
Im
p

le
m

e
n

tatio
n

 o
f a H

ig
h

ly
-Pa

ra
lle

l S
o

ft-O
u

tp
u

t M
IM

O
 D

e
te

cto
r w

ith
 Fa

st N
o

d
e E

n
u

m
e

ratio
n

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, December 2013.

Implementation of a
Highly-Parallel Soft-Output
MIMO Detector with Fast Node
Enumeration

Stefan Granlund

http://www.eit.lth.se

Ste
fan

 G
ran

lu
n

d

Master’s Thesis

Implementation of a Highly-Parallel Soft-Output
MIMO Detector with Fast Node Enumeration

Stefan Granlund
Department of Electrical and Information Technology

Lund University, Sweden

December 19, 2013

Department of Electrical and Information Technology
Faculty of Engineering, LTH
Lund University
Box 118
SE-221 00 LUND
SWEDEN
©2013 Stefan Granlund
Printed in Sweden
E-huset, Lund, 2013

Abstract

This report presents a low latency, high throughput soft-output signal detector for a 4 × 4
64-QAM spatial-multiplexing MIMO system.

To achieve high data-level parallelism and accurate soft information, the detector adopts a
node perturbation technique to generate a list of candidate vectors around an initial estimation
acquired by using the Zero Forcing detection algorithm. The initial estimation result is extended to
the closest neighbouring nodes to form a list of candidate vectors. A fast and hardware friendly
enumeration scheme is developed to significantly reduce processing delay of the node extension.
The Fast Node Enumeration exploits the symmetric geometric properties of the QAM constellation.
The Euclidean distance of the candidate vectors is calculated and used to produce the soft output.

The detector achieves a BER of 10−4 at the SNR point of 13.5 dB. Compared to the K-best
detector, the number of visited nodes is reduced by 34 times which results in reduced complexity
of the detector. The detector was implemented in VHDL and synthesized using Synopsys Design
Compiler with a 65nm CMOS standard cell library. The detector occupies a 0.58mm2 core area
with 290K gates. The peak throughput is 3Gb/s at 500 MHz clock frequency with a latency of
20ns. Compared to other recent published soft-output detectors, this is an latency reduction of 71%.
Energy consumption per detected bit is 33pJ.

i

This page is intentionally left blank

ii

Acknowledgements

I wish to thank professor Viktor Öwall for finding this thesis work for me, and his feedback on
both the thesis work and on my conference submission. I also wish to thank my supervisor Liang
Liu for his great support and advises during this thesis. Thank you both for pushing me to do the
best project, conference paper and report I could as well as providing me with the information and
feedback I needed to complete my work.

Furthermore I want to thank PhD student Chenxin Zhang for his involvement in the Norchip
paper as well as his input to the thesis work, and professor Peter Nilsson for stepping in as my
examiner on such a short notice. Finally I would like to extend my thanks to anyone and everyone
that has helped and supported me during this master thesis work.

iii

This page is intentionally left blank

iv

Contents

1 Introduction 1

2 Background 3
2.1 MIMO System . 3
2.2 Soft-Output MIMO Signal Detection . 7

3 Highly parallel LLR generation 9
3.1 List Generation With Node Perturbation . 9
3.2 Performance Simulation . 11
3.3 Algorithm Complexity . 14
3.4 Node Selection . 15

3.4.1 Center Nodes . 18
3.4.2 Corners . 20
3.4.3 Border Nodes . 22
3.4.4 Node Selection Performance and Complexity 25

4 Hardware Implementation 29
4.1 Overall Architecture . 29
4.2 Initial Calculation . 30

4.2.1 PreCalculation . 30
4.2.2 Zero Forcing . 31
4.2.3 Node Selection . 32

4.3 Parallel Candidate Vector Calculation . 33
4.3.1 Successive Partial Node Expansion Calculation 33
4.3.2 Calculation of Euclidean Distance . 34

4.4 List LLR Calculation . 35
4.4.1 List Search . 35

v

4.4.2 Soft Output . 36
4.5 Implementation Results and Discussion . 37

5 Comparison and Conclusion 39
5.1 Conclusion . 40
5.2 Future Work . 41

A Norchip 2013 Paper 46

vi

List of Figures

2.1 Principle for SISO and 4×4 MIMO . 4

2.2 Block diagram of MIMO System . 5

2.3 64-QAM node constellation diagram . 6

2.4 BER for soft- and hard-output detection . 8

3.1 Balanced node extension in QAM . 10

3.2 Imbalanced node extension in QAM . 10

3.3 Performance of node perturbation with configurations of Ω with same complexity . . 12

3.4 Performance of node perturbation with configurations of Ω with different complexity 12

3.5 Simulated BER performance for 4 × 4, 64-QAM MIMO systems 13

3.6 Symbol distribution after ZF . 15

3.7 FNE principle Example I . 16

3.8 FNE principle Example II . 17

3.9 Relevant nodes and search areas for inner nodes . 18

3.10 Relevant nodes and search areas for corner nodes . 20

3.11 Relevant nodes and search areas for border nodes . 22

3.12 Relevant nodes and search areas for special case nodes on the border 24

3.13 Performance of exhaustive search and Fast Node Enumeration 26

3.14 Error area of the Fast Node Enumeration . 27

4.1 Proposed VLSI architecture for the MIMO detector 30

4.2 Architecture of the PreCalculation unit and subsequent Multiplexing (MU) subunit . 31

4.3 Architecture of ZF unit . 32

4.4 Architecture of the Fast Node Enumeration . 33

4.5 Architecture of the XSP E
1 unit . 34

4.6 Architecture of the Euclidean Distance unit . 35

4.7 Architecture of the List Search unit . 36

vii

4.8 Architecture of the Soft Output Calculation . 37
4.9 Timing for the detector . 38
4.10 Area distribution of the detector . 38

viii

List of Tables

2.1 Example of Gray-coded mapping . 6

3.1 Complexity analysis for different Ω . 13
3.2 Comparison of visited nodes (Nvisited) for 4 × 4 64-QAM MIMO 14
3.3 Distance equation for the inner nodes, 0 ≤ {a, b} ≤ 1 19
3.4 Principle for node selection based on areas in Figure 3.9 19
3.5 Tests to find the different zones in Figure 3.9 . 19
3.6 Distance equation for the corner nodes, −1 ≤ {a, b} ≤ 3 21
3.7 Principle for node selection based on areas in Figure 3.10 21
3.8 Tests to find the different zones in Figure 3.10 . 21
3.9 Distance equation for border nodes, 0 ≤ a ≤ 1, −1 ≤ b ≤ 3 23
3.10 Principle for node selection based on areas in Figure 3.11 23
3.11 Tests to find the different zones in Figure 3.11 . 23
3.12 Principle for node selection based on areas in Figure 3.12 24
3.13 Tests to find the different zones in Figure 3.12 . 25
3.14 Complexity of node selection methods to find 5 closest nodes 26

4.1 Implementation results in 65nm technology . 38

5.1 Implementation results and comparison . 40

ix

This page is intentionally left blank

x

Chapter 1

Introduction

Because of its effectiveness in improving bandwidth efficiency, Multiple-Input Multiple-Output
(MIMO) [1] techniques have been an essential part of emerging wireless standards, such as IEEE
802.16m [2] and 3GPP Long Term Evolution Advanced (3GPP LTE-A) [3]. Soft-output signal
detectors are widely regarded as a promising technique to approach the capacity of MIMO channels
by providing, not only the estimation of transmitted bits, but also the detection reliability. This
has been demonstrated to be a critical design challenge for portable devices because of the high
computational complexity that has to be handled with limited power supply and silicon area.

Throughput is today one of the most discussed specifications for a system. However, this is not
the only important feature of the design [4]. The input to output latency is another critical factor
for many real time applications, such as online games, Voice Over IP (VOIP) and web surfing to
name a few. Furthermore, most wireless systems are equipped with feedback processing techniques,
e.g. retransmission requirement, to guarantee the quality of service (QoS). As a consequence, the
processing latency of a signal detector should be constrained into a very small range, especially for
fast-changing channels, e.g. high speed trains, where the feedback data can be out of date when
returned to the sender.

To meet these challenging design requirements, this report presents a highly-parallel MIMO
detector featuring several-gigabit-per-second detection throughput and nanosecond level processing
latency, as well as competitive energy efficiency. The above features have been realized by cohesively
optimizing the algorithm and the corresponding VLSI architecture. To explore the potential of
multiple data streams in a MIMO system, a channel-depended node perturbation technique [5] is
adopted to generate a list of candidate vectors around a initial linear detection result, such as Zero
Forcing. It enables extensive parallel computation for calculating soft information. Moreover, a fast
node selection scheme is designed to accelerate the node enumeration in the proposed algorithm

1

with hardware-friendly operations. A highly-parallel, multi-stage VLSI architecture is accordingly
developed to achieve high-throughput, low-latency implementation of the detection algorithm.

The performance of the channel-depended node perturbation technique where simulated in
Matlab and compared to the K-best and the Zero forcing detection schemes. The algorithm got a
Bit Error Rate of 10−4 at 13.5 dB Signal to Noise Ratio.

To confirm the effectiveness of the proposed design solution, the detector was synthesised using
Synopsys tools with a 65nm CMOS standard cell library. The detector occupies 0.56 mm2 core area
(290 k equivalent gate count). After post-synthesis simulation the throughput was 3 Gb/s and the
latency was only 20 ns. Power Analysis using PrimeTime PX tools showed that the energy needed
to detect a bit is 33 pJ.

2

Chapter 2

Background

Our lives continues to become more reliant on constantly being connected. Today the demand
to send and receive more data at a faster rate without high increases in power consumption are
higher than ever. To meet these requirements, techniques such as MIMO have emerged. One of
the upcoming standards that incorporates MIMO is LTE-A [6]. MIMO systems can be divided
into three main modes of operation: Spatial Diversity (SD) [7],used to reduce the error rate of
the system, space-division multiple access (SDMA) [8], used to connect multiple users, and spatial
multiplex (SM) [9], used to increase the throughput capacity on a single bandwidth. This project
has focused on analyses and implementation of Spatial Multiplexing, SM.

2.1 MIMO System

Traditionally systems with one sending and one receiving antenna have been used to transfer
data. These Single Input Single Output, SISO, systems provide a relatively simple way of wireless
communication, as shown in Figure 2.1(a). In recent years Multiple Input Multiple Output, MIMO,
systems have been introduced. These systems feature several antennas at both the sender and
receiver side of the system, see Figure 2.1(b). The purpose of this is to increase communication
performance by increasing throughput as well as link range without requiring additional bandwidth
or increased transmit power. This is achieved by spreading the total transmit power over several
antennas, giving an array gain that improves spectral efficiency.

In an N × N spatial multiplexing MIMO system, the N × 1 received complex signal vector y is
expressed as

y = Hx + n, (2.1)

where n is the independent and identically distributed, i.i.d., complex Gaussian noise vector

3

N (0, N0/2), H denotes the N × N channel matrix and x is the N × 1 transmit vector. Each
component of x is mapped with a set of information bits, encoded by error-correcting codes, onto a
Gray-coded complex constellation. Each symbol vector corresponds to a bit-level vector b. Then
a pre-code matrix is added, which is selected from a predefined code-book and is assumed to be
known to both sender and receiver [10]. An Inverse Fast Fourier Transform (IFFT) is performed to
enable Orthogonal Frequency-Division Multiplexing (OFDM) to encode the data on multiple carrier
frequencies. Once the receiver has acquired the signal it is transformed using FFT. The channels
transfer function H is estimated to be able to do the detection. In this project H is assumed to be
known. The detector then tries to find the transmitted symbol given H and the received symbol.
Finally the decoder restores the data sent from the source. Figure 2.2 shows a simplified block
diagram of this MIMO System.

Figure 2.1: Principle for SISO and 4×4 MIMO

4

Figure 2.2: Block diagram of MIMO System

The transmitted vector x consists of the symbols x1...xN , where each symbol is encoded using
the Quadrature Amplitude Modulation, QAM, scheme. QAM conveys data by changing the
amplitude of two signals to represent the transmitted symbol. The modulation of the signals creates
a constellation diagram where the constellation points corresponds to the possible symbol values.
These constellation diagram are usually arranged in a square grid with equal vertical and horizontal
spacing. Figure 2.3 shows an example of a 64-QAM constellation diagram. By selecting the number
of nodes to a even power of 2, such as 16, 64 or 256 QAM, the constellation diagram can be made
symmetric as well as Gray-coded constellation points. These symmetric geometric properties can be
exploited to simplify searches to find the closest nodes to a given point in the constellation, called
Node Enumeration. In this report 64-QAM is used. In this constellation the nodes will have the
following values:

N = C(±[1, 3, 5, 7] ± √−1 × [1, 3, 5, 7])

C =
√

42.
(2.2)

The corresponding bit value for each node in the constellation is Gray-coded according to Table
2.1.

5

Table 2.1: Example of Gray-coded mapping
Node value bit value

-7 0 0 0
-5 0 0 1
-3 0 1 1
-1 0 1 0
1 1 1 0
3 1 1 1
5 1 0 1
7 1 0 0

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Re(x
i
)

Im
(x

i)

Figure 2.3: 64-QAM node constellation diagram

6

2.2 Soft-Output MIMO Signal Detection

The task of the MIMO detector is to recover the transmitted signal x given the channel matrix
H and the received vector y. Hard-output signal detectors try to recover the original vector by
calculating

b = arg max
b∈ΩN

P (x|y). (2.3)

Soft-output detectors on the other hand have the objective to provide information on reliability by
calculating the log-likelihood ratio (LLR) for each bit in the vector, e.g. the lth bit can be calculated
as

L(bl|y) = ln
P (bl = 1|y)
P (bl = 0|y)

= LE(bl|y) + LA(bl). (2.4)

In equation (2.4), LA(bl) is the a priori probability and LE(bl|y) is the extrinsic information.
According to [9], LE(bl|y) can be rewritten as

LE(bl|y) = ln

∑
b∈X 1

l
P (y|bl)exp

(
1/2bT

[l]LA[l]
)

∑
b∈X 0

l
P (y|bl)exp

(
1/2bT

[l]LA[l]
) , (2.5)

where X 1
l and X 0

l are the sets of bit-level vectors having the lth bit equal to 1 and 0, respectively, b[l]

denotes the sub-vector of b with the lth bit bl being omitted, LA[l] is the sub-vector of the a priori
information vector LA = [LA(b1);LA(b2); : : : ;LA(bNlogM

2
)]T omitting LA(bl). The computation of

(2.5) is usually simplified with max-log approximation, yielding the maximum a posteriori probability
(MAP) algorithm as

L(bl|y) ≈ min
b∈X 0

l

1
N0

|y − Hx|2 − min
b∈X 1

l

1
N0

|y − Hx|2. (2.6)

From a hardware design perspective, (2.6) is still too complex to be implemented, even with the
simplification. An alternative is to use tree-search algorithms [11], because of their effectiveness of
reducing the search space. In the tree-search detection the Euclidean distance is calculated in a
recursive way as

ED =
N∑

i=1
|ỹi −

N∑
j=i

Rijxj |2, (2.7)

where R is an upper triangular matrix obtained by QR decomposition [12]

H = QR, (2.8)

where Q is a unitary matrix, and

ỹ = QHy. (2.9)

7

Then a list L of candidate vectors is generated after going through the tree and finds two elements
in the list to approximate (2.6), i.e

L(bl|y) ≈ min
b∈L∩b0

l

1
N0

|ỹ − Rx|2 − min
b∈L∩b1

l

1
N0

|ỹ − Rx|2. (2.10)

However, L ∩ b
1/0
l can be empty, in which case a predetermined number is used to show the value of

bl.
With the knowledge of the probability of the bit value, the decoder is able to make better error

correction. An example of the difference between soft and hard output can be seen in Figure 2.4.
Here the same 4 × 4 MIMO system over a channel H = N (0, 1) with 64-QAM and turbo decoding
with 1/2 code rate and 6 iterations. In this case the gain is approximately 1 dB gain at BER =
10−4.

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
10

−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

B
E

R

Soft Output
Hard Output

Figure 2.4: BER for soft- and hard-output detection

Tree-search algorithms are getting much attention because of their near-ML performance. A
tree-search detection formulates a minimum-search procedure as an N-depth M-array complex-valued
tree search problem. Practical suboptimal tree-search detectors solve the NP-complete problem
of optimal ML detection by only traversing through a number of branches. Among them, the
breadth-first K-best algorithm [13] is commonly used in practical implementations thanks to its
regular dataflow structure. However, this algorithm is not suitable for parallel operation because of
the sequential nature of the sorting process required in the algorithm.

8

Chapter 3

Highly parallel LLR generation

3.1 List Generation With Node Perturbation

The K-best algorithm finds the list L by conducting layer by layer tree travel, which cannot
efficiently be mapped to a highly parallel architecture, due to its sequential nature. To find the
closest candidate from L with reduced complexity and with the ability to utilize a high parallelism,
this report adopts the channel dependent node perturbation algorithm [5]. The algorithm starts
with the initial estimation of the transmitted vector x using Zero Forcing ZF,

x̂ZF = R−1ỹ. (3.1)

A list of candidates L is formed by extending the initial estimation x̂ZF with its neighbours. For
the ith symbol of the N-length ZF vector (x̂ZF), the node perturbation technique finds a set of x̂NB

i

locally nearest sibling symbols around x̂i,

x̂NB
i = [x̂1

i , . . . , x̂ω
i , . . . , x̂Ωi

i], (3.2)

with their distances to x̂i sorted in ascending order. The perturbation parameter Ωi is the total
number of nodes that will be found in (3.2) and needs to be adjusted to achieve a good performance-
complexity trade-off.

There are two basic strategies to determine Ωi. The first method is to expand the same number
of neighbours around the received symbol, i.e. Ωi = Ω. This is called equally distributed (EQD)
expansion. However, since the channel properties are not taken into account the EQD expansion
may suffer from unnecessarily high complexity. This can lead to increased computational complexity
without any improvement in performance. Figure 3.1 shows the principle for the balanced node
perturbation algorithm in regards to forming the candidate vectors.

9

Figure 3.1: Balanced node extension in QAM
(a) Initial estimation by ZF (b) Balanced extension to x̃NB

i for each layer (c) Construction of
all candidate vectors

The other way to determine Ωi is to consider the channel condition and expand the number of
nodes depending on the lower post-detection SNRs (η). Higher η means that the number of nodes
that needs to be expanded to is decreased, i.e. Ωi > Ωj if ηi < ηj . This scheme is called imbalanced
distribution expansion (IMD). To realize this scheme the sorted QR decomposition (SQRD) [11] is
implemented. In SQRT the channel matrix H is column-wise permutated so that their corresponding
ηi is sorted in ascending order, η = [ηmin,· · · , ηmax]. Because of this, Ωi can simply be assigned into
the vector Ω in descending order, namely Ω = [Ωmax,· · · , Ωmin]. Figure 3.2 shows the principle for
the imbalanced node perturbation algorithm in regards to forming the candidate vectors.

Figure 3.2: Imbalanced node extension in QAM
(a) Initial estimation by ZF (b) Imbalanced extension to x̃NB

i for each layer (c) Construction
of all candidate vectors

The average error rate in a MIMO system is generally dominated by the worst channel condition.
According to the IMD expansion scheme, this channel corresponds to x̂1 that needs to be expanded
with the most nodes to improve the performance. Since Ω1 will be the largest value, it will have a
large impact on the overall complexity of the detector, since a large search space will translate into

10

a lot of candidate vectors. To solve this, a Successive Partial node Expansion (SPE) scheme were
adopted to reduce the search space for x̂1 [5].

The basic idea is to utilize the property of the upper triangular matrix R and the fact that the
symbol with smallest η has been moved to the first layer after SQRD. With Rj,1 (j = [2, · · · ,N])
being zeros, the detection of x̂1 is solely dependent on ỹ1. This means that an x̂1 can be obtained
effectively, simply by solving a linear equation,

ỹ1 =
N∑

j=1
R1j x̂j = R11x̂1 +

N∑
j=2

R1j x̂j , (3.3)

x̂1 =
ỹ1 − ∑4

j=2 R1j x̂j

R11
= R−1

11 (ỹ1 −
4∑

j=2
R1j x̂j), (3.4)

given that x̂2−N have been expanded prior to x̂1. The candidate vectors are then sorted in ascending
order in regards to ED and finally the soft output is calculated with equation (2.10)

3.2 Performance Simulation

Different configurations of Ω will affect the complexity and performance of the design. A configuration
needs to be found that gives a good trade-off between the performance and complexity. The
complexity C of different configurations is calculated as

C =
N∏

j=2
Ωj , (3.5)

since Ω2−N defines the number of candidate vectors to be calculated. The SQRD also states that
Ω2 ≥ Ω3 ≥ Ω4. Based on these specifications a series of Ω-configurations were simulated to assert
the performance of the design and to find a configuration to be implemented into hardware. The
performance where simulated by calculating the Bit Error Rate (BER) for a 4×4 64-QAM MIMO
system over a channel H = N (0, 1) with turbo decoding with 1/2 code rate and 6 iterations. Figure
3.3 shows the performance of different configurations with C = 24. As can be seen the configuration
[SPE 4 3 2] gives the best performance. Figure 3.4 shows the performance of configurations of Ω
with different C. The complexity of these configurations can be seen in Table 3.1. Ω = [SPE 4
3 2] gives a good trade-off between performance and complexity, and is therefore chosen as the
configuration to be implemented.

11

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5
10

−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

B
E

R
Ω = [SPE 8 3 1]
Ω = [SPE 6 2 2]
Ω = [SPE 4 3 2]

Figure 3.3: Performance of node perturbation with configurations of Ω with same complexity

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
10

−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

B
E

R

Ω = [SPE 3 2 1]
Ω = [SPE 4 3 2]
Ω = [SPE 5 4 3]
Ω = [SPE 9 8 7]

Figure 3.4: Performance of node perturbation with configurations of Ω with different com-
plexity

12

Table 3.1: Complexity analysis for different Ω

Ω C
SNR [dB] @
BER = 10−4

[SPE 3 2 1] 6 14.7
[SPE 4 3 2] 24 13.5
[SPE 5 4 3] 60 13.1
[SPE 9 8 7] 504 12.2

To determine the performance of the detection scheme in regards to other method the same
simulation set-up as described above where used to simulate K-best, Zero Forcing and the used
algorithm with Ω = [SPE 4 3 2]. The Bit Error Rate (BER) was calculated for each detection
method. As can be seen in Figure 3.5, the performance of the presented algorithm is better than
the ZF, but does not match that of the K-best. However, another configuration of Ω with higher C

would give a performance closer to K-best.

10 11 12 13 14 15 16 17
10

−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

B
E

R

This Work
K−best
ZF

Figure 3.5: Simulated BER performance for 4 × 4, 64-QAM MIMO systems

13

3.3 Algorithm Complexity

Considering the computational complexity, the number of visited nodes where analysed to compare
with the K-best detector and Zero Forcing. Based on the node perturbation scheme, the node
expansion number of the proposed algorithm is formulated as

NP roposed =
N∑

i=1
ΩiNi+1 =

N∑
i=1

Ωi

(N∏
j=i+1

Ωj

)
, (3.6)

where Ni is the number of nodes at the ith spatial stream and N1 = Ω1 = 1 when using the SPE
scheme. In the K-best algorithm, MNF nodes are expanded at each layer and the K best candidates
are selected for succeeding layers. The total number of visited nodes is calculated as

NK−best = M
N∑

i=1
N i+1

F , (3.7)

where Ni
F = min(K,MNi+1

F) denotes the number of parent nodes at the ith layer.
In Table 3.2, visited node counts (Nvisited) for the two algorithms are compared in 4 × 4 64-QAM

MIMO systems, where Ω = [F, 4, 3, 2] and K = 10 are used, respectively. It clearly shows that the
number of nodes visited in the proposed algorithm with Ω = [F, 4, 3, 2] is 35 times fewer than that
of the K-best detector. From a computational complexity point of view, the proposed algorithm is
superior to the K-best because of this reduced search space. Moreover, this algorithm does not need
an sort-select process at each tree-search layer, thereby it produces much higher parallelism, which
can potentially be implemented with very low process latency.

Table 3.2: Comparison of visited nodes (Nvisited) for 4 × 4 64-QAM MIMO

Parameter Nvisited

SNR [dB] @
BER = 10−4

K-best K = 10 1984 11.7
Zero Forcing - 4 16.6
Proposed Ω = [SPE,4,3,2] 56 13.5

14

3.4 Node Selection

To generate the list of candidates needed for the Node Perturbation, the closest nodes to the initial
estimation x̂ need to be found. One way to calculate the distance between x̂ and all the nodes in
the constellation, is to sort them in ascending order and pick the n lowest, where n is the number of
desired nodes. This method has a very high complexity, requiring 128 multiplications, 128 additions
and 2048 comparators if bubble sort and 64-QAM is assumed. To reduce the complexity the Fast
Node Enumeration is introduced. This method relies on a fixed maximum n required and exploits
the geometric and symmetric properties of QAM. Here the QAM-modulation is assumed to be
64-QAM. Even though Ω have been defined as [SPE 4 3 2] in this design, n is set to 5 to be able to
expand the design in the future.

In 64-QAM, the nodes are set at (± [1 3 5 7]) + (± [1 3 5 7] ×√−1), see Figure 2.3. This
constellation means that all nodes are equidistant to each other along the real and imaginary axis.
There is also a symmetry between the four quadrants. These qualities can be exploited to reduce
the complexity when searching for the nodes closest to a set point.

Since the sent symbol x have a finite number of values, a search space can be constructed to
reduce the complexity of the design. The distribution of x̂ was analysed and is shown in Figure 3.6.
The real and imaginary values almost overlap completely, which is to be expected. Based on this
data, the search space were set to ±10 for both the real and imaginary values.

−15 −10 −5 0 5 10 15
0

1

2

3

4

5

6

7

8
x 10

−3

Value

P
ro

ba
bi

lit
y

Real
Imaginary

Figure 3.6: Symbol distribution after ZF

There is a couple of principles that the Fast Node Enumeration rests upon. Firstly, the search
space can be broken down into six specific regions: Center nodes, corner nodes and four cases on
the border of the constellation. These regions are discussed in subsections 3.4.1 to 3.4.3. Before the

15

six regions can be discussed, some initial calculations and common attributes need to be introduced.
Since all nodes in the constellation are odd numbers, see equation (2.2) and Figure 2.3, the

received symbol x̂ can be truncated to the closest odd real and imaginary value to find the closest
node. If any of the values are outside the constellation they are truncated to the closest value in the
constellation, i.e. if a value is absolutely lager than 8, the value is set to 7 or minus 7 respectively.
This node will be referred to as N1. The difference between x̂ and N1 is described as

δ = x̂ − N1 = â + b̂i, (3.8)

Because of the symmetry and equidistant space between the nodes in QAM, â and b̂ could be shifted
around N1 to reduce the search space. If the constellation around N1 is completely symmetric, â

and b̂ can be shifted so that a = |â| and b = |b̂|. If N1 is a corner node, however, a = â and b = b̂.
Subsections 3.4.1 to 3.4.3 will define the transition from â and b̂ to a and b.

The relation between a and b can be used to find the remaining nodes in ascending order. This
is because between two points in a plane, p1 and p2, there is a straight line L where all points on L
have the same distance to both p1 and p2. By placing a third point, p3, and comparing which side
of L p3 resides, it will be determined if p3 is closer to p1 or p2.

Example I: if p1 = 2 + 0 · i and p2 = −2 + 0 · i, then L will be the imaginary axis [0, ± inf]. Then
all values with a negative real value will be closest to p2.

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

Real value

Im
ag

in
ar

y
va

lu
e

Figure 3.7: FNE principle Example I

16

Example II: p1 = 2 + 0 · i and p2 = 0 + 2 · i. L will be the line where the real value is equal to
the imaginary. So all nodes where the real value is larger than the imaginary will be closer to p1.

−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Real value

Im
ag

in
ar

y
va

lu
e

Figure 3.8: FNE principle Example II

This principle can be expanded to multiple nodes, which will result in a couple of different
areas where the nodes will be arranged in a unique ascending order. The symmetry of the node
constellation in QAM simplifies the determination of dividing lines between the different nodes. This
means that with a couple of comparisons between a and b will find the closest nodes in ascending
order.

To simplify the calculation of the nodes, N2 to N5 can be seen as

Nj = N1 + cj

j = 2, 3, 4, 5,
(3.9)

where cj is the distance between N1 and Nj . QAM symmetry can then once again be used to
compensate for the shift from â,b̂ to a,b. So if a = −â, the real value of cj should have its sign
reversed. This means that the search space and number of cj that needs to be saved can be greatly
reduced.

17

3.4.1 Center Nodes

The center nodes cases occur when N1 has a real and imaginary value ≤ |5|. In this case there are
eight nodes surrounding this node, as can be seen in Figure 3.9. Here the nodes are notated as Na

to Nj . Because of the symmetry, â and b̂ is shifted into a and b as a = |â| and b = |b̂|. This gives
both a and b of 0 to 1.

With these parameters set the distance between δ and the nine nodes can be calculated with
the equations in Table 3.3. By analysing the order of the nodes within the search space, six areas
where found that gives a unique series of nodes, called A1 to A6. The ascending order of the nodes
that corresponds to the areas are shown in Table 3.4.

To determine the area in which δ resides, three simple tests can be utilized. These tests consist
of simple comparators, shifts and additions. The tests can be seen in Table 3.5.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Re(δ)

Im
(δ

)

A
1A

2

A
3

A
4

A
5

A
6

N
a

N
b

N
c

N
d

N
e

N
f

N
g

N
h

N
j

Figure 3.9: Relevant nodes and search areas for inner nodes

18

Table 3.3: Distance equation for the inner nodes, 0 ≤ {a, b} ≤ 1
Node number Equation for distance

Na

√
(2 + a)2 + (2 − b)2

Nb

√
(a)2 + (2 − b)2

Nc

√
(2 − a)2 + (2 − b)2

Nd

√
(2 + a)2 + (b)2

Ne

√
(a)2 + (b)2

Nf

√
(2 − a)2 + (b)2

Ng

√
(2 + a)2 + (2 + b)2

Nh

√
(a)2 + (2 + b)2

Nj

√
(2 − a)2 + (2 + b)2

Table 3.4: Principle for node selection based on areas in Figure 3.9
x̂ in area A1 A2 A3 A4 A5 A6

Ne Ne Ne Ne Ne Ne

Closest nodes Nb Nb Nb Nf Nf Nf

in ascending Nf Nf Nf Nb Nb Nb

order Nc Nd Nd Nh Nh Nc

Nd Nc Nh Nd Nc Nh

Table 3.5: Tests to find the different zones in Figure 3.9
Test number Test

1 a > b

2 a > 1 − 2b

3 b > 1 − 2a

19

3.4.2 Corners

The four corners of the QAM modulation differ from the inner nodes in that they do not have a
symmetric distribution of nodes around them. The symmetry of the closest nodes and the overall
symmetry of the constellation does mean that all four corners can be treated as the first quadrant
corner. Then the results can be compensated to the original corner node’s conditions. Since the
total search space for the constellation were set to ±10 and the corner nodes are located at ±[7, 7]
as shown in Figure 2.3, the search space is set between -1 and 3 for these nodes. The search space
for a corner node and its closest nodes can be seen in Figure 3.10. The distance between the symbol
and the nodes can then be calculated with the equations in Table 3.6. As with the center nodes,
there are a finite number of areas that produce unique orders of the five closest nodes. Here, the
number of areas are six and they can be seen in Figure 3.10 and the corresponding node orders can
be seen in Table 3.7. Once again the lines that divides the different areas can be described with
simple equations with only additions and shifts. The equations for these tests can be seen in Table
3.8.

−5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

Re(δ)

Im
(δ

)

A
1

A
2

A
3

A
4

A
5

A
6

N
a

N
b

N
c

N
d

N
e

N
f

N
g

N
h

N
j

Figure 3.10: Relevant nodes and search areas for corner nodes

20

Table 3.6: Distance equation for the corner nodes, −1 ≤ {a, b} ≤ 3
Node number Equation for distance

Na

√
(4 + a)2 + (b)2

Nb

√
(2 + a)2 + (b)2

Nc

√
(a)2 + (b)2

Nd

√
(4 + a)2 + (2 + b)2

Ne

√
(2 + a)2 + (2 + b)2

Nf

√
(a)2 + (2 + b)2

Ng

√
(4 + a)2 + (4 + b)2

Nh

√
(2 + a)2 + (4 + b)2

Nj

√
(a)2 + (4 + b)2

Table 3.7: Principle for node selection based on areas in Figure 3.10
x̂ in area A1 A2 A3 A4 A5 A6

Nc Nc Nc Nc Nc Nc

Closest nodes Nb Nb Nb Nf Nf Nf

in ascending Na Nf Nf Nb Nb Nj

order Nf Na Ne Ne Nj Nb

Ne Ne Na Nj Ne Ne

Table 3.8: Tests to find the different zones in Figure 3.10
Test number Test

1 a > b

2 a > 2 + b

3 b > 2 − a

4 a > 3 − 2b

5 b > 3 − 2a

21

3.4.3 Border Nodes

The border nodes can be divided into two categories: the borders where the real value of the closest
node is ±7, and when the imaginary value is ±7. Since these two cases works on the same principle,
only the latter one will be discussed here. The same procedure as in section 3.4.1 and 3.4.2 is
applied here. The search space this time will be 0 ≤ a ≤ 1 and −1 ≤ b ≤ 3, as shown in Figure 3.11.
The closest nodes can also be seen and their equations for distance to the symbol can be seen in
Table 3.9. This time, seven unique orders of the nodes emerges, as seen in Figure 3.11 and Table
3.10. The tests that is required in this case can be seen in Table 3.11. Once again the tests can be
carried out by only utilizing comparators, adders and shifts.

However, there are special cases on the border. These cases is when the closest node is adjacent
to one of the corners. In this case the nodes Ne and Nk in Figure 3.11 are missing, as seen in Figure
3.12. The equations for the distances are the same as before, see Table 3.9. In this case the areas
differ when b ≥ 1. The new order of the nodes can be seen in Table 3.12 and the corresponding test
is displayed in Table 3.13. Notice that in this case, one of the tests require addition with 3, but this
can be solved with a shift and a addition.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

Re(δ)

Im
(δ

)

A
1

A
2

A
3

A
4

A
5

A
6

A
7

N
a

N
b

N
c

N
d

N
e

N
f

N
g

N
h

N
j

N
k

Figure 3.11: Relevant nodes and search areas for border nodes

22

Table 3.9: Distance equation for border nodes, 0 ≤ a ≤ 1, −1 ≤ b ≤ 3
Node number Equation for distance

Na

√
(4 + z)2 + (y)2

Nb

√
(2 + z)2 + (y)2

Nc

√
(z)2 + (y)2

Nd

√
(2 − z)2 + (y)2

Ne

√
(4 − z)2 + (y)2

Nf

√
(4 + z)2 + (2 + y)2

Ng

√
(2 + z)2 + (2 + y)2

Nh

√
(z)2 + (2 + y)2

Nj

√
(2 − z)2 + (2 + y)2

Nk

√
(4 − z)2 + (2 + y)2

Table 3.10: Principle for node selection based on areas in Figure 3.11
x̂ in area A1 A2 A3 A4 A5 A6 A7

Nc Nc Nc Nc Nc Nc Nc

Closest nodes Nd Nd Nd Nd Nh Nh Nd

in ascending Nb Nb Nb Nh Nd Nd Nh

order Ne Nh Nh Nb Nb Ng Ng

Nh Ne Ng Ng Ng Nb Nb

Table 3.11: Tests to find the different zones in Figure 3.11
Test number Test

1 |a| > |b|
2 b > 0
3 b > −1 + 2a

4 b > 2 − a

5 b > 3 − 2a

23

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

Re(δ)

Im
(δ

)
A

1

A
2

A
3

A
4

A
5

A
6

N
a

N
b

N
c

N
d

N
e

N
f

N
g

N
h

Figure 3.12: Relevant nodes and search areas for special case nodes on the border

Table 3.12: Principle for node selection based on areas in Figure 3.12
x̂ in area A1 A2 A3 A4 A5 A6

Nc Nc Nc Nc Nc Nc

Closest nodes Nd Nd Nd Nh Nh Nd

in ascending Nb Nb Nh Nd Nd Nh

order Nh Nh Nb Nb Ng Ng

Na Ng Ng Ng Nb Nb

24

Table 3.13: Tests to find the different zones in Figure 3.12
Test number Test

1 |a| > |b|
2 b > 0
3 b > −1 + 2a

4 b > 2 + 3a

3.4.4 Node Selection Performance and Complexity

The Fast Node Enumeration and the exhaustive search algorithms were simulated to test their
performances. Both algorithms were used as a part of the node perturbation technique in a 4×4
MIMO system with 64-QAM over a channel H = N (0, 1) with turbo decoding with 1/2 code rate
and 6 iterations. As shown in Figure 3.13 Fast Node Enumeration gives comparable results although
the exhaustive search have a slightly better performance. The difference in SNR when the BER is
10−4 is only 0.06 dB. The differences between the two algorithms comes from the fact that the Fast
Node Enumeration have its search space confined as described in section 3.4. This means that if the
initial estimation is outside the search space, the Fast Node Enumeration can give results that differ
from the exhaustive search. Figure 3.14 shows the errors that starts to occur once outside of the
defined search space for the Fast Node Enumeration.

Even though the performance between the methods is comparable, the complexity for the Fast
Node Enumeration is significantly lower compared to the exhaustive search. Table 3.14 lists the
number of multipliers, shifts, adders and comparisons needed for FNE and exhaustive search to find
the 5 closest nodes to a received symbol in a 64-QAM constellation, and it shows that FNE requires
fewer adders and comparators compared to exhaustive search. Furthermore, only shifts are required.

Another drawback with the exhaustive search is the need to sort all nodes in ascending order.
This takes a lot of comparators and is a sequential operation, which means an increase in the latency
of the selection.

25

10 10.5 11 11.5 12 12.5 13 13.5 14
10

−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

B
E

R
Exhaustive search
Fast Node Enumeration

Figure 3.13: Performance of exhaustive search and Fast Node Enumeration

Table 3.14: Complexity of node selection methods to find 5 closest nodes
Mult # Shifts # Add # Comp

Exhaustive search 128 0 128 2048a

Fast Node Enumeration 0 10 23 55

a: Assuming bubble sort

26

Figure 3.14: Error area of the Fast Node Enumeration

27

This page is intentionally left blank

28

Chapter 4

Hardware Implementation

4.1 Overall Architecture

The high-level VLSI architecture to implement the soft-output detection algorithm is shown in
Figure 4.1, which can be grouped into three blocks. The input of the architecture is the vector ỹ

described in equation (2.9), the upper triangular matrix R and its inverse. The output of the design
if the soft output of the detected bits. Each block is described in detail below in sections 4.2-4.4. A
short summery of the blocks follows here.

The Initial Calculation Block (INCB), section 4.2, obtains the initial estimation through Zero
Forcing and then extends a list of [x2, x3, x4] with the Fast Node Enumeration described in section
3.4. The PreCalc unit calculates all the channel related variables that can be shared with later units
to improve hardware efficiency. The Parallel Candidate Vector Calculation Block (PCVCB), section
4.3, calculates the xSP E

1 and the Euclidean Distance of the candidate list generated in INCB. The
List LLR Calculation Block (LLCB), section 4.4, generates soft information based on the candidates
from PCVCB.

29

Figure 4.1: Proposed VLSI architecture for the MIMO detector

4.2 Initial Calculation

4.2.1 PreCalculation

One of the main calculations to be performed in the detector is

αi,j = Ri,jxj . (4.1)

To decrease the amount of generic multipliers in the design a pre calculator is introduced. The
calculation of x̂SP E

1 and Euclidean distance requires a lot of multiplications between the candidate
symbols x̂ and the matrix R. However, since the values of x are finite, α in equation (4.1) also has
a finite number of results. Since the symbol x is modulated with 64-QAM, equation (2.2) states
that the real and imaginary values of x can only be ±[1,3,5,7]×C. These values can be calculated
using shifts, additions and multiplication with the constant C.

The otherwise generic multipliers in PCVCB can then be replaced with multiplexers to give the
desired value. This reduces the critical paths and complexity of those units. Figure 4.2 shows the
basic architecture for one part of the PreCalculation unit. Two of these parts, one for real values
and one for the imaginary, is required for each element of R.

30

Figure 4.2: Architecture of the PreCalculation unit and subsequent Multiplexing (MU)
subunit

4.2.2 Zero Forcing

This block calculates the initial estimation of x̂2,3,4 using Zero Forcing described in equation (3.1).
Since R−1 is an upper triangular matrix one gets the following expressions

x̂2 = R−1
2,2ỹ2 + R−1

2,3ỹ3 + R−1
2,4ỹ4

x̂3 = R−1
3,3ỹ3 + R−1

3,4ỹ4

x̂4 = R−1
4,4ỹ4.

(4.2)

By utilizing a parallel architecture, x̂2, x̂3 and x̂4 can be calculated simultaneously and in a
single clock cycle. Since the values of the transmitted node constellation is described in equation
(2.2), their values won’t fit into the constellation described in section 3.4. To be able to use the
simple test for the FNE, x̂2, x̂3 and x̂4 are multiplied with 1

C . The architecture can be seen in Figure
4.3.

31

Figure 4.3: Architecture of ZF unit

4.2.3 Node Selection

First, the received initial estimation x̂ is shifted into the first quadrant. Then, the first node N1 is
found by truncating the symbol to the nearest node. This is simply a matter of removing all bits of
lesser value than 21, or ±7 if the value is larger than ±8 respectively. δ can then be calculated using
equation (3.8). All test defined in section 3.4.1-3.4.3 are then carried out in parallel and the results
from them are used as addresses to a Look Up Table (LUT) to get the cj described in equation
(3.9). Finally the values from the LUT are used to calculate the remaining nodes.

32

Figure 4.4: Architecture of the Fast Node Enumeration

4.3 Parallel Candidate Vector Calculation

Once the node perturbation is done the candidate vectors need to be complemented with XSP E
1

and then the Euclidean distance for that vector needs to be calculated. These calculations take
place in this block. In order to achieve a low latency and high throughput, this block utilizes high
parallelism. Since all candidate vectors are calculated and can be handled independent of each
other, multiple vectors can be handled in parallel. In this work, 6 vectors are handled in parallel to
give a trade-off between area and performance. Since there is 24 candidate vectors to be calculated,
a set of vectors can be calculated in 4 clock cycles with this level of parallelism.

4.3.1 Successive Partial Node Expansion Calculation

The function of the XSP E
1 is to calculate equation (3.4). The architecture for this unit can be seen

in Figure 4.5. The Multiplexing (MU) subunit utilizes the calculations from the PreCalculation
block described in section 4.2.1. The Demap subunit is the same one discussed in section 4.2.3.

33

Figure 4.5: Architecture of the XSP E
1 unit

4.3.2 Calculation of Euclidean Distance

Once a candidate vector has been selected its Euclidean distance (ED) to the received signal needs
to be calculated. This unit calculates the ED using equation (2.7). The overall architecture for
this operation can be seen in Figure 4.6. As in the Successive Partial Node Expansion Calculation
unit, the MU utilizes the values from the PreCalculation unit. The absolute value is calculated as
the square root of the squared real value added to the squared imaginary value. However, since
equation (2.7) includes the absolute value squared, the square root will be cancelled against the
square function. This means that the Abs∧2 subunit only squares the real and imaginary values
and adds them together.

34

Figure 4.6: Architecture of the Euclidean Distance unit

4.4 List LLR Calculation

The candidate vector vl from PCVCB contains the bit vector bl as well as their Euclidean distances
Dl. The six parallel candidate vectors are then sorted in ascending order in regards to the ED. This
results in v = [v1, v2, v3, v4, v5, v6] where v1 has the lowest ED, Dl, and the corresponding bit
vector b1.

4.4.1 List Search

The List Search unit contains the bit vector bHD with the lowest Euclidean distance DHD. For the
first calculated vectors, DHD is set to D1. Otherwise DHD is set to the lower of DHD and D1.
The HDj unit keeps track of the Euclidean distance for each bit bHD

j . If no bit have been found
that differ from the bHD

i , the distance is set the highest value to indicate that the value of bHD
j is

highly possible. Figure 4.7 shows the architecture for the hard detection unit.

35

Figure 4.7: Architecture of the List Search unit

4.4.2 Soft Output

When all candidate vectors have been calculated and been evaluated by the list search unit, the soft
output can be calculated by using a modified version of equation 2.10:

L(bj |y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DHD − DHD
j

N0
if bHD

j = 1

−DHD − DHD
j

N0
if bHD

j = 0.

(4.3)

Then L(bj |y) is truncated as

L(bj |y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−8 if L(bj |y) < -8

8 if L(bj |y) > 8

L(bj |y) Otherwise

(4.4)

Figure 4.8 shows the architecture for the calculation of soft output for one bit.

36

Figure 4.8: Architecture of the Soft Output Calculation

4.5 Implementation Results and Discussion

The soft-output MIMO detector is modeled in VHDL and synthesized using Synopsys Design
Compiler with a 65nm CMOS standard digital cell library. The detector has a core area of 0.58
mm2 which translates to a gate count of 290 kG. One gate count corresponds to the area of an
two input, one output NAND gate. Area distribution between different units within the detector
can be seen in Figure 4.10. The largest units are the ED and Successive Partial Node Expansion
Calculation units, which both consists of six parallel processors. The area could be reduced in
systems where the demand for high throughput and low latency can be relaxed. Figure 4.9 shows
the timing schedule for the detector. New values can be given every 4 clock cycles and the latency
of the design is 10 clock cycles. The detector can be run at a maximum clock frequency of 500 MHz.
The critical path for the design is the ED unit within the PCVCB block. The throughput of the
detector is formulated as

Throughput = fc · log2 M · N

4
, (4.5)

where fc is the clock frequency of the system, M is the constellation size and N is the number of
antennas in the MIMO system. The 4 in the denominator is the number of clock cycles between two
inputs, see Figure 4.9. The power consumption where obtained with the PrimeTime PX software
power simulation. The area efficiency and the energy consumption where calculated as

Area Efficiency =
Throughput
Gate Count

,

Energy Consumption =
Power Consumption

Throughput
,

(4.6)

where it is desired to have a high area efficiency and a low energy consumption.

37

Table 4.1: Implementation results in 65nm technology
Core Area 0.58 mm2

Gate Counta 290 kG
Maximum Clock Frequency 500 MHz

Throughput 3 Gbit/s
Latency 20 ns

Power Consumption 99 mW
Area Efficiency 10.34 Mbit/s/kG

Energy Consumption 33 pJ/bit

a: One equivalent gate corresponds to a 2-input, 1-output NAND gate

Figure 4.9: Timing for the detector

10% ZF
 3% NodeSel
 6% PreCalc
 6% Sort

15% XSPE
1

40% ED
19% SoftOutput

Figure 4.10: Area distribution of the detector

38

Chapter 5

Comparison and Conclusion

Table 5.1 lists the overall performance of the detector and several recently reported 4 × 4 64-QAM
signal detector, all but one with soft-output. Some of the detectors is not implemented in the
65nm process. The clock frequency is proportional to the process, and subsequently the throughput,
latency and area efficiency. This can be normalized to give a better comparison between the detectors
with the equation

fc65 = fcP × P
65

, (5.1)

where P is the process in nm. Since throughput, latency and area efficiency depends on fc65,
these values will be normalized in the same way as in equation (5.1). The energy consumption is
normalized with the equation

Ec65 = EcP × (
1

Vdd
)2 × 65

P , (5.2)

where P is the process in nm and Vdd is the core supply voltage in V of the system.

The design presented in this report has the lowest latency, because of its high parallelism and
the fast node enumeration. The high parallelism also contributes to the high throughput. That
combined with an acceptable gate count gives the design the highest area efficiency of all the
soft-output detectors.

It should however be mentioned that the post synthesis results used in this report might give
some variance compared to chip measurement results.

39

Table 5.1: Implementation results and comparison
TVLSI TCAS-II ISCS TVLSI JSSC This
2012 2013 2010 2010 2011 Work

Algorithm K-best FSD K-best
Best- MMSE

NP-ZF
First -PIC

Soft Output No Yes Yes Yes Yes Yes
Process (nm) 130 90 65 65 90 65
Gate Counta

114 555 298 64 160 290
(kG)

Clock Freqb

564 512 833 333 568 500
(MHz)

Throughputb

1350 3046 2000 83.3 757 3000
(Mbit/s)

Latencyb (ns) 300 70 230 - - 20
Area efficiencyb

11.84 5.48 6.71 1.3 4.76 10.34
(Mbit/s/kG)

Energyb (pJ/bit) 59 111 83 199 90 33

a: One equivalent gate corresponds to a 2-input, 1-output NAND gate
b: Normalized to 65nm and 1.0 V supply voltage

5.1 Conclusion

This report investigates the algorithm and VLSI design techniques to significantly reduce the
processing latency of a soft output MIMO detector. The design applies a channel depended node
perturbation technique to utilize a highly parallel architecture. A Fast Node Enumeration algorithm
has been developed to reduce the bottlenecks while retaining a high accuracy. Post synthesis results
show that the proposed detector achieves a low latency while retaining high throughput and area
efficiency as well as low energy consumption. Implemented in 65nm, the detector reduces the latency
by 71% while increasing the area efficiency by 54% compared to current designs.

40

5.2 Future Work

Here follows a list with some potential next steps for if one where to continue with this project.

• Post Place-And-Route simulation of the detector. This is the new logical step in the design
process of an integrated circuit. This would result in increased accuracy on area, maximum
clock frequency, power consumption etc.

• Expand the detector to be a soft-input-soft-output detector. By using additional soft informa-
tion from the decoder the LLR function from equation (2.4) to

L(x|y) = ln
P (x = 1|y, LA)
P (x = 0|y, LA)

, (5.3)

where LA is the soft input from the decoder. This has the potential to further decrease the
BER of the detector.

• Implement dynamic designation of the Ω. The current static designation gives a good
performance. However, with a dynamic scheme to assign Ω that takes into account η should
increase the performance of the detector.

41

This page is intentionally left blank

42

References

[1] B. M. Hochwald and S. Brink, “Achieving near-capacity on a multipleantenna channel”
IEEE Transactions on Communication, vol. 51, no. 3, pp. 389 - 399 May. 2003.

[2] IEEE 802.16m System Requirements [Online]. Available: http :
//ieee802.org/16/tgm/docs/80216m − 07_002r4.pdf

[3] Overview of 3GPP Release 10 V0.0.8 (2010-09) [Online]. Available: http :
//www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/Rel-
10_description_20100924.zip.

[4] The impact of latency on application performance, Nokia Siemens Networks [Online].
Available: nsn.com/system/files/document/LatencyWhitepaper.pdfâĂŐ

[5] Chenxin Zhang, Liang Liu, Yian Wang, Meifang Zhu, Ove Edfors, Viktor Öwall, “A
Highly Parallelized MIMO Detector for Vector-Based Reconfigurable Architectures”
IEEE Wireless Communications and Networking Conference, pp. 3844 - 3849 Apr. 2013.

[6] 3GPP Official 3GPP Standardisation Page on LTE Advanced [Online]. Available: http :
//www.3gpp.org/technologies/keywords − acronyms/97 − lte − advanced

[7] C. Spiegel, et al., “MIMO schemes in UTRA LTE, a comparison,” IEEE Vehicular
Technology Conference, pp. 2228-2232, May. 2008.

[8] G. Bauch and G. Dietl, “Multi-user MIMO for achieving IMT-Advanced requirements,”
IEEE International Conference on Telecommunications, pp. 1-7, Nov. 2008.

[9] B. M. Hochwald and S. Brink, “Achieving near-capacity on a multipleantenna channel,”
IEEE Transactions on Communication, vol. 51, no. 3, pp. 389-399, May. 2003.

43

[10] 3GPP Technical Specification 36.213 V9.1.0: Physical layer procedures (Re-
lease 9) [Online]. Available: http : //www.3gpp.org/ftp/Specs/2010 − 03/Rel −
9/36_series/36213 − 910.zip

[11] Liang Liu, Johan Löfgren, Peter Nilsson, Viktor Öwall “VLSI Implementation of a Soft-
Output Signal Detector for Multi-Mode Adaptive MIMO Systems” IEEE Transactions
on VLSI, no. 99, pp. 1-11, Dec. 2012.

[12] D. Wübben et al., “Efficient algorithm for detecting layered space-timecodes,” IEEE
International ITG Conference on Source and Channel Coding, Jan. 2002.

[13] Z. Guo and P. Nilsson, “Algorithm and Implementation of the K-best Sphere Decoding
for MIMO Detection,” IEEE Journal on Selected Areas in Communications, vol. 24, no.
3, pp. 491-503, March 2006.

[14] Mahdi Shabany, P. Glenn Gulak, “A 675 Mbps, 4 x 4 64-QAM K-best MIMO Detector
in 0.13 μm CMOS” IEEE Transactions on VLSI, vol. 20, no. 1, pp. 135-147, Jan. 2012.

[15] Xi Chen, Guanghui He, Jun Ma, “VLSI Implementation of a High-Throughput Iterative
Fixed-Complexity Sphere Decoder” IEEE Transactions on Circuits and Systems II,
vol. 60, no. 5, pp. 272-276, May. 2013.

[16] Dimpesh Patel, Vadim Smolyakov, Mahdi Shabany, P. Glenn Gulak, “VLSI Implemen-
tation of a WiMAX/LTE Compliant Low-Complexity High-Throughput Soft-Output
K-best MIMO Detector” IEEE International Symposium on Circuits and Systems, pp.
593-596, May. 2010.

[17] C.-A. Shen, et al., “A best-first soft/hard decision tree searching MIMO decoder for a 4
64-QAM system,” IEEE Transactions on VLSI, vol. 99, 2011.

[18] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of softinput soft-output
MIMO detection using MMSE parallel interference cancellation,” IEEE Journal of
Solid-State Circuits, vol. 46, no. 7, pp. 1754-1765, 2011.

44

This page is intentionally left blank

45

Appendix A

Norchip 2013 Paper

This work where submitted and accepted to the 31st Norchip Conference, 2013, in Vilnius.
The presentation of the thesis took place on Tuesday the 12th of November 2013 in Vilnius.
The submitted article is included below.

46

Implementation of a Highly-Parallel Soft-Output
MIMO Detector with Fast Node Enumeration

Stefan Granlund, Liang Liu, Chenxin Zhang and Viktor Öwall
Department of Electrical and Information Technology, Lund University, Sweden

Email: ael07sgr@student.lu.se, {Liang.Liu, Chenxin.Zhang, Viktor.Owall}@eit.lth.se

Abstract—This paper presents a high throughput, low latency
soft-output signal detector for a 4×4 64-QAM MIMO system. To
achieve high data-level parallelism and accurate soft information,
the detector adopts a node perturbation technique to generate a
list of candidate vectors around Zero Forcing, ZF, result. Addi-
tionally a fast and hardware friendly node enumeration scheme is
developed to significantly reduce processing delay. Implemented
using a 65nm CMOS technology, the detector occupies 0.58mm2

core area with 290K gates. The peak throughput is 3Gb/s at 500
MHz clock frequency with a latency of 20ns. Energy consumption
per detected bit is 33pJ.

I. INTRODUCTION

Because of its effectiveness in improving bandwidth ef-

ficiency, Multiple-Input Multiple-Output (MIMO) [1] tech-

niques have been an essential part of emerging wireless

standards, such as IEEE 802.16m and 3GPP Long Term Evo-

lution Advanced (3GPP LTE-A). Soft-output signal detectors

are widely regarded as a promising technique to approach

the capacity of MIMO channels by providing not only the

estimation of transmitted bits but also the detection reliability.

This has been demonstrated to be a critical design challenge

for portable devices because of the high computational com-

plexity that has to be handled with limited power supply and

silicon area. Furthermore, most wireless systems are equipped

with feedback processing techniques (e.g., iterative detection-

decoding and retransmission requirement) to guarantee the

quality of service (QoS). As a consequence, the processing

delay of a signal detector should be constrained into a very

small range, especially for fast-changing channels.

To meet the challenging design requirements, this paper

presents a highly-parallel MIMO detector features several-

gigabit-per-second detection throughput and nanosecond level

processing latency, as well as competitive energy efficiency.

The above features have been realized by cohesively optimiz-

ing the algorithm and the corresponding VLSI architecture.

To explore the potential of multiple data streams in a MIMO

system, a channel-depended node perturbation technique [2] is

adopted to generate a list of candidate vectors around the ZF

detection result. It enables extensive parallel computation for

calculating soft information. Moreover, a fast node selection

scheme is designed to accelerate the node enumeration in

the proposed algorithm with hardware-friendly operations. A

highly-parallel multi-stage VLSI architecture is accordingly

developed to achieve high-throughput, low-latency implemen-

tation of the detection algorithm.

To confirm the effectiveness of the proposed design solution,

the proposed detector was implemented using Synopsys tools

with a 65nm CMOS standard cell. While occupying 0.56 mm2

core area (290K equivalent gate count), the detector manages

to achieve 3 Gb/s throughput and a latency of only 20 ns with

4 × 4 64-QAM configuration. The energy needed to detect a

bit is 33 pJ.

II. BACKGROUND

A. System Model

This paper considers a spatial multiplexed MIMO system

with four transmit and receive antennas. The 4×1 received

complex signal vector y is expressed as

y = Hx+ n, (1)

where n is the i.i.d. complex Gaussian noise vector

N (0, N0/2), H denotes the 4×4 channel matrix and x is the

4×1 transmit vector. Each component of x is mapped with a

set of information bits, encoded by error-correcting codes, onto

a Gray-labelled complex constellation. Each symbol vector

corresponds to a bit-level vector b.

B. Soft-Output MIMO Signal Detection

The objective of a soft-output detector is to provide relia-

bility information by computing the LLRs for each bit of x,

e.g., for the lth bit, we have

L(bl|y) = ln
P (bl = 1|y)
P (bl = 0|y)

≈ min
b∈x0

l

1

N0
|y −Hx|2 − min

b∈x1
l

1

N0
|y −Hx|2,

(2)

where x1
l and x0

l are the sets of bit-level vectors having

the lth bit equal to 1 and 0, respectively. In (2), the simpli-

fication with the max-log approximation yields the maximum
a posteriori probability (MAP) algorithm. From a hardware

design perspective, (2) is too complex to be implemented, even

with the simplification. An alternative is to use tree-search

algorithms [3], because of their effectiveness of reducing

the search space. In the tree-search detection the Euclidean

distance is calculated in a recursive way as

ED =

4∑
i=1

|ỹi −
4∑

j=i

Rijxj |2, (3)

10 11 12 13 14 15 16 17 18
10

−4

10
−3

10
−2

10
−1

10
0

K−best [K=10]
MMSE
This work Exhaustive search
This work Fast Node Enummeration

Fig. 1. Simulated BER performance for 4× 4, 64-QAM MIMO systems

where R is an upper triangular matrix obtained by H = QR
where Q is a unitary matrix, ỹ = QHy. Then a list L of

candidate vectors is generated after going through the tree and

finds two elements in the list to satisfy (2), i.e

L(bl|y) ≈ min
b∈L∩x0

l

1

N0
|y−Hx|2− min

b∈L∩x1
l

1

N0
|y−Hx|2. (4)

However, L∩x1/0
l can be empty. In these cases a fixed number

is used to show that bl is equal to 1 or 0 has a large possibility.

C. List Generation With Node Perturbation

Tree-search algorithm finds the list L by conducting layer

by layer tree travel, which cannot efficiently be mapped to

a highly parallel architecture. To find the closest candidate

from L with reduced complexity and with the ability to utilize

a high parallelism, this paper adopts the channel dependent

node perturbation proposed in [2]. The algorithm starts with

the initial estimation of the transmitted vector x using ZF,

x̃ = R−1y. A list of candidates L is formed by extending the

initial estimation x̃ with its neighbours. For the ith symbol of

the N-length ZF vector (x̃), the node perturbation technique

finds a set of x̃NB locally nearest sibling symbols around x̃i,

x̃NB
i = [x̃1

i , . . . , x̃
ω
i , . . . , x̃

Ωi
i], (5)

with their distances to x̃i sorted in ascending order. The

perturbation parameter Ωi in (5) needs to be adjusted to

achieve a good performance-complexity trade-off. By adopting

the sorted QR decomposition (SQRD) and Successive Par-

tial Node Expansion (SPE) [2], in this design Ωi is set to

[xSPE
1 , 4, 3, 2] , where xSPE

1 is derived from the equation

xSPE
1 = R−1

11 (ỹ1 −
4∑

j=2

R1jxj). (6)

The expansion of x1 is then completed by slicing xSPE
1 to

the nearest constellation point. In this way the search space is

reduced without affecting the performance of the detector.

Fig. 2. Proposed VLSI architecture for the MIMO detector

D. Performance Simulation

A 4×4 64-QAM MIMO system was simulated using k-best,

MMSE and the used algorithm with both exhaustive search and

a fast node enumeration described in section III-A. The Bit

Error Rate (BER) was calculated for each detection method.

As can be seen in Fig. 1, the algorithm this paper utilizes is

better than the MMSE, but does not match the performance of

the K-best. From a computational complexity point of view,

the used NP-ZF algorithm is superior to the K-best because

of its reduced search space. Moreover, this algorithm doesn’t

need sort-select process at each tree-search layer, thereby it

produces much higher parallelism, which can potentially be

implemented with very low process latency.

III. HARDWARE

The architecture of the detector is shown in Fig. 2, which

consists of three main function blocks to perform the opera-

tions in the algorithm. The Initial Calculation Block (INCB)

obtains the ZF results and then extends a list of [x2, x3, x4].
The Parallel Euclidean Distance Calculation Block (PEDCB)

calculates the xSPE
1 and the Euclidean Distance of the candi-

date list generated in INCB. The PreCalc block is implemented

to reduce the number of multipliers in PEDCB [3]. The List

LLR Calculation Block (LLCB) generates soft information

based on the candidates from PEDCB and will be discussed

in section III-B.

To increase the throughput and reduce latency, 6 sets of

nodes are calculated in parallel in PEDCB. This enables the

design to evaluate all 24 candidates in L in only 4 clock cycles.

A. Node Selection

One of the main speed bottlenecks of the detector is the

node perturbation. Previous algorithms enumerates the nodes

one after another, reducing the speed of the design and

reduces the possibility to utilize a parallel structure. Other

approximation techniques that utilizes sphere decoding [5]

or similar techniques suffer from reduced accuracy. To solve

these problems this paper introduces a fast node enumeration

scheme, which presents an accurate, fast and hardware friendly

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

A
1

A
2

A
3

A
4

N
a

N
b

N
c

N
d

N
e

N
f

N
g

N
h

N
j

Fig. 3. Principle for the fast node enumeration.

TABLE I
PRINCIPLE FOR NODE SELECTION BASED ON AREAS IN FIG. 3

x̂ in area A1 A2 A3 A4

Closest nodes Ne Ne Ne Ne

in ascending Nb Nb Nf Nf

order Nf Nf Nb Nb

Nc Nd Nh Nc

algorithm by exploiting the geometric properties of QAM.

Based on the requirements in this work discussed in section

II-C, the 4 closest nodes needs to be calculated.

The fast node enumeration accepts the complex symbol x̂
as input. The basic principle for the fast node enumeration

can be seen in Fig. 3 where the node Ne is the closest to

x̂, i.e. x̂ lies within the large dashed square in Fig 3. The

first node x1 is found by truncating the real and imaginary

part of x̂ to the closest odd number. However, because of the

symmetry all four quadrants of the selected area will give

mirrored results, so here we only look at the first quadrant.

To find the remaining nodes their Euclidean distances to x̂ are

calculated and then sorted in ascending order. By doing this

for the entire first quadrant gives only four unique solutions,

here called A1-A4. These areas correspond to the node orders

shown in Table I. To determine which area x̂ resides in, the

variable δ is introduced as

δ = x̂− x1. (7)

By utilizing a number of simple comparisons between the real

and imaginary values of δ the corresponding area can be found.

In the case in Fig. 3 the comparisons is

1) re(δ) > im(δ)
2) re(δ) > 1− 2 · im(δ)
3) im(δ) > 1− 2 · re(δ).

(8)

Once the comparisons have been calculated the remaining

nodes can be found with the help of a lookup table (LUT).

Fig. 4. Architecture of the fast node enumeration

TABLE II
PERFORMANCE AND COMPLEXITY OF NODE SELECTION

Nodes # Mult # Add # Comp

Exhaustive search 64 128 128 2048a

Fast Node Enumeration 4 10b 23 55

a: Assuming bubble sort
b: Only multiplication by 2 (shifts)

However, the LUT required for all nodes would be too

large for efficient implementation. Therefore only the relation

between the first node and the rest is stored as the vector Δ:

Δi = x1 − xi

i = [2, 3, 4].
(9)

Once Δ is found through the LUT the remaining nodes are

calculated and finally the nodes are shifted to the original

quadrant. The same principle applies to the borders and

corners.

The overall architecture of the fast node enumeration can

be seen in Fig. 4. The Test block carries out all comparisons

of δ in parallel. Then the LUT gives the values of Δ and

finally all nodes are calculated in parallel. Table II shows

the number of nodes calculated and multiplications, additions

and comparisons required by the fast node enumeration as

well as exhaustive search. The complexity of the Fast Node

Enumeration is significantly lower than the exhaustive search

while retaining system performance, as seen in Fig. 1.

B. List LLR Calculation Block (LLCB)

The generated list of candidate vectors L (i.e.

[b1, b2, b3, b4, b5, b6]) and their Euclidean distances D

are sorted in ascending order. The hard detection block HDb

contains the bit vector b with the lowest Euclidean distance

DHDb . For the first calculated vectors, DHDb is set to D1,

otherwise DHDb is set to the lower of the two. The HDbi
block keeps track of the Euclidean distance for each bit

b
HDb
i = bHD

i . If no bit have been found that differ from the

bHD
i , the distance is set the highest value possible to indicate

that the value of bHD
i is highly possible. When all vectors in

L have been calculated the soft output is calculated with a

10% ZF
 3% NodeSel
 6% PreCalc
 6% Sort

15% XSPE
1

40% ED
19% SoftOutput

Fig. 5. Area distribution of the detector

Fig. 6. Timing for the detector

modified version of equation (4)

L(bl|y) =

⎧⎪⎪⎨
⎪⎪⎩

DHDbi −DHDbi

N0
if bHD

i = 1

−DHDbi −DHDbi

N0
if bHD

i = 0.

(10)

The output value is then finally truncated ∈ [-8,8].

IV. RESULTS AND COMPARISON

The soft-output MIMO detector is modeled in VHDL and

synthesized using Synopsys Design Compiler with a 65-nm

CMOS standard digital cell library. The detector has a core

area of 0.58mm2 which translates to a gate count of 290KG.

Area distribution between different blocks within the detector

can be seen in Fig. 5. The largest block ED and XSPE
1 consists

of six parallel processors, the area could be reduced in systems

where the demand for high throughput and low latency can be

relaxed. Fig. 6 shows the timing schedule for the detector.

New values can be given every 4 clock cycles and the latency

of the design is 10 clock cycles. The detector can be run at a

maximum clock frequency of 500 MHz. With clock frequency

fc, the throughput of the detector is formulated as

Throughput = fc · log2 M ·N
4

, (11)

where M is the constellation size and N is the antenna

number. With the timing values shown in Fig. 6 the peak

throughput is 3 Gbit/s, whit a latency of 20 ns. The energy

consumption per detected bit is 33 pJ/bit.

Table III lists the overall performance of the detector and

several recently reported 4 × 4 64-QAM signal detector, all

but one with soft-output. This design has the lowest latency

and energy consumption as well as the highest area efficiency

of all the soft-output detectors. This is mainly contributed to

the high parallelism of the proposed design combined with

TABLE III
IMPLEMENTATION RESULTS AND COMPARISON

[4] [5] [6] [7] [8]
This

Work

Algorithm K-best FSD K-best
Best- MMSE

NP-FZ
First -PIC

Soft Output No Yes Yes Yes Yes Yes

Process (nm) 130 90 65 65 90 65

Gate Counta
114 555 298 64 160 290

(KG)

Clock Freqb
564 512 833 333 568 500

(MHz)

Throughputb
1350 3046 2000 83.3 757 3000

(Mbit/s)

Latencyb (ns) 300 70 230 - - 20

Area efficiencyb
11.84 5.48 6.71 1.3 4.76 10.34

(Mbit/s/kG)

Energy (pJ/bit) 200 153 140 199.2 180.4 33

a: One equivalent gate corresponds to a 2-input, 1-output NAND gate
b: Normalized to 65nm

the fast node enumeration. It should be mentioned that post

synthesis results are used in this paper, that may have some

variance compared to chip measurement results.

V. CONCLUSION

This paper investigates the algorithm and VLSI design

techniques to significantly reduce the processing latency of

a soft output MIMO detector. The design applies a channel

depended node perturbation technique to utilize a highly

parallel architecture. A Fast Node Enumeration algorithm has

been developed to reduce the bottlenecks while retaining a

high accuracy. Post synthesis results show that the proposed

detector achieves a low latency while retaining high throughput

and area efficiency as well as low energy consumption. Im-

plemented in 65nm, the detector reduces the latency by 71%

while increasing the area efficiency by 54%.

REFERENCES

[1] B. M. Hochwald and S. Brink, “Achieving near-capacity on a multi-
pleantenna channel” IEEE Trans. on Commun, vol. 51, no. 3, pp. 389
- 399 May. 2003.

[2] Chenxin Zhang, Liang Liu, Yian Wang, Meifang Zhu, Ove Edfors,
Viktor Öwall, “A Highly Parallelized MIMO Detector for Vector-Based
Reconfigurable Architectures” IEEE WCNC, pp. 3844 - 3849 Apr. 2013.

[3] Liang Liu, Johan Löfgren, Peter Nilsson, Viktor Öwall “VLSI Imple-
mentation of a Soft-Output Signal Detector for Multi-Mode Adaptive
MIMO Systems” IEEE Trans. on VLSI, no. 99, pp. 1-11, Dec. 2012.

[4] Mahdi Shabany, P. Glenn Gulak, “A 675 Mbps, 4 x 4 64-QAM K-Best
MIMO Detector in 0.13 μm CMOS” IEEE Trans. on VLSI, vol. 20,
no. 1, pp. 135-147, Jan. 2012.

[5] Xi Chen, Guanghui He, Jun Ma, “VLSI Implementation of a High-
Throughput Iterative Fixed-Complexity Sphere Decoder” IEEE TCAS-II,
vol. 60, no. 5, pp. 272-276, May. 2013.

[6] Dimpesh Patel, Vadim Smolyakov, Mahdi Shabany, P. Glenn Gulak,
“VLSI Implementation of a WiMAX/LTE Compliant Low-Complexity
High-Throughput Soft-Output K-Best MIMO Detector” IEEE ISCAS,
pp. 593-596, May. 2010.

[7] C.-A. Shen, et al., “A best-first soft/hard decision tree searching MIMO
decoder for a 4 64-QAM system,” IEEE Trans. on VLSI, vol. 99, 2011.

[8] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of soft-
input soft-output MIMO detection using MMSE parallel interference
cancellation,” IEEE JSSC, vol. 46, no. 7, pp. 1754-1765, 2011.

Im
p

le
m

e
n

tatio
n

 o
f a H

ig
h

ly
-Pa

ra
lle

l S
o

ft-O
u

tp
u

t M
IM

O
 D

e
te

cto
r w

ith
 Fa

st N
o

d
e E

n
u

m
e

ratio
n

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, December 2013.

Implementation of a
Highly-Parallel Soft-Output
MIMO Detector with Fast Node
Enumeration

Stefan Granlund

http://www.eit.lth.se

Ste
fan

 G
ran

lu
n

d

Master’s Thesis

