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Abstract 
An endfire antenna is an array built up by smaller antennas, and is designed to direct 
the radiated power along the structure. In this thesis, we look at a very simple form, 
consisting of equally spaced monopoles over a perfectly conducting ground plane. 
After defining a unit cell, we set out to investigate whether a periodic structure 
model can be applied and used to calculate the electric field distribution on the 
antenna. The work is an initial study for a future research project on developing a 
more efficient algorithm for simulating very large array antennas.   
 
Hypotheses are tested in an iterative manner. It is concluded that the field 
distribution differs from the one on a passive periodic structure, and a correction is 
proposed. The correction gives a better fit, but is not enough to pick up all 
variations. Remaining problems are the dependence on the number of elements in 
the array and to find a way to calculate the coefficients of the correction in advance. 
Also, the hypothesis that the propagation constant is real could not be falsified with 
the method used.  
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 1  

1 Introduction 

1.1 Background and motivation 
Periodic structures are used as a model in the most varied fields of science, from 
describing the crystal structure of a material [24] to microwave filters [2] used to 
filter out the accurate signals from the surrounding when using Bluetooth on your 
cell phone. An example from optics is the diffraction grating, for example a glass 
plate with periodically varying thickness. An incident wave propagating through the 
plate will bend with an angle that depends on the wavelength, and the grating can 
thus be used to separate different frequencies in a spectrum analyser [27]. 
 
In a group antenna, a number of antenna elements are placed close to each other in 
order to obtain a directional antenna with wide bandwidth.  One example of a 
group antenna is the Yagi-Uda dipole array, consisting of dipole elements of 
different lengths and spacing of which one is driven and the other is parasitic. Yagi-
Uda antennas are used in particular as home TV antennas. For TV-reception in 
fringe areas, log-periodic dipole arrays, where all elements are driven since they are 
electrically connected together, are used [9]. A Frequency Selective Surface (FSS) 
array is a periodic array of metallic patches. These types of arrays are used for 
example in radar and satellite communications [28]. 
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While many theoretical models assume infinite extension of the structure, going 
from an infinite to a finite periodic structure gives rise to new phenomena that 
requires attention. In reality, all structures are finite, and therefore it is of great 
interest to find methods to handle these. The theory of finite periodic structures has 
been discussed for example by Ben A. Munk in his book "Finite Antenna Arrays and 
FFS" [23], and size requirements on an array model in order to be treated as 
periodic has been investigated by Holter and Steyskal [25]. 
 
In this thesis an active periodic structure – the endfire antenna – is investigated. The 
industry has identified a need for new software providing full wave simulations for 
very large group antennas, and the characterisation of the field from this simple 
endfire antenna is a step on the way towards developing more efficient algorithms. 
To put in context, we shall see later on that the software used in this thesis limits 
the number of elements in the antenna array to 256 using simple monopole 
elements. One may want to simulate group antennas with an order of 1000 
elements with a more complex design. 

1.2 The endfire antenna 
An endfire antenna can be constructed of a large number of equal, equidistant 
antenna elements building up an array. The distance and phase difference between 
the elements are adapted to obtain constructive interference in one direction along 
the array and destructive interference in any other direction for the design 
frequency, in particular perpendicular to the array [10]. The antenna design is a 
result of the work by W.W. Hansen and J.R. Woodyard, published in their paper 
"A new principle in directional antenna design" [26]. In figure 1.1 the radiation pattern 
from such an endfire antenna, radiating in negative x direction, can be seen. 
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Figure 1.1 - Radiation pattern from an endfire antenna consisting of 10 monopoles 
over a perfectly conducting ground plane. 

 
 
Endfire antennas are used for example in Airborne Early Warning and Control 
(AEW&C) systems, where it covers a gap of a total of 60 degrees at the nose and tail 
of the aircraft left by the side-looking antennas. The side-looking, so called 
broadside, antennas are also examples of periodic array antennas. The difference in 
distance and phase between the antenna elements are in this case adapted to direct 
the power outwards, orthogonal to the antenna extension [21, 22]. Figure 1.2 is a 
picture of two airplanes from the Royal Australian Air Force, equipped with a 
combination of broadside and endfire antennas. 
 

 

Figure 1.2 - A Boeing 737 AEW&C plane with cavity endfire arrays  
(the surf board shaped "hat"). Image from 

http://en.wikipedia.org/wiki/File:Boeing_737_AEW%26C_Avalon.jpg. Published 
under the terms of the GNU Free Documentation License, Version 1.2. 

http://en.wikipedia.org/wiki/File:Boeing_737_AEW%26C_Avalon.jpg
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1.3 Questions 
The main question to be answered within the frames of this thesis is if a large, but 
finite, periodic structure can be analysed by a representative unit cell. If so, how can 
the fields in different unit cells be related to each other? Is there a significant 
difference to the case of a passive periodic structure? The edge elements are of 
special interest, since they are the difference between a finite and an infinite array. 
What effect does the presence of edge elements have? Is there a region on the 
antenna that can be characterized as periodic, with no or little influence from the 
edge elements? What phenomena can be observed on a finite end-fire antenna? Can 
some or all of them be observed in an infinite setting (analysis in a unit cell)? 

1.4 Restrictions 
The arrays investigated in this thesis are all of the simplest form, consisting of 
monopoles over a perfectly conducting ground plane. More complex structures are 
not considered. Limitations in the simulation software used, which will be described 
further on, set a maximum array length of 256 elements. 

1.5 Report outline 
This chapter has given a short introduction to the subject of this thesis. Chapter 2 
presents some theory for electromagnetic waves before continuing with general 
antenna theory and narrowing down to dipoles and monopoles. At the end, periodic 
structures are briefly discussed along with some numerical methods. Chapter 3 
describes the endfire antenna in more detail. In chapter 4, the geometrical 
properties and definitions of the antenna are given together with an overview of 
how the data was simulated and analysed. This chapter also states the hypotheses 
tested. Chapter 5 presents the results of the simulations accompanied with a 
discussion. Finally, chapter 6 summarises the conclusions drawn and provides an 
outlook for future work. 

1.6 The authors' contribution 
We have both participated in discussions concerning all parts of the work and in 
running simulations. Ahmed focused more on literature search and writing of the 
theory part of the report, and Ellinor on the method and results parts of the report 
along with writing scripts for generation of input files and analysis of the data. 
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 2  

2 Theory 

2.1 Electromagnetic field theory 
An EM field can be divided into the electric field   and the magnetic field  . These 
fields are generated by interactions between the moving electrically charged 
particles and bound charges in materials [3]. Maxwell’s equations in differential 
form [2],  
 

          
       

  
 (2-1a) 

         
       

  
        (2-1b) 

              (2-1c) 

          , (2-1d) 
 

govern the macroscopic propagation behaviour of EM waves in the point   at the 

time  . Here the vectors           and the scalar quantity      are defined as 
follows: 
 

        Electric field [V/m] 

        Magnetic flux density [Vs/m2] 

        Magnetic field [A/m] 

        Electric flux density [As/m2] 
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        Electric current density [A/m2] 

      Electric charge density [As/m3] 
 
Equation (2-1a) is the differential form of Faraday’s law of induction, which in its 
integral form states that a time-varying magnetic field through any surface 

  bounded by a closed path   gives rise to an electric field. The corresponding 
integral form of Faraday’s law is 
 

            
 

  
          

  
. (2-2a) 

 
Equation (2-1b), called Ampere’s law, states that a path integral of the magnetic 
field is equal to the sum of the current enclosed with that path plus the displacement 
current. Ampere’s law on integral form is 
 

          
 

           
 

 
 

  
          

 
. (2-2b) 

 
Equation (2-1c) is Gauss law for electric field, which states that the surface integral 

of the electric flux around a closed surface   is equal to the charge generated by that 

surface, and (2-1d) state that the magnetic field   is divergence free [7], 
 

          
 

      
 

 (2-2c) 

          
 

  . (2-2d) 

 
Maxwell’s equations, presented above, are valid in any kind of media. There are 
three physical phenomena that affect a medium in which EM waves propagate. 
These phenomena are electric polarization, magnetization, and electric conduction, 
and they are discussed in detail in [7]. 
 
In order to solve Maxwell’s equations in free space or inside a material with a 
unique solution, the number of unknown vector parameters must be the same as the 
number of equations. For this purpose, constitutive equations are needed. [3] 
 
For linear isotropic dielectrics and magnetic materials, the constitutive relation 

relates the electric and magnetic flux densities   and   with the electric and 

magnetic fields   and   as [6] 
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        (2-3a) 

        (2-3b) 
 

where    and    are the electric permittivity and magnetic permeability of free 

space, respectively, with the numerical values     8.854   10-12 F/m and    

 4  10-7 H/m. The relative permittivity and permeability are denoted by    and 

  , respectively, and they are both equal to one in free space. These parameters 

represent the effect of polarization   and magnetization   inside a material and are 

related to the electric and magnetic susceptibilities,    and   , of the material 
according to 
 

        (2-4a) 

       . (2-4b) 
 

The velocity   of EM waves depends on the material where they propagate, 

according to   
 

         
.   and   produces a secondary electric and magnetic 

field that acts in superposition with the applied field, and are related to   and   
according to [3] 
 

        (2-5a) 

  
 

  
  . (2-5b) 

2.1.1 Boundary between two media 
Maxwell’s equations in differential form are valid at points in a continuous medium 
[7]. For a discontinuous medium, Maxwell’s equations in integral form can be 
employed and used to derive the boundary conditions for the electromagnetic fields 
between two media with different dielectric parameters. The theory about 
boundary conditions is described in detail in [2] and [7], and the boundary 

conditions of the   and   fields between two media is shown in figure 2.1 and 
given as 
 

              (2-6a) 

                (2-6b) 

               (2-6c) 
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              (2-6d) 
 

where     is the normal unit vector to the surface between two media directed from 

medium 2 into medium 1,    [As/m2] is the surface current density and    [A/m] 
the surface charge density. 
 
Equations (2-6a) and (2-6d) in the boundary condition state that the tangential 

component of the electric field   and the normal component of the magnetic flux 

density   between two media are continuous across the interface. The tangential 

component of the magnetic field   and the normal component of the flux density   

are discontinuous by the amount of      and    respectively [6]. 
 
In a special case, when the second medium is a perfect electric conductor (PEC), all 

fields belonging to medium 2 vanishes (  =  =  =  =0) and the boundary 
conditions take the form [3] 
 

         (2-7a) 

           (2-7b) 

           (2-7c) 

         . (2-7d) 
 

 

Figure 2.1 - Boundary condition at the interface between two media. 

 
Maxwell’s equations has two equations containing time-derivatives. In order to 
solve Maxwell’s equations, the electric field will be assumed to be complex vectors 

with time-harmonic source dependenc     , as is done in [7]. The simplest way is 
to solve Maxwell’s equations in the frequency domain instead of the time domain, 

by replacing the time derivative in the time domain with corresponding    in the 
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frequency domain. The boundary conditions remain, since they do not contain any 
time derivatives and the electric field in the frequency domain is given by [7] as 
 
 

                      (2-8) 
 
Maxwell’s equations in frequency-domain with electric field assumption become  
 

                   (2-9a) 

                         (2-9b) 

              (2-9c) 

           (2-9d) 

2.2 Antenna theory 

2.2.1 Field regions 
There are three regions surrounding the antenna: reactive near-field, radiating near 
field (Fresnel) and far-field (Fraunhofer) [8]. Figure 2.2 is inspired by [8] and shows 
the different antenna regions. There are no actual discontinuities between these 
three regions, and the boundary between them is not very rigid. The derivation of 
the boundary between these regions is shown in detail in [17]. 
 
The immediate field surrounding the antenna is called reactive near field, wherein 
the reactive field term predominates. The outer boundary of this region is at a 
distance 
 

       
  

 
 (2-10) 

 

from the origin where   is the largest dimension of the antenna. For a very short 

dipole, the outer boundary is at a distance   
 

  
 [8]. 

 
The middle region between the reactive near field and the far field is the radiating 
near field or Fresnel Region, and the radius of this region satisfy the condition  
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 (2-11) 

 
This region may not exist in the case of small antenna dimension compared to the 
wavelength [8]. 
 

Far away from the antenna, with   
   

 
, is the far field or Fraunhofer region. In 

this region the radiation pattern does not change with the distance from the antenna, 
and the wave travelling from the antenna takes a plane form. 
 

 

Figure 2.2 - Antenna regions: reactive near field, radiating near field and far field. 
Inspired by [8]. 

 

2.2.2 Radiation from general source distribution 
The theory of this section is extracted from [6] where the radiation from a general 

current source is studied in detail. The radiated electromagnetic fields   and   for 
a given source distribution of currents and charges can be obtained directly by 
solving Maxwell’s equations in differential form for given constitutive relations and 
boundary conditions. However, it is often more convenient and easier to solve 
equations 2-1c and 2-1d by determination of the electric and magnetic potential 
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     and      first, rather than the   and   fields. Figure 2.3 is based on [6] and 
illustrates the generated electric and magnetic potentials from a given current or 

charge distribution. The potentials      and      are given in [7] with a sinusoidal 

time dependence      for these two quantities, 
 

      
               

           
    (2-12a) 

      
                 

         
    (2-12b) 

 

where   is the free-space wave number, related to the wavelength   via   
  

 
, 

  is the location of the field point and    is a vector from the origin to the source 

point. Only the magnetic potential      is needed in order to determine the   and 

  fields. 
 
The far field approximation of the magnetic potential for the antenna can be 

determined by assuming      , 
 

     
       

   
              

 
   . (2-13) 

 
 

 

Figure 2.3 - Electric and magnetic potential,      and     , generated by current and 
charge distribution. 
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     is a 3-dimensional spatial Fourier transform for the current densities of the 
antenna [3]. The volume integral term of equation 2-13 is called radiation vector, 

denoted by       , and is dependent on the polar and azimuth angles. Then the   

and   fields can be obtained from the magnetic potential by  
 

                (2-14a) 

          , (2-14b) 
 

where    is the wave propagation direction with impedance    
 

 
 

   

   
 . The 

relation between the E and H fields for a plane wave is  
 

        (2-15) 
 
Thus, the E and H fields in the far region are given as 
 

                  (2-16a) 

   
  

 
               (2-16b) 

 

2.2.3 Terminology 
An antenna can be described in terms of radiation characteristics for receiving and 
transmitting electromagnetic waves, or in terms of a circuit element where the 
antenna is connected to the transmission line. In order to determine the electric far-

field from an antenna structure, the radiation vector        for a current 
distribution is given by [6] as a volume integral of the current distribution around 
the antenna, 
 

                   
 

        
   . (2-17) 

 
The electric far field from the antenna is then given by [6], 
 

          
     

   
            

     

   
           , (2-18) 
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where    denotes the component of   that is perpendicular to the propagation 

direction   . The radiation intensity         is defined as the angular distribution 
of the radiated power density around the antenna per unit solid and is given by [4] 
 

        
    

    
           (2-19) 

 

The total radiated power           can be determined by integration of the 
radiation intensity over a unit sphere, 
 

                  
  

 

 

 
        . (2-20) 

 
It is interesting to describe the radiation of an antenna in a specific direction. The 

directivity        of an antenna is defined as the ratio between the radiation 
intensity in a specific direction, normalized by the average intensity, given by [4] as 
 

       
        

            
. (2-21) 

 
The radiation pattern is omni-directional when the directivity is independent of the 

angles   and  . This cannot occur for real antennas, where typically at most a 

pattern independent of azimuthal angle   can be achieved. 
 

The gain        of an antenna is defined as the radiation intensity normalized by 

the power accepted by the antenna,   , 
 

       
       

     
. (2-22) 

 
The relation between the gain and the directivity is 
 

               (2-23) 
 

where   is the antenna efficiency that describes the losses of the antenna, and it is 
defined as a ratio between the radiation power and the input power. For a lossless 

dipole (   ) the gain and the directivity are the same. 
 
An antenna can also be described as a circuit element where the antenna is 

connected to a transmission line. The input impedance   of an antenna relates the 



 
 14 

relation between voltage and current at the input to the antenna. It varies with 
frequency and is often a complex number, 
 

       (2-24) 
 

where the real part is the resistance  , related to the dissipation of power due to the 
radiation or absorption of electromagnetic waves and the material losses, and the 

imaginary   part relates the power stored in the near field around the antenna [1]. 
The reflection of the power back to the transmission line depends on the difference 

between the antenna input impedance and the characteristic impedance    of the 
transmission line, where the maximum power transfer is achieved when the 
difference is zero [1]. 

2.2.4 Image theory 
A current distribution above an infinite perfect conducting ground plane creates an 
image of identical current distribution. The image theory is based on the boundary 
condition on the surface of the perfect electric conductor (PEC) or perfect magnetic 
conductor (PMC). The boundary conditions that are the tangential component of 
the electric field is zero on the surface of a PEC, and the tangential component of 
the magnetic field is zero on the surface of a PMC. This way, the ground plane can 
be replaced by an image current placed below the ground plane at equal distance. 
For a PEC, the direction of the image electric current distribution of the electric 
current perpendicular to the ground plane is the same, whereas the direction of the 
image electric current distribution of horizontal electric current is opposite [2, 7]. 
In figure 2.4, based on [3], the electric and magnetic current densities are 
presented. 
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Figure 2.4 - Electric and magnetic current densities above an infinite ground plane. 

2.2.5 Radiation from a wire dipole antenna 
The wire dipole antenna is a simple and classic form of antenna. It consists of a thin 
linear wire with a center feed or an end feed point. Some examples of wire antennas 
are hertzian dipole, folded dipole and monopole antennas. The most studied type is 
the half wave dipole, since it is a self-resonance of a thin dipole [6]. 
 

For an infinitely thin wire antenna with center feed point and length  , directed on 
the z axis, the current density can be approximated by  
 

                    (2-25) 
 

where      is the current distribution along the wire antenna. The radiation vector 
will have only a z component, since the wire is directed on the z axis, and the 
radiation vector is given by  
 

                  
      

    
                      

    
 (2-26) 

 

by using spherical coordinates to resolve    and identify the component of the 
radiation vector in spherical coordinates. The obtained radiation vector depends on 
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the polar angle   and is independent of the azimuthal angle   (omni-directional). 
The radiated electric and magnetic field generated by a wire antenna is shown in 
figure 2.5, and is given by 
 

            
     

   
          (2-27a) 

 

           
     

   
         . (2-27b) 

 
 

 

Figure 2.5 - Electric and magnetic field radiated from a dipole antenna. (Image from 
http://de.wikipedia.org/wiki/Datei:Felder_um_Dipol.jpg by user Averse. Published 

under the terms of the GNU Free Documentation License, Version 1.2.) 

2.2.6 Half-wave dipole antenna 
The half wave dipole antenna is the most common type of wire antenna. In order to 
determine the radiation intensity, directivity and the radiated field of a half wave 
dipole, the current distribution around the antenna should be approximated so that 
the current at the ends of the dipole vanishes and the maximum current is on the 

middle of the dipole. For a z-directed antenna with length   and feed point on the 
origin, a good approximation is a sinusoidal current distribution along the antenna 
according to [5], 

 

                              . (2-28) 
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This approximation is valid as long as the dipole is not too long and the radius is 

thin. The   component of the radiation vector for a half wave dipole is simplified to 
 

      
   

 

     
 

 
     

     
 (2-29) 

 

after using      where      . The radiation pattern of a half wave dipole is 
omni-directional, and the maximum directivity occurs when the azimuthal angle is 
 

 
 (in the horizontal plane), 

 

     
 

 
                 (2-30) 

 
as shown in figure 2.6. 
 
 

 

Figure 2.6 - Radiation pattern from a half-wave dipole. In the left picture, depicting 

the total gain for different  , the dipole is in the z-direction and the xy plane 
orthogonal to this page. 

2.2.7 Monopole antenna 
A monopole antenna is one half of a dipole antenna and consists of a single 
conductor fed out of a ground plane. The feed for a monopole antenna can be a 
coaxial line with an inner conductor connected to the monopole, and the outer 
conductor connected to the ground plane. By using image theory a monopole 
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antenna over an infinite perfect ground plane can be replaced by a dipole with a 
center feed point. The current distribution in a monopole antenna can also be 
approximated with a sinusoidal current distribution when the monopole is very thin 

(      ) and not too long (     ) [5].  
 
The input impedance of a monopole decreases to one-half compared with a half-
wave dipole, since only half of the voltage is required to drive a monopole 
compared with a dipole, and the same current is produced. The gain and directivity 
of a monopole antenna is twice as much as the corresponding dipole antenna, since 
the electric field vanishes below the ground plane and needs a half of the input 
power to produce the same electric field [4]. Figure 2.7 shows the radiation pattern 
from a monopole over ground plane. 
 

 

Figure 2.7 - Radiation pattern from a quarter-wave monopole over a perfectly 

conducting ground plane. In the left picture, depicting the total gain for different  , 
the monopole is in the z-direction and the xy plane orthogonal to this page and 

coinciding with the ground plane. 

2.3 Method of Moments 
Only a few problems regarding radiation of EM waves can be solved analytically. 
There are several powerful numerical methods for determining the radiation of EM 
fields around an antenna structure. The Finite Element Method (FEM) and the 
Method of Moments (MoM) are two of these. 
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For the simulations in this thesis, MoM is used. The theory is described in detail in 
[7], [12] and [8]. The idea for solving integral equations is to convert these equations 
into a linear system that can be solved numerically using a computer program. 
 

In section 2.2.1 it is described how the electric and magnetic potential      and 

     are calculated from known   and  . To determine these   and  , MoM is 
used. The radiation and scattering problems around an antenna should be expressed 
as integral equations, the electric and magnetic field integral equations, EFIE and 
MFIE, respectively. EFIE and MFIE for a perfect electric conducting body is given in 
[8] as 
 

                    
          

   
         (2-31a) 

                                   (2-31b) 
 

where      and      are the incident fields for the receiving antenna or field from 

the feed,   and   are electric permittivity  and magnetic permeability of the 

medium respectively,   is the wave number of the medium given by       , 

  is the induced surface current density (unknown parameter),    is the outward 

normal unit vector, and   is a magnetic vector potential function at distance   from 

a point         on the surface to the point         where the field is evaluated and 
given by 
 

                  
     

          
       (2-32) 

 

where   and   are parametric variables on the surface. The vector integral equations 
for EFIE and MFIE have a linear system form, 
 

      , (2-33) 
 

where   is a linear vector operator and   is the excitation function, where      is 

included in   for a scattering problem. In order to solve a linear equation system, 
the equations should be converted into a matrix form. By a discretisation of the 

current distribution   by a series of a linearly independent vector basis functions 

        along the surface of the antenna as 
 

                  
    (2-34) 
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where    is the unknown parameter. These parameters can be determined by scalar 

multiplication with a vector testing function,        , and integration over the 
surface of the antenna, 
 

             
       

           
       

,    

 (2-35) 

                
 
This can be rewritten in a matrix form as 
 

 
 
 
 
   

   

   

   

 
 

 
 

 
 

   

    
 

 
 

 
 

 
 

 
 

 
 

           
 
 
 

 
 
 
 
   

   

  
    

 
 
 

=

 
 
 
 
   

   

  
    

 
 
 

 (2-36) 

 

         
       

         

 

        
       

     

 

The current density        on the surface of the antenna can be solved numerically 
by MoM. 
 
The main advantage of using MoM compared with other methods, like FEM, for 
solving a radiation problem lies in the meshing. In FEM, the whole body, including 
the air between and above the monopoles, must be divided into 3D segments, 
modelled, and solved for in order to calculate the field. Doing so for large 
structures requires a great deal of computer capacity, and as all segments need a 
boundary the surrounding free space must be truncated and a virtual boundary must 
be introduced [8]. Using MoM, only the surface of the antenna structure needs to be 
meshed.  



 
 21 

2.4 Periodic structures 
Periodic structures have been used in many applications in science and engineering 
to simplify many physical concepts. They classify into passive and active periodic 
structures. Periodic structures find application in a variety of devices such as 
microwave filter networks [2], crystal structures [24], and reflection and 
transmission in dielectric mirrors, studied in detail in [6], and are some examples of 
passive periodic structures [14]. An antenna array is an example of an active periodic 
structure.  
 
Propagation of EM waves in active and passive periodic structures are based on 
Floquet’s theorem and studied in [15]. The circuit representation for 1D passive 
periodic structures in z direction have equal elements spaced periodically with 

period  . By letting      be the field reacting with the periodic surface, the field at 
each period can be represented by the field of the previous period multiplied by a 
constant, or more generally  
 

               (2-37) 
 

where   is a constant,   is the period number for boundedness      . In general 

       where   is the period distance and   is a (possibly complex) constant 
called the Bloch wave number. 

2.4.1 Microwave filter 
A microwave filter is a passive periodic structure and is designed by two methods, 
the image parameter method and the insertion loss method. These methods are 
described in detail in [2]. Microwave filters consist of a transmission line or 
waveguide loaded with a cascade connection of identical two port networks with a 
finite number of reactive elements. However, it can be designed as a model with an 
infinite number of reactive elements as shown in figure 2.8. 
 

For a wave propagating in the positive   direction, where the periodic structure is 
infinitely long the relation between the voltage and current in subsequent terminals 
is given by 
 

            (2-38) 
 

            (2-39) 
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where        is the complex propagation factor of the periodic structure, and 

  is the physical length of each individual section. This can be written in matrix 
form as 
 

 
  

  
   

  
  

  
    

    
   

       

         (2-40) 

 
where the matrix elements are given in [2], 
 

       
 

 
     (2-41a) 

    
 

 
          

 

 
  (2-41b) 

    
 

 
          

 

 
  (2-41c) 

       
 

 
     (2-41d) 

 

where b is the susceptance, which is normalised to the characteristic impedance   , 

     is the electrical length of the transmission line in the unit cell and   is the 
propagation constant of the unloaded line. 
 

Depending on the complex propagation factor  , if it is real (       ) or 

imaginary (       ), the propagating waves on the loaded line periodic 
structure exhibit either stopband or passband [2].  
 

 

Figure 2.8 - A microwave filter, an infinite passive periodic structure. 
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2.4.2 Periodic Greens function 
Electromagnetic scattering from periodic structures can be determined using an 
integral equation technique as the method described in section 2.3. The periodic 
Green’s function (PGF) is an efficient and accurate computation method that is used 
in order to calculate the scattering of EM waves by a periodic structures, such as 
antenna arrays or photonic band-gap structures [11]. The application of the Floquet-
Bloch theorem, studied in detail in [14], reduces the computational domain of an 
infinite periodic structure to a single unit cell, but requires the numerical evaluation 
of very slowly converging series [18]. 
 
The PGF for 3-D problem with 1-D periodic point sources along x direction with 

spatial period   and a constant phase shift   in free space is given in [18] as 
 

      
 

  
 

            

        
        

      (2-42) 

 

where    is the measuring point. The series diverge when the phase shift is 
complex. Three methods are discussed in [18] in order to accelerate the 
convergence of such series; these methods are Kummer-Poisson’s decomposition, 
Ewald’s method and an integral representation. All of these methods exhibit 
exponential convergences are valid in the general case of a complex phase shift 
between sources [18]. 
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 3  

3 Endfire antennas 

3.1 Antenna arrays 
Array antennas are composed of two or more antenna elements, and are used to 
direct the radiated power in a desired direction. The radiated power is either 
broadside, where the maximum radiation is perpendicular to array orientation, or 
end-fire, where the maximum radiation is in the same direction as the array 
orientation. Most antenna arrays consist of identical antenna elements; a sketch of a 

one dimensional uniform linear monopole array with distance   between the 
elements and feed point in the end of each monopole is shown in figure 3.1. 
 
There are several array design parameters which can be used to shape the overall 
array pattern, such as element geometrical arrangement, element spacing, and 
element relative excitation amplitude and phase. With these controlled parameters 
it is possible to obtain a required radiation pattern. 
 
Assuming no coupling between the elements and that the current in each element is 
the same in an array, the total radiated field can be determined by the vector 
addition of the fields radiated by a single element in an array [10]. The theory of the 
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radiated electric field from two and   element linear arrays is described in detail in 
[10]. Assuming coupling between elements of uniform amplitude and spacing, the 
total radiated field can be determined by using the array pattern multiplication 
property of identical elements. This means that the overall radiated field of an array 
can be obtained by multiplying the field of a single element with the array factor. 
The array factor is a function that depends on the controlled parameters above, and 
is not dependent on the type of antennas that constitute the array. The normalised 

array factor (  ) for a linear   element array with uniform amplitude and spacing 

distance  , where each succeeding element has progressive phase  , is given by [10] 
  

      
 

 
 

    
 

 
  

    
 

 
  

  (3-1) 

 

where   is the array phase shift,  
 

              (3-2) 
 

and   is the elevation angle. 
 

 

Figure 3.1 - A uniform linear monopole array antenna. Feed in     for all 
monopoles, as indicated for the leftmost. 

 
Performance and behaviour of two kinds of antenna arrays, the ordinary end-fire 
(OEF) array and the Hansen-Woodyard end-fire (HWEF) array, will be discussed. 
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3.2 Ordinary endfire (OEF) array 
Depending on the direction of maximum directivity, the phase shift between the 
elements in an array is adapted to cause constructive interference in the desired 
direction and destructive interference in the other directions. 
 

The direction of the radiated power in an OEF array is along the axis, where   

   or       . The progressive phase shift   of a uniform array can be 

determined by putting the array phase shift   to zero. The progressive phase shift 
depends on which direction the maximum radiation power will occur, according to 
 

      for      (3-3) 

     for       .  
 

The normalized array factor for an OEF array with   elements and the maximum 

radiation in      (negative sign) or        (positive sign) reduces to 
 

      
    

   

 
           

 
   

 
           

. (3-4) 

 
The number of end-fire maxima depends on the spacing between elements in an 

array. The maximum distance between elements in an array is      
 

 
  , if the 

desired number of end-fire maximum is one and without any grating lobes. The 

maximum radiation occurs in both directions (two end-fire maximum at      

and       ) when the space between elements is   
 

 
 . Maximum radiation 

occurs in both end-fire and broadside directions if the element spacing in an array is 

a multiple of a wavelength,      where   is an integer.  
 

The directivity of an OEF array is given in [8] as     
 

 
  where   is the length of 

the array assuming    . To achieve a better directivity of an OEF array, Hansen 
and Woodyard proposed a slightly modified phase shift and distance between the 
elements of an OEF array [10]. 
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3.3 Hansen-Woodyard endfire (HWEF) array 
In many applications, a higher directivity is required. To obtain this requirement, 
the progressive phase shift between array elements should be changed depending on 
the direction of the maximized directivity according to [10], 
 
 
 
 

       
    

 
  for maximum at       

 (3-5) 

       
    

 
  for maximum at       .  

 
These conditions are known as the Hansen-Woodyard conditions for end-fire 
radiation. These conditions lead to larger directivity than for the OEF array and 
ensure maximum directivity (minimum beamwidth) in the desired direction [10]. 
 
Another condition has to be complemented the H-W conditions to avoid the trade-
off in the side lobe level, which is higher than the OEF array. The spacing between 
elements in the array should be approximately [10]  
 

   
   

 
 

 

 
 (3-6) 

 

The directivity of a HWEF array is           
 

 
  . This means, by using HW- 

conditions, the directivity will be maximized by factor of 1.805 (or 2.5 dB) 
compared to an OEF array. A comparison governing the directivity between HWEF 
array and OEF array is shown in figure 3.2, using a uniform linear monopole array 
consisting of 99 elements. The bandwidth of the HWEF array becomes narrower 
compared to the OEF array according to [8]. 
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Figure 3.2 - Comparison between HWEF (left) and OEF (right) for an      antenna 

array seen from above, the array starting in     extending in positive and radiating 

in negative   direction.  
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 4  

4 Method 
This chapter starts by defining all properties of the antenna structure needed for 
analysis, along with a description of the test data. After that follows a description of 
the software used for simulations, The Numerical Electromagnetics Code (NEC). 
Analysis of the data extracted from NEC was performed using MATLAB, based on 
the hypotheses presented in section 4.3, and an analysis outline is presented in the 
last section. 

4.1 Statement of the problem 

4.1.1 Geometry 
Figure 4.1 illustrates and defines the geometrical properties of the studied endfire 
antenna, which follows the Hansen-Woodyard design. The array consists of N 

monopoles numbered 1..  along the x axis with a distance   between them, placed 

over a perfectly conducting ground in the xy-plane. Each monopole has a length   

and the phase shift between two consecutive monopoles is denoted by  . 

Furthermore, the measuring points (marked by crosses) are at a height    over the 
ground plane.  
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Figure 4.1 - Geometry of the endfire antenna. A Cartesian coordinate system is 
positioned so that the antenna starts in the origin and extends along the x axis with 
monopoles parallel to the (positive) z axis. The gray square represents a ground plane 
coinciding with the xy plane. 

 
Based on the above, one unit cell is defined as a fraction of the antenna array 

containing one monopole and one measuring point. An   monopoles long array is 

hence equivalent to   unit cells lined up next to each other along the x axis. 

4.1.2 Parameters 

All geometrical parameters are scaled to fit a design frequency    through the 
relations 
 

  
  

 
   

 

 
  (4-1) 

 

following the Hansen-Woodyard design where         is the corresponding 

design wavelength and   is the speed of light in vacuum, 
 

  
  

 
 (4-2) 

 

as the array consists of monopoles, and the radius   of a monopole  
 

  
  

   
  (4-3) 

 
where the constant 100 is chosen according to the NEC2 manual [19]. 
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The design frequency    might or might not be the same as the excitation frequency 

 . The excitation frequency in its turn decides the wave number  ,  
 

  
  

 
 (4-4) 

 

where       is the excitation wavelength. The frequency difference   depends 

on both   and    through the Hansen-Woodyard relation from chapter 3,   
 

     
    

 
.  (4-5) 

 

4.1.3 Test data 
The test data consists of the simulated values of the electrical field in x and z 
direction, respectively, in a number of equally spaced points along the x axis (i.e. 
parallel with the antenna array, see figure 4.1). This choice of measuring points 
implies that the field will be constantly zero in y direction. 
 

The design frequency is chosen to     10 GHz, and for comparison a number of 

frequencies centred around    are used. Note that the antenna remains optimised 
for the central frequency throughout the whole simulation – only the frequency 

difference   will change with the excitation frequency in accordance with formula 

(4-5). Keeping   constant will impose demands on the power supply to the 
antenna. How this is realised is not a topic of this report, and will not be further 
discussed. 
 
Every simulation produces three sets of values for the electric field, corresponding 

to three different values of   . These points are at height     ,      and 

     , and are numbered 1, 2, 3. The electric field is correspondingly denoted, 

for example    
 for the field in z direction in point 2 or    

 for the x component at 

height   .  
 
Most of the theory on which the investigations presented in this report are based 
was developed for infinite structures, while the simulated antenna is strictly finite. 
Having a finite antenna gives rise to side effects on the edges that has to be handled 
separately, at once making the problem much more complicated. Instead of 
handling these side effects by introducing reflected waves, the outermost elements 
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of each side of the antenna array are discarded once the calculations are done and 
not used in the further analysis. This simplification is justified by our question at 
hand; is there a part of the antenna that can be characterized as periodic with no or 
little influence of the edge elements and analysed using a representative unit cell?  
 
In general, if nothing else is specified, 3 unit cells at each end of the antenna are 
discarded. In order to clearly distinguish between the whole setup of values from a 
simulation and the values used in the analysis (with the outermost values at each side 

removed) the first is denoted   and the latter  .  

4.2 Simulation software 
Throughout this project 4nec2, a license free software for Windows built on the 
second version of The Numerical Electromagnetics Code (NEC-2), was used for 
simulations. NEC-2 is an implementation of MoM for analysis of the 
electromagnetic response of a metal structure specified by the user. A general 
overview of MoM was presented in 2.3. This section briefly describes the special 
case for NEC-2; how wires and ground planes are discretized, limitations of the 
program and finally something about input and output. More about the theory can 
be found in [13] while the user's guide [19] gives a detailed description of all features 
and how to use them. 

4.2.1 Wire and ground plane modelling 
NEC-2 uses two types of integral equations, one for wires and one for surfaces. A 
wire is divided into a number of segments specified in the input file; each built up by 

a constant, a sine and a cosine giving a current    for segment   described as 
 

                                       ,  

 (4-6) 

             

 

where    is the coordinate at the centre of the segment and    denotes the segment 

length.   ,    and    are unknown constants of which two are eliminated using 
local conditions after expanding the current in a sum of basis functions. The basis 

functions used are the Bessel functions       and      . For the problem stated 
in this thesis these boundary conditions are either of the below: 
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a) The charge as well as the current is continuous at the junction between two 
segments, 
 

      

  
 
         

 
  

 

   
 

  
   

, (4-7) 

 

where Euler's constant         , or 
 
b) at free ends, relaxing the current flowing onto the end cap according to 
 

               

 

      

      

     

  
 
         

. (4-8) 

 
The matrix equation of MoM, described in section 2.3, is then used to calculate the 
last unknown for each segment.  
 
The perfect conducting ground plane is not discretized by NEC. Instead, the image 
method from section 2.2.4 is used, replacing the ground plane with images of the 
currents above it. 

4.2.2 Limitations 
According to [13], there is no theoretical limit for how large structures that can be 
modelled and solved for using the integral approach implemented in NEC-2. 
Though, the matrix grows for every segment, calling for more space to store it and 
more computer power to solve the equations. The code has a history going back to 
the 70's, and as a result of this the code itself limits the maximum memory usage 
allowed. There are several executable files available, of which the largest in the 
current version allow 11 kB. 
 
In order to get an accurate solution the segments must be sufficiently short in 

comparison with the wavelength  . This minimum requirement is 
 

   
 

  
 (4-9) 

 

where    is the length of the segment, although the half of this is recommended. 
[19]. In this thesis a minimum of 5 segments are used for each monopole. 
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Of course it is preferred to simulate as large structures as possible – the more 
elements in the array the more periodic it will appear – but with the above 
restrictions the largest array of monopoles possible turned out to be 256 elements 

long (i.e.  =256).  

4.2.3 Input and output 
In order to perform a simulation, NEC-2 needs a set of input parameters describing 
the structure geometry, loads and electrical properties. These can either be 
provided by hand via the graphic user interface in 4nec2, or by structured text files, 
the latter being more efficient for large structures and therefore used in this thesis. 
All options are described in detail in the manual [19]; the following is a short 
description of the ones used in this thesis. 
 
An input file is produced using a MATLAB script, given the design frequency, 
excitation frequency, number of dipole wires, number of segments on each wire 
and number and start value of the measuring points as input parameters. The 
geometry of the whole structure is then calculated and written to a text file as in the 
example in figure 4.2. 
 

 

Figure 4.2 - An example input file to NEC. 
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Each line starts with two letters, cards, telling the program what could be found on 
that row. CM and CE marks start and end of comment lines to be ignored. A GW 
card is followed by a geometrical description of a wire, including tag number, 
number of segments, start and end points in x, y and z direction respectively, and in 
the last column the radius of the wire. The geometry description is terminated with 
GE followed by an integer flag describing the ground plane, in this case 1, which 
means a ground plane is present and segments touching it will be interpolated using 
image theory. GN specifies the ground plane, 1 meaning perfectly conducting 
ground, and EK is a flag to control that the extended thin-wire kernel 
approximation is used for computation. 
 
Next follows a number of excitation cards, EX, with specifications for source type 
(in this case 0 indicating a voltage source), tag number, segment number, real and 
imaginary parts of the voltage source, magnitude and phase. FR is the frequency 
specification. NE requests the near electric field to be computed as specified on that 
line, with number of measuring points, starting point and step length in x, y and z 
direction, respectively. The last row contains the end of data flag, EN, ending all 
program execution. 
 
In a real application, every element would also have a load parallel to the source. 
This can be simulated in NEC using the LD card, but since none of the investigations 
in this thesis requires information about the loads they are not included in this 
model.  
 
Running the simulation generates an output file, which is quite extensive in 
comparison to the input. Not all data is used for the analysis, and figure 4.3 shows 
only the near electric fields part of the example output file (the one generated using 
the example input file in figure 4.2). 
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Figure 4.3 - Parts of an example output file from NEC. 

 
 
The output file starts by repeating the geometrical input, and then follows the 
resulting segmentation data describing how the structure was divided into smaller 
parts for analysis. Hereafter comes the excitation and frequency information along 
with calculated voltage, current, impedance, admittance and power at the first 
segment of each monopole antenna. The next section is called currents and locations 
and displays geometrical properties in units of wavelength as well as currents for 
every segment. Depicted in figure 4.3 is the last part of the input file containing the 
values used for analysis in this thesis, location of the measuring points and near 
electric fields in x, y and z direction for the three different heights over the ground 
plane chosen, respectively. 

4.3 Hypotheses 
Finding plausible hypotheses describing the electric field from an endfire antenna is 
an evolving process of testing, rejecting, developing and testing again; some ideas 
turning out to be dead-ends and some worth a closer look. Of course all of this 
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work could not be included in this report. Instead, hypotheses of special interest 
were selected and are presented in the following subsections.  
 
First, the NEC simulation is compared to the result when assuming no coupling 
between the elements. Then, three hypotheses are tested. The first one is really 
simple; assuming that an active periodic structure is nothing different from a passive 
one. The following two are based on the first with slight changes due to the results 
of the simulations. All three hypotheses have separate sections in the result chapter, 
and the reader may reach a better understanding by skipping ahead to the results for 
one hypothesis before moving on to the next. 

4.3.1 Coupling between elements 
Before starting out with more advanced investigations, it is a good idea to check 
how close to the true field value a calculation assuming no coupling between the 
monopoles can come. This assumption leads to easy calculations, as the monopoles 
can be treated as independent antennas which through superposition sums up to the 
total electric field around the structure. Using image theory to treat the ground 

plane, the problem is equal to an array of dipoles. Each has an   field according to 
formula 2-27a and the field in one measuring point is the sum of the separate fields 
from all dipoles. 

4.3.2  Passive periodic structure 
A plausible starting point for further investigations to build on would be to address 
the most fundamental and important question to be answered: Is there any 
significant difference to the case of a passive periodic structure? If there is no 
difference, the well-developed theory for passive periodic structures can be directly 
applied. 
 
Thus, as a first naive hypothesis, the expression for the electric field in a passive 
periodic structure, 
 

                  , (4-10) 
 
is adopted. With the intention to enable a simple first analysis, the propagation 

constant   is assumed to be real in this case. 
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4.3.3 Complex propagation constant 
In this section the first hypothesis is extended to include a possibility for the 
propagation constant to be a complex number with both a real and an imaginary 
part. This more general form is written using the Bloch wave number  

        as  
 

                                   . (4-11) 
 

Note that the   in the above formula is not the same as in the previous section; it is 
just the denotation for the real part. Determination of both the imaginary and the 

real part,   and  , of the Bloch wave number calls for more complex methods, and 
the primary interest in a first stage here is to find whether there is an imaginary part, 
or not. Analysis of this hypothesis will therefore be focused on the possible 

existence of this imaginary part  . 

4.3.4 Polynomial factor 
Considering the results in section 5.2 after investigating the hypothesis in section 
4.3.2, one notices a remaining amplitude increment or decrement (depending on 

the height    over the ground plane of the measuring points) of the electric field at 
the end of the antenna that is not picked up by the simple model. An attempt to pick 

up this increment is to multiply the expression with a polynomial in  , 
 

                                 (4-12) 
 

where        are real constants and   collects the frequency content.  

4.4  Analysis outline 

4.4.1 Coupling between elements 
Instead of using formula 2-27a directly in the summation, a simplified form without 
all the constants, 
 

       
         

  

     
  

            
   

   , (4-13) 
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is used. Here   is the measuring point,    is the source point,   is the wave 

number,   is the phase difference and   is the element number. The notation 

         means that    is different for each source-measuring point pair, and the z 
and x components are summarised separately. What in fact is calculated with this 

formula is the array factor, assuming      . This is a good approximation at 
some distance from the source, but worse for measuring points near the considered 
monopole. 
 
Using MATLAB, two arrays are constructed and the z components of their respective 
electric fields are calculated. The first is a Hansen-Woodyard design just like the one 
in the problem description, the second with the dipoles further apart at a distance 

    for comparison. The same calculations are done using NEC-2. Comparing 
the results, there will be a good compliance between the two methods for the array 
with the larger distance between the elements and a greater difference for the 
Hansen-Woodyard array if coupling exists. 
 
To allow the point dipole approximation in the MATLAB case to be compared to the 
half-wave dipole in the NEC case the measurements must be made at some distance 
(order of wavelengths) above the ground plane. Also, the values must be normalised 
since the difference otherwise will depend on the removed constants in the first 
case.  

4.4.2 Passive periodic structure 
This hypothesis can easily be examined using the well-known fact that taking the 
logarithm of a constant multiplied with a purely exponential expression results in 
another constant multiplied with the expression in the exponent. First, to get a 

cleaner look,   is defined as the constant part of the exponential, 
 

                              . (4-14) 
 

Taking the logarithm gives 
 

                              (4-15) 
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which in this case is a linear function. Thus, if this simple hypothesis holds up, 
plotting the absolute value of the electric field in a logarithmic scale plot should give 
rise to a straight line.  

4.4.3 Complex propagation constant 
As mentioned, to find the Bloch wave number K is a tricky task since both its 
imaginary and real part must be determined; two unknowns and one equation. 
Luckily, there is a reasonably simple way to find the imaginary part, as its (possible) 
existence constitutes the most essential part of this analysis. To begin with, the 
constant part of the exponent is rewritten in the same manner as before, 
 

                               (4-16) 
 
and then follows an expansion using the Z-transform described in detail in [20], 
 

              
       (4-17) 

 

where      is the Z-transform of the sequence   . Applying this to q, defining 

     as its Z-transform, results in 
 

                        
 

 
 

     
 
   

 
     (4-18) 

  
If the upper summation limit had been infinity, the corresponding series would be 

convergent if and only if         which leads to 
 

                         (4-19) 
 

for the convergence limit and, since d is known, thereby allows us to calculate   by 

finding the value of z for which the series converge. The absolute value of      is 
calculated as the sum of the absolute values in the summation symbol, 
 

                      
     (4-20) 

 
The coupling between the radius of convergence and the corresponding value of z is 
illustrated in figure 4.4. The darker grey strip in the bottom picture marks the area 
enclosing the border of the convergence interval; above in the almost white grey 
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area |Q(z)| certainly diverges and in the lower light grey area it certainly 
converges. Correspondingly, in the upper picture the darker grey circle encloses the 

circular border of the outer convergence area. The requirement         is 

fulfilled somewhere between the horizontal lines. If      , a nonzero imaginary 
part of K exists and can be determined. 
 
 
 

 

Figure 4.4 - Coupling between the radius of convergence for the Z transform and the 
corresponding value of z. 
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Before moving on one big question arises that has to be treated: Where do we draw 
the line between convergence and divergence in a given plot? Is it when the sum 
exceeds a certain predetermined value, when the absolute value of the derivative 
becomes really large or when the growth of the curve is super-exponential? The 
arbitrariness in the choice of this boundary could indeed affect the outcome a lot, 
and therefore the analysis includes varying this boundary and comparing the results 
before any conclusion is drawn. 

4.4.4 Polynomial factor 
The idea here is to divide all measured values in the left hand vector in formula 4-12 
with the first value and the exponent part of the right hand expression, leaving only 
the polynomial.  
 

  

                        (4-21) 

 

Step one is to determine the frequency content  . This is done using the Fast 
Fourier Transform (FFT) technique. The whole vector of values, q, is transformed 
along with three different discrete sinus functions of different frequencies used as 
references. These references are needed since the FFT function in MATLAB 
determines the frequency in units of vector length, meaning that the frequencies for 

a vector of length   is given in the interval      . By fitting a line to the known 
reference values using the built-in MATLAB polyfit function the frequency content of 
q is calculated. Figure 4.5 shows the FFT of the reference functions (dotted) and q 
(solid) respectively. FFT generates both positive and negative frequencies, which is 
the reason for the double set of peaks for the sine functions. The positive peaks are 
the ones of interest. 
 

Once   is known the left-hand side of equation 4-21 can be determined. This 
vector is a point representation of the polynomial in the right hand side of equation 
4-21, and the goal is to find a line that fits. 
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Figure 4.5 - FFT for   (solid line) and reference sinus functions (dotted lines) used to 

calculate the frequency content  .  
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 5  

5 Results with discussion 
In this chapter the results are presented in figures, tables and explaining text. Each 
result is briefly discussed directly after it has been presented to reflect the way of 
working during this thesis project. The last section contains a more general 
discussion that summarises the work. 

5.1 Coupling between elements 
Results from the MATLAB as well as the NEC calculations for the two arrays are 
found in figure 5.1. The top graphs show the normalized values for the x 
component of the electric field and the bottom graphs show the corresponding 
values for the z component. Left is the Hansen-Woodyard design and to the right is 

the     design. The measuring points, in this case, were at a height 2  over the 
ground plane. 



 
 48 

 

Figure 5.1 - Comparison between NEC simulation and Matlab far field calculation of 

the electric field for a HWEA (left graphs) and a     antenna (right graphs). The top 
graphs show the x component and the bottom two shows the z component. 

 
As seen in the picture, the results for the Hansen-Woodyard array, especially for the 

x component, differ significantly more than for the     array. Tests with larger 
distances between the elements in the latter case, implying even less coupling, as 
well as measurements higher above the ground plane, reducing the influence of the 
half-wave versus point dipole dissimilarity, results in an even larger difference 
between the two setups. Thus, the coupling between the elements can not be 
neglected. 

5.2 Passive periodic structure 
Figure 5.2 and 5.3 are the plots of the absolute value of the electric field along an 

antenna array with    256 for four different excitation frequencies. Figure 5.3 

contains three plots corresponding to    
,    

 and    
, respectively. Figure 5.2 



 
 49 

holds only two plots, the upper for    
 and the lower for    

, since the  -field in x 

direction at the ground plane always will be zero and is therefore of no interest 
here. 
 

 

Figure 5.2 - Logarithmic scaled plots of the absolute value of the x component of the 

electric field over a HWEA with N = 256 and   = 10 GHz at four different excitation 
frequencies at two different heights over the ground plane. 

 
 
 



 
 50 

 

Figure 5.3 - Logarithmic scaled plots of the absolute value of the z component of the 

electric field over a HWEA with N = 256 and   = 10 GHz at four different frequencies 
at three different heights over the ground plane. 
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Looking at the plots, the first thing to notice is that none of them depict straight 
lines, and thus the hypothesis that an active periodic structure is nothing different 
from a passive ditto is proved to be false. With this conclusion made, a new, refined 
hypothesis is needed, and in order to find one, so is a deeper analysis. 
 
Except for the 7 GHz curve, common to the different frequencies concerning the z 
component, is that the values in the left part of the figure follow a fairly straight line 

(note the scale of the y axis for the    
 plot), whereas the right end has either a dip 

or a rise. The same holds for    
, but    

 is different with a dip at the left side as 

well. The fact that part of the curve is straight implies that equation 4-10 after all is 
a fairly good approximation for part of the structure, especially for the z 
component, but it needs to be modified in some way. A good way to start could be 
to relax the assumption of a real propagation constant and letting it be complex. 
 
Whether the curve bends up or down seems to depend on both frequency and 
height over the ground plane. Worth noticing is also that 5 GHz and 7 GHz gives 
higher values than the design frequency 10 GHz. The small oscillations in the 5 GHz 
and 7 GHz curves is due to inter-cell variations, which will be seen further on. 
 
Before moving on, the 7 GHz interference phenomenon is worth a closer look. 
Simulations from 1 GHz up to 9 GHz with 1 GHz steps show that only 7 GHz and 8 
GHz interfere; the rest have the same form as the design frequency. Additional 

simulations were performed to find the interference interval, and the results for    
 

can be found in figures 5.4 and 5.5 below. 
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Figure 5.4 - The absolute value of the electrical field for excitation frequencies at the 
lower boundary of the interfering interval. 

 

 

Figure 5.5 - The absolute value of the electrical field for excitation frequencies at the 
higher boundary of the interfering interval. 
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Figure 5.4 shows that the interference starts around 6.6 GHz, and from figure 5.5 it 
can be seen that there is still interference at 8.8 GHz while 8.9 GHz again looks like 
the non-interfering frequencies.  
 
In this context, it would be interesting to vary the edge elements in order to get an 

idea of how they affect the centre part of the array. In figure 5.6 the distance    
between the edge elements is varied, and in figure 5.7 the length of the edge 

elements,   , is set to a different value than for the centre elements. As inspiration 
for deciding the magnitude of these changes, the Yagi-Uda antenna described in [6] 

is used. In that case, the edge elements has length          and a distance 

         . 
 
 

 

Figure 5.6 - The absolute value of the electric field with different values of    for the  
3 outermost elements on each side of the antenna array. 
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Figure 5.7 - The absolute value of the electric field with different values of    for the  
3 outermost elements on each side of the antenna array. 

 
In the figures above, the edge elements are not part of the plot. One first 
observation is thus that altering the edge elements does indeed affect the inner part 
of the antenna. Initially there is an oscillation, and in the right end the bend of the 
curve is slightly different. Still, in both cases, there is a part of the antenna for which 
the changes has very little (if any) effect, implying that this part can be treated as 
periodic.  
 
Finally, the edge effects are studied in more detail by taking 20 measuring points in 
each unit cell to capture any inter-cell variations. Figure 5.8 shows the results for 
three different frequencies with and without changing the edge elements. 
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Figure 5.8 - The absolute value of the electric field with 20 measuring points  

in each element for three different excitation frequencies and      (left),  

and         (right). 

 
The period of the oscillations that is seen when having multiple measuring points in 
each unit cell is the same for all frequencies, one per unit cell, and corresponds to 
the inter-cell variations that is present for all frequencies. The main difference when 
changing the edge elements as done in the right figure is that the magnitude of the 
inter-cell variations becomes smaller, and for 10 GHz they disappear almost 
entirely.  

5.3 Complex propagation constant 
Recalling from the method part, the goal was to find the value of z where the Z-

transform series starts to converge, fulfilling        . The resulting plot of   

versus        for         GHz and for three different values of N can be 

found in figure 5.9 below. The plot starts in       , since the sum diverge 

strongly for lower values, and illustrates the values obtained for    
. The results are 

normalized with   in order to compensate for that the total number of terms differs 
between the sums. 
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Figure 5.9 - The sum of the Z transform as function of z value for three different  . 

 

The intersection at     is in fact three intersections laying close to each other, 
one between each pair of lines. As mentioned, the tricky part here is to set the limit 
for where the sum goes from divergent to convergent. This difficulty is evident in 

the figure, where it also is indicated that the value might not be the same for all  . 
In an attempt to avoid total arbitrariness in this choice a number of different sum 
value limits are tested and compared. For this purpose, a set of plots with scales 
adjusted to fit each of the lines in figure 5.9 are used, see figure 5.10. Table 5.1 lists 

the results for nine limit values   for each plot; the corresponding   and the 

differential 
  

  
 as a measurement of how much   changes with the choice of  . The 

values picked are measure points as close to 20, 40, 60, 80, 100, 120, 140, 160 and 

180 as possible for each  . 
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Figure 5.10 - Graphs used to pick out the values in table 5.1. 

 
 
 

          
64 128 256 64 128 256 64 128 256 

20.02 19.84 20.04 1.116 1.058 1.029 — — — 

40.21 40.37 39.8 1.054 1.027 1.014 325.6 662.3 1317 

59.9 59.82 61.32 1.031 1.016 1.008 856.1 1768 3587 

80.8 81.55 80.24 1.017 1.009 1.005 1493 3104 6307 

100.6 99.75 98.22 1.008 1.005 1.003 2200 4550 8990 

121.1 117.5 122.6 1.001 1.002 1.001 2929 5917 12190 

139.5 139.9 138 0.996 0.999 1 3680 7467 15400 

161.9 158.1 156.2 0.991 0.997 0.999 4480 9100 18200 

177.6 179.6 177.7 0.988 0.995 0.998 5233 10750 21500 

Table 5.1 - Values for the Z transform for N = 64, 128 and 256, respectively. 
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From the table it can be observed that       in a point is doubled when   is 

doubled. Around       the value of   is almost the same for all three array 

lengths  ; this is the intersection in figure 5.9.  
 
It is hard to conclude anything from table 5.1 since the limit seems to lie around 

   , the value for which  
 

            
 
and the propagation constant is real. Thus, there is a possibility that it is real, but it 
could as well be complex.  
 

What could be said, though, is that the curve is steeper for larger  , and thus the 

interval enclosing the convergence limit gets narrower as   increases. Still,     
can not be considered as not being part of this interval. The results can thereby not 

be used to falsify the hypothesis that   is real.  

5.4 Polynomial factor 
The result from this analysis aims to answer a two-part question; can the electric 
field over the endfire antenna be modelled by an exponential multiplied with a 

polynomial in  , and if so, how many terms are needed to get a sufficient 
compliance? Polynomials were fitted both to the original, complex-valued 
remainder, i.e. the left hand side of formula 4-21, and to the absolute value thereof, 
respectively. As both polynomials show similar behaviour, while the latter has real 
coefficients which are more suitable when it comes to visualisation in a plot, the 
presented results are for the absolute value.  
 
Figure 5.11 shows the remainder and fitted polynomials of degree 2, 3 and 4 for an 

antenna with      and    256. The results are similar for choices of   that is 
not interfering, i.e. except for the interval bounded by the frequencies in figures 5.4 
and 5.5. 
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Figure 5.11 - Remainder along with fitted polynomials of degree 2, 3 and 4. 

 
Especially in the rightmost part of the plot, there is a significant difference between 
the polynomials and the actual remainder, the "goal". This means that the bend is 
too steep to be picked up by a polynomial, and can not be included in the part of the 
antenna treated as periodic in this model. Dividing the remainder with the fitted 

polynomials should give the value 1 for all   for a perfect fit. This has been done in 
figure 5.12 to get a visually clearer image showing that it is the steep bend that 
causes the problem here. 
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Figure 5.12 - Relative difference between the reminder and the three fitted 
polynomials. 

 
The model is for a periodic structure, and of the values used to produce the above 
images, only 3 of the measured points at each side where removed. This is most 
likely not enough to eliminate the effect of the edge elements. In order to 
investigate if there is a part of the antenna that can be treated as periodical with the 
suggested model, the analysis was remade with 10, 20, 30 and 40 values at each side 
removed. Results are presented in figure 5.13, in the same manner as in 5.12. 
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Figure 5.13 - Relative difference between the remainder and the fitted polynomials 
with 10, 20, 30 and 40 elements removed from each side, respectively. 

 
With more values removed, the polynomials do not differ as much from the 
remainder. Still, the largest relative deviation remains in the right end of the array. 
Table 5.2 contains numerical values for the largest deviation for each of the cases in 
per polynomial degree. 
 
 

Elements removed 
/polynomial degree 

10 20 30 40 

2 7.48 % 3.14 % 1.16 % 0.87 % 

3 4.77 % 1.62 % 0.70 % 0.32 % 

4 3.02 % 0.84 % 0.31 % 0.12 % 

Table 5.2 - Largest deviation in percentage for each of the cases in figure 5.13. 

 
Removing more elements decreases the deviation more than increasing the 
polynomial degree one step between 10 and 20 as well as between 20 and 30. 
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Between 30 and 40 both methods give approximately the same improvement. 
Where to draw the line for what is an acceptable deviation is up to the user, but as 

  influences the result as much as it does implies that more elements may have to 
be removed in order to get a nice fit with the proposed model.  
 
One way to determine whereas the polynomial fit is a good method is to look at 
how the coefficients change with increasing polynomial degree; the more stable 

coefficients, the better. Table 5.3 shows coefficients for an array with        

and      and 30 elements removed at each side. In order to get coefficients of 
approximately the same magnitude, the array is centred on the origin and scaled so 

that         . 
 
 

Coefficient 
/polynomial degree          

2 0.9730 -0.0506 -0.0295 

3 0.9730 -0.0381 -0.0295 

4 0.9716 -0.0381 -0.0160 

Table 5.3 - Coefficients of the fitted polynomials of degree 2, 3 and 4 to an N = 256 
array at 10 GHz. 

 

The first coefficient,   , is almost the same for all three cases; it differs at the third 

digit between degree 3 and 4. The following two,    and   , differs more, at worst 
almost a factor 2. As before, the results are similar for other choices of excitation 
frequency, except for the interfering ones. Higher degree polynomials were tested, 
but resulted in a "polynomial is bad conditioned" warning from the algorithm and 
was therefore discarded. 
 
The second part of the two-part question was about how the coefficients could be 
calculated in advance, in order to be used in the simulation. So which parameters do 

they depend on and how? Figure 5.14 shows the dependency on   for a third 
degree polynomial when 3 values are removed at each side. 
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Figure 5.14 - The coefficients in a 3 degree polynomial as function of  . Upper left for 

  , upper right for   , lower left for    and lower right for   . 

 

It can be concluded from the graphs that the coefficients depend both on   and  . 

For larger  , they seem to asymptotically approach some value. For   , this value is 

clearly different for different frequencies, whilst for   ,    and    no conclusion 
can be drawn from the results presented here. The lines corresponding to the 
different frequencies do not come in the same order in all plots, and the same 
random behaviour appears when plotting the coefficients as a function of excitation 
frequency.  
 

The dependence on   becomes clear also in figure 5.15, where the reminder is 

plotted against     in order to compare the shape of the curve for different 
antenna lengths. 
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Figure 5.15 - The remainder, i.e. the left hand side of formula 4-21, for three  

different antenna lengths  . 

 
The remainder, and consequently the whole field distribution, thus has a limited 

dependence on   that has to be taken into account. The question about how to 
determine the polynomial coefficients remains open. 

5.5 General discussion 
Testing with the expression for a passive periodic structure in section 5.2 shows that 
it picks up the behaviour well in the middle and left part of the antenna, but there is 
a significant difference in the right part where the field strength either drops or 
raises. Also, there is a non-periodic interference phenomenon for some frequencies, 
which can not be observed with a unit cell analysis. Another interesting observation 
in this part was that some frequencies gave higher field strength than the design 
frequency. 
 
The effect of the edge elements were studied by altering the length of and distance 
between the three outermost elements at each side of the antenna. One could have 



 
 65 

hoped that these design changes would result in a more even field distribution, i. e. 
straighten the bend a little, but there was not much difference in that case. What 
could be observed, though, was a reduced magnitude of the inter-cell variations 
shown when taking multiple measuring points in each unit cell. 
 
In section 5.3 the propagation constant was given closer attention by studying the 
convergence of the Z transform of the simulated values. No definite convergence 
limit could be identified, and different ways of choosing a limit all resulted in an 

interval containing       meaning that the imaginary part could be zero. Thus, 
the hypothesis that the propagation constant is real could not be falsified. 
 
To handle the bend, a model where a polynomial is multiplied with the exponential 
used for passive periodic structures was proposed and tested for the design 
frequency. For the default setup with 256 antennas and three values removed on 
each side there was still some remaining effects not picked up. Removing more 
values gave a better match between the simulation and the model, and for about 30 
removed values a polynomial of degree three the deviation is of at worst 0.7 %. This 
is still a quite large deviation, and the better fit on the bend had a trade-off in worse 
fit at the left part of the antenna. The coefficients showed to depend on both the 
frequency and the antenna length, but no method to determine them in advance was 
proposed. Also, the whole field distribution has a dependence of the number of 
elements in the array, which could be seen when comparing normalised values for 
different antenna lengths.  
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6 Conclusions and future work 
In this thesis, the electrical field above a Hansen-Woodyard endfire antenna 
consisting of monopoles over a perfectly conducting ground plane has been studied. 
The difference from earlier studies is that the structure in this case is active, with 
feed in every element. The aim has been to investigate whether it can be considered 
a periodic structure, analysed using a representative unit cell, as is the case for a 
passive periodic structure.  
 
First of all it was concluded that there indeed is a coupling between the elements 
that can not be neglected. The theory for a passive periodic structure applies 
sufficiently well on the left part of the antenna, but there is a significant difference in 
the right. Trying to pick up this behaviour using a polynomial gives a better fit 
where the electric field curve bends off, but worse where the fit was good applying 
the passive periodic structure formula. The propagation constant and whether it is 
real or not has to be analysed using a different method than was done in this thesis.  
 
The antenna is periodic enough to be analysed using a unit cell, but the accuracy is 
not so good, and more work is needed in order to get a better model. Not all of the 
observed phenomena could have been observed using analysis in a unit cell; one 
example is the interfering frequencies, and another the overall dependence on the 
number of elements. These are phenomena that may be interesting to analyse from a 
design perspective, for example by changing the phase difference or letting the 
outermost elements be parasitic. The effect of the edge elements are another area to 
dig deeper into in future work.  
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