
A
 Tim

in
g

 System
 A

p
p

licatio
n

 u
sin

g
 W

h
ite R

ab
b

it

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, January 2014.

A Timing System Application using
White Rabbit

Alexander Aulin Söderqvist
Niklas Claesson

http://www.eit.lth.se

A
.A

u
lin

 Sö
d

e
rq

vist &
 N

.C
la

e
sso

n

Master’s Thesis

Master Thesis:
A Timing System Application using

White Rabbit

Author:
Alexander Aulin Söderqvist

Niklas Claesson

Advisor:
Rok Tavčar

Examiner:
Joachim Rodrigues

Faculty of Engineering
Lund University

January 2014

Department of Electrical and Information Technology
Faculty of Engineering, LTH
Lund University
Box 118
SE–221 00 LUND
SWEDEN

This thesis is set in Adobe Garamond 12pt and Google Roboto,
with the LATEX document preparation system.

© 2013 Niklas Claesson & Alexander Aulin Söderqvist

Printed in Sweden
E-huset, Lund, 2014.

Abstract

In this work, two synchronization layers for timing systems in large experimental
physics control systems were studied. White Rabbit (WR), which is an emerging
standard, is compared against the well-established event-based approach. Several
typical timing system services have successfully been implemented on an FPGA
to explore WR’s concepts and architecture, which is fundamentally different
from an event-based one. The requirements for the implemented prototype were
decided based on typical requirements of current accelerator projects and with
regard to other parameters, such as scalability and commercial availability. The
proposed design methodology and prototype demonstrate one way of deploying
WR in future accelerator projects.

i

ii

Acknowledgements

We wish to thank Associate Professor Joachim Rodrigues for finding this master
thesis project, pushing us to apply and assisting us to ensure its completion.

We also wish to thank Cosylab, the accelerator team and in particular our advisors
Rok Tavčar and Rok Štefanič for giving us valuable feedback on the implemented
architecture and our conference submissions. Everyone at Cosylab have been
more than friendly, made us feel like home and a part of the team. Furthermore,
it was very rewarding to do a poster presentation regarding this work on the 14th
International Conference on Accelerator & Large Experimental Physics Control
Systems in San Francisco, California, USA.

We also acknowledge all the work put into the White Rabbit project by all the
contributors, without them the project would not exist. Contributions have
been committed by several organizations, such as CERN, GSI and companies,
such as Seven Solutions. But, since it is an open source project there may have
been contributions by individuals not associated with any organizations as well.

This is an interesting field of science and it is our hope that the collaboration
between the faculty and Cosylab grows, so that more students will have the great
experience of enjoying, working and living in Ljubljana.

iii

iv

Table of Contents

1 Introduction 1
1.1 Control System . 2
1.2 Timing System . 2
1.3 White Rabbit . 4
1.4 Scope . 5
1.5 Outline . 6

2 Background 7
2.1 Definitions . 7
2.2 Synchronization . 9
2.3 Synchronization Layer . 15
2.4 Timing System Model . 15
2.5 Micro-Research Finland . 19
2.6 White Rabbit . 24

3 Implementation of a Timing System Prototype 27
3.1 Requirements . 27
3.2 Architectural Overview . 28
3.3 Timing Master . 30
3.4 Timing Receiver . 30

4 Result 47
4.1 Timing System Prototype . 47
4.2 Timing Receiver . 47
4.3 Verification . 48

5 Discussion & Conclusion 51
5.1 Comparison . 51
5.2 Future Improvements of Timing System Prototype 52

v

5.3 Conclusion . 57

A Architecture 59

B Source Code 61

C Development Environment 63

vi

List of Figures

1.1 European Spallation Source. Credit: ESS 1
1.2 Devices in MedAustron. Credit: MedAustron 2
1.3 White Rabbit logotype . 4

2.1 Accuracy and precision . 8
2.2 Synchronization . 9
2.3 Phase-locked loop . 10
2.4 Clock recovery . 11
2.5 Synchronous Ethernet . 13
2.6 PTP synchronization . 14
2.7 Timing system concept . 16
2.8 Simple timing system . 18
2.9 Interface between timing system and control system 19
2.10 MRF 2-byte protocol . 20
2.11 MRF timing system . 21
2.12 MRF event to output . 22
2.13 MRF sybsystems . 23

3.1 White Rabbit starting kit . 28
3.2 Timing System Prototype . 29
3.3 Timing Receiver architecture . 31
3.4 Timing Receiver data flow . 33
3.5 Crossbar switch interconnection . 34
3.6 White Rabbit PTP Core . 34
3.7 Network packet flow . 35
3.8 Architecture of the Timing Message Receiver 37
3.9 Timing Message Receiver FSM . 38
3.10 Action message . 39
3.11 Event . 39

vii

3.12 Architecture of the Digital Output Controller 40
3.13 Action Message FIFO read signal . 41
3.14 Pulse generator FSM . 43
3.15 Architecture of the Digital Input Timestamper 44
3.16 Input Detector . 45
3.17 Timestamp FIFO word . 45
3.18 Timestamp FIFO write signal . 46

4.1 Comparison between simulation and measurement 50

A.1 Detailed FPGA firmware architecture for the Timing receiver . 60

viii

List of Tables

2.1 8b/10b conversion . 10
2.2 Timing system sequence . 17
2.3 MRF timing system sequence . 21

3.1 Sequences RAM . 36
3.2 Actions RAM . 37
3.3 Event RAM . 40

4.1 FPGA Resource Usage . 48
4.2 Actions RAM verification data . 49
4.3 Event RAM verification data . 49
4.4 Timestamp FIFO readout . 49

ix

x

Abbreviations

ATOE Absolute Time Of Execution
CERN Organisation européenne pour la recherche nucléaire

(European Organization for Nuclear Research)
CPU Central Processing Unit
DIT Digital Input Timestamper
DOC Digital Output Controller
FAIR Facility for Antiproton and Ion Research
FPGA Field-Programmable Gate Array
FSM Finite-State Machine
FIFO First in first out queue
GPS Global Positioning System
GMT General Machine Timing System
HDL Hardware Description Language
IEEE Institute of Electrical and Electronics Engineers
ITU International Telegraph Union
ITU-T ITU - Telecommunication Standardization Sector
LAN Local Area Network
MRF Micro-Research Finland
NTP Network Time Protocol
NIC Network Interface Card
PTP Precision Time Protocol
RAM Random access memory
RTOS Real-time Operating System

xi

RTOE Relative Time Of Execution
SI Le Système international d’unités (International System of Units)
TAI Temps atomique international (International Atomic Time)
TMR Timing Message Receiver
WR White Rabbit
PLL Phase-Locked loop
VCO Voltage controlled oscillator

xii

Chapter1
Introduction

As materials scientists try to understand how nano-scale objects, for example
molecules, look and behave, they require more specialized and powerful tools.
This is one of the reasons to build the European Spallation Source (ESS). It will
be the accelerator with most intense proton beam in the world at 5 MW [1],
letting academia and industry investigate science with unbeatable results. One of
the largest competing facilities is the Spallation Neutron Source (SNS), in Oak
Ridge, Tennessee, USA, which is specified to deliver a beam of 1.4 MW [2].

Figure 1.1: Overview of the ESS complex. Credit: ESS.

Particle accelerators are also used in cancer treatment. It is still in a research phase,
the scientists are evaluating which particles and energy levels are best suited [3].
Both proton and heavy ion therapy looks promising because of the “Bragg peak”
phenomenon, which gives the physicians higher precision and less damage is dealt
to healthy tissue around the tumour. It can therefore be used to treat cancers
close to vital organs. Since it is still a young concept, more long term studies will
have to be made to confirm that it raises the overall survival and the life quality.

1

2 Introduction

1.1 Control System

In order to reach the specified maximum performance, a sophisticated control
system is needed. This system need to be able to trigger accelerating and steering
elements in a way so that the particles are able to obtain the required speed,
which often is close to the speed of light. This is achieved with a combination
of techniques and subsystems. There are predetermined execution sequences
that are defined during commissioning and then there are extremely fast local
control loops for correction of the beam. Overall the components have to work
together like an orchestra. If a single crucial component fails, the whole machine
is emergency shutdown.

Figure 1.2 shows the multitude of devices within a typical accelerator. The parti-
cles start in the linear accelerator to the left. They are then further accelerated
in the circular synchrotron part, and in the end delivered to one of the four end
stations to the right. Each device has to act at a specific time in order to reach
fundamental requirements such as specific energy levels and speed of particles.

Figure 1.2: Devices that need a control system. Credit: MedAustron.

Some noticeable subsystems of the control system are the timing system, the
machine protection system and the personnel protection system. The control
system also needs logging systems, databases for collected data and graphical user
interfaces for the operators. All aspects are usually extreme: huge bandwidth,
copious amount of data, high frequencies, elaborate synchronization and many
computer networks.

Usually all these subsystems have their own networks to interfere less, but to
keep costs down, it is beneficial if some of them are able to share network. Until
now it has been more or less impossible for the timing network to share its fibres
with any other because they have often used non-standard protocols.

1.2 Timing System

A lot of devices used in an accelerator is timing sensitive and require elaborate
synchronization. The system that handles this synchronization is called the

Introduction 3

timing system and it is an important part of the control system. Different devices
have different demand on precision of the synchronization and it also varies
between facilities. Typically, they have to act with a precision in the range of µs,
ns or ps.

Accelerators come in many different sizes and shapes and achieve acceleration in
various ways. Linear accelerators, for example, shoot pulses of particles while
circular accelerators have a period time. Due to this fact, all timing critical
devices around an accelerator have to be triggered sequentially. To achieve this,
the predetermined sequences consists of a set of actions, each notifying devices of
when and what to carry out. Large accelerators can contain multiple linear and
circular parts, each having unique sequences which need to be carried out. They
often run simultaneously and when transferring particles between the different
parts, the sequences also depend on each other.

As timing sensitive equipment is becoming more common, there is a desire to
avoid reinventing the wheel. Progress is being made on unifying timing systems
by making common hardware platforms. These platforms need to be compatible
with a lot of existing backbones to unite hardware from different vendors. To
enable this, the convention is to include configurable hardware, such as field-
programmable gate arrays (FPGA), which provide the timing system designer
with flexibility to adapt the platform to specific requirements.

In current facilities it is common to send the same timing signal over fanned
out fibre to all the devices, therefore making it real-time and deterministic. The
drawbacks with this method are that you require equal delay to all devices and
that you use the whole network as a single connection. These two factors make it
inconvenient to use the network for data transfers; you cannot send data between
two arbitrary nodes. Also, since there is no feedback loop, it is difficult to
compensate for signal delay variations due to environmental changes.

The most timing critical projects are synchrotron accelerators and laser facili-
ties. They can require that the timing system is synchronized down to tens of
picoseconds. Then there are projects accelerating larger particles, which require
synchronization to a nanosecond. There are even completely unrelated projects
like antenna or detector arrays that also benefit from a timing system with high
accuracy, since they do distributed time stamping of scientific measurements.

Amongst the large science projects there are a few which are exceptionally large.
They are constructed using multiple accelerators and accumulators. In these huge
facilities, scalability is also an essential aspect of the timing system.

Usually, timing systems have unique, machine-specific, requirements and are
therefore developed completely or partly in-house, without any thought on
standardization. This has made it difficult to collaborate and share knowledge

4 Introduction

between organizations in the accelerator community. The same functionality has
often been implemented in slightly different ways using either in-house developed
hardware or commercial of-the-shelf customizable hardware.

The major problem with in-house developed systems are that they can contain
poorly documented proprietary hardware, protocols and software, making it
problematic for one party to extend and improve the work of someone else. All
parties are often required to sign non-disclosure agreements to collaborate and
share information.

1.3 White Rabbit

White Rabbit [4] is the first attempt to solve the timing critical challenges using
only open standards, open software and open hardware. The project’s initial goal
was to be the basis for a replacement of the current timing systems at CERN, but
now it has the possibility to become the de facto standard platform for timing
systems. The projects logotype can be seen in Figure 1.3.

Figure 1.3: The White Rabbit logotype.

It has an unprecedented requirement of scalability because its requirements are
distilled from all the systems it replaces. It will replace thousands of nodes with
up to several kilometres distance in between. This gives it its most noticeable
characteristics, namely, automatic delay compensation for cable length. It is also
understandable that Ethernet (1000BASE-BX10) was chosen as physical layer to
make the system more generic than the current offerings.

1.3.1 Open Hardware

White Rabbit is unique in its approach to hardware, since everything developed
is available for free through an on-line repository [5]. This allows a new form
of collaboration were the developers can focus their contribution to where they
are most proficient. This is meant to be beneficial for smaller companies with
narrower expertise, because it lowers the initial investments.

Introduction 5

Open hardware is still a rare concept. Companies that develop hardware are
reluctant to share their work because they need a return on investment. This,
however, does not apply to publicly funded institutions, which usually want to
transfer their gained knowledge back to the public. Therefore, they can reap the
benefits from open source without the drawbacks. There are, for example, already
several manufacturers producing White Rabbit reference hardware, competing
with price and quality.

It is also a bit unexplored territory regarding patents and the law, which is
preventing acceptance. If a medical device, for example, would malfunction and
harm patients, it is not clear how bears the responsibility. Hardware companies
conventionally patent as much as possible and open sourcing makes it easier for
the patent holders to find unintentionally infringing technologies.

1.3.2 Standards

Complying with standards has shown to be very beneficial. Because the network
uses standard Ethernet it is possible to use a variety of tools to analyse the traffic.
By settling with precision time protocol (PTP) as synchronization protocol, it is
possible to be compliant with non-White-Rabbit hardware, only degrading that
link to regular PTP accuracy. White Rabbit has proved to be one of the best PTP
implementations on several PTP compatibility meetings.

Complying with standards also has its drawbacks. Packaging everything in
Ethernet frames adds overhead, which makes White Rabbit unsuitable for some
use cases. If really low latency links are required White Rabbit cannot be used,
due to the delays introduced in overhead and routing.

1.4 Scope

In this work, a prototype timing system has been implemented to understand
and explore the potential of White Rabbit. White Rabbit is a new state-of-the-art
way of synchronizing time and clock on multiple FPGAs to sub-nanosecond
accuracy.

The requirements for the prototype were devised after studying requirements
of current big science projects in development and considering the hardware
available. The prototype should also exploit White Rabbit to show its strengths
and weaknesses.

6 Introduction

1.5 Outline

Chapter 1
In chapter 1, an introduction to timing systems and an overview of current
systems is given. The motivation behind White Rabbit is also explained.

Chapter 2
In chapter 2, the theory required to understand the report is explained,
including synchronization and a general description of White Rabbit.
Then the report proceeds by explaining what a timing system is and how
it is defined. A more thorough overview of current timing systems is also
here.

Chapter 3
The primary focus of the work is explained in chapter 3, were the imple-
mented timing system prototype is explained in detail.

Chapter 4
In chapter 4, the results and verification of the timing system prototype
are presented.

Chapter 5
Finally the report is concluded with discussion and future work in this
chapter.

Chapter2
Background

This chapter goes through definitions together with theoretical background. It
also covers existing methods of synchronization in timing systems.

2.1 Definitions

In this section fundamental definitions necessary to understand synchronization
will be explained.

2.1.1 Clock versus Time

The difference between clock and time is essential to timing systems. Clock is,
in this report, primarily an electrical signal with a given frequency. Two clocks
with the same frequency will have a phase difference.

Claiming that multiple digital devices have the same clock means that their clocks
have the same frequency and that the phase difference is small enough to meet
the requirements. Even if they have the same clock, they still need some way
of deciding which rising edge is equivalent everywhere. Therefore time needs
to be synchronized, i.e., they need to agree on how long time has passed since a
defined moment.

Time is represented as seconds. Clock cycles are counted in between seconds to
get better granularity. Every device therefore has to keep track of two values,
seconds and clock cycles.

7

8 Background

2.1.2 International Atomic Time

International Atomic Time (TAI) is a standard way of representing time defined
by the standards institute SI. It is calculated as a mean of about 200 atomic
clocks around the world. TAI is possible to obtain with extreme precision using
high-end GPS equipment; therefore it is possible to synchronize different sites
throughout the world down to tens of nanoseconds [6].

2.1.3 Accuracy and Precision

Typical requirements on synchronized distributed outputs are the alignment
amongst the nodes. This is measured using accuracy and precision, see Figure 2.1,
where accuracy is the mean offset from the reference signal and precision is the
jitter, or deviation, of the offset.

Probability
density

Accuracy

Precision
Time

Reference value

Figure 2.1: Accuracy and precision.

2.1.4 Determinism

Determinism is a philosophical concept, where every action produces a known
reaction and the systems input, output, and states always are known. If a system is
fully deterministic, nothing is left to chance and everything behaves like expected.

This is desirable in digital designs, because then actions are predictable and repeat-
able. The complexity in many systems is minimized to achieve better determin-
ism. Instead of implementing algorithms in software, hardware implementations
are used. Instead of a complicated network protocol, only predetermined patterns
are sent. But, this also makes the systems more specialized and less generic.

Background 9

2.2 Synchronization

Two different approaches to synchronization in timing systems have been identi-
fied [7, 8]. Both use phased-locked loops and 8b/10b encoding for clock recovery,
which are essential techniques in synchronization. The first one, which is more
common, is called event-based and only synchronizes clock, whereas White Rab-
bit also synchronizes time. This section will go through the different methods
that are used to achieve synchronization in regard to both clock and time.

2.2.1 Synchronizing clocks

Synchronization of clocks requires two steps, which can be seen in Figure 2.2.
The first process is syntonization, where the clocks are adjusted to the same
frequency. The second part is the measurement and alignment of the phases.

(a) Clock drift is resolved by syntonization.

(b) Phase offset is resolved by phase align-
ment.

(c) Synchronized!

Figure 2.2: Synchronization is achieved through two processes,
syntonization (a) and phase alignment (b).

2.2.2 Phased-Locked Loop

A phase-locked loop (PLL) consists of a phase & frequency detector (PFD), a
loop filter and a voltage controlled oscillator (VCO), see Figure 2.3. Its purpose

10 Background

is to lock the phase of the generated output frequency (Fout) to the phase of an
input frequency (Fref). The implementation of a PLL differs a lot depending on
application. They often include scale factors to increase or decrease the frequency.
It can accomplish both syntonization and phase alignment. The following basic
explanation of the concept is enough to understand synchronization.

Figure 2.3: Block diagram of a general phase-locked loop.

The PFD’s purpose is to generate a control signal for the VCO. The loop filter
keeps the system stable when, for example, changes in Fref occur and on start up.

Using PLLs it is possible to produce a lot of different frequencies. This is often
used in integrated circuits to multiply, divide and/or shift the phase of the input
clock.

2.2.3 Syntonization with fibre

One common way of syntonizing slaves in regard to the master is to use the
8b/10b encoding [9]. This encoding ensures that there are enough transitions
to correctly recover the clock by never letting there be more than 5 consecutive
ones or zeroes. In Figure 2.4 a block diagram shows how it is connected. Data
is transmitted serially over an optical link using 1.25 GHz. Every 8 bit data is
converted to one of two 10 bit symbols, see Table 2.1. Some of the remaining 10
bit symbols are used for link maintenance.

Data Symbol (+) Symbol (–)
000 00000 100111 0100 011000 1011
000 00001 011101 0100 100010 1011

Table 2.1: Excerpt from 8b/10b conversion table.

The 10 bit symbols differ in number of ones. The scheme selects one of the 10
bit symbols to ensure that there is no DC offset, i.e., same number of zeroes and
ones over a longer period of time. The comma maintenance symbol allow the

Background 11

process to align the data stream, therefore it cannot be present anywhere else in
the stream.

125 MHz 1.25 GHz 125 MHz

8b/10b
encoding

Serializer Deserializer
8b/10b

decoding

data[7:0]

recovered clock

data[7:0] data[9:0]
data[9:0]

Transmitter ReceiverLink

Figure 2.4: Block diagram of clock recovery.

2.2.4 Phase detection

To compensate for phase offsets a digital equivalent of a dual-mixer time difference
(DMTD) is used in White Rabbit [10]. The DMTD is a system that compares two
clocks using a third, slightly out of frequency, clock. Imagine two clocks (a(t) =
cos(2πt Fclk+Φa) and b (t) = cos(2πt Fclk+Φb)) with the same frequency, Fclk,
and amplitude. The third clock will have frequency Foffset, c(t) = cos(2πt Foffset+
Φc). Then both clocks are multiplied with the third as:

a(t) · c(t) = cos(2πt Fclk+Φa) · cos(2πt Foffset+Φc)

=
1

2
(cos(2πt (Fclk+ Foffset)+Φa+Φc)+

+ cos(2πt (Fclk− Foffset)+Φa−Φc))

The results of both multiplications are two clocks, one with high and one with
low frequency. By low-pass filtering the result, it is then possible to study the low
frequency signals by counting pulse length using Fclk. If the offset clock is very
close to the input clock, better accuracy is achieved. Doing this with two clocks
in parallel enables phase detection with a counter because the mixing only affects
the frequency and not the phase.

In White Rabbit the circuit is implemented with digital equivalents to the analog
components, for example, registers are used as mixers.

12 Background

2.2.5 Event-Based Synchronization

This synchronization approach is called event-based, since the protocol for com-
munication between the master and receiver nodes use identifiers called events.
All the receivers receive exactly the same signal at the exact same time. Therefore
there is no need to synchronize time. Because of syntonization, all the receivers
have the same clock and since they all have the same delay, they all have the same
phase difference to the master, which is derivable from cable length.

The most straight-forward way of achieving syntonization is to recover the
master’s clock with a PLL in the receiver nodes FPGA. Because all receivers have
the same phase, they are synchronized, but not with the master. The clock can
be recovered with high precision by using optical serial transmission running at
10 times higher frequency than the FPGA. The optical transmission also has the
positive side effect that they are less sensitive to interference and radiation.

There are multiple proprietary solutions using this technique. Some vendors
allow customization of firmware and in certain cases the vendors are even com-
patible.

2.2.6 Synchronous Ethernet

Synchronous Ethernet (SyncE) is a specification for frequency transfer over Eth-
ernet, standardized by International Telecommunication Unions (ITU) standard-
ization unit Telecommunication Standardization Sector (ITU-T). It is essentially
the same as event-based synchronization, since it synchronizes on the physical
layer.

The requirements listed in SyncE are, amongst other things, that each node should
be clocked with a traceable reference clock. This is achieved via syntonization
on the lowest layer and it is therefore independent of the network load. The
clock is traceable since every node uses the recovered clock for transmission to
other nodes. Regular Ethernet also recovers the clock, but only for the incoming
transmission, limiting the synchronization to the first layer of connected nodes.
SyncE therefore requires a common reference clock, which leads to a hierarchical
tree network with a primary reference clock at the top.

The difference between using a free running oscillator and a recovered clock as
transmission clock is shown in Figure 2.5. In Figure 2.5a the network interface
cards (NIC) do not use the recovered clock as transmission clock, therefore they
are not synchronous. On the other hand, in Figure 2.5b, the NICs use the
recovered clock as transmission clock, hence the clock is the same in all nodes
and they are synchronous.

Background 13

(a) Regular Ethernet. Where the network
interface cards are using free running
oscillators as transmit clocks.

(b) Synchronous Ethernet. Where the net-
work interface cards are using recov-
ered clocks as transmit clocks.

Figure 2.5: The different colours symbolize different transmit clocks
that are used in regular and synchronous Ethernet.

2.2.7 Time Synchronization

Another approach, different to the event-based, is to synchronize time in all the
nodes in the network. There are several existing Ethernet protocols which do this.
The most common are the Network Time Protocol (NTP) and the Precision
Time Protocol (PTP). Both synchronize time by calculating the offset between
the synchronizing node and a reference node.

NTP is designed for use over the Internet. It is therefore possible to implement
completely in software and the synchronization is initiated by a client, which
contacts one of several publicly accessible NTP servers. PTP, on the other hand,
is designed for use on a segment of a LAN. The synchronization is initiated by a
master and it will continuously make sure that all the slaves are synchronized.
PTP also requires specialized hardware, especially better clocks, for precise time
stamping.

NTP accomplishes accuracy from a couple of microseconds on a LAN and
typically tens of milliseconds when used over Internet. PTP can synchronize
time in the order of hundreds of nano seconds or even better depending on
hardware.

Errors in NTP and PTP arise from multiple sources, for example, precision
in time stamping, buffering, congestion, routing and different time stamping

14 Background

strategies.

For further reading about time synchronization and especially NTP see [11].

2.2.8 Precision Time Protocol

Precision Time Protocol (PTP) (IEEE 1588-2002[12]) is designed to synchronize
clocks with high precision on a segment of a LAN instead of over the Inter-
net as NTP. It can, for example, be used for industrial control systems where
microsecond accuracy is good enough.

PTP synchronizes time by exchanging timestamps back and forth between the
master and the slave, see Figure 2.6.

The goal of the algorithm is to calculate the time offset (θ) between the master’s
clock and the slave’s clock and the round-trip delay (δ) back and forth between
the nodes. The first message, Sync, is sent from the master to the slave and is time
stamped both on transmission and reception. The following message, Follow Up,
contains t1. The slave sends a Delay Request message which also is time stamped
at both ends. Finally the master sends a Delay Response carrying t4. t1 and t4 are
captured by the master’s clock and t2 and t3 are captured by the slave’s clock.
After this procedure the slave has acquired all the four timestamps.

Figure 2.6: PTP time synchronization process.

Background 15

The round-trip delay and clock offset is calculated as:

δ = (t4− t1)− (t3− t2) (2.1a)

θ=
1

2
[(t2− t1)+ (t3− t4)] (2.1b)

The latest version, PTPv2 (IEEE 1588-2008[13]), improves the accuracy, but is
not backward compatible and delivers sub-microsecond accuracy. This is still not
good enough for particle accelerators, which require higher accuracy.

The precision of the algorithm is mostly affected by the precision of the times-
tamps. High-end PTP equipment therefore implements timestamps in hardware
as close to the transmission medium as possible.

2.3 Synchronization Layer

To create a fully functional timing system it is preferable to use commercial
off-the-shelf products instead of putting effort into designing custom hardware.
This hardware should enable synchronous action and is called synchronization
layer. Every timing system project is unique and therefore different kind of
customization need to be applied. It is important to understand how the synchro-
nization layers work and what their limitations are to make the right decision of
which one to use.

This chapter presents both MRF and White Rabbit as synchronization layers.
They use FPGAs, which enables customization, and are commercially available.

2.4 Timing System Model

The timing system’s purpose is to provide services to the control system, see
Figure 2.7. Synchronization through the network is needed to implement them.
The synchronization layer provides basic synchronization capabilities, which
enables the design of certain timing system services.

The most basic timing system is a network that consists of a timing master
and several timing receivers [14]. The timing system network can be divided
into sub-networks depending on the complexity of the requirements. Each sub-
network has a local timing master and the total number of timing receivers can
be hundreds or even thousands.

16 Background

Figure 2.7: The timing system is the link between the control system
and the synchronization layer.

The main purpose of the timing system is to provide services to the control
system. Requirements on timing systems for accelerators are often tough and
require real-time applications. The requirements are different for all machines,
which mean that there is not always a commercial off-the-shelf product available
that fits the needs.

This section will go through concepts based on current conventions. These
concepts are heavily inspired by current timing systems based on the MRF
synchronization layer and the ongoing General Machine Timing System (GMT)
at Facility for Antiproton and Ion Research [15].

2.4.1 Timing Master

The timing master is a node in a timing system. It dictates to every underlying
node what to do and, more importantly, when to do it. The timing master is
responsible for several crucial tasks, some of which are: keeping the timing re-
ceivers synchronous, synchronizing the network to external triggers and emitting
sequences of instructions.

The timing receivers are synchronized in different ways depending on the syn-
chronization layer. To dictate the timing receivers, the timing master has access
to sequences, which it plays over the timing network. The sequences consists of
a set of trigger instructions, see Table 2.2. Depending on the size of the machine
the scheduling problem grows or shrinks. There can also be interdependen-
cies between machines when transferring bunches of particles, which further
complicates it.

Background 17

0 Trigger instruction 1
1 Trigger instruction 2
2 Trigger instruction 3
.
N Trigger instruction N+1

Table 2.2: A sequence consists of multiple trigger instructions which
are played over the timing network.

2.4.2 Timing Receiver

The timing receivers are specialized hardware devices that have the ability to
synchronize with the timing master. Timing receivers are spread out over the
facility and positioned near the front end devices. They are usually not completely
stand alone and are often placed in a host called front end controller together
with other necessary equipment. They can have a range of different interfaces
for controlling the front end devices. From the simplest, in form of digital–
and/or analog outputs and/or inputs, to more sophisticated clock and function
generators.

In addition to synchronize with the timing master, they also receive trigger
instructions. The trigger instructions must provide the necessary data to the
receivers of when and what to carry out.

2.4.3 Timing System Services

The functionality that the timing system provides to the control system can be
seen as a set of services. These services range from fundamental, like triggering
of front end devices and time stamping inputs, to more complex functionality.

Trigger and time stamping services is the minimum required of a timing system
and will be presented in this section. Since high level services are derived from
machine unique requirements, they are out of scope for this thesis.

A minimal example of a simple timing system can be seen in Figure 2.8. It
illustrates the timing system and its interface to the front end devices. The
interface between the timing system and control system can be seen in Figure 2.9.

Real-Time triggering

An accelerator consists of hundreds or thousands of distributed front end devices
that need to be controlled in real-time with high resolution. Precisely timed

18 Background

Figure 2.8: The timing system consists of at least one timing master
and multiple timing receivers. The timing master plays the
sequence on the timing network to the timing receivers. Each
timing receiver is connected to a front end device which it triggers
and/or receives events from to timestamp.

outputs are required around the machine to do so satisfyingly. This output
functionality is the most prominent feature in the timing system and is located in
the timing receivers closest to the front end devices. The outputs on the timing
receivers are configured individually in advance by the control system to act
differently on each trigger instruction received.

The configuration of what to carry out on each trigger instruction is dependent
on the timing receiver’s output functionality. On a single digital output, for
example, there are at least the possibility to define a delay after which the output
start and length of the output. With more sophisticated functionalities come
different kinds of configuration.

Timestamp external events

It is important to know the status of equipment around the accelerator to diagnose
functionality and to detect potential malfunctions. Logging events from the front
end devices during run-time is another fundamental functionality for the timing
system. Therefore the timing receivers need to be able to timestamp external
events. The timestamps are then made available to control system, see Figure 2.9.

Background 19

Figure 2.9: The timing system is configured by the control system.
The control system informs the timing master on when and what
sequence to play over the timing network.

2.5 Micro-Research Finland

Micro-Research Finland [7] (MRF) is an event-based system and has similar
specification to SyncE, except that it does not use Ethernet. This means that the
system is synchronous, in other words, that every node runs on the extracted
clock from the fibre. Phase alignment is guaranteed by using the same length
fibre or with manual delay compensation.

Everything in the master and receivers is implemented in hardware and only
configuration is done from software to ensure easier verifiable determinism.

2.5.1 As Synchronization Layer

MRF uses a custom 2-byte protocol where 1 byte is sent every clock cycle, as
can be seen in Figure 2.10. The first byte defines the event and the second byte
is called payload. Each event received by the Timing Receiver is immediately
translated through an event table and carried out. The payload can be used for
custom configuration.

The event and custom data can be seen as its interfaces. If a timing system is
developed, you are restricted to communicating with all the receivers at the same

20 Background

time and only using this event code and custom data.

Event Custom data

15 08 7

Figure 2.10: MRF 2-byte protocol.

Primarily, MRF is used for transmission in one direction, to avoid any risk of
transmission collisions, but it is also possible to transmit upstream on a separate
link.

An MRF network is a strict hierarchical tree structure seen to the distribution
of events. Events are generated by a single node at the top and transmitted
downwards through fan-outs [16]. The fan-out merely converts the optical signal
to an electrical signal and routes it to 10 optical output transmitters. This enables
high precision and low latency distribution of the signal since no data processing
is being done.

There are uplink capabilities by using so called concentrators [17]. The concen-
trators have to prioritize between the uplinks, which makes it less deterministic
than the fan out but with a maximum latency, around 200 ns, depending on
set-up.

The performance limitations of MRF lie in the difference in delay between
the nodes. In reality this depends on many factors not only fibre length or
inserted delays. The effect from varying temperature on fibres and transceivers
has significant impact on propagation speed. Hence degrading performance if
the temperature varies in the facility where the system is installed.

2.5.2 As Timing System

MRF does not only provide a synchronization layer platform, but a complete
timing system [7]. It has a firmware available for the on-board FPGAs, which
provides a configurable timing system. It includes the fundamental functionality
of real-time triggering and time stamping which will be explained.

The top node, corresponding to the timing master in the model that generates the
events is called Event Generator [18]. The underlying nodes that are connected
through fan-outs are called Event Receivers [19], coherent with the timing re-
ceiver definition. A minimal timing system with MRF can be seen in Figure 2.11.

The event generator has to 2 sequencers, each containing 2048 event. One
sequence definition can be seen in Table 2.3. The event consists of a 32 bit
timestamp and an 8 bit event code. The timestamp declares when the event

Background 21

Figure 2.11: An MRF network at its minimum consists of one event
generator and a fan-out to the timing receivers.

code is emitted on the network and is relative to the start of the sequence. The
sequencer can be triggered via software, TTL inputs, AC mains synchronization
or by configurable counters.

Event 32 bits 8 bits
0 Timestamp Event code
1 Timestamp Event code
...
2047 Timestamp Event code

Table 2.3: An MRF sequence consist of 2048 events, each define a
timestamp and event code.

There are 28 = 256 events, whereof 246 are user definable. If no event is scheduled
to be emitted, the null event is automatically emitted.

The event receiver has a number of configurable pulse generators; the amount
depends on firmware and hardware version, and an event FIFO for timestamps.
To enable these functionalities it has 2 individually configurable event RAMs,
but only one is active in a given moment. Each RAM has 256 addresses with
128 bits words. Every time an event is received it is immediately mapped to the
event RAM’s address lines. The data is then outputted from the active RAM
to configure the internal functions, including the pulse generators and time
stamping functionality.

The pulse generators are controlled immediately upon a received event, see
Figure 2.12, with set and reset from the event RAM, where set activates the pulse
and reset deactivates the pulse. It can also be controlled from internal counters,

22 Background

which define the delay until the pulse is activated and width of the pulse. These
counters have to be preloaded from software running on the front end controller
and are activated with the trigger signal from the event RAM. The counters count
downwards with a configurable rate from a prescaler.

Figure 2.12: The event receiver maps incoming event to its event RAM
immediately and the data output configures the pulse generators.

The system provides a common time base and each timing receiver has an event
FIFO with room for 511 time stamped events. Each event received by the event
receivers can be configured, in the event RAM, to be saved in the event FIFO.
The receiver has inputs which can be configured to generate an event locally.
Hence, these two functionalities can be combined to time stamp external events.
The event FIFO is readable from the front end controller.

Subsystems may be required in big or complex timing systems. In MRF this can
be achieved by cascading two subsystems with a simple system on top, which
is done at, for example, KEKB in Japan [20]. The event generator can start a
sequence on TTL inputs, by putting a single event generator connected directly
to a timing receiver this can be used to trigger several event generators, see figure
2.13.

Background 23

Figure 2.13: One event generator together with one timing receiver
can be used to trigger underlying event generators to build
subsystems.

24 Background

2.6 White Rabbit

The White Rabbit project is an open-source hardware platform specifying an
improvement to IEEE-1588 (PTP) which is called White Rabbit Precision Time
Protocol (WRPTP). It also fulfils the specification of Synchronous Ethernet
(SyncE) as given by ITU-T.

WRPTP improves PTP with several key features and solves most of the accuracy
issues. It does this by, for example, having very deterministic time stamping and,
in addition to time, also synchronizing the clock. The clock is synchronized to
achieve sub-clock-period accuracy, which is impossible with regular PTP. Using a
period of 8 ns gives sub-nanosecond accuracy. Other inaccuracies which occur
due to buffers and router delays are removed by restricting the network topology.

2.6.1 As Synchronization Layer

Existing hardware implementations of WRPTP uses Ethernet on optical fibre,
1000BASE-BX10, which enables ranges up to 10 km. Each node has its own phase
and frequency locked oscillator, which is synchronized with the clock extracted
from the fibre. The phase difference between the extracted clock and the oscillator
is continuously measured and compensated for. The continuous synchronization,
inherited from PTP, compensates for run-time variations of the propagation
delays between nodes. The complete White Rabbit PTP implementation is built
into the hardware and hidden from the host CPU. White Rabbit aims to be part
of the next PTP revision. For specifics on White Rabbit’s synchronization see
the specification [21].

The network hierarchy is limited by the distribution of the reference time, which
is done by the clock master. In White Rabbit the clock master is a multi-port
node with the possibility to synchronize its time with a GPS signal or an atomic
clock. The clock master then performs the necessary synchronization with the
underlying nodes (switches or receivers).

The performance of White Rabbit varies depending on the set-up. An advantage
is that it compensates for fibre delay and therefore also the varying temperature
on the fibre. It aims to have sub-nanosecond accuracy which it achieves with
different results depending on set-up. Performance tests done in climate chambers
proofs that this works [22]. The current performance limitation comes partly
from delay variations, caused by change of temperature, in the White Rabbit
nodes themselves [23].

Background 25

2.6.2 The General Machine Timing System for FAIR and
GSI

The General Machine Timing System for FAIR and GSI (GMT) [24] is still in
development but the timing master and the timing receivers are well advanced.
It will use the White Rabbit platform and similar name conventions as the
prototype in this report.

In all White Rabbit timing systems it is easy to create subsystems, because
the White Rabbit switch features the IEEE 802.1Q Virtual Bridged Local Area
Networks standard [25]. It lets the user split the physical network into arbitrary
virtual networks in software, limiting interference between subsystems.

Timing Master

The GMT timing master [26, 27] will consist of a clock master, a data master and
a management master.

The clock master will be a device connected to a primary clock source, such as a
GPS, and will be the reference for clock and time.

The data master makes use of a high end CPU for complexity and a high end
FPGA for timing sensitive tasks. On the FPGA there will be multiple soft cores,
each taking care of one subsystem of the accelerator. The messages they emit will
be aggregated in control messages and transmitted using Etherbone [28].

Lastly, the management master will take care of the network configuration using
common Ethernet services, such as DHCP, RSTP and SNMP.

Timing Receiver

There will be many types of timing receivers because of different form factors of
legacy equipment. Every type will have a common part and a host-specific part.
Altera Arria II GX FPGAs has been chosen for all receivers to limit the variety.

When the timing receiver receives a control message from the timing master it
will first match it with a prefix. If it matches it will carry out the action. The
details regarding event matching and actions are still being decided upon.

2.6.3 Other White Rabbit based systems

There exists no fully operating timing system developed with White Rabbit;
however there are a few being developed. Documentation regarding these is not

26 Background

final and sometimes non-existent.

The CERN hardware will be based on a carrier – mezzanine concept, where all
the carriers are White Rabbit enabled FPGA boards for different form factors
and the mezzanine is chosen by demand [29].

The developed Timing System Prototype in this report can be seen as a reference
to characteristics of a timing system developed with White Rabbit.

Chapter3
Implementation of a Timing

System Prototype

In this chapter the timing system prototype is presented. First, the requirements
that were the foundation for the work are lined up. Afterwards, a detailed
description of the designed architecture is given.

3.1 Requirements

The task was to design a timing system using synchronization and transport
layer functionality provided by the White Rabbit PTP Core. The following
requirements were found feasible to implement given the time and resources
available. There were no requirements on accuracy or safety. Accuracy is directly
given by the White Rabbit project. Safety depends on machine specifics as it has
to be integrated with a machine protection system.

Requirements:

• fundamental timing system services

– Trigger lines and

– Time stamping;

• one common network for configuration and timing events;

• receivers shall be configurable over the network;

• demonstration network shall contain at least one master, two receivers
and fan-out;

27

28 Implementation of a Timing System Prototype

• master to receiver communication shall use a software to hardware proto-
col broadcasted over the network; and

• the data master does not have to be White Rabbit enabled.

The requirements were constrained by the hardware available:

• 1 ×White Rabbit Starting Kit (Seven solutions) [30].

– 2 × Simple PCIe FMC Carrier (SPEC) (Figure 3.1) [31].

Xilinx Spartan 6 FPGA XC6SLX45T [32].

– 2 × FMC 5-channel Digital I/O module (FMC DIO) [33].

– 2 × SFP transceivers.

– 3 × LEMO-00 Cable.

– 3 × LEMO-BNC Adapter.

– 1 × LC-LC Cable.

• 1 ×White Rabbit 18 Port Switch (Seven solutions) [34].

• 1 × PC.

(a) Simple PCIe FMC Carrier (SPEC).

(b) FPGA mezzanine card (FMC) with 5
digital input and output channels
mounted on a SPEC.

Figure 3.1: Parts from WR starting kit. Credit: Seven Solutions.

3.2 Architectural Overview

The timing system prototype is realized with commercial off-the-shelf hardware
in combination with customized firmware that implements the timing system

Implementation of a Timing System Prototype 29

services. An overview of the physical components is seen in Figure 3.2. It is
easy to extend the network with more timing receivers using more White Rabbit
switches as fan-out. Both timing receivers have 5 digital inputs and outputs thanks
to the FMC DIO.

Etherbone is used to access the on-chip timing receiver cores over the Ethernet
network, giving the timing master full control over the Timing Receivers. The
timing master enumerates, configures and runs sequences using this protocol.

Figure 3.2: Timing System Prototype using a White Rabbit starting
kit, a White Rabbit switch and an ordinary computer. Black lines
indicate Ethernet gigabit connections. Red lines indicate White
Rabbit synchronized links.

3.2.1 Etherbone

Etherbone [28] is a protocol which extends range of the on-chip wishbone inter-
connection over Ethernet. It is open source and hosted by the same repository as
White Rabbit [5]. It consists of the Etherbone slave core and a software library.
The Etherbone slave core is a slave in regard to the Etherbone protocol and a
master on the wishbone interconnection. The software library provides a simple
way of writing an Etherbone master.

This timing system makes use of Etherbone by having an Etherbone slave core
in each timing receiver. The timing master uses the software library for sending

30 Implementation of a Timing System Prototype

Etherbone packets to the timing receivers. The Etherbone slave core receives the
packets and carries out the wishbone access.

3.3 Timing Master

The timing master consists of a clock master, keeping the timing network syn-
chronized, and a data master, dictating the execution of actions. The clock master
is an unmodified White Rabbit switch and the data master is an application
running on regular computer with Debian Linux.

The data master is a script divided into two main parts. First, it writes the
configuration to all the timing receivers and verifies that the correct data is
written. Then it requests a sequence, 5 seconds in the future, by broadcasting
a timing message on the timing network. It is also possible to continuously
request the same sequence every second. This was deemed enough to verify the
functionality of the prototype. It is, however, straight forward to convert it to
higher performing machine code thanks to the Etherbone software library.

The script uses tools provided by the Etherbone project, for example, “eb-write”
and “eb-read”, which do sanity checks on the data before they send the actual
network packages. The tools are very convenient for quick verification of the
implemented VHDL blocks.

3.4 Timing Receiver

The architecture of the implemented timing receiver, seen in Figure 3.3, consists
of open hardware IP cores and custom cores. The IP cores are the White Rabbit
PTP Core (WRPC), the Etherbone slave core and the Wishbone crossbar. The
implemented modules are the Timing Message Receiver (TMR), the Digital
Output Controller (DOC) and the Digital Input Timestamper (DIT). All cores
use the same interconnection interface, Wishbone. A more elaborate architecture
can be seen in the appendix, Figure A.1.

One goal of the HDL architecture was to keep the modular design imposed by
the carrier – mezzanine concept of the starter kit, as little code as possible should
depend on the 5 DIO FMC. With this design everything except the digital input
and digital output cores can be kept if another FMC is being used.

Implementation of a Timing System Prototype 31

Figure 3.3: Architecture of the implemented firmware in the timing
receiver.

32 Implementation of a Timing System Prototype

A data flow for the timing receivers’ real-time trigger operation can be seen
Figure 3.4. The data received by the timing receiver is an Ethernet frame which
is received by WRPC. This Ethernet frame is forwarded to the Etherbone core
where it is unpacked. Within the Ethernet frame lies a wishbone write access
containing a timing message. The Etherbone core writes the timing message to
the incoming FIFO in the TMR. The timing message trigger operation of the
sequencer in the TMR. It consists of a number of sequence identifiers paired
with sequence start times, in TAI and clock cycles. Each sequence identifier is
decoded in the TMR to a number of action messages, each with Event ID and
absolute time of execution, also in TAI and clock cycles. The TMR writes the
action messages to the incoming FIFO of the DOC which decodes it to events.
One event correspond to a pulse and defines which digital outputs the pulse is
carried out on. Each digital output has a FIFO with a succeeding pulse generator.
The event is written to the FIFO of the affected digital output and is eventually
carried out by the corresponding pulse generator.

Timing Message Sequence ID and absolute time of execution for sequence.

Action Message Event ID and absolute time of execution for event.

3.4.1 Wishbone

Wishbone interconnection [35] was chosen because it is fast, customizable, liked
by open source projects and to stay coherent with other IP cores in the project.
It is a license-free interconnection interface which is preferred at OpenCores [36]
and Open Hardware Repository [5]. Both the White Rabbit PTP core and the
Etherbone slave core use it.

There are two types of wishbone accesses: standard and pipelined. A standard
access (one read or one write) from a Wishbone master waits for an acknowledge-
ment from the slave before the next access can be done. Pipelined accesses can be
repeated immediately after each other until a stall signal is sensed. Pipelined is
therefore faster when doing consecutive writes or reads.

Currently, all wishbone interfaces are generated with a tool called Wishbone
Slave Generator (Wbgen) [37]. Wbgen generates wishbone slaves from a high
level description of RAMs, FIFOs, registers, etc. It is limited to generating slaves
operating in, the slower, standard wishbone mode.

The Etherbone slave core is a Wishbone master that accesses in pipelined mode,
hence it is incompatible with the generated wishbone slaves. To solve this, an
adapter is used which implements the stall signal in such a way that master is
stalled until the slave is ready to be accessed again.

Implementation of a Timing System Prototype 33

Figure 3.4: Data flow of real-time triggering operation in the timing
receiver FPGA.

3.4.2 The Wishbone Interconnect (IP core)

The Wishbone interconnect is implemented as a crossbar switch for maximum
flexibility. Therefore, multiple masters can access multiple slaves with minimal
overhead. Internally it arbitrates between the masters to enable multiple connec-
tions simultaneously. A crossbar is connected to, for example, two masters, M0
and M1, and two slaves, S0 and S1. Then M0 is able to access S0 at the same time
as M1 accesses S1.

The connection is done in a matrix, see Figure 3.5. In Figure 3.5a, no Wishbone
cycles are currently in operation. In Figure 3.5b, on the other hand, there are
two concurrent Wishbone cycles.

The arbiter has two fundamental policies:

1. an ongoing access cycle to a slave is always preserved and

2. the master with the highest priority is granted access if multiple access
cycles are initiated simultaneously to the same slave.

34 Implementation of a Timing System Prototype

(a) In the crossbar all the masters are
connected with switches to all the
slaves. Here no master – slave
connections has been established.

(b) Crossbar when Master 0 is access-
ing Slave 0 and Master 1 is access-
ing Slave 1.

Figure 3.5: A Crossbar switch interconnection.

3.4.3 White Rabbit PTP core (IP core)

The implemented functionality in the developed cores depends on the White
Rabbit PTP core (WRPC). The WRPC handles all synchronization and PTP
negotiations and provides the timing receiver with a network interface and timing
interface, see Figure 3.6. There is also a Wishbone connection for management
purposes, with which it is possible to read status registers and write to configure
registers.

Figure 3.6: White Rabbit PTP Core provides two important interfaces:
network interface and timing interface.

The network interface enables reception of Ethernet packets. In this implementa-
tion, the timing receiver is limited to receive timing messages and configuration
data. But there is, for example, an IP core available that can be used to enable

Implementation of a Timing System Prototype 35

regular network card functionality to the host via the host bus bridge. Internally
it filters the Ethernet packages, because it keeps the PTP packages inside the core,
see Figure 3.7.

The timing interface is a one way connection from the WRPC. It provides the
time, seconds (TAI) and clock cycles, and the reference clock of 125 MHz. The
granularity of the time is equal to the period time of the reference clock.

3.4.4 Etherbone Slave core (IP core)

Etherbone [28] is used for Ethernet to Wishbone access. It enables the timing
master to send Wishbone commands packed in an Ethernet frame. Each Timing
Receiver has an Etherbone slave core connected to the external network interface
of the WRPC, see Figure 3.7. The Etherbone slave core is a slave in regard to the
Etherbone protocol, on the wishbone interconnect it is a master. The intended
functionality is to remotely configure and send timing messages to the timing
receiver, but it has also been used for debugging and verification purposes.

Figure 3.7: Network packet flow from Ethernet to PTP in White Rabbit
PTP Core and to Etherbone slave for wishbone access.

Its primary function is to enable the data master to configure the Sequence RAM
and Actions RAM in the Timing Message Receiver and the Event RAM in the
Digital Output Controller. When they are configured the data master also uses
it to send timing messages, which trigger operation. During testing, it was also
used send action messages directly to the Digital Output Controller.

36 Implementation of a Timing System Prototype

3.4.5 Timing Message Receiver core

The Timing Message Receiver (TMR) is a sequencer that schedules actions to the
Digital Output Controller. It is implemented as a Wishbone master. It enables
the timing system to be distributed, so that the timing master only has sequences
of sequences (super sequences). A simplified structural architecture can be seen in
Figure 3.8. Its main components are memories and a finite-state machine (FSM).

The memories consist of one FIFO for incoming messages and two RAMs
containing the sequences and the actions. All memories are dual port, hence
accessible both over the wishbone interface and internally in the core.

The FSM controls the read/write signals to the memories and writes to the
wishbone interface. The FSM can be seen in Figure 3.9. It starts in INIT state
and as soon as there is data in the FIFO it continues by reading the FIFO, the
sequences RAM and the actions RAM. In ST CHECK SEQ it verifies that there is
a sequence to be executed. If there is, it continues by writing to the wishbone
interface in all the WB states. It takes 4 wishbone writes per action. As long as a
stop action is not read, it will continue writing action messages to the wishbone
interface.

The Sequences RAM simply stores addresses to the Actions RAM. This is the
start of a sequence. Example data content can be seen in Table 3.1.

In the Actions RAM relative time of execution (RTOE) is stored together with
an event identifier. The time is relative to the start of the sequence. The event
identifiers are used in the Digital Output Controller core to look up the shape of
the pulse. Every action takes 4 rows (2 rows for seconds, 1 row for clock cycles
and 1 row for event identifier). Example data in the Actions RAM is shown in
Table 3.2.

The data flow is as follows. The TMR receives a message via the wishbone inter-
face, consisting of a sequence identifier (SID) and an absolute time of execution
(ATOE). Using the SID as an address to the Sequences table, it looks up the first
row to address in the Actions table. Then it reads the first action and continues
to process actions until a special stop action is read. During the processing it adds
the ATOE to the action’s RTOE while writing the result to the DOC’s incoming
FIFO.

Address Data
0 0
1 12

Table 3.1: The Sequences RAM consists of addresses to the Actions
RAM.

Implementation of a Timing System Prototype 37

Figure 3.8: Architecture of the Timing Message Receiver.

Address Data
0–3 Action 1
4–7 Action 2

8–11 STOP
12–15 Action 3
16–19 Action 4
20–23 Action 5
24–27 STOP

Table 3.2: Example data in the Actions RAM. Each action takes 4
rows (2 rows for seconds, 1 row for clock cycles and 1 row for
event identifier).

38 Implementation of a Timing System Prototype

Figure 3.9: FSM in the Timing Message Receiver.

Implementation of a Timing System Prototype 39

3.4.6 Digital Output Controller core

The Digital Output Controller’s (DOC) function is to configure pulse generators
for the digital outputs. It receives messages to an asynchronous FIFO, since the
DOC operates in the reference clock domain (125 MHz provided from the timing
interface of WRPC). This FIFO is called action message FIFO and contains action
messages, see Figure 3.10. It also has an event RAM, which is used to translate
incoming action messages to outputs. These memories are accessible over its
wishbone slave interface.

68 bits 8 bits
Time of execution Event ID

Figure 3.10: Action message word format.

The DOC is coarsely divided in two parts, decoding and output module, see
Figure 3.12. The decoding part reads the action message FIFO, the action message
consists of an event ID and the time of execution. The event ID is routed to the
address line of the internal event RAM, see Table 3.3. The event RAM contains
pulse width, which is routed to the channel together with time of execution
forming one event, see Figure 3.11. It also contains a channel select bit field to
define which channels to configure, which means that several channels can be
configured with the same pulse width and time of execution.

68 bits 27 bits
Time of execution Pulse width

Figure 3.11: Event format

The output module consists of channels and pulse generators for the digital
outputs. The channels are FIFOs, which are written with time of execution and
pulse width, i.e., an event. The internal state machine of the pulse generator
reads the channel and compares the time of execution with the current time and
activates the pulse when they are equal. The pulse is then active for the amount
of clock cycles defined by pulse width. This is continuously carried out as long
as events are present in the channel. If the time of execution is defined in the
past, compared to the reference time, the pulse generators will drop the event
and continue to next. The design easily scales by adding more channels and
pulse generators along with making the channel select bit field wider in the event
RAM.

40 Implementation of a Timing System Prototype

Address Data
27 bits 5 bits

0 Pulse width Channel Select
1 Pulse width Channel Select

.
255 Pulse width Channel Select

Table 3.3: The Event RAM consists of pulse width, for configuration of
the pulse generators, and channel select, to define which channel
to configure.

Figure 3.12: Architecture of the Digital Output Controller.

Event Decoder

The latency for decoding one event is 4 clock cycles. The generation of the read
signal for the action message FIFO can be seen in Figure 3.13. The signal is
looped back to a 3-bit shift register, which is shifted every clock cycle. This is
used to limit the read rate because of delays in control signals from the memories.
It checks if any of the channels becomes full after a channel write. If that occurs,
it stalls until the channel is not full. It only issues a read signal if:

• action message FIFO is not empty,

• all channels are ready for data, meaning that last written data did not

Implementation of a Timing System Prototype 41

generate a channel full signal.

Figure 3.13: Generation of read signal for action message FIFO.

The generation of the write signal only looks at the channels select bit and the
action message FIFO read signal, which already ensures that no data is read from
the action message FIFO if any channels are full. Therefore a channel write signal
is generated by an and operation with the select bit and action message FIFO
read signal delayed 2 clock cycles. This is the total latency for action message
FIFO read operation and data from the event RAM to propagate to the channels
data input.

Pulse Generator

The pulse generator is implemented with a finite-state machine, see Figure 3.14,
and is the final element which issues the pulses. It reads events from the channel
and executes them to pulses at the specified time with the specified pulse width.
The signals in the FSM are:

Inputs
Current Time, Valid Time, Trigger Time, Pulse Width, Channel Empty,
Valid Signal,

42 Implementation of a Timing System Prototype

Internal Register
Pulse width counter,

Output Registers
Read Channel and Pulse.

The Valid Signal is composed as:

Valid Signal = Valid Time ∧ Channel Empty′ (3.1)

Where Valid Time is part of the timing interface from WRPC.

Each state with functionality is as follows:

IDLE
If the valid signal is high, the channel is read and it moves toWAIT FOR
DATA.

WAIT FOR DATA
Immediately move to WAIT TO TRIG.

WAIT FOR TRIG
Load the pulse width to the pulse width counter and wait until the trigger
time occur, then it moves to PULSE – CHANNEL EMPTY. If time is not
valid or trigger time already occurred, it moves to IDLE.

PULSE - CHANNEL EMPTY
Pulse goes high and pulse width counter decreases every clock cycle. If
valid signal is high, the channel is read and it moves to PULSE – CHANNEL
NEMPTY

PULSE - CHANNEL NEMPTY
The pulse continues and when the pulse is carried out it moves to WAIT
TO TRIG.

In summary, the pulse is high only in state PULSE – CHANNEL EMPTY and
PULSE – CHANNEL NEMPTY. The channel is only read in state IDLE and
PULSE – CHANNEL EMPTY, when Valid Signal is high. After which the FSM
moves to another state to ensure that the channel only is read once. The FSM is
constructed so that an initiated pulse always finish even though time is no longer
valid. If the valid signal is still low when the pulse is carried out it moves to IDLE
until valid signal is high again. It is limited to issue pulses every third clock cycle.

Implementation of a Timing System Prototype 43

Figure 3.14: FSM of the Pulse Generators in the Digital Output
Controller.

44 Implementation of a Timing System Prototype

3.4.7 Digital Input Timestamper core

The Digital Input Timestamper (DIT) sense edges on the digital inputs and stamp
them with the current time. The DIT operates in the reference clock domain (125
MHz). It has an outgoing asynchronous FIFO where the timestamps are stored
and timestamp logic to determine which inputs to timestamp, see Figure 3.15.
The timestamp logic consists of an input detector for each digital input which
can be configured with the control register. It also generates write signal to the
outgoing timestamp FIFO. The FIFO and control register are accessible via the
DIT’s wishbone slave interface.

Figure 3.15: Architecture of the Digital Input Timestamper.

Input Detector

The input detector, see Figure 3.16, in the DIT is configurable with channel
select, which enables/disables timestamping, and trigger polarity, which sets the
timestamp to trigger on rising/falling edge, for each channel. By default this
register is configured so that all channels are enabled with triggering on rising
edge. In total there are 5 inputs meaning X = {0,1,2,3,4}.

Each digital input goes through a 2-register synchronizer to avoid metastability,
since the inputs are fired asynchronously from the outside the FPGA. After
which it is routed to both a falling- and rising edge detector. The control signals
are evaluated and decide whether there was an edge.

Implementation of a Timing System Prototype 45

Figure 3.16: Implementation of the input detector.

Timestamp FIFO

The timestamps are memory demanding since each timestamp is 68 bits. This
core joins timestamps from all digital inputs into one single FIFO with a channel
bit mask which marks which channel was active, see Figure 3.17. The FIFO has a
length of 512, but in reality only 511 timestamps can be stored to avoid collision
of the read and write pointers in the FIFO. Currently these timestamps are read
by polling the FIFO via Etherbone from the Timing Master.

68 bits 5 bits
Timestamp Channel bit mask

Figure 3.17: Timestamp FIFO word format.

The write signal for the timestamp FIFO, see Figure 3.18, is implemented with
an OR operation of all the Edge signals and a comparison of the timestamp FIFO
counter with a hysteresis. The comparison is necessary due to latency of the
counter signal and the high rate of incoming edges, ensuring that the FIFO not
becomes full. The result is that when any edge is sensed and FIFO is not above
the hysteresis all active edges are stored in the timestamp FIFO together with the
current time.

46 Implementation of a Timing System Prototype

Figure 3.18: Implementation of the write signal for the timestamp
FIFO.

Chapter4
Result

The result of the work is primarily the timing system prototype implementation.
Below are the calculated performance for different aspects of the system and the
numbers verifying its functionality.

4.1 Timing System Prototype

The timing system prototype makes use of the synchronized distributed time
provided by White Rabbit and Ethernet to Wishbone communication from
Etherbone. It primarily provides firmware for the timing receivers and proof-
of-concept software on the data master. It has the same basic functionalities as
described in the timing system model, see Section 2.4

The prototype is standalone, in the point of view that no extra network is needed
for configuration. The timing receivers are configurable via the White Rabbit
network, which also carry the timing messages to trigger operation.

4.2 Timing Receiver

The current firmware for the timing receivers can be configured with several
sequences. Each sequence consists of an arbitrary number of actions. The actions
are mapped to events, configurable with pulse length and channel select. The
result is a configurable independent timing receiver, where all configurations is
done beforehand and timing messages can be distributed ahead of time.

All actions in a sequence must be ordered chronologically. The action messages
are processed in order by the Digital Output Controller and translated to events.

47

48 Result

A non-chronological order will result in dropping of events, since all events are
blocking until their end of execution.

4.2.1 Wishbone

The throughput of Timing Messages and Action Messages is limited by the
current usage wishbone slaves operating in standard mode. Both messages need
4 wishbone write clock cycles which takes minimum 8 clock cycles in standard
mode. This leads to total write time of 8 · 1

62.5M H z = 120ns.

4.2.2 Event Rate

Every pulse generator is preceded by a channel, a FIFO, which size decides the
number of events which can be outputted with maximum event rate. Outputting
events every clock cycle does not make sense, since their pulse lengths could
be added. Therefore, the maximum useful event rate is 125M H z

2 = 62.5Mhz.
However, the latency from the Action Message FIFO to a channel is four clock
cycles, which leads to an long term event rate of 125M H z

4 = 31.25MHz limited by
the size of the action message FIFO.

4.2.3 FPGA Resources

Primitive Occupied Available Usage
Slices 4247 6822 62 %
Block RAM, RAMB16BWER 110 116 95 %

Table 4.1: Resource usage, synthesising to Xilinx Spartan 6 FPGA
XC6SLX45T.

4.3 Verification

For verification purpose the timing receiver was configured with a test sequence
and the 5 channels on the FMC DIO mounted on the SPEC were measured. This
is all done in a test script using tools provided by the Etherbone library. The
current time on the timing receiver is read and a timing message is sent triggering
a sequence 5 seconds later, afterwards the timestamp FIFO were read.

The trigger sequence can be seen in Table 4.2 and the events matching in Table 4.3.
The offsets and widths are stored as integers; the values are translated to seconds

Result 49

for easier comparison with graphs. The tables show when there should be
pulses relative to the sequence time of execution and their lengths. The resulting
timestamps from running this sequence can be seen in Table 4.4. There it can be
seen that there is a latency of 40 ns between scheduled output and time stamped
input.

Action ID Offset Event ID
Clock cycles translated

0 82 0.656 µs 86
1 575 4.600 µs 30
2 1066 8.528 µs 16
3 1565 12.520 µs 232
4 2147 17.176 µs 122
5 2586 20.688 µs 255

Table 4.2: Part of Actions RAM verification data. Seconds are
calculated using 8 ns period time.

Event ID Pulse Width Channel Select
Clock cycles translated (4,3,2,1,0)

16 17 0.136 µs 10000
30 31 0.248 µs 11110
86 87 0.696 µs 10110
122 123 0.984 µs 11010
232 233 1.864 µs 01000
255 256 2.048 µs 11111

Table 4.3: Rows of Events RAM verification data used in test. Seconds
are calculated using 8 ns period time.

Number Timestamp Channel Bit Mask
Translated (4,3,2,1,0)

0 0.696 µs 10110
1 4.640 µs 11110
2 8.568 µs 10000
3 12.560 µs 01000
4 17.216 µs 11010
5 20.728 µs 11111

Table 4.4: Data readout from the timestamp FIFO.

In Figure 4.1 it is shown that the simulations graphs match the oscilloscope
graphs. The oscilloscope graph can also be roughly verified with the time offset
in the sequence table.

50 Result

0

0 5 10 15 20

Ch
0

t / µs

0

0 5 10 15 20

Ch
1

0

0 5 10 15 20

Ch
2

0

0 5 10 15 20

Ch
3

0

0 5 10 15 20

Ch
4

(a) Measured data for the output channels.

(b) Screenshot from simulation software (Isim).

Figure 4.1: Comparison between simulation and measurement.

Chapter5
Discussion & Conclusion

In this chapter a comparison of White Rabbit with existing systems is discussed.
It also presents improvements which can be done on the implemented timing
system prototype. Finally there are conclusions of the work and usage of White
Rabbit in timing systems.

5.1 Comparison

This section compares White Rabbit to existing systems in regard to perfomance
as synchronization layer and for design of timing systems.

5.1.1 Synchronization Layer

White Rabbit differs a lot from existing event-based timing systems. While event-
based timing systems depend on keeping exactly the same delay to all nodes,
White Rabbit measures and compensates for delay and variations in delay on the
fibres.

The use of Ethernet in White Rabbit induces latency in the network, this comes
from routing delays in the switches. To achieve better determinism, packet
priorization can be used. This makes it deterministic in the sense that the switch
has an upper bound latency for propagation of the highest priority ethernet
frames. This enables timing critical frames to reach their goal in time while the
network is used for regular data transfers. Even though priorization is used, the
latency is not negectable. The maximum routing delay is estimated to 13 µs. This
can be compared with estimated fibre link delay of 5 µskm [38].

51

52 Discussion & Conclusion

Event-based timing systems usually have a custom stripped down protocol with-
out network routing to get low latencies and high determinism. In reality the
lack of routing means that the same signal reach all the nodes. Upstream in these
networks can also be solved in a custom manner. In MRF, for example, there are
concentrators which connects underlying nodes on a separate fibre network.

The latency in a White Rabbit network may not be suitable for certain low
latency feedback loops. On the other hand, the use of 1000BASE-BX10 Ethernet
in White Rabbit standardizes transmission and provides an upstream link. The
standardization simplifies expansion of the network and also enables the network
to be used for regular data transfers.

White rabbit is designed to provide sub nano second accuracy of the synchro-
nization and compensates for temperature variations on the fibre. In event-based
systems no temperature compensation is done, which means that accuracy is
affected by the difference in temperature between the fibre links. Hence, if
temperature is kept the same throughout the facility, synchronization of the
distributed nodes achieve high accuracy.

5.1.2 Timing System Design

White Rabbit addresses important aspects, such as standardization and open
source, which did not exist on hardware level in timing related applications
for accelerators before. The standardized FMC connector on current available
hardware together with the distributed time base enables easier addition of nodes
with new functionalities. A new node gets the time base as soon as it is plugged
in and can act independently from the rest of the system.

It also uses a standardized on-chip interconnect. Together with the timing in-
terface this makes prototyping simple and straight forward. A core with new
functionality can easily be added to an exising design. Non standardized intercon-
nections requires that the designer knows interals of the core which is extended
and may compromise physical constraints in the design.

5.2 Future Improvements of Timing System
Prototype

The implemented timing system is a prototype to show how the White Rabbit
platform can be used. During the work several improvements on the architecture
have been identified and are proposed in this section.

Discussion & Conclusion 53

5.2.1 White Rabbit

Since White Rabbit is an ongoing project there are improvements being done
continuously. To benefit from these changes it is therefore important to keep
merging the HDL code with the original repository. Currently the project is
moving towards better stability and management features but hopefully there
will also be improvement in synchronization and package forwarding delays.

5.2.2 Data Master

In future work, the data master application could be converted to run as a
single process on a real-time operating system for best determinism and highest
performance, which is required in production quality implementations. This is
also the path chosen at CERN and GSI for their corresponding functionality.

5.2.3 Timing Receiver

Several improvements to the timing receiver architecture have been identified
since the design was finalized. This section will present improvements to the
existing cores, as well as an additional core, which will extend the functionality.
An architectural overview can be seen in Figure A.1.

Timing Message Receiver core

Block RAM resources are used a lot in the timing receiver because of all the FIFOs
and RAMs in the different cores. There are some minor memory optimizations
that can be done to the Timing Message Receiver (TMR), but in the end the
memory usage depends on the number of sequences and actions required.

Currently the TMR can store 16 actions. Each action has full TAI time resolution
and event ID, it is unpacked which means that it consumes 128 bits storage per
action, see Table 3.2. This can be extended with 128 actions per block RAM,
RAMB16BWER. The actions are ordered in their sequences, with a flag in
between. This means that you get less overhead by having longer sequences.

Having full TAI time resolution in the actions RAM might be elegant and generic
but the cost is high block RAM usage. The number of actions could easily be
doubled by limiting the time resolution and pack it with event ID. By halving the
memory usage to 64 bits per action, it is still possible to have sequences that are
6671 days long by storing time of execution with 56 bits and event identifier as 8

54 Discussion & Conclusion

bits. If there is need for even more actions another solution is to use an off-chip
RAM that is available.

Digital Output Controller core

The Digital Output Controller (DOC) decodes incoming event IDs to events
and configure the defined pulse generator’s channel with pulse length and time of
execution. The decoding waits maximum time for not empty signal, from action
message, and full signals from the FIFOs to settle and does not evaluate full
signals from the channels separately. This is a simple and deterministic solution,
however it compromises maximum event rate and stalls as soon as one channel is
full.

To maximize the event rate while keeping an upper level latency a more sophis-
ticated decoding functionality can be designed. An improvement would be a
decoding stage which evaluates the channels full signals separately. This would re-
move unnecessary stalling and hence also increase the long-term maximum event
rate. To further improve the event rate, the decoding stage has to be pipelined.

The flow of timing related data in the timing receiver FPGA is complex and
verifying that a sequence is playable depends on a lot of factors. Therefore a
run-time error check is suggested. The error check can extend functionality
when the pulse generator drops an event. The time of execution together with a
channel bit mask can be stored in an outgoing FIFO. If an error occur the front
end controller can be interrupted and retrieve the error source in the FIFO.

The error check would be very valuable while commissioning the timing system
and when doing post-mortem analysis.

Digital Input Timestamper Core

The timestamps in the Digital Input Timestamper (DIT) is polled over Ethernet
with Etherbone, this generates a lot of data traffic and wishbone accesses even
though no timestamps exists. Therefore it is suggested that the Timestamp FIFO
generates interrupts to the host bus controller chip to trigger timestamp read
from a device driver in the front end controller.

The raw timestamp data is huge and may need processing before it is transmitted
on the network. To avoid data loss, it has to be sent with a reliable protocol with
error check such as TCP. This is easiest done by integrating the device driver to a
higher level in the control system software framework running on the front end
controller, where the data can be sent over any preferred network.

Discussion & Conclusion 55

At first there were inconsistencies between the digital input timestamps. Even
though a pulse was scheduled at the same time on all outputs, it was sometimes
timestamped with 8 ns difference. This was solved by putting constraints on
registers, both in the output core and the input core.

Asynchronous Timing Message Generator core

The implemented timing system prototype only support generation of timing
messages to trigger operation centrally from the data master. This is, however,
not always sufficient to noticed demands on faster control loops. To solve this
issue, it is suggested that a local timing message generator is implemented. The
local timing message generator can generate timing messages asynchronously
when a digital input is triggered; hence the core is called Asynchronous Timing
Message Generator (ATMG).

It is possible to use the existing TMR and DOC for reception and processing of
these timing messages. The ATMG can generate similar Timing Messages as the
data master. The Timing Messages generated can be configurable and different
depending on the digital input source.

Using both a data master and asynchronous generated timing messages can lead
to collisions in the outputs. Therefore, a generic solution is preferable, which
supports both, but not at the same time. This can be achieved with the current
design, by leaving “empty” slots in the Sequence RAM in the TMR. Empty slots
are simply a special code which is outside of the Actions RAM address range.

Wishbone

The wishbone slave generator is limited to generating slaves operating in standard
wishbone mode. Hence, every wishbone write to the implemented slaves take
2 clock cycles. It would be beneficial for the DOC to be able to receive Action
Messages with a higher rate than every 120 ns, since this is the bottleneck, limiting
long term event rate.

If an Asynchronous Timing Message Generator is designed, this would be funda-
mental, since it would decide the latency between the asynchronous input and
earliest start of the sequence. A way to improve this, without making any major
architectural changes, would be to implement pipelined wishbone slaves. Another
alternative is to interconnect the TMR and DOC with a wider data width. In
Wishbone it is possible to have up to 64 bit wide data.

56 Discussion & Conclusion

Memory prioritizations

The current White Rabbit PTP core occupies 79 block RAMs, RAM16BWER, of
the Xilinx Spartan 6 LX45T. 44 of these are occupied by the WRPC’s internal soft
core (LatticeMico32) as program and stack memory, which might be extended
further. The Xilinx Spartan 6 LX45T contains 116 block RAMs in total, which
leaves 37 Block RAMs for custom applications.

The Etherbone Slave core occupies 4 Block RAMs, which gives the Timing
Receiver 33 Block RAMs to use. These block RAMs have to be divided primarily
between the Actions RAM in the TMR, the Action Message FIFO in the DOC
and the timestamp FIFO in the DIT. The size of these memories has direct
implications on number of actions, number of events with maximum event rate
and number of timestamps.

Routing

There are two common problem with integrated circuits regarding delay, clock
skew and data path lengths. To have precise timing on a printed circuit board
(PCB) / field-programmable gate array (FPGA) with multiple outputs, the routes
from the clock to the final registers need to have the same length, which mini-
mizes clock skew. The final registers must be placed so that the data path from
the registers to the output pads also is of same length. Finally, any routing on the
PCBs also needs to have the same length.

Since the cards used in this report were bought, there was no way of choosing
output pads or route the PCB. This limited the options to achieve better timing
to location constraints on registers and manual routing when creating the bitfile
for the FPGA.

5.2.4 Change Timing Format

Currently the timing format is unmodified TAI (40 bits seconds) and clock cycles.
The number of bits for clock cycles are defined by the frequency, 125 MHz
requires 28 bits. In total the timing format requires 68 bits.

68 bits is impractical with a 32 bit data bus interface. Without any form of bit
packing it generates an overhead of 96− 68= 28 bits. But, worse is, that every
time the data is transferred it is 3 Wishbone writes instead of 2, generating a time
overhead of 50% per write.

Discussion & Conclusion 57

This timing format also makes it difficult to do timing arithmetic straight forward,
since there are two time bases (8 ns and seconds). It also requires extra unnecessary
block RAM in the FPGA which is already a scarce resource.

The solution is to move to 64 bit clock cycles, which still can represent 148 billion
seconds (4676 years) with the same clock. 32 bits would, on the other hand, not
be enough, as it can only represent 34 seconds.

5.2.5 Architectural Aspects

The bottlenecks described in aspect of event rate are mainly due to the used
bus width and event decoding in the DOC. They are architecturally built in to
favour a modular design with a generic TMR. This design was chosen to simplify
porting of other FMCs to the same timing system while keeping the timing
message interface the same.

The architecture can be redesigned so that the TMR and DOC are conjoined
and the concept of actions and events are merged. The current DOC’s output
module can be configured directly from actions RAM with correct bus width.
This would eliminate serial transmission delay on the wishbone bus and delay
inflicted by decoding via the event RAM. It would also simplify verification of
sequences so that they are actually playable.

5.3 Conclusion

A timing system prototype has been implemented, using a combination of open
and freely available hardware/software/tools and custom developed cores. Its
performance is good enough for many practical applications, and improvements
have been found to make it even more generic and applicable.

White Rabbit is becoming more established and has been adopted by several
recent projects. The community around it is growing strong and the maintainers
are continuously improving it. When this project has matured, it will be a firm
base to build upon. The existing hardware platform together with the White
Rabbit FPGA firmware saves development time when inventing new timing
systems, by utilizing tested and debugged hardware and HDL.

The time synchronization and Ethernet in a timing network, enables high flexi-
bility. Timing-related data can be processed ahead of time in White Rabbit nodes,
while any Gigabit Ethernet compatible device also can access the network.

An ideal timing system based on White Rabbit can be configured once with
sequences, actions and events. Afterwards, messages can be distributed which

58 Discussion & Conclusion

enables the nodes to function independently for a defined period. During this
time there is a, high throughput, Ethernet network almost completely free, except
for some low priority PTP packets. Even better, if a cut-through technique is
used in the switches, the regular traffic will not interfere at all with the timing
messages and the network can be used as both a timing network and data network
concurrently.

Because fibre lengths are measured and compensated for, a White Rabbit net-
work is extremely scalable. It is possible to connect a new node at any level in
the hierarchy and with any (reasonable) distance to the closest switch. In the
implemented prototype it is also trivial to replace a timing receiver, since it will
request management data from a server and immediately start running. These
are important aspects of modern accelerators that reach for highest possible
availability.

In conclusion, even though White Rabbit will be the foundation for future timing
systems, there are always customizations to be made. Scientific projects are so
different in their nature that no single solution works for all. Design choices even
had to be made in the implemented prototype, which inferred priority of some
kind. And, in the end, it is up to the requirements of the machine to decide what
those priorities are.

AppendixA
Architecture

The final architecture of the developed firmware facilitated in the Timing Re-
ciever’s FPGA can be seen in Figure A.1. The dashed core, Asynchronous Timing
Message Generator, is not implemented.

59

60 Architecture

Figure A.1: Detailed FPGA firmware architecture for the Timing
receiver.

AppendixB
Source Code

The complete project source code is available from both authors. All the code
is version controlled with a distributed version control system called Git [39].
The links to the repositories given below are used together with the git clone
command.

White Rabbit core collection
All HDL cores related to the White Rabbit project are collected in this
repository.
git://ohwr.org/hdl-core-lib/wr-cores.git

Etherbone core
HDL core, software library and tools related to the Etherbone project.
git://ohwr.org/hdl-core-lib/etherbone-core.git

Platform independent core collection
Generic Wishbone HDL cores, like the Wishbone crossbar, are available
through the general-cores repository. The open sourced soft core LM32 is
also available through it.
git://ohwr.org/hdl-core-lib/general-cores.git

Gennum GN4124 core
This project provides a wishbone interface to the PCI express chip
GN4124, effectively a Wishbone – PCI Express bridge
git://ohwr.org/hdl-core-lib/gn4124-core.git

Wishbone slave generator
The wishbone slave generator generates inferred memories and a wishbone
interface to access them from a higher level description language. The
memories are therefore platform independent. Currently it only generates

61

git://ohwr.org/hdl-core-lib/wr-cores.git
git://ohwr.org/hdl-core-lib/etherbone-core.git
git://ohwr.org/hdl-core-lib/general-cores.git
git://ohwr.org/hdl-core-lib/gn4124-core.git

62 Source Code

a standard wishbone interface.
git://ohwr.org/hdl-core-lib/wishbone-gen.git

Hdlmake
This is a platform independent project preparation tool. It generates
makefiles required to synthesize to Altera and Xilinx platforms without
the graphical user interfaces.
git://ohwr.org/misc/hdl-make.git.

Software for White Rabbit PTP core
The software that runs on the soft core (LM32) in the WRPC is located
here. Amongst other things it handles the White Rabbit UART console
and the PTP negotiations.
git://ohwr.org/hdl-core-lib/wr-cores/wrpc-sw.git.

Software support for the SPEC board
Kernel and user space Linux code. It is mainly used to flash the SPECs.
git://ohwr.org/fmc-projects/spec/spec-sw.git.

git://ohwr.org/hdl-core-lib/wishbone-gen.git
git://ohwr.org/misc/hdl-make.git
git://ohwr.org/hdl-core-lib/wr-cores/wrpc-sw.git
git://ohwr.org/fmc-projects/spec/spec-sw.git

AppendixC
Development Environment

Both authors prefer to use Linux as their main operating system both profession-
ally and private. It therefore came naturally that all development was done on
machines running Linux. The code was compiled on laptops running different
versions of Ubuntu/Mint and on a build server running Debian.

Emacs was chosen as editor because of its good VHDL support. More impor-
tantly, a coding style was chosen to ease collaborative development further. The
code strictly follows [40], as it is similar to the style taught at Lund University,
only stricter in some aspects.

The distributed version control system Git was chosen for the project to enable
collaboration. It is superior when it comes to merging branches, which enables
all the participants to work fully in parallel. It also makes it easy to have the
complete repository, with all history, on all computers.

Build flow

A build flow with Makefiles was set-up, to enable synthesizing without any
graphical tools, which speed up the process of development. The tool hdlmake
[41] facilitated, as it generated the required collections of files to the proprietary
tools. The build flow is very important if production quality results are required
[42].

Testbench

Testbenches are extremely important, as they give immediate feedback if the
code is synthesized to the correct hardware. All cores implemented had a proper
testbench and there were also a testbench testing them put together.

63

64 Development Environment

This allows verification to some extent before testing on real hardware.

Continuous Integration

The work was split into different cores, so that development could be done
individually. Then Jenkins [43] was used to make sure that they played nicely
together the whole way. Jenkins is a continuous integration tool that builds the
project, either with a predefined schedule or asynchronous.

Because of the well prepared build flow it was trivial to set-up Jenkins to au-
tomatically build all modified branches of the project upon git push. During
the development this also gave important feedback regarding resource usage.
Using the build logs it was possible to see when resource demanding code was
committed to the repository.

Scripted final testing

As soon as the build machine was finished, there was a script to test the function-
ality on the mounted hardware. This made it easier to find regressions once the
code was finalized and only bug testing remained.

Every new feature or bug fix was written on new branches and tested individually
before merging into the master branch. This ensured that no change broke
existing functionality.

All old builds were also stored, together with their reports, for reference.

Bibliography

[1] S. Peggs et al., eds. ESS Technical Design Report. Apr. 2013.

[2] J. Wei, M. Blaskiewicz, N. Catalan-Lasheras, D. Davino, A. Fe-
dotov, et al. “Design optimization and the path towards a 2 MW
Spallation Neutron Source”. In: Particle Accelerator Conference,
2001. PAC 2001. Vol. 1. 2001, 319–321 vol.1. DOI: 10.1109/PAC.
2001.987503.

[3] J. Lettry, L. Penescu, J. Wallner, and E. Sargsyan. “Ion sources for
MedAustron”. In: Review of Scientific Instruments 81.2, 02A328
(2010), DOI: http://dx.doi.org/10.1063/1.3277196.

[4] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and G.
Gaderer. “White rabbit: Sub-nanosecond timing distribution over
ethernet”. In: Precision Clock Synchronization for Measurement,
Control and Communication, 2009. ISPCS 2009. International Sym-
posium on. Oct. Pp. 1–5. DOI: 10.1109/ISPCS.2009.5340196.

[5] The Open Hardware Repository. URL: http://www.ohwr.org/.

[6] P. Vyskočil and J. Sebesta. “Relative timing characteristics of GPS
timing modules for time synchronization application”. In: Satellite
and Space Communications, 2009. IWSSC 2009. International Work-
shop on. 2009, pp. 230–234. DOI: 10.1109/IWSSC.2009.5286378.

[7] Micro-Research Finland. URL: http://www.mrf.fi/.

65

http://dx.doi.org/10.1109/PAC.2001.987503
http://dx.doi.org/10.1109/PAC.2001.987503
http://dx.doi.org/http://dx.doi.org/10.1063/1.3277196
http://dx.doi.org/10.1109/ISPCS.2009.5340196
http://www.ohwr.org/
http://dx.doi.org/10.1109/IWSSC.2009.5286378
http://www.mrf.fi/

66 BIBLIOGRAPHY

[8] M. Lipinski, T. Wlostowski, J. Serrano, and P. Alvarez. “White
rabbit: a PTP application for robust sub-nanosecond synchroniza-
tion”. In: Precision Clock Synchronization for Measurement Control
and Communication (ISPCS), 2011 International IEEE Symposium
on. Sept. Pp. 25–30. DOI: 10.1109/ISPCS.2011.6070148.

[9] A. Widmer and P. Franaszek. “A DC-Balanced, Partitioned-Block,
8B/10B Transmission Code”. In: IBM Journal of Research and Devel-
opment 27.5 (1983), pp. 440–451. ISSN: 0018-8646. DOI: 10.1147/
rd.275.0440.

[10] P. Moreira, P. Alvarez, J. Serrano, I. Darwezeh, and T. Wlostowski.
“Digital dual mixer time difference for sub-nanosecond time syn-
chronization in Ethernet”. In: Frequency Control Symposium (FCS),
2010 IEEE International. 2010, pp. 449–453. DOI: 10.1109/FREQ.
2010.5556289.

[11] D. L. Mills. Computer network time synchronization: the Network
Time Protocol. Second. Boca Raton, FL, USA: Taylor and Francis,
2011. ISBN: 1-4398-1463-5.

[12] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems”. In: IEEE Std 1588-
2002 (2002), pp. i–144. DOI: 10.1109/IEEESTD.2002.94144.

[13] “IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems”. In: IEEE Std
1588-2008 (Revision of IEEE Std 1588-2002) (2008), pp. c1–269. DOI:
10.1109/IEEESTD.2008.4579760.

[14] A. Söderqvist, N. Claesson, J. N. Rodrigues, R. Tavčar, R. Štefanič,
et al. “Comparison of Synchronization Layers for Desgin of Timing
Systems”. In: ICALEPCS2013. Oct. 2013.

[15] D. Beck, R. Bär, M. Kreider, C. Prados, S. Rauch, et al. “The New
White Rabbit Based Timing System for the FAIR Facility”. In:
PCaPAC2012. 2012.

[16] J. Pietarinen. “12 way VME/cPCI Fan-out manual”. 2009. URL:
http://www.mrf.fi/dmdocuments/FOUT12-TREF-002.pdf.

[17] J. Pietarinen. “8 compactPCI fan-out concentrator”. 2008. URL:
http://www.mrf.fi/dmdocuments/cPCI-FCT-003.pdf.

http://dx.doi.org/10.1109/ISPCS.2011.6070148
http://dx.doi.org/10.1147/rd.275.0440
http://dx.doi.org/10.1147/rd.275.0440
http://dx.doi.org/10.1109/FREQ.2010.5556289
http://dx.doi.org/10.1109/FREQ.2010.5556289
http://dx.doi.org/10.1109/IEEESTD.2002.94144
http://dx.doi.org/10.1109/IEEESTD.2008.4579760
http://www.mrf.fi/dmdocuments/FOUT12-TREF-002.pdf
http://www.mrf.fi/dmdocuments/cPCI-FCT-003.pdf

BIBLIOGRAPHY 67

[18] J. Pietarinen. “Event Generator, Modular Register Map Manual”.
2011. URL: http://www.mrf.fi/dmdocuments/EVG-MRM-0003.
pdf.

[19] J. Pietarinen. “Event Receiver, Modular Register Map Manual”.
2011. URL: http://www.mrf.fi/dmdocuments/EVR-MRM-003.
pdf.

[20] H. Kaji, K. Furukawa, M. Iwasaki, E. Kikutani, T. Kobayashi,
et al. “Upgrade of Event Timing System at SuperKEKB”. In:
ICALEPCS2013. Oct. 2013.

[21] E. G. Cota, M. Lipinski, T. Włostowski, E. (d. Bij, and J. Serrano.
“White Rabbit Specification: Draft for Comments”. 2010. URL:
http://www.ohwr.org/attachments/306/WhiteRabbitSpec.
pdf.

[22] M. Lipinski, T. Wlostowski, J. Serrano, P. Alvarez, J. Gonzalez
Cobas, et al. “Performance results of the first White Rabbit installa-
tion for CNGS time transfer”. In: Precision Clock Synchronization
for Measurement Control and Communication (ISPCS), 2012 Interna-
tional IEEE Symposium on. Sept. Pp. 1–6. DOI: 10.1109/ISPCS.
2012.6336610.

[23] J. Serrano, E. Gousiou, M. Cattin, E. van der Bij, T. Wlostowski,
et al. White Rabbit Status and Prospects. Tech. rep. CERN-ACC-
2013-0231. Geneva: CERN, Oct. 2013.

[24] D. Beck, M. Kreider, C. Prados, W. Terpstra, S. Rauch, et al. “The
General Machine Timing System for FAIR and GSI v3.1”. In:
(2013).

[25] “IEEE Standards for Local and Metropolitan Area Networks: Vir-
tual Bridged Local Area Networks”. In: IEEE Std 802.1Q-1998
(1999), pp. i–. DOI: 10.1109/IEEESTD.1999.89204.

[26] M. Kreider and T. Fleck. “FAIR Timing Master”. In: Proceedings of
PCaPAC 2010. 2010, pp. 50–52.

[27] R. Bär, T. Fleck, M. Kreider, and S. Mauro. “The Timing Master
for the FAIR Accelerator Facility”. In: 2011, pp. 996–998.

[28] M. Kreider, W. Terpstra, J. Lewis, J. Serrano, and T. Wlostowski.
“Etherbone — a network layer for the wishbone SoC bus”. In:
ICALEPCS2011. Oct. 2011.

http://www.mrf.fi/dmdocuments/EVG-MRM-0003.pdf
http://www.mrf.fi/dmdocuments/EVG-MRM-0003.pdf
http://www.mrf.fi/dmdocuments/EVR-MRM-003.pdf
http://www.mrf.fi/dmdocuments/EVR-MRM-003.pdf
http://www.ohwr.org/attachments/306/WhiteRabbitSpec.pdf
http://www.ohwr.org/attachments/306/WhiteRabbitSpec.pdf
http://dx.doi.org/10.1109/ISPCS.2012.6336610
http://dx.doi.org/10.1109/ISPCS.2012.6336610
http://dx.doi.org/10.1109/IEEESTD.1999.89204

68 BIBLIOGRAPHY

[29] P. Alvarez, M. Cattin, J. Lewis, J. Serrano, and T. Wlostowski.
“FPGA Mezzanine Cards for CERN’s Accelerator Control System”.
In: Proceedings of ICALEPCS2009. 2009, pp. 376–378.

[30] White Rabbit Starter Kit. URL: http://www.sevensols.com/
en/products/wr-starting-kit.html.

[31] Simple PCIe FMC Carrier. URL: http://www.sevensols.com/
en/products/spec.html.

[32] Spartan-6 Family Overview. 2011. URL: http://www.xilinx.
com/support/documentation/data_sheets/ds160.pdf.

[33] FMC DIO 5CH TTL. URL: http://www.sevensols.com/en/
products/fmc-dio.html.

[34] White Rabbit Switch. URL: http://www.sevensols.com/en/
products/wr-switch.html.

[35] WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores. 2010. URL: http://cdn.opencores.org/
downloads/wbspec_b4.pdf.

[36] OpenCores. URL: http://www.opencores.org.

[37] T. Wlostowski, E. G. Cota, and M. Cattin. Wishbone Slave Gener-
ator. 2010. URL: http://www.ohwr.org/projects/wishbone-
gen.

[38] M. Kreider. “The FAIR Timing Master: a Discussion of Perfor-
mance Requirements and Architictures for a High-Precision Tim-
ing System”. In: Proceedings of ICALEPCS2011. 2011, pp. 1256–
1259.

[39] Git. URL: http://git-scm.com.

[40] P. Loschmidt, N. Simanić, C. Prados, P. Alvarez, and J. Serrano.
“Guidelines for VHDL Coding”. Apr. 19, 2011.

[41] Hdlmake. URL: http://www.ohwr.org/projects/hdl-make.

[42] J. Dedič, K. Žagar, A. Söderqvist, N. Claesson, and J. N. Rodrigues.
“FPGA Development Approach for Accelerator Systems with High
Integration Complexity”. In: IPAC2013. May 2013.

[43] Jenkins. URL: http://jenkins-ci.org/.

http://www.sevensols.com/en/products/wr-starting-kit.html
http://www.sevensols.com/en/products/wr-starting-kit.html
http://www.sevensols.com/en/products/spec.html
http://www.sevensols.com/en/products/spec.html
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.sevensols.com/en/products/fmc-dio.html
http://www.sevensols.com/en/products/fmc-dio.html
http://www.sevensols.com/en/products/wr-switch.html
http://www.sevensols.com/en/products/wr-switch.html
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://www.opencores.org
http://www.ohwr.org/projects/wishbone-gen
http://www.ohwr.org/projects/wishbone-gen
http://git-scm.com
http://www.ohwr.org/projects/hdl-make
http://jenkins-ci.org/

A
 Tim

in
g

 System
 A

p
p

licatio
n

 u
sin

g
 W

h
ite R

ab
b

it

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, January 2014.

A Timing System Application using
White Rabbit

Alexander Aulin Söderqvist
Niklas Claesson

http://www.eit.lth.se

A
.A

u
lin

 Sö
d

e
rq

vist &
 N

.C
la

e
sso

n

Master’s Thesis

	report_final_G5.pdf
	Introduction
	Control System
	Timing System
	White Rabbit
	Scope
	Outline

	Background
	Definitions
	Synchronization
	Synchronization Layer
	Timing System Model
	Micro-Research Finland
	White Rabbit

	Implementation of a Timing System Prototype
	Requirements
	Architectural Overview
	Timing Master
	Timing Receiver

	Result
	Timing System Prototype
	Timing Receiver
	Verification

	Discussion & Conclusion
	Comparison
	Future Improvements of Timing System Prototype
	Conclusion

	Architecture
	Source Code
	Development Environment

