315.67
1266.2 1122.79 1336.43
1245.86 1072.43 1355.64
1263.94 1068.72 1325.52
1236 1074.24 1325.83
1217.01 1122.32 1325.37

Table B.9: TLS firmware - Connection duration during Show Down-
loaded Items

Connection duration (ms)
Controller 1 Controller 2 Controller 3
1232.12 1274.21 1287.18
1205.34 1257.19 1287.09
1217.06 1324.03 1270.34
1225.47 1262.78 1278.78
1216.03 1266.74 1270.51
1226.36 1276.26 1280.94
1228.25 1331.45 1269.59
1191.44 1209.79 1271.11
1225.09 1271.87 1268.36
1234.43 1274.64 1265.24
1224.97 1318.64 1270.39
1224.85 1282.35 1273
1225.6 1274.55 1268.41
1226.19 1319.74 1284.19
1227.71 1312.16 1274.81
1234.6 1276.83 1274.74
1225.78 1273.08 1275.67
1233.28 1274.82 1268.54
1226.04 1321.78 1262.93
1234.83 1326.63 1270.47

58 Test Results

Table B.10: TLS firmware - Connection duration during Show MMS
Variables

Connection duration (ms)
Controller 1 Controller 2 Controller 3
585.641 662.487 616.348
573.932 695.367 695.294
575.044 631.565 612.906
574.986 628.486 638.552
595.787 629.906 609.65
575.141 625.141 624.985
572.691 620.894 638.528
599.864 666.875 641.591
585.238 664.973 634.505
576.402 665.222 631.072

Table B.11: TLS firmware - Connection duration during Show MMS
Connections

Connection duration (ms)
Controller 1 Controller 2 Controller 3
575.543 623.404 626.986
636.048 645.729 605.625
577.004 655.137 639.236
585.474 628.921 638.373
565.859 660.485 636.296
582.442 647.188 635.955
578.357 644.66 637.403
578.757 665.395 629.009
566.706 638.271 636.074
575.722 651.086 615.878

Test Results 59

Table B.12: TLS firmware - Connection duration during Show
Firmware Information

Connection duration (ms)
Controller 1 Controller 2 Controller 3
945.721 1098.58 1096.8
1045.22 1104.11 1085.81
995.333 1093.09 1094.07
995.154 1109.11 1054.68
1045.2 1105.6 1088.03
1045.06 1096.04 1103.62
1044.93 1105.15 1096.78
995.407 1094.18 1086.64
1045.19 1040.86 1081.91
995.535 1043.45 1056.31

Table B.13: Original firmware - Connection duration during Show
Downloaded Items

Connection duration (ms)
Controller 1 Controller 2 Controller 3
770.456 781.062 751.639
760.058 790.838 801.602
771.541 770.878 772.438
751.494 761.135 803.431
771.165 750.579 770.775
750.736 741.11 749.237
770.398 773.065 761.527
790.087 753.109 802.971
770.464 770.829 770.752
750.639 750.895 771.853
770.044 770.999 770.734
750.713 800.865 751.553
760.581 760.421 771.381
750.116 760.782 790.793
769.116 761.024 780
760.133 751.651 756.757
768.795 765.371 771.079
750.179 801.121 751.388
771.427 750.575 770.609
783.426 740.965 751.248

60 Test Results

Table B.14: Original firmware - Connection duration during Show
MMS Variables

Connection duration (ms)
Controller 1 Controller 2 Controller 3
80.107 81.305 81.324
81.14 81.315 81.216
80.955 83.629 79.863
81.099 81.421 81.224
81.161 90.966 81.278
81.108 81.233 83.501
81.896 81.497 81.209
81.206 80.359 82.037
81.23 80.297 81.067
80.423 81.581 80.912

Table B.15: Original firmware - Connection duration during Show
MMS Connections

Connection duration (ms)
Controller 1 Controller 2 Controller 3
81.14 80.473 84.08
70.528 80.944 81.201
81.06 81.017 81.869
81.146 78.286 81.274
81.177 80.341 80.813
81.224 70.285 70.97
101.33 79.346 81.072
80.946 102.492 82.099
81.66 82.014 81.273
81.008 81.155 81.147

Test Results 61

Table B.16: Original firmware - Connection duration during Show
Firmware Information

Connection duration (ms)
Controller 1 Controller 2 Controller 3
530.987 521.846 541.647
545.992 541.186 590.526
540.755 590.944 541.647
540.056 541.116 541.657
539.651 590.993 541.604
540.852 528.333 543.147
529.579 541.052 592.15
541.106 591.512 541.637
540.597 590.93 541.763
531.575 591.21 512.785

A
u

th
o

rizatio
n

 fo
r In

d
u

strial C
o

n
tro

l System
s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, September 2014.

Authorization for
Industrial Control Systems

Niklas Hjern
Jonas Vistrand

N
.H

je
rn

 &
 J.V

istran
d

Master’s Thesis

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2014-409

http://www.eit.lth.se

	MasterThesis_NiklasHjern_JonasVistrand_Final.pdf
	1 Introduction
	1.1 Purpose and Goals
	1.2 About SICS
	1.3 About ABB
	1.4 Report Structure

	2 Background Theory
	2.1 Message Authentication Code
	2.2 Transport Layer Security
	2.3 Public Key Certificate
	2.4 Manufacturing Message Specification

	3 Proposed Framework
	3.1 Proposed Solution
	3.2 Design Goals

	4 Choosing Technologies
	4.1 Hardware
	4.2 Software
	4.3 Security Considerations
	4.4 Summary

	5 Implementation
	5.1 Delimitations
	5.2 Communication between Involved Parties
	5.3 Token
	5.4 Access Control Server
	5.5 Client - Control Builder
	5.6 Service Provider - Controller

	6 Evaluation of the Implementation
	6.1 Method
	6.2 Results

	7 Discussion
	7.1 Memory Usage
	7.2 Token Processing
	7.3 Accessing Protected Resources

	8 Conclusions
	8.1 Summary
	8.2 Suggestions of Future Work for ABB
	8.3 Related Work
	8.4 Future Work

	A Division of work
	B Test Results

