
�Exjobbreport� � 2013/6/11 � 20:27 � page 1 � #1

Simulation and Evaluation of Iterative Methods

in Correlations Attacks on Stream Ciphers

Daniel Olofsson

Department of Electrical and Information Technology

Lund University

Advisor: Thomas Johansson

June 11, 2013

�Exjobbreport� � 2013/6/11 � 20:27 � page 2 � #2

Printed in Sweden
E-huset, Lund, 2013

�Exjobbreport� � 2013/6/11 � 20:27 � page i � #3

Abstract

Breaking a stream cipher with a brute-force attack can take a very long time and
in some cases be practically impossible. A better alternative could be fast correla-
tion attacks. Two well-known fast correlation attacks are Meier and Sta�elbach's
Algorithm A and B, where the last is the most interesting because it is iterative.
It has led to reformulations which are based on log likelihood ratios instead of
probabilities which the original algorithm is based on.

In this thesis, two formulations of Algorithm B based on log likelihood ratios are
evaluated and compared. By using a linear feedback shift register and a binary
symmetric channel as the keystream generator, output sequences with di�erent
lengths will be generated for feedback polynomials of the degree 20 and 30. The
generator matrix for the linear feedback shift register will then be used to generate
a large number of parity-check relations of weight 4, for the positions in the output
sequences. These relations will be used by the two algorithms, which will try to
�nd the initial state of the linear feedback shift register, which is the key of the
stream cipher.

The results of the simulations in this thesis show that one of the log likelihood
ratio based algorithms has a slightly better success rate of �nding the initial state
of the linear feedback shift register, than the other. But this increase in success
rate is very small, which suggests that using a larger number of relations of weight
4 makes the di�erence between the two log likelihood ratio based algorithms less
noticeable.

i

�Exjobbreport� � 2013/6/11 � 20:27 � page ii � #4

ii

�Exjobbreport� � 2013/6/11 � 20:27 � page iii � #5

Table of Contents

1 Goals and Overview 1

1.1 Goals . 1
1.2 Overview . 1

2 Introduction 3

2.1 Symmetric Ciphers . 3
2.2 Stream Ciphers . 5
2.3 Linear Feedback Shift Registers . 7
2.4 Correlation Attacks . 8

3 Fast Correlation Attacks 11

3.1 Generating Parity-Checks with Low Weight Polynomials 11
3.2 Meier and Sta�elbach Algorithm A 12
3.3 Meier and Sta�elbach Algorithm B 13
3.4 Generating Low-Density Parity-Checks 16
3.5 Algorithm B LLR . 18
3.6 Algorithm B LLR modi�ed . 19

4 Implementation 21

4.1 Preliminaries . 21
4.2 Running the Program . 21
4.3 Preprocessing . 23
4.4 Algorithms . 26

5 Result 29

6 Conclusion 33

6.1 About the Excluded Algorithms . 33
6.2 About the Implementation . 34
6.3 About the Results . 35

References 37

A Implementation Documentation 39

iii

�Exjobbreport� � 2013/6/11 � 20:27 � page iv � #6

A.1 run.c . 39
A.2 structs.h . 40
A.3 lfsr.h . 42
A.4 position.h . 44
A.5 preproc.h . 46
A.6 hash.h . 49
A.7 io.h . 50
A.8 a.h . 52
A.9 b.h . 54
A.10 bllr.h . 56
A.11 calculation.h . 58
A.12 util.h . 59

iv

�Exjobbreport� � 2013/6/11 � 20:27 � page 1 � #7

Chapter1
Goals and Overview

1.1 Goals

The goal of this thesis is to implement iterative methods of performing fast cor-
relation attacks. After the implementation these methods will be evaluated for
di�erent crossover probabilities and lengths of the output sequence.

1.2 Overview

This thesis will start of with an introduction to symmetric ciphers, by explaining
what a symmetric cipher is and by giving a few examples of historical ciphers.
Then it will continue on to explain stream ciphers, which is the ciphers of interest
to this thesis. It will also explain what linear feedback shift registers are and how
they are used to implement a stream cipher. The introduction part of the thesis
will then be concluded by an explanation of what a correlation attack is and how
it can be used to attack a stream cipher.

The main part of the thesis will then explain what a fast correlation attack is and
how they are performed. First an explanation about the prerequisites to perform
a fast correlation attack is covered, which includes a method of generating parity-
check relations. Then two algorithms by Meier and Sta�elbach, will be presented
and explained. Next an explanation of low-density parity-check codes will be given
and how to decode such codes with a message passing algorithm. This will lead to
the explanation of two algorithms, based on log likelihood ratios. The main part
of the thesis is then concluded with an explanation about how the generation of
the parity-check relations and the algorithms have been implemented.

The thesis will be concluded by presenting the simulations results, received by
running the implementation. Last the conclusion, drawn from the work and the
result of this thesis will be presented.

1

�Exjobbreport� � 2013/6/11 � 20:27 � page 2 � #8

2 Goals and Overview

�Exjobbreport� � 2013/6/11 � 20:27 � page 3 � #9

Chapter2
Introduction

2.1 Symmetric Ciphers

Encryption is a way to transform a plaintext to a ciphertext with the help of a
secret key. When encryption of the plaintext and decryption of the ciphertext
requires the same key, the cipher is a symmetric cipher, described as

c = ek(m),
m = dk(c),

where m is the plaintext, e is the encryption function, d is the decryption function,
k is the secret key and c is the ciphertext. Historically ciphers like shift cipher,
substitution cipher, Vigenère cipher and permutation cipher have been used.

A shift cipher works in the following way: First all letters in the alphabet is
given a number, then a key number is decided. When encryption of a plaintext
message is performed the key number is added to each letters number and the
new number modulo the size of the alphabet used will be the new letter in the
ciphertext message. When decrypting a ciphertext message the key number is
simply subtracted from the letter's number and the new number modulo the size
of the alphabet used will give the letter in the plaintext message. This limits the
total number of keys to the size of the chosen alphabet.

Example 1. Take the English alphabet A-Z and assign the numbers 0-25 to the
letter in each corresponding position, now using the key number 3 would give the
following result

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: DEFGHIJKLMNOPQRSTUVWXYZABC

A substitution cipher substitutes every letter in the alphabet with a di�erent letter
in the alphabet, which has not been used before. This results in a larger number
of possible keys than for a shift cipher. The substitution ciphers key can be any
permutation of the chosen alphabet.

3

�Exjobbreport� � 2013/6/11 � 20:27 � page 4 � #10

4 Introduction

Example 2. Given the English alphabet A-Z, the total number of possible permu-
tations would be

26! ≈ 288

and a possible permutation can for example look like

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: FGSPDKLQMHNOFTUIVWRXYZAJBC

If the word ACCEPT should be encrypted with this permutation, it would result in
the word FSSDIX.

A Vigenère cipher works the same way as a substitution cipher but instead of using
one permutation, several permutations are used. This will increase the cipher's
number of keys exponentially, with the number of permutations used. Now each
letter in the plaintext message will be substituted with a di�erent letter, depending
on how many permutations are used and the place of the letter in the plaintext
message. If two permutations would be used the �rst letter in the plaintext message
would be substituted with a letter in the �rst permutation, the second letter in the
plaintext message would be substituted with a letter from the second permutation,
the third letter of the plaintext message would be substituted with a letter from
the �rst permutation and so on until the whole plaintext message is turned into a
ciphertext message.

Example 3. Given the English alphabet A-Z, using a total of 5 permutations
would result in that the total number of possible permutations would be

(26!)5 ≈ 2441

and a possible sequence of permutations can, for example, look like

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext 1: FGSPDKLQMHNOFTUIVWRXYZAJBC
Ciphertext 2: FDGSPMHKNOFTUILVWRXYZAQJBC
Ciphertext 3: PMHFKNOFTDUILVWRGXYZAQSJBC
Ciphertext 4: SPMHFJKNOFTDBUILVCWRGXYZAQ
Ciphertext 5: SXPMHFJKNOYFTDBUILVCWRZGAQ

If the word ACCEPT should be encrypted with these permutations, it would result
in the word FGHFUX.

A permutation cipher works by �rst deciding a group and then a permutation of
this group will be the key. When encrypting a plaintext message, the message is
�rst divided into chunks with the same size as the chosen group and if necessary a
number of random letters are padded to the end of the message to make an even
multiple to the size of the group. The key permutation is then applied to each
chunk of the the plaintext message to scramble the letters and last the spaces are
removed to hide the size of the group.

�Exjobbreport� � 2013/6/11 � 20:27 � page 5 � #11

Introduction 5

Example 4. Choose the group S5 and the permutation(
1 2 3 4 5
2 4 1 3 5

)
= (1243) ∈ S5.

Now take a plaintext message

accept this as a plaintext message.

Break it up into chunks of 5 letters

accep tthis asapl ainte xtmes sage.

Add random letters to make the number of total letters a multiple of 5

accep tthis asapl ainte xtmes sageq.

Apply the permutation to the message

caecp htits aapsl natie mxets gseaq.

Now remove the spaces to obtain the ciphertext message

caecphtitsaapslnatiemxetsgseaq.

2.2 Stream Ciphers

In Section 2.1 four historical ciphers have been introduced. Taking a closer look
at the key input to the shift cipher, substitution cipher and the Vigenère cipher,
one will see that the key is a more or less random continuous stream, also refereed
to as a keystream. This keystream is continuously added to a plaintext stream,
resulting in a ciphertext stream. This kind of cipher is called a stream cipher and
in Figure 2.1 a model of a stream cipher is shown.

Figure 2.1: A model of a stream cipher.

A stream cipher usually performs encryption on bit level, according to

ci = mi ⊕ zi, (2.1)

where ci is the ciphertext bits, mi is the plaintext bits and zi is the keystream bits
for i = 0, 1, ... and decryption is performed by the same operation

mi = ci ⊕ zi. (2.2)

In Example 5 an encryption and a decryption by a stream cipher is shown.

�Exjobbreport� � 2013/6/11 � 20:27 � page 6 � #12

6 Introduction

Example 5. The plaintext bitstream sent into a stream cipher is

m = 101001101110110

and the corresponding bits in the output from the keystream generator is

z = 111000010101111.

By using exclusive-or (XOR) with the plaintext bitstream and the keystream bits
according to Formula 2.1 the ciphertext bits will be obtained

101001101110110
⊕111000010101111
010001111011001

hence c = 010001111011001. Using c and z in Formula 2.2, the plaintext bits will
be obtained

010001111011001
⊕111000010101111
101001101110110

.

The security of a stream cipher depends on two things, the secrecy of the key to
the keystream and of that this key is changed often. If the same keystream z is
used more than once an adversary can get information about the XOR between
plaintexts by adding the ciphertexts together,

c1 ⊕ c2 = (m1 ⊕ z)⊕ (m2 ⊕ z) = m1 ⊕m2.

The keystream generator in Figure 2.1 is usually implemented by several linear
feedback shift registers (LFSR) and a boolean function. LFSRs are often used in a
keystream generator, because of their good statistical properties and because they
usually have a large period before they start to repeat their output. When LFSRs
are used to implement the keystream generator, the secret key is the initial state
of the LFSRs. Figure 2.2 shows an example of a keystream generator.

Figure 2.2: Example of a keystream generator with several LFSRs.

For an attacker, the keystream generator can also be modeled by one LFSR and a
binary symmetric channel (BSC). The input bit to the BSC is the output bit from
the LFSR. This bit will be correlated to the BSC's output bit by a probability p
and by the probability 1− p the input bit will be complemented. The probability
p is determined from the properties of the boolean function, which the BSC is
modeled after. In Figure 2.3 a keystream generator with a BSC is shown.

�Exjobbreport� � 2013/6/11 � 20:27 � page 7 � #13

Introduction 7

Figure 2.3: Example of a keystream generator with a BSC.

2.3 Linear Feedback Shift Registers

A LFSR with the length l is represented by l delay elements, a feedback polynomial
and a clock signal. Each time unit the LFSR changes state by shifting all the
current bits in the LFSR one step. When this shift occurs the most signi�cant bit
is sent as the output from the LFSR. The output bit from the LFSR then gets
sent into the feedback polynomial, which is a linear feedback polynomial. The
feedback polynomial then adds this bit with the other bits in the current state of
the LFSR, according to the polynomial and this results in the next input bit to
the LFSR. This bit will be the least signi�cant bit of the new state of the LFSR.
In Figure 2.4 a LFSR is shown.

Figure 2.4: A model of a LFSR.

The next output bit from the LFSR can be calculated by the formula

an = c1an−1 + c2an−2 + ...+ clan−l. (2.3)

Formula 2.3 can also be written as

an =

l∑
i=1

cian−i, n ≥ l + 1. (2.4)

All the nonzero coe�cients c1, c2, c3, ... from Formula 2.3, can be seen as taps in
the feedback polynomial for the LFSR and by setting c0 = 1 in the polynomial,
the obtained linear feedback polynomial for the LFSR will look like

c(X) = 1 + c1X + c2X
2 + ...+ clX

l, (2.5)

which also is referred to as the connection polynomial of the LFSR.

�Exjobbreport� � 2013/6/11 � 20:27 � page 8 � #14

8 Introduction

Example 6. Consider a LFSR of the length 10, the feedback polynomial c(x) =
1 + x2 + x10 and the initial state s = 1101010101. Now by using Formula 2.3 and
shifting 10 times the outputs and states in Table 2.1 are received.

i ai new state output

0 - 1101010101 -

1 0 + 1 1010101011 1

2 1 + 1 0101010110 1

3 1 + 0 1010101101 0

4 0 + 1 0101011011 1

5 1 + 0 1010110111 0

6 1 + 1 0101101110 1

7 1 + 0 1011011101 0

8 0 + 1 0110111011 1

9 1 + 0 1101110111 0

10 1 + 1 1011101110 1

Table 2.1: Outputs and states for 10 shifts of the LFSR.

2.4 Correlation Attacks

A known plaintext attack is an attack where an adversary has knowledge about
both the plaintext and the ciphertext generated by a cipher. The idea of the
attack is to �nd a correlation between the plaintext and the ciphertext and then
obtain the key which is used by the cipher. A correlation attack is one type of
a known plaintext attack. When an adversary is attacking a stream cipher with
a correlation attack, the state of the LFSRs are the keys which the adversary is
trying to obtain. How a correlation attack works is better explained by Example
7, which is inspired by the explanation of a correlation attack in Nigel Smart's
book [1].

Example 7. Consider the Ge�e keystream generator, which consists of three LF-
SRs, each with length Li for i = 1, 2, 3 and the boolean function

z = f(x1, x2, x3) = x1 · x2 ⊕ x2 · x3 ⊕ x3, (2.6)

where x1, x2 and x3 are the outputs from the LFSRs. The output from the boolean
function is shown in Table 2.2. A closer look at Table 2.2 reveals that 6 of 8
outputs are matching between x1 and z and between x3 and z. Then both x1 and
x3 is correlated by the probabilities

Pr(z = x1) = 0.75 and Pr(z = x3) = 0.75.

Now by generating 2Li bits of output for the LFSR for each state of each primitive
polynomial of the degree Li, the correct generator polynomial and start state can be

�Exjobbreport� � 2013/6/11 � 20:27 � page 9 � #15

Introduction 9

x1 x2 x3 z

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 2.2: Inputs to and outputs from z

found. This is found when the output of z and the generated bit sequence matches
in at least Pr(z = xi) of the positions in the sequences.

For the correlation attack to work, the probability have to satisfy

Pr(z = xi) > 0.5.

Hence, the correlation attack will only work for x1 and x3, in this example. The
reason that the correlation attack can not be used on x2, is because

Pr(z = x2) = 1/2.

Because of this the initial state of the second LFSR needs to be found by brute-force,
which will try to �nd a state that satis�es Formula 2.6.

�Exjobbreport� � 2013/6/11 � 20:27 � page 10 � #16

10 Introduction

�Exjobbreport� � 2013/6/11 � 20:27 � page 11 � #17

Chapter3
Fast Correlation Attacks

3.1 Generating Parity-Checks with Low Weight Polynomials

To be able to perform a fast correlation attack against a stream cipher, relations
between the positions in the keystream sequence z have to be obtained. These
relations are linear and correlates to the corresponding position in the LFSRs out-
put sequence a. Meier and Sta�elbach describe in [2] how to obtain these linear
relations, by �rst taking a look at the sequence a and then transforming them to
the sequence z.

The �rst method of obtaining relations for each position an is by shifting Formula
2.3 t times, as shown in Example 8. By only using the shifting t+ 1 relations for
position an are obtained. To �nd more relations for position an, the multiples of
the feedback polynomial from Formula 2.5 can be used. To obtain the multiples,
the feedback polynomial is squared multiple times, according to c(X)j = c(Xj)
for j = 2i and this can also be seen in Example 8.

Example 8. Consider a LFSR of the length l = 10 and the feedback polynomial
c(x) = 1 + x3 + x10, then the linear equation

aj = aj−3 + aj−10, j ≥ 10

is a relation for the position an. Another linear relation can be obtained by squaring,
as c(x)2 = c(x2) = 1 + x6 + x20 and this would give the linear equation

aj = aj−6 + aj−20, j ≥ 20.

Then three relations could be found by shifting aj as

aj−10 + aj−3+aj = 0

aj−7+aj + aj+3 = 0

aj + aj+7 + aj+10 = 0

Each obtained relation for a position, which di�ers from all other relations con-
taining the speci�ed position, can be added to a list L of relations for the positions

11

�Exjobbreport� � 2013/6/11 � 20:27 � page 12 � #18

12 Fast Correlation Attacks

it contains. In this list, each relation, Li, is a parity-check for the involved posi-
tions and for each position the total number of parity-checks will sum up to an
individual value of m relations. These relations may be written as

L1 = an + b1 = 0,
L2 = an + b2 = 0,

...
Lm = an + bm = 0,

where an is a �xed position and bi, i = 1, 2, . . . ,m, is the sum of the t terms of
each linear relation generated by the methods above. Now by substituting the
sequence a with the keystream sequence z, each relation would now look like

Li = zn + yi, i = 1, 2, . . . ,m,

where zn corresponds to the position an and the positions in yi correspond to
the positions in bi. The values of the positions will, however, not necessarily be
the same for the involved positions. Because of this, is it necessary to know the
total number of satis�ed relations, h, for each position, to be able to separate the
correct and incorrect positions from each other.

3.2 Meier and Sta�elbach Algorithm A

Algorithm A is not an iterative algorithm, instead it is a one-pass algorithm. To
make a correlation attack according to algorithm A, one must have knowledge
about the keystream sequence z and its length N . It is also required to know the
structure of the LFSR, which means the length l and the used feedback polyno-
mial. Then the probability p = Pr(z = a) > 0.5 is required, this probability is the
correlation between the sequence a and the sequence z.

To �nd the initial state of the LFSR, the probability p∗ has to be calculated for
each position of the sequence z. If the probability p∗ is large for a position, the
more probable is it that the position is correct. Each p∗ is calculated by the
formula

p∗ = P (z = a|L1 = · · · = Lh = 0, Lh+1 = · · · = Lm = 1)

=
psh(1− s)m−h

psh(1− s)m−h + (1− p)(1− s)hsm−h
, (3.1)

where p = Pr(z = a), m is the total number of relations for the position, h is the
number of satis�ed relations and s is calculated by the recursion

s(p, t) = ps(p, t− 1) + (1− p)(1− s(p, t− 1)),

s(p, 1) = p.
(3.2)

When all the new probabilities are calculated according to Formula 3.1, the l
positions which have the highest p∗ are chosen to be used in a system of linear

�Exjobbreport� � 2013/6/11 � 20:27 � page 13 � #19

Fast Correlation Attacks 13

equations. By solving this system the initial state of the LFSR can be found. If
there are equations in the system which depends on each other, more positions
can be added to the system to make sure that there are l independent equations.

Algorithm A:

1. Calculate p∗ for each position of the sequence z according to Formula
3.1.

2. The l positions with the highest p∗ are chosen and put in a system of
linear equations.

3. If possible, the system of linear equations is solved and then the initial
state of the LFSR is found.

4. If the system of linear equations can not be solved, a modi�cation
of the l positions with a Hamming distance of 1, 2, . . . are made and
then go back to 3.

3.3 Meier and Sta�elbach Algorithm B

Algorithm B is an iterative algorithm which tries to correct all positions of the
sequence z, to make it equal to the sequence a. When zi = ai for i = 1, . . . , N , the
initial state of the LFSR can be obtained from the �rst l positions of the corrected
sequence. The algorithm iterates over all positions calculating the probability p∗

according to Formula 3.1, with p set to each position's individual probability and
s calculated by a modi�ed version of the recursion in Formula 3.2. The modi�ed
recursion takes each involved position's individual probability into account and is
de�ned as

s(p1, . . . , pt, t) = pts(p1, . . . , pt−1, t− 1) + (1− pt)(1− s(p1, . . . , pt−1, t− 1)),

s(p1, 1) = p1.

(3.3)

Each iteration will make the probabilities converge towards p∗ = 0 or p∗ = 1, de-
pending on whether the position is incorrect or correct. The algorithm will iterate
until a certain threshold is reached and then the positions in sequence z, which
have passed the threshold, will be complemented. These iterations will go on until
z = a. This approach of Algorithm B will make hard decisions to decide the cor-
rectness of each position. In order for a soft decision to be made, the probability
for all relations has to be taken into account for each position.

In order for all relations to contribute to the probability p∗ for each position, all
relations containing the position will be put in a set M and the relations which

�Exjobbreport� � 2013/6/11 � 20:27 � page 14 � #20

14 Fast Correlation Attacks

are satis�ed will also be put in a set H. Formula 3.1 will be modi�ed as

p∗ = Pr[zn = an| relation j holds for j ∈ H but not for j ∈M \H]

=
p
∏

j∈H(sj)
∏

j∈M\H(1− sj)
p
∏

j∈H(sj)
∏

j∈M\H(1− sj) + (1− p)
∏

j∈H(1− sj)
∏

j∈M\H(sj)
.

(3.4)

where sj is calculated with Formula 3.3 and the positions involved in relation j.

Before the thresholds can be calculated, the average number of total relations m
have to be estimated. If the relations are generated by the methods described in
Section 3.1, then m can be approximated by the formula

m ≈ log

(
N

2l

)
(t+ 1), (3.5)

where N is the length of the generated sequence z, l is the length of the LFSR
and t the number of feedback taps of the used feedback polynomial. The next
thing which has to be determined before the thresholds can be calculated, is the
maximum number of satis�ed relations, hmax, which will give the maximum cor-
rection for each round of the algorithm. The maximum correction is obtained by
�nding a h such that I(p,m, h) is maximized for the given p and approximated m.
I(p,m, h) is the relative increase of correct positions and calculated as

I(p,m, h) =W (p,m, h)− V (p,m, h), (3.6)

where W (p,m, h) is the probability that z 6= a and that not more than h of m
relations are satis�ed, and calculated by the formula

W (p,m, h) =

h∑
i=0

(
m
i

)
(1− p)(1− s)ism−i. (3.7)

Also, V (p,m, h) is the probability that z = a and that not more than h of m
relations are satis�ed, and calculated by the formula

V (p,m, h) =

h∑
i=0

(
m
i

)
psi(1− s)m−i. (3.8)

The �rst threshold can now be calculated by the formula

pthr =
1

2
(p∗(p,m, hmax) + p∗(p,m, hmax + 1)), (3.9)

where p∗(p,m, hmax) is calculated with Formula 3.1. All positions of the sequence
z which has p∗ < pthr after the last iteration of each round of the algorithm will be
complemented. Each round of the algorithm continues to iterate until either the
number of iterations equals α (according to [2], α = 5 is the most common choice)
or the number of positions which will be complemented Nw is greater than the
threshold Nthr. To decide this threshold it is necessary to know the probability

�Exjobbreport� � 2013/6/11 � 20:27 � page 15 � #21

Fast Correlation Attacks 15

that not more than h of m relations are satis�ed. This probability is calculated
by the formula

U(p,m, h) =

h∑
i=0

(
m
i

)
(psi(1− s)m−i + (1− p)(1− s)ism−i). (3.10)

By using h = hmax in Formula 3.10, the threshold can now be calculated by the
formula

Nthr = U(p,m, hmax) ·N. (3.11)

Algorithm B:

1. Calculate m with Formula 3.5.

2. Find h = hmax such that I(p,m, h) is maximized. Calculate pthr and
Nthr with Formula 3.9 and 3.11.

3. Set the iteration counter to i = 0.

4. For every position of the sequence z calculate the probabilities p∗,
according to Formula 3.1 (or 3.4) and 3.3, taking each positions indi-
vidual h and m into account. Count the number Nw of positions with
p∗ < pthr.

5. If Nw < Nthr or i < α, increment i and go to 4.

6. Complement the positions of the sequence z with p∗ < pthr and reset
the probabilities of each position to the original probability p.

7. If there are positions of the sequence z which not satis�es Formula 2.3
go to 3.

8. Terminate with z = a.

�Exjobbreport� � 2013/6/11 � 20:27 � page 16 � #22

16 Fast Correlation Attacks

3.4 Generating Low-Density Parity-Checks

In Section 3.1 a way of generating parity-checks by squaring and shifting has been
presented, which �nds the relations between the positions in the sequence z. But if
the feedback polynomial for the LFSR is of high-density, the parity-checks gener-
ated by those methods will also be of high-density. This property is not a property
one desires to have for the generated parity-checks. The desired type of parity-
checks is those with a low weight. Because of this desired property, low-density
parity-check (LDPC) codes are suitable to use in the generation of the relations
between the positions in the sequence z. LDPC codes were introduced by Gallager
in [3].

The type of LDPC codes used in the generation of the relations is the irregular
type. This type of LDPC codes do not have the same weight in all columns or
in all rows in the parity-check matrix H. In order for the LDPC codes to be of
low-density in a n×m matrix, the number of 1's in each column and row have to
ful�ll wc � n and wr � m. In Example 9 it is shown how the generator matrix
G can be calculated with knowledge about the parity-check matrix H.

Example 9. Given a 3× 7 parity-check matrix

H =

1 1 1 1 1 0 0
0 0 1 0 1 0 1
1 0 0 1 1 1 0

 .

The generator matrix G can be obtained by �rst doing normal row operations to
put the matrix H on the form [−PT |I] as

H =

1 1 1 1 1 0 0
0 0 1 0 1 0 1
1 0 0 1 1 1 0

 ∼
1 1 1 1 1 0 0
0 0 1 0 1 0 1
0 1 1 0 0 1 0


∼

1 1 1 1 1 0 0
0 1 1 0 0 1 0
0 0 1 0 1 0 1

 ∼
1 1 1 1 1 0 0
0 1 1 0 0 1 0
1 1 0 1 0 0 1

 .

Now by shifting the sub matrix's to the form [I|P], the generator matrix G can be
obtained

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1

 .

Once a generator matrix is obtained, relations between the positions can be found
by XOR together a number of columns, which sums up to zero, equal to the desired
weight of the parity-check relation.

Decoding of LDPC codes is based on belief propagation and performed by message
passing between two type of nodes, called message nodes and check nodes. The
messages sent between these nodes are probabilities, these probabilities can also

�Exjobbreport� � 2013/6/11 � 20:27 � page 17 � #23

Fast Correlation Attacks 17

be seen as beliefs. Each check node has a belief about the correct value for the
message nodes it is connected to. For an observed channel a, each check node will
connect a number of observed channel symbols, ai, which sums up to zero. The
channel symbols, ai, corresponds to the columns of the generator matrix for the
channel a. Because of this, the check nodes will correspond to the parity-check
relations for the generator matrix. Each check node will be on the form

an = ai1 + · · ·+ aiw−1
, (3.12)

where an is the current message node, each ai a di�erent message node and w the
weight of the parity-check relation in the check node. Figure 3.1 show message
nodes and a few check nodes obtained from the generator matrix in Example 9.

Figure 3.1: Message nodes (left) connected to a few check nodes
(right) obtained from the generator matrix in Example 9.

When decoding LDPC codes with message passing, it is more advantageous to use
log likelihood ratios (LLR) instead of probabilities. The LLR value for a random
variable X, is de�ned as

LLR(X) = log
Pr(X = 0)

Pr(X = 1)
, (3.13)

and the conditional LLR, given the variable Y , is de�ned as

LLR(X|Y) = log
Pr(X = 0|Y)

Pr(X = 1|Y)
, (3.14)

Given a uniformly distributed variable x and d independent observed variables, yi,
the following formula can be derived

LLR(x|y1, . . . , yd) =
d∑

i=1

LLR(x|yi). (3.15)

�Exjobbreport� � 2013/6/11 � 20:27 � page 18 � #24

18 Fast Correlation Attacks

To calculate the LLR value which is sent from the check nodes to the message
nodes, knowledge about how to compute LLR(x1 ⊕ x2 ⊕ · · · ⊕ xd|y1, . . . , yd) is
needed. This LLR value is derived from LLR(xi|yi), 1 ≤ i ≤ d and the assumption
that all observed yi are independent of each other. By doing some derivations the
following formula is received

LLR(x1 ⊕ x2 ⊕ · · · ⊕ xd|y1, . . . , yd) = log
1 + (

∏
i tanh(LLRi/2))

1− (
∏

i tanh(LLRi/2))
, (3.16)

where LLRi = LLR(xi|yi).

In round 0 of a message passing algorithm, the a priori information LLR(xi|yi),
where the symbol yi is observed by the channel, is calculated for each message
node and sent to the check nodes. If a BSC with correlation probability p is used,
LLR(xi|yi) is calculated by the formula

LLR(xi|yi) = log(p)− log(1− p), (3.17)

for yi = 0 and the negative value if yi = 1. For simplicity the conditional part will
be left out from here on and only LLR(xi) will be used.

From round 1 and on, the extrinsic information will be calculated for each message
node an, by the parity-check relations of the check nodes and the formula

cj = LLR(ai1 + · · ·+ aiw−1), ai 6= an, (3.18)

where w is the weight of the parity-check relation. The message node an, will then
use the received extrinsic information and calculate the new LLR value, LLR(an),
according to

LLR(an) = LLR(an) +
m∑
j=1

cj , (3.19)

where cj is the extrinsic information calculated with Formula 3.18 for each check
node and m the total number check nodes connected to the message node.

3.5 Algorithm B LLR

Meier and Sta�elbach's Algorithm B from Section 3.3 can be reformulated using
decoding of LDPC codes, as described in Section 3.4, and was originally described
by Canteaut and Trabbia in [4]. In this version of Algorithm B each position in
the sequence z is a message node and all generated relations are check nodes, con-
nected to message nodes in the relation. The initial LLR value for each message
node an is calculated with Formula 3.17, after the initialization the LLR value
is calculated for each round by Formula 3.18 and sent back to the corresponding
message node.

�Exjobbreport� � 2013/6/11 � 20:27 � page 19 � #25

Fast Correlation Attacks 19

Algorithm B LLR:

1. Set the probability of all positions to p and calculate the corresponding
LLR(an) for n = 1, . . . , N , according to Formula 3.17.

2. All message nodes sends the calculated LLR value to all connected
check nodes.

3. Each check node calculates the extrinsic information according to For-
mula 3.18 for each LLR(an) and sends it back to the corresponding
message node.

4. Each message node updates its LLR value by adding the received
LLR(an). If the values have not converged enough in either direction,
go back to 2.

3.6 Algorithm B LLR modi�ed

A modi�ed LLR version of Meier and Sta�elbach's Algorithm B was presented by
Ågren, Löndahl, Hell and Johansson, in [5]. In this version of the algorithm weight
3 and 4 relations are used. The relations are then divided into three di�erent type
nodes. The weight 3 relations are called type I, with the form in Formula 3.12 and
their extrinsic information is calculated with Formula 3.18.

The relations of weight 4 are divided into two types II-a and II-b. Before the weight
4 relations can be divided into di�erent types, they are divided into di�erent lists
of pairs. Each one of these lists are equal to a �xed point e(k) which has a unknown
value equal to each separate pair in the list. The lists will look like

e(k) = ai1 + ai2 = · · · = aiv−1 + aiv , (3.20)

where each i = 1, . . . , N and no i equals any other i in the same list. These lists
can now be classi�ed as type II-a, if v > 4, or as type II-b, if v = 4.

When all weight 4 relations are classi�ed, knowledge about how to do the com-
putation of the extrinsic information is needed. The update each message node
receives from a check node of type II-a will be LLR′′(an), where an is the message
node which will receive the update. To �nd this LLR value, one �rst calculates
the LLR value for the �xed position e(k) of a list as

LLR(e(k)) = LLR(ai1 + ai2) + · · ·+ LLR(aiv−1
+ aiv). (3.21)

The next step will be to compute LLR(e(k)) for each pair in the list,

LLR′(e(k)) = LLR(e(k))− LLR(aij−1
+ aij), (3.22)

where (aij−1 , aij) is the current pair and j is even. Because aij = e(k)+ aij−1 , the
extrinsic information will be calculated with

LLR′′(aij) = LLR(e(k) + aij−1), (3.23)

�Exjobbreport� � 2013/6/11 � 20:27 � page 20 � #26

20 Fast Correlation Attacks

which is computed with LLR′(e(k)) and LLR(aij−1
). This LLR value is then sent

back to the message node aij . By switching aij in Formula 3.23 with aij−1 the
extrinsic information for the message node aij−1 , will instead be calculated.

The check nodes of type II-b are on the form from Formula 3.12 and because of
that the LLR value for each check node will be calculated with Formula 3.18.

Algorithm B LLR Modi�ed:

1. Set the probability of all positions to p and calculate the corresponding
LLR(an) for n = 1, . . . , N , according to Formula 3.17.

2. All message nodes sends the calculated LLR value to all connected
check nodes.

3. Type I check nodes on the form from Formula 3.12 with the weight 3,
calculates their extrinsic information according to Formula 3.18 and
sends the information back to the corresponding message node.

4. Type II-a check nodes on the form 3.20, calculates their extrinsic
information in three steps. First LLR(e(k)) is computed with Formula
3.21, secondly LLR′(e(k)) is computed by using Formula 3.22. Finally
the extrinsic value is calculated with Formula 3.23 and then sent back
to the corresponding message node.

5. Type II-b check nodes are on the form from Formula 3.12 with weight
4, calculates the extrinsic information according to Formula 3.18 and
sends the information back to the corresponding message node.

6. If the LLR values of the message nodes have not converged enough in
any direction, go back to 2.

�Exjobbreport� � 2013/6/11 � 20:27 � page 21 � #27

Chapter4
Implementation

4.1 Preliminaries

To be able to perform the simulations, the following have been implemented:
A keystream generator modeled by a LFSR and a BSC.
A hash table to store, sort and handle pairs of positions.
A preprocessing function which generates the pairs of positions according to the
shift and multiple method. This function is used for low wight polynomials, to
�nd parity-check relations.
A preprocessing function which generates the pairs of positions by combining all
possible pairs and storing them in the hash table. This function is used for high
weight polynomials, to �nd low weight parity-check relations.
The algorithms A, B hard decisions, B soft decisions, original LLR and modi�ed
LLR.

4.2 Running the Program

To run the program, the command
./Run 'poly-�le' 'state-�le' 'N' 'p' 'algorithm' 'output path' '#rounds' [options]*
is used and the input parameters should be speci�ed according to the following
list:

poly-�le A �le describing the polynomial, in this �le each line
contains the exponent of a x in the polynomial.

state-�le A �le describing the initial state of the LFSR on a
single line with 0's and 1's, starting with the least
signi�cant bit.

N An integer value, the length of the output sequence
from the LFSR will be be set to this value.

p An integer value between 0 − 100, this integer will
de�ne p in the crossover probability 1−p, used in the
BSC.

algorithm Decides the algorithm. Possible values are A, Bhard,
Bsoft, LLR or LLRm

output path The path to where the outputs from the program will
be stored.

21

�Exjobbreport� � 2013/6/11 � 20:27 � page 22 � #28

22 Implementation

#rounds The total number of times the chosen algorithm will
be run.

printhash (Optional) Makes the program print the hash table.
printpos (Optional) Makes the program print the total number

of relations, satis�ed relations, type II-a relations and
type II-b relations for each position.

no_w3 (Optional) Disables the use of weight 3 relations in
the program.

no_a (Optional) Disables the use of weight 4 relations of
type II-a in the program.

no_b (Optional) Disables the use of weight 4 relations of
type II-b in the program.

Example 10 show what a correct command can look like.

Example 10. The command used:
./Run polynomial.txt initial-state.txt 5000 Bsoft 90 ./outputs 1000

The input �le polynomial.txt should look something like

3
7
9
10

this would translate to the polynomial f(x) = 1 + x3 + x7 + x9 + x10.
The input �le initial-state.txt should look something like

1010101011

this would set the initial state of the LFSR to 1010101011 and the length l = 10.
The input 5000 will set the noisy sequence to the length 5000.
The input Bsoft will set the algorithm which is used to Meier and Sta�elbach's
Algorithm B with soft decisions.
The input 90 will set the probability to p = 0.9 and the crossover probability used
in the BSC will then be 0.1.
The input ./outputs will tell the program that a outputs should be saved to the
folder outputs, which should exist in the current folder. The last input 1000 tells
the program to simulate 1000 runs of the chosen algorithm.

When the program starts, it will �rst initialize variables and arrays needed in
the program. When the initializations are done, the number of relations for each
positions will be calculated by the function calculateMeanM. Next the program
will check if any options are set in the input arguments to the program, if the
option printpos is set the function printPositions will be called and print the
total number of relations for each positions and if the option printhash is set the
function printHash will be called and print the hash table to a �le. Then it will
start a for-loop which will run until the input #rounds is reached. For each
round the random generator will be reset with a new seed value, which will be

�Exjobbreport� � 2013/6/11 � 20:27 � page 23 � #29

Implementation 23

the current number of seconds from 00:00 hours, Jan 1, 1970 UTC added with the
current round number and then the new sequence z will be generated by the LFSR.
The last thing the for-loop will do is to call the function resetPositions, which
will reset each position_t structs variables, except for the variable g_matrix, to
their initial values.

4.3 Preprocessing

4.3.1 LFSR and the Keystream Generator

To start the LFSR, the function runLFSR is called. This function generates the
output sequence a from the LFSR, and also the output sequence z from the BSC.
The LFSR is represented by a 64 − bit integer in which every bit represents a
position in the LFSR. This representation of the LFSR limits the length to l = 64,
but this is enough for this implementation.

The next state of the LFSR is obtained by the function nextState and shifts the
64 − bit integer one time and the next input bit will be determined by adding
the output bit with the bits at the positions, which corresponds to a feedback tap
in the feedback polynomial. The output bit are returned to runLFSR and stored
in an array and will represent the output sequence a = a1, a2, . . . , aN from the
LFSR. The function bsc represents a BSC with crossover probability 1 − p and
p > 0.5 and will add some noise to the sequence a and return the noisy sequence
z = z1, z2, . . . , zN , which is the keystream.

4.3.2 Initialization

Before any relations between the positions can be obtained, some initializations
have to be made. First the function initPositions will initialize N di�erent
structs of the type position_t, this struct contains the variables m, h, g_matrix,
llr which are initialized to 0 and the variable p, which is initialized to the prob-
ability, which was given to the program as an argument.

The function initGMatrix will initialize the generator matrix, which is needed
for the generation of the relations between the positions and it is also used by
Algorithm A during the simulation. The last initialization function is hashExists,
this function will check if the hash folder exists. If the folder exists the generation
of the hash table will be skipped and the simulation of the chosen algorithm will
start running. If the folder does not exist, it will be created and the generation of
the hash table will start. The folder hash will then be �lled with one �le for each
hash value in the hash table.

�Exjobbreport� � 2013/6/11 � 20:27 � page 24 � #30

24 Implementation

4.3.3 Finding Relations

There are two ways of �nding relations between positions, the way used is chosen
by determining the number of taps in the used feedback polynomial. If the number
of taps is equal to two, the shift and squaring method described in Section 3.1 will
be used. This will be done with a call to the function makeHashTableLow.

If the number of taps of the used feedback polynomial is greater than two, the
function makeHashTable will be called. This function iterates over all positions
and for each pair of positions, the g_matrix variables will be XOR-ed and if this
XOR-ed sum does not equals zero, a pair_t struct is created. This struct has
two variables, the variable next, which points at the next pair_t struct and the
variable pos, which is an array holding the two positions for this pair. The created
struct will then be added to the hash table.

4.3.4 The Hash Table

The hash table is allocated by the function allocateHashTable and will have a
size of 2

l
2 , where l is the length of the LFSR. The hash function used for this hash

table is
hash value = sum& (size of hash table− 1)

and is calculated by a call to the function hash. Each hash value in the hash
table points to a linked list of head_t structs, this struct has four variables, next
which points at the next head_t, first_pair which points at the �rst pair_t

struct, nbr_of_pairs which is the number of pair_t structs in the linked list and
sum which is the XOR-ed sum for any pair_t in the linked list, pointed to by
first_pair

When a new pair_t struct is going to be added to the hash table, the function
addPair will be called. This function will use the function lookupHead to check
if there already exists a head_t struct, which has a sum equal to that of the new
pair_t. If such a head_t struct exists the new pair_t will be added �rst to the
linked list pointed to by first_pair and if it does not exist a new head_t struct
will be created to store the new pair_t struct.

4.3.5 Writing to and Reading from the Disk

When running the program on long LFSR output sequences, the creation of the
hash table can take a very long time and sometimes it is not possible to keep all
possible pairs in the hash table in the RAM at the same time. Therefore the hash
table needs to be written to the disk. This process is started by a call to the
function memoryToDisk. This function will iterate through the hash table and for
each hash value, print the positions for the current pair_t struct to a �le with
the hash value as the �lename.

All hash values have a corresponding �le. These �les are created by the func-
tion createFiles, before the hash table is generated. Each of these �les has

�Exjobbreport� � 2013/6/11 � 20:27 � page 25 � #31

Implementation 25

the following structure, the �rst line has a value which will tell the program how
many pairs the �le contains and then each line contains a pair on the form "po-
sitions1:positions2". When all pairs have been generated and written to the cor-
responding �le the function addNbrOfPairs will be called and update the total
number of pairs in each �le. If this function �nds a �le which does not have any
pairs, it will remove the �le.

When the hash table is complete and is going to be used for the computations,
a function with the name readFiles will be called. This function reads �les and
store the pairs in pair_t structs, which then is inserted into the hash table. The
function keeps reading �les until the max number of pair_t structs has been
reached or there is no more �les to be read.

4.3.6 Handle Useless Pairs

When generating the hash table, pairs that is not part of any weight 3 or weight
4 relations will occur. These pairs are of no use, and will only waste memory
and make the computations slower, therefore the function removeUnusedPairs is
called to remove these pairs.

The function removeUnusedPairs will �rst read as many hash table �les as pos-
sible and add the pairs to the hash table. Then the function will iterate through
the hash table and each head_t struct which only have one pair_t struct, will be
removed from the hash table and put into a temporary list. All the head_t structs
in this temporary list, have no pair which is part of a weight 4 relation, but they
can still be part of a wright 3 relation. Therefore, each pairs XOR-ed sum will
be compared to each positions g_matrix variable, if a match is found the head_t
struct will be put back into the hash table. All head_t structs which still exist in
the list after these two checks are �nished, will be permanently removed from the
hash table.

Now a new �le with the name read#, where # is a number, will be created by
the function createFiles and this �le will be �lled with all pairs in the pair_t

structs, currently in the hash table. This will create a large �le, which contains all
the pairs which can be put into the hash table at the same time without over�owing
the memory. Having this large �le instead of all the smaller �les, will make only
one read necessary the next time all pairs need to be loaded into the hash table.
The merging of the �les also reduce the number of �les to the point when it is
possible to keep all �les open until they are not needed any more and this will
reduce the time it takes to read in a new part of the hash table.

�Exjobbreport� � 2013/6/11 � 20:27 � page 26 � #32

26 Implementation

4.4 Algorithms

4.4.1 Algorithm A

Algorithm A is started with a call to the function runAlgA. This function will �rst
call the function computeS, which will calculate the s value for the given proba-
bility p, according to Formula 3.2. Then the new probability p∗ will be calculated
for each position with the function computePStar, according to Formula 3.1. Next
a call to the function findInitState will start the algorithm to �nd the initial
state of the LFSR.

The function findInitState will call the function getSortedPos, which will sort
all the positions by their probabilities, with the highest at positions 0 of the ar-
ray and the lowest at the last position of the array. The l positions with highest
probability will then be chosen, where l equals the length of the LFSR, and each
of these positions g_matrix variable will then be shifted one step to the left and
added to an array. The variables stored in the array will be XOR-ed with the
value of the corresponding positions bit value, in the sequence z.

The array will now contain l bit sequences all containing l + 1 bits and now the
bits 2, . . . , l + 1 will now form a system of linear equations. Solving this system
will make the least signi�cant bits take the value of the initial state of the LFSR.
If there is a dependency between any of the equations in the array, more equations
will be added to make the system independent. If an independent system can not
�nd the initial state of the LFSR, a few positions believed to be correct can have
the wrong value. Then the program will try to complement these bits and then
retry to �nd the initial state of the LFSR.

4.4.2 Algorithm B

When a simulation with Algorithm B is run, either a hard decisions version or a soft
decisions version can be called with the functions runAlgBHard and runAlgBSoft.
The only di�erence between the two functions, are during the iterations in each
round of the algorithm and therefore the functions will be referred to as one, ex-
cept for the explanation of the iteration.

In each iteration, all read# �les will be read by the function readFiles and the
necessary calculations will be performed. If all pairs can be in the hash table at
the same time, the pairs will not be removed until the simulations are �nished.

When the function starts, it have to calculate the thresholds pthr and Nthr. This
is done by a call to the function computeThresholds, this function will �rst gener-
ate a binomial coe�cients table by a call to the function computeCoeff and then
the thresholds will be calculated according to Formula 3.9 and 3.11. The gener-
ated table will set some limitations on the program, because the average number of
relations for each positions, calculated with Formula 3.5, can not be larger than 50.

�Exjobbreport� � 2013/6/11 � 20:27 � page 27 � #33

Implementation 27

When the thresholds are calculated the rounds of the algorithm will start, each
round has up to �ve iterations as described in Section 3.3. The hard decision
version, that is the function runAlgBHard, will for each position use the relations
formed by the t feedback taps of the feedback polynomial and with the probabil-
ities of the positions in this iteration, not equal to the current position, calculate
the s value with the function computeS, according to Formula 3.3. The new p∗

will now be calculated with the function computePStar, and the new probability
will be stored in a temporary array. If p∗ < pthr, the position will be marked for
change. When all positions have calculated a new p∗ probability, the p variable
in each positions position_t struct will be set to the corresponding value in the
temporary array. If �ve iterations have been made or the number of positions
marked for change exceeds Nthr, the current rounds iterations are �nished.

The soft decisions version of the algorithm, called by the function runAlgBSoft,
will consider all the generated relations for a position when calculating the new
probabilities. A s value will be calculated for each relation with the function com-
puteS and depending on if the relation is satis�ed or not, it will be multiplied to
2 of 4 variables. These variables represents the products

∏
j∈H(sj),

∏
j∈H(1− sj),∏

j∈M\H(sj) and
∏

j∈M\H(1 − sj). When all the products of the s values have
been calculated, the p∗ probability for each position will be calculated according
to Formula 3.4 and stored in a temporary array. If p∗ < pthr, the position will be
marked for change. Each positions p variable will then be set to the new p∗. If
�ve iterations have been made this round or the number of positions marked for
change exceeds Nthr, the current rounds iterations are �nished.

After the iterations of a round are �nished, the positions in z, with a probability
below pthr, will be complemented and if the function called was runAlgBHard, the
number of relations which is satis�ed for each position will also be recalculated.
In the end of the round, the number of equal positions in the two sequences z and
a will be computed and if all positions are equal the algorithm is done, otherwise
next round of the algorithm will be started.

4.4.3 Algorithm B LLR Version

When running the LLR version of Algorithm B, the function runAlgBLLR is called.
The �rst step in this function will be to initialize all positions LLR value. This is
done for each position by calculating Formula 3.17 and then checking the positions
corresponding bit value in the sequence z. If the position has a bit value of 1, the
calculated value will be stored as a negative value and if the position has a bit
value of 0 the positive value will be stored. The value will be stored in the llr

variable, in the position_t struct for each positions.

When the iterations starts, each �le read# will be read by the function readFiles

and for each part of the hash table the functions weight3LLR and weight4LLROrg

will be called, this part will be skipped if all pairs can be in the hash table at the
same time. Both functions will calculate the LLR values for each position accord-
ing to Formula 3.18 and 3.19, and the new values will be added to a temporary

�Exjobbreport� � 2013/6/11 � 20:27 � page 28 � #34

28 Implementation

array, which holds the update for each positions LLR value calculated so far in
the current iteration.

The next step is to add the update in the temporary array to the corresponding
position_t structs variable llr to get the new LLR value for the position. Then
each positions bit value in the sequence z will be changed to have the new believed
bit value. If z = a the algorithm will stop iterating, else the algorithm will continue
with the next iteration, using the new LLR values at each position.

4.4.4 Algorithm B LLR Version Modi�ed

The modi�ed version of the LLR version of Algorithm B is called by the func-
tion runAlgBLLRModified, this function works the same way as the function
runAlgBLLR, except for the calculations of the LLR values for the weight 4 re-
lations. These relations will instead be calculated by the function weight4LLRMod.

The function weight4LLRMod will check the variable nbr_of_pairs in the head_t
struct, and then perform the calculations. If the value equals 2, Formula 3.18
and 3.19 will again be used to calculate the LLR value for each position in that
relation. If the value is greater than 2, the method described in Section 3.6 will
be used for the calculations of the LLR value.

�Exjobbreport� � 2013/6/11 � 20:27 � page 29 � #35

Chapter5
Result

The simulations presented in this section will test the success rate of �nding the
initial state of the LFSR with the LLR versions of Algorithm B. This will be done
by generating three output sequences for four di�erent primitive feedback polyno-
mials of the degrees 20 and 30.

For each generated sequence, a hash table will be generated which will hold lists of
position pairs, which is part of a weight 3 or weight 4 relation. The weight 3 rela-
tions will not be used, because they gives the same contribution to the LLR values
independent of the used algorithm. For each sequence length and polynomial, the
highest crossover probability 1−p which has a success rate of at least 10%, will be
obtained by doing 1000 simulations for di�erent values of p with the LLR version
of Algorithm B. When the crossover probability is obtained, this value will be used
to do a larger number of simulations with the LLR version and the modi�ed LLR
version of Algorithm B. This larger number of simulations with each algorithm
will be performed to make it possible to see a di�erence in the success rates of the
two algorithms.

The primitive polynomials p21 and p22 will be used for the simulations with a
LFSR of length 20,

p21 =x20 + x19 + x16 + x13 + x10 + x8 + 1,

p22 =x20 + x19 + x18 + x17 + x16 + x14 + x13 + x11 + x10 + x9 + x8 + x6 + x4

+ x3 + x2 + x+ 1.

These polynomials will generate hash tables for sequences of the lengths 500, 750
and 1000. For the simulations with a LFSR of length 30, the primitive polynomials
p31 and p32 will be used,

p31 =x30 + x29 + x25 + x24 + x15 + x14 + x10 + x8 + x7 + x6 + x5 + x3 + x2

+ x+ 1,

p32 =x30 + x29 + x28 + x25 + x24 + x21 + x20 + x19 + x16 + x15 + x14 + x13

+ x12 + x11 + x8 + x6 + x4 + x2 + 1.

The polynomial p31 will generate hash tables for sequences of the lengths 6500,
7500 and 8500. The polynomial p32 do not have any type II-a relations for the

29

�Exjobbreport� � 2013/6/11 � 20:27 � page 30 � #36

30 Result

sequences 6500 and 7500, therefore this polynomial will instead generated hash
tables for sequences of the lengths 8000, 9000 and 10000.
Information about the total number of relations for each sequence length and poly-
nomial of degree 20 and 30, can be found in Table 5.1 and 5.4 respectively. The
tables shows the average number of relations for each position, m, the total num-
ber of weight 4 relations and the total number of type II-a and type II-b check
nodes the hash table for each sequence of the length N contains.

The simulation results for p21 and p22 are shown in Table 5.2 and 5.3, and for
p31 and p32 in Table 5.5 and 5.6. The numbers in the parentheses are the normal
approximation of the standard deviation. The standard deviation will be used to
determine the signi�cance of the decimals in the success rate of the algorithms.

�Exjobbreport� � 2013/6/11 � 20:27 � page 31 � #37

Result 31

Polynomial N m Weight 4 Type II-a Type II-b

p21

500 56 6978 176 6450
750 191 35799 2254 28866
1000 471 117627 11849 77296

p22

500 111 13860 1332 9864
750 292 54786 6578 32871
1000 557 139230 17810 73567

Table 5.1: A summary of the total number of relations for each
output sequence of the length N , generated by p21 and p22.
Weight 4 is the total amount and m is the average per position.

N 1− p Algorithm
Number of successful

runs of 65536
Success rate

500 0.29
LLR 9094(±89) 0.139(±0.001)

LLR mod 9309(±90) 0.142(±0.001)

750 0.36
LLR 7983(±84) 0.122(±0.001)

LLR mod 8216(±85) 0.125(±0.001)

1000 0.39
LLR 7312(±81) 0.112(±0.001)

LLR mod 7327(±81) 0.112(±0.001)

Table 5.2: Simulation results for p21.

N 1− p Algorithm
Number of successful

runs of 65536
Success rate

500 0.34
LLR 10196(±93) 0.156(±0.001)

LLR mod 10335(±94) 0.158(±0.001)

750 0.38
LLR 7344(±81) 0.112(±0.001)

LLR mod 7391(±81) 0.113(±0.001)

1000 0.39
LLR 11121(±97) 0.170(±0.001)

LLR mod 11084(±96) 0.169(±0.001)

Table 5.3: Simulation results for p22.

�Exjobbreport� � 2013/6/11 � 20:27 � page 32 � #38

32 Result

Polynomial N m Weight 4 Type II-a Type II-b

p31

6500 112 181653 164 181161
7500 184 345450 2062 339264
8500 281 596619 7338 574605

p32

8000 246 492540 387 491379
9000 367 824868 6899 804171
10000 520 1299435 17949 1242570

Table 5.4: A summary of the total number of relations for each
output sequence of the length N , generated by p31 and p32.
Weight 4 is the total amount and m is the average per position.

N 1− p Algorithm
Number of successful

runs of 25536
Success rate

6500 0.32
LLR 2942(±52) 0.115(±0.002)

LLR mod 3010(±52) 0.118(±0.002)

7500 0.34
LLR 3169(±53) 0.124(±0.002)

LLR mod 3162(±53) 0.124(±0.002)

8500 0.35
LLR 8443(±76) 0.331(±0.003)

LLR mod 8595(±76) 0.337(±0.003)

Table 5.5: Simulation results for p31.

N 1− p Algorithm
Number of successful

runs of 25536
Success rate

8000 0.35
LLR 3364(±55) 0.132(±0.002)

LLR mod 3357(±54) 0.131(±0.002)

9000 0.36
LLR 7372(±73) 0.289(±0.003)

LLR mod 7196(±72) 0.282(±0.003)

10000 0.37
LLR 9250(±77) 0.362(±0.003)

LLR mod 9307(±77) 0.364(±0.003)

Table 5.6: Simulation results for p32.

�Exjobbreport� � 2013/6/11 � 20:27 � page 33 � #39

Chapter6
Conclusion

6.1 About the Excluded Algorithms

Meier and Sta�elbach's Algorithm A, B hard decisions and B soft decisions were
excluded from the simulations for several reasons. A lot of time have, however,
been spent on working with the algorithms and they are a crucial part in the un-
derstanding of fast correlation attacks, and therefore it is worth mentioning why
they were excluded.

Algorithm A was excluded from the simulations because it is not an iterative al-
gorithm. Also the success of the algorithm depends on the existence of at least
L positions independent of each other and the number of bits allowed to be com-
plemented in the last step of the algorithm. Therefore Algorithm A can have
di�erent success rates for the same crossover probability. It will have a high suc-
cess rate, if enough bits are allowed to be complemented, and a low success rate, if
only a few bits are allowed to be complemented, for the same crossover probability.

Algorithm B, both hard and soft decisions, were excluded from the simulations
because of the way these two algorithms is implemented. First of all the amounts
of relations between the positions generated by the implemented preprocessing,
even for a small output sequence, gives a large average number of relations, m,
for a position. If the calculations of the thresholds are implemented as Meier and
Sta�elbach described them in [2]. If the valuem is big, the implementation have to
handle big integers, which this implementation does not. Also the implementation
of the algorithms does only handle relations of weight 3, as Meier and Sta�elbach
described the Algorithm B, and therefore they would not be able to be compared
to the LLR versions of the algorithm, which handles relations of both weight 3
and weight 4.

These three algorithms, or at least Algorithm B hard and soft decisions, could of
course have been properly compared to the LLR versions with a di�erent imple-
mentation approach.

33

�Exjobbreport� � 2013/6/11 � 20:27 � page 34 � #40

34 Conclusion

6.2 About the Implementation

Looking at the implementation of the preprocessing, it is easy to see that it is
not the optimal approach, regarding time e�ciency and the amount of memory
needed. But this approach is guaranteed to generate a large number of relations
for each position and this was a desired property of the implementation.

The �rst phase of the preprocessing is the generation of the pairs used to form the
relations and storing them from the memory to the hard drive. The generation
is performed by two for-loops, which have a time complexity of O(N2) and will
generate approximately N2/2 pairs, where N is the length of the output sequence.
All these pairs then have to be written from the memory to the hard drive, which
will force another iteration over all pairs to be performed, which also has a time
complexity O(N2), given a constant write operation.

The second phase of the preprocessing is the removing of pairs which is not used.
This will �rst make all pairs being read into memory and then iterated over to
temporary remove all relations, which are not part of a weight 4 relation, both
actions have a time complexity of O(N2). Last the temporary removed relations
need to iterate over all N positions and putting back all pairs which are part of
a weight 3 relations, this gives a time complexity of O(R · N), where R is the
temporary removed pairs.

At �rst there will be approximately N2/2 pairs, but this number will be reduced to
approximately N2/2−R = X pairs. If the used feedback polynomial is primitive
and the output sequence is shorter than the period of the LFSR, a X � N2/2 will
be guaranteed.

When a run of Algorithm B LLR or Algorithm B LLR modi�ed is started, they
will �rst need to read all X pairs into memory form the hard drive, which approx-
imately has a time complexity of O(X). Then all the weight 3 relations need to be
handled, which approximately have a time complexity of O(N). Last the weight 4
relations should be handled, which have an approximate time complexity of O(X).

The preprocessing could obviously be improved by using a di�erent method to
generate the pairs. By looking in Table 5.1 and 5.4, one can clearly see that the
generated number of relations is really large. Even if a large number of relations
were desired, this could have been lowered with a di�erent approach. One ap-
proach could, as example, be to set a limit on how many relations a position was
allowed to be a part of. Another approach could have been to implement any of
the methods for generation of parity-check relations, described in [5].

The algorithms do not have any obvious way of improving their performance speed.
The bottleneck here is instead the break condition for a failed simulation. A sim-
ulation fails if it does too many iteration without increasing the correct number
of bits in the output sequence or by hitting the maximum allowed iterations limit.
This means that a failed simulation has to do a lot more work than a successful

�Exjobbreport� � 2013/6/11 � 20:27 � page 35 � #41

Conclusion 35

simulation. The simulation would gain in performance speed by lowering these
two break conditions, but this could increase the number of false negatives in the
results. It would also be possible to gain some performance speed by adding a third
break condition, which compares the number of correct bits in the output sequence
from the last iteration with the number of correct bits in the output sequence for
the current iteration. If the correct number of bits for the current iteration is less
than the number of corrects bits for the last iteration, the simulation should be
counted as a fail. This would, however, increase the number of false negatives in
the result.

An improvement that would bene�t all phases of the program is faster writing to
and reading from the hard drive. This would greatly decrease the time for the
preprocessing phase and it would also decrease the time for an iteration of the
algorithms, when the combination of the feedback polynomial and the length of
the output sequence generates more pairs than the memory can handle at the same
time.

6.3 About the Results

The total number of obtained relations will depend on the output sequence length
and the used feedback polynomial. This means that the algorithms cannot guar-
antee a certain success rate for a crossover probability, when two output sequences
generated by di�erent feedback polynomials are used. This can be seen in Table
5.2 and 5.3 and by looking in Table 5.1, one can see that this is a result of the
di�erence in the total number of relations for the output sequence.

By looking in Table 5.2 and 5.3, one can see that in most of the simulations, with
a feedback polynomial of degree 20, the modi�ed LLR algorithm outperforms the
original LLR algorithm. This di�erence is, however, small and when the total
number of relations is higher than 35799 and one considers the standard deviation
for the success rates of the two algorithms, they do approximate each other.

The simulations with a feedback polynomial of degree 30, give more varying suc-
cess rates and in all but one of the cases, the success rates are in reach of each
other when taking the standard deviations into consideration. This can be seen by
looking in Table 5.5 and 5.6. The reason that the standard deviations are larger, is
due to the smaller number of performed simulations. For the feedback polynomial
p32, sequence length 9000, the original algorithm has a better success rate than
the modi�ed algorithm. Also, the success rates are not in reach of each other when
the standard deviation is considered. Additional simulations for this speci�c case
showed that the gap between the algorithms success rates closes. Because of this,
it should be safe to assume that the original LLR algorithm has been a bit more
lucky in the presented simulation.

The results do suggest, that when a large number of relations between the positions
are used, as in these simulations, the success rate of �nding the initial state for the

�Exjobbreport� � 2013/6/11 � 20:27 � page 36 � #42

36 Conclusion

LFSR is approximately the same for both algorithms. To verify this, however, a
lot more simulations have to be performed. It would especially be needed for the
output sequences generated by the feedback polynomials of degree 30, where only
a small number of simulations have been performed and the standard deviation
is high. Running simulations with feedback polynomials of an even higher degree
would also be suitable, to further compare the algorithms.

The small number of simulations for the feedback polynomials of degree 30 and
that no simulations of feedback polynomials with a degrees higher than 30 was
performed in this thesis was due to time limitations.

�Exjobbreport� � 2013/6/11 � 20:27 � page 37 � #43

References

[1] N. Smart. Cryptography: An Introduction, 3rd Edition. 3:37-48, 115-116.

[2] W. Meier and O. Sta�elbach. Fast Correlation Attacks on Certain Stream
Ciphers. Journal of Cryptology, 1:159-176, 1989. December 19, 2008.

[3] R. G. Gallager. Low-Density Parity-Check codes. IEEE Transaction on In-
formation Theory, 21-28, 1962.

[4] A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-
check equations of weight 4 and 5. In B. Preneel, editor, Advances in
Cryptology-EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science 573-588. Springer-Verlag 2000.

[5] M. Ågren, C. Löndahl, M. Hell and T. Johansson. A Survey on Fast Correla-
tion Attacks. Dept. of Electrical and Information Technology, Lund. 1-30.

37

�Exjobbreport� � 2013/6/11 � 20:27 � page 38 � #44

38 References

�Exjobbreport� � 2013/6/11 � 20:27 � page 39 � #45

AppendixA
Implementation Documentation

A.1 run.c

Contains the main-function and a thread function to print the progress during the
generation of the hash table.

void∗ pr in tS ta tu s () ;

int main (int argc , char∗ argv []) ;

printStatus This function is started in a separate thread and waits
for the user to request the status. To print the status
a single 'u' should be sent as input.

main The main-function, allocates the arrays and the hash
table which are needed for a run of the program.

39

�Exjobbreport� � 2013/6/11 � 20:27 � page 40 � #46

40 Implementation Documentation

A.2 structs.h

Only a header �le, in which all of the structs are declared. All other �les should
include this header.

typedef struct pos i t i on_t pos i t i on_t ;

typedef struct pair_t pair_t ;

typedef struct head_t head_t ;

typedef struct hash_table_t hash_table_t ;

typedef struct buf fe r_t buf fe r_t ;

position_t Represents a position in the output sequence from the
LFSR. The struct contains the following variables:
m The total number of relations this

position is involved in.
h The number of relations this posi-

tion is involved in which are satis-
�ed.

p The probability that this position
has the correct bit value.

g_matrix The corresponding generator ma-
trix column.

llr The log likelihood ratio that this
position hash the correct bit value.

pair_t Represents a pair of positions. The struct contains
the following variables:
next A pointer to the next pair_t

struct.
pos[2] The position pair in this struct.

Always stored as pos[0] <

pos[1].
head_t This struct is used to sort the pair_t structs on their

XOR-ed sum. The struct contains the following vari-
ables:
next A pointer to the next head_t

struct.
first_pair A pointer to the �rst pair_t struct

in a linked list of pairs.
sum The XOR-ed sum of each pair,

pointed to by first_pair.
nbr_of_pairs The total number of pairs in the

linked list first_pair points to.

�Exjobbreport� � 2013/6/11 � 20:27 � page 41 � #47

Implementation Documentation 41

hash_table_t Represents the hash table. The struct contains the
following variables:
size The size of the hash table.
table An array of pointers for each hash

value in the hash table.
buffer_t This struct is used when writing to and reading from

�les. The struct contains the following variables:
file The �lename of the �le which

should be opened, not always used.
nbr_of_pairs The number of pairs this bu�er

holds.
pairs An array of pair_t structs, which

are present in the bu�er.

�Exjobbreport� � 2013/6/11 � 20:27 � page 42 � #48

42 Implementation Documentation

A.3 lfsr.h

Handles the LFSR and BSC functions.

void initLFSR (char∗ poly_path , char∗ state_path , int∗ tap_pos ,
int∗ taps , uint64_t∗ l f s r , int∗ l f s r_ l e n) ;

int nextState (uint64_t∗ l f s r , int∗ tap_pos , int taps ,
int l f s r_ l e n) ;

int BSC(int bit , long double p , int∗ changed) ;

void runLFSR(char∗ poly_path , char∗ state_path , int∗ z_seq ,
int z_len , int∗ tap_pos , int∗ taps , int∗ l f s r_ l en ,
long double p , int∗ a_seq) ;

initLFSR Initiates the LFSR according to the polynomial and
state which the user speci�ed.
poly_path The �lename of the �le describing

the polynomial.
state_path The �lename of the �le describing

the initial state.
tap_pos The array the taps of the feedback

polynomial will be stored in.
taps The number of feedback taps.
lfsr The variable representing the

LFSR.
lfsr_len The length of the LFSR.

nextState Shifts to the next state of the LFSR. Returns the
output bit.
lfsr The variable representing the

LFSR.
tap_pos The array the taps of the feedback

polynomial will be stored in.
taps The number of feedback taps.
lfsr_len The length of the LFSR.

BSC Represents the binary symmetric channel. Returns
the new value of the input bit.
bit The input bit to the BSC.
p The probability positions has the

correct bit value.
changed A counter to keep track of the

number of changed bits.

�Exjobbreport� � 2013/6/11 � 20:27 � page 43 � #49

Implementation Documentation 43

runLFSR Runs the LFSR.
poly_path The �lename of the �le describing

the polynomial.
state_path The �lename of the �le describing

the initial state.
z_seq The array were all output bits from

the BSC will be stored.
z_len The length of the output sequence.
tap_pos The array the taps of the feedback

polynomial will be stored in.
taps The number of feedback taps.
lfsr_len The length of the LFSR.
p The probability positions has the

correct bit value.
a_seq The array were all output bits from

the LFSR will be stored.

�Exjobbreport� � 2013/6/11 � 20:27 � page 44 � #50

44 Implementation Documentation

A.4 position.h

Handles the allocation and removing of the positions. The checking of satis�ed
relations are also done here.

void i n i t P o s i t i o n s (pos i t i on_t ∗∗ po s i t i on s , int z_len ,
long double p) ;

void f r e eP o s i t i o n s (pos i t i on_t ∗∗ po s i t i on s , int z_len) ;

void c h e c kSa t i s f i e d (pos i t i on_t ∗∗ po s i t i on s , int∗ eq , int weight ,
int∗ z_seq) ;

void checkW3(hash_table_t∗ hash_table , pos i t i on_t ∗∗ po s i t i on s ,
int∗ z_seq , int z_len) ;

void checkW4(hash_table_t∗ hash_table , pos i t i on_t ∗∗ po s i t i on s ,
int∗ z_seq) ;

void calculateMeanM (hash_table_t∗ hash_table ,
pos i t i on_t ∗∗ po s i t i on s , int∗ z_seq ,
int z_len , const char∗ path) ;

void r e s e tP o s i t i o n s (pos i t i on_t ∗∗ po s i t i on s , int z_len ,
long double p) ;

void p r i n tPo s i t i o n s (pos i t i on_t ∗∗ po s i t i on s , int z_len) ;

initPositions Allocates and initiates all z_len positions.
positions The array of pointers to all posi-

tions.
z_len The length of the output sequence.
p The probability positions has the

correct bit value.
freePositions Frees all z_len positions.

positions The array of pointers to all posi-
tions.

z_len The length of the output sequence.
checkSatisfied Checks if a relations is satis�ed.

positions The array of pointers to all posi-
tions.

eq The relations which is going to be
checked.

weight The weight of the relation.
z_seq The output sequence with noise.

�Exjobbreport� � 2013/6/11 � 20:27 � page 45 � #51

Implementation Documentation 45

checkW3 Checks and counts weight 3 relations.
hash_table The hash table.
positions The array of pointers to all posi-

tions.
z_seq The output sequence with noise.
z_len The length of the output sequence.

checkW4 Checks and counts weight 4 relations.
hash_table The hash table.
positions The array of pointers to all posi-

tions.
z_seq The output sequence with noise.

calculateMeanM Iterates over the hash table and counts the total num-
ber of relations for each position.
hash_table The hash table.
positions The array of pointers to all posi-

tions.
z_seq The output sequence with noise.
z_len The length of the output sequence.
path The path where the hash table is

stored.
resetPositions Resets the position_t structs variables to their ini-

tial values.
positions The array of pointers to all posi-

tions.
z_len The length of the output sequence.
p The probability positions has the

correct bit value.
printPositions Print the total number of relations for each position.

positions The array of pointers to all posi-
tions.

z_len The length of the output sequence.

�Exjobbreport� � 2013/6/11 � 20:27 � page 46 � #52

46 Implementation Documentation

A.5 preproc.h

Handles the preprocessing, which is �nding relations between the positions by
generating the hash table.

void pr intPreProcStatus () ;

void in itGMatr ix (int z_len , int l f s r_ l en , int∗ tap_pos ,
int taps , pos i t i on_t ∗∗ po s i t i o n s) ;

void makeHashTableLow(int z_len , int∗ tap_pos , int taps ,
int l f s r_ l en , pos i t i on_t ∗∗ po s i t i on s ,
const char∗ path ,
hash_table_t∗ hash_table) ;

void makeHashTable (hash_table_t∗ hash_table ,
pos i t i on_t ∗∗ po s i t i on s , int z_len ,
const char∗ path) ;

void hashExis t s (const char∗ path , bool ∗ make_hash ,
hash_table_t∗ hash_table) ;

void removeUnusedPairs (hash_table_t∗ hash_table ,
pos i t i on_t ∗∗ po s i t i on s , int z_len ,
const char∗ path) ;

void runPreProc (double p , int z_len , pos i t i on_t ∗∗ po s i t i on s ,
int∗ tap_pos , int taps , int l f s r_ l en ,
const char∗ path , hash_table_t∗ hash_table) ;

printPreProcStatus Called by the printStatus-function and prints the
status of the generation of the hash table.

initGMatrix Initializes the generator matrix and store each column
in the corresponding position_t struct.
z_len The length of the output sequence.
lfsr_len The length of the LFSR.
tap_pos The array the taps of the feedback

polynomial will be stored in.
taps The number of feedback taps.
positions The array of pointers to all posi-

tions.

�Exjobbreport� � 2013/6/11 � 20:27 � page 47 � #53

Implementation Documentation 47

makeHashTableLow Generates the hash table for a polynomial with a
weight equal to 2. The function uses the square and
shift method.
z_len The length of the output sequence.
tap_pos The array the taps of the feedback

polynomial will be stored in.
taps The number of feedback taps.
lfsr_len The length of the LFSR.
positions The array of pointers to all posi-

tions.
path The path where the hash table

should be stored on the disk.
hash_table The hash table.

makeHashTable Generates the hash table by making pairs of each com-
bination of positions in the output sequence.
hash_table The hash table.
positions The array of pointers to all posi-

tions.
z_len The length of the output sequence.
path The path where the hash table

should be stored on the disk.
hashExists Checks if there already exists a hash table, otherwise

the necessary �les will be created.
path The path where the hash table is

stored, if it exists.
make_hash The output sequence with noise.
hash_table The hash table.

removeUnusedPairs Removes the pairs which will not contribute to the
computation in the algorithms from the hash table.
The function also merges the smaller hash value �les
to fewer larger �les.
hash_table The hash table.
positions The array of pointers to all posi-

tions.
z_len The length of the output sequence.
path The path were the hash table

should exist and the new �les will
be stored.

�Exjobbreport� � 2013/6/11 � 20:27 � page 48 � #54

48 Implementation Documentation

runPreProc Run the preprocessing.
p The probability a position has the

correct bit value.
z_len The length of the output sequence.
positions The array of pointers to all posi-

tions.
tap_pos The array the taps of the feedback

polynomial will be stored in.
taps The number of feedback taps.
lfsr_len The length of the LFSR.
path The path were the hash table

should exist.
hash_table The hash table.

�Exjobbreport� � 2013/6/11 � 20:27 � page 49 � #55

Implementation Documentation 49

A.6 hash.h

Handles the allocation, freeing and other operations of the hash table.

hash_table_t∗ a l locateHashTable (int l f s r_ l e n) ;

unsigned int hash (hash_table_t∗ hash_table , uint64_t sum) ;

head_t∗ lookupHead (hash_table_t∗ hash_table , uint64_t sum) ;

int addPair (hash_table_t∗ hash_table , uint64_t sum ,
pair_t ∗ new_pair) ;

void emptyHashTable (hash_table_t∗ hash_table ,
pair_t ∗∗ pa i r s_ptr s) ;

void f reeHashTable (hash_table_t∗ hash_table) ;

allocateHashTable Allocates and returns the hash table.
lfsr_len The length of the LFSR.

hash Calculates and returns the hash value for the given
value.
hash_table The hash table.
sum The value which should be hashed.

lookupHead Checks if a certain XOR-ed sum of two pairs is present
in the hash table.
hash_table The hash table.
sum The value which should be check if

it exists in the hash table.
addPair Add a new pair_t struct to the hash table.

hash_table The hash table.
sum The XOR-ed sum of the pair.
new_pair The new pair which should be added to

the hash table.
emptyHashTable Empties the hash table without removing the hash

table itself.
hash_table The hash table.
pairs_ptrs Pointers to the allocated arrays of

pair_t structs which also should
be freed. Set to NULL if no such
arrays exists.

freeHashTable Frees the hash table.
hash_table The hash table.

�Exjobbreport� � 2013/6/11 � 20:27 � page 50 � #56

50 Implementation Documentation

A.7 io.h

Handles the writing to and reading from the disk.

void memoryToDisk (hash_table_t∗ hash_table , char∗ path ,
int r e a d f i l e) ;

void addNbrOfPairs (int∗ nbr_of_pairs , int s t a r t , int end ,
const char∗ path) ;

int r e adF i l e s (hash_table_t∗ hash_table , pos i t i on_t ∗∗ po s i t i on s ,
struct d i r en t ∗∗ f i l e l i s t , int nbr_of_f i l e s ,
int∗ cu r r_ f i l e , int∗ count , const char∗ path ,
pair_t ∗ pairs_ptrs , int pre_proc ,
FILE∗∗ open_f i l e) ;

void c r e a t eF i l e s (int s t a r t , int end , const char∗ path ,
struct d i r en t ∗∗ f i l e l i s t , int∗ nbr_of_pairs ,
int r e a d f i l e) ;

void printHash (hash_table_t∗ hash_table , pos i t i on_t ∗∗ po s i t i on s ,
const char∗ path) ;

memoryToDisk Iterates over the hash table and calls writeBuffer-
function to write the hash table to the disk.
hash_table The hash table.
path The path to were the hash table

should be stored.
readfile The index of the next large �le to

write to during the merging step.
addNbrOfPairs Add the total number of pair_t structs in a �le, at

the top of the �le.
nbr_of_pairs An array with all �les total num-

bers.
start From which index to start writing.
end To which index to end writing.
path The path to the �les.

�Exjobbreport� � 2013/6/11 � 20:27 � page 51 � #57

Implementation Documentation 51

readFiles Calls the readBuffer-function and adds the pair_t

structs to the hash table.
hash_table The hash table.
positions The array of pointers to all posi-

tions.
filelist A list of the �lenames in the cur-

rent directory.
nbr_of_files The number of �les in the current

directory.
curr_file The index of the current �le to

read.
count A counter of the number of �les

read.
path The path to the current directory.
pairs_ptrs An array of pointers to keep track

of the all the arrays allocated by
the readBuffer-function.

pre_proc Tells the function whether or not
the call is made from the prepro-
cessing step.

open_file An array of open �les to read from.
createFiles Creates new �les and reserves the �rst 4 bytes for the

count of the total number of pairs in the �le.
start The index to start at.
end The index to stop at.
path The path were the �les should be

created.
filelist A list of �lenames in the current

directory.
nbr_of_pairs An array of the total number of

pairs in the di�erent �les.
readfile The index of the next large �le to

write to during the merging step.
printHash Iterates over the hash table an prints all values to a

�le placed at the output path.
hash_table The hash table.
positions The array of pointers to all posi-

tions.
path The output path were the �le

should be placed.

�Exjobbreport� � 2013/6/11 � 20:27 � page 52 � #58

52 Implementation Documentation

A.8 a.h

Handles the simulations of Meier and Sta�elbach's Algorithm A.

void printPosWithHighP (pos i t i on_t ∗∗ po s i t i on s , int∗ pos_by_prob ,
int∗ a_seq , int∗ z_seq , int l f s r_ l e n) ;

void getSortedPos (int∗ array , pos i t i on_t ∗∗ po s i t i on s ,
int z_len) ;

void f i n d I n i t S t a t e (pos i t i on_t ∗∗ po s i t i on s , int∗ s tar t_state ,
int∗ z_seq , int z_len , int l f s r_ l en ,
int∗ a_seq , long double p) ;

void runAlgA (int∗ z_seq , int z_len , int taps , int l f s r_ l en ,
long double p , pos i t i on_t ∗∗ po s i t i on s ,
int∗ s tar t_state , int∗ a_seq) ;

printPosWithHighP Prints the lfsr_len positions with the highest prob-
ability.
positions The array of pointers to all posi-

tions.
pos_by_prob The ordered positions.
a_seq The output sequence from the

LFSR without noise.
z_seq The output sequence with noise.
lfsr_len The length of the LFSR.

getSortedPos Sorts the positions according to their probability,
highest �rst.
array The array where the sorted posi-

tions will be stored.
positions The array of pointers to all posi-

tions.
z_len The length of the output sequence.

findInitState Finds the initial state of the LFSR by solving a system
of linear equations.
positions The array of pointers to all posi-

tions.
start_state The array where the initial state

will be stored.
z_seq The output sequence with noise.
z_len The length of the output sequence.
lfsr_len The length of the LFSR.
a_seq The output sequence from the

LFSR without noise.
p The probability a position has the

correct bit value.

�Exjobbreport� � 2013/6/11 � 20:27 � page 53 � #59

Implementation Documentation 53

runAlgA Runs a simulation of algorithm A.
z_seq The output sequence with noise.
z_len The length of the output sequence.
taps The number of feedback taps.
lfsr_len The length of the LFSR.
p The probability a position has the

correct bit value.
positions The array of pointers to all posi-

tions.
start_state The array where the initial state

will be stored.
a_seq The output sequence from the

LFSR without noise.

�Exjobbreport� � 2013/6/11 � 20:27 � page 54 � #60

54 Implementation Documentation

A.9 b.h

Handles the simulations of Meier and Sta�elbach's Algorithm B, both the soft
decisions and the hard decisions version.

void computeCoeff (unsigned long long∗∗ tab le , int max) ;

void computeThresholds (long double p , int l f s r_ l en , int taps ,
int∗ N_thr , long double∗ P_thr ,
int z_len) ;

void runAlgBSoft (int∗ z_seq , int z_len , int taps , int l f s r_ l en ,
long double p , pos i t i on_t ∗∗ po s i t i on s ,
hash_table_t∗ hash_table , const char∗ path ,
int∗ a_seq) ;

void runAlgBHard (int∗ z_seq , int z_len , int∗ tap_pos , int taps ,
int l f s r_ l en , long double p ,
pos i t i on_t ∗∗ po s i t i on s ,
hash_table_t∗ hash_table , const char∗ path ,
int∗ a_seq) ;

computeCoeff Computes the binomial coe�cients up to max and
stores them in a table.
table The binomial coe�cients table.
max The max of the table.

computeThresholds Computes the thresholds needed in algorithm B.
p The probability a position has the

correct bit value.
lfsr_len The length of the LFSR.
taps The number of feedback taps.
N_thr The threshold for the number of

changed positions.
P_thr The threshold for the probability.
z_len The length of the output sequence.

runAlgBSoft Runs a simulation of algorithm B soft decisions.
z_seq The output sequence with noise.
z_len The length of the output sequence.
taps The number of feedback taps.
lfsr_len The length of the LFSR.
p The probability a position has the

correct bit value.
positions The array of pointers to all posi-

tions.
hash_table The hash table.
path The path to where the hash table

exists.
a_seq The output sequence from the

LFSR without noise.

�Exjobbreport� � 2013/6/11 � 20:27 � page 55 � #61

Implementation Documentation 55

runAlgBHard Runs a simulation of algorithm B hard decisions.
z_seq The output sequence with noise.
z_len The length of the output sequence.
tap_pos The array the taps of the feedback

polynomial will be stored in.
taps The number of feedback taps.
lfsr_len The length of the LFSR.
p The probability a position has the

correct bit value.
positions The array of pointers to all posi-

tions.
hash_table The hash table.
path The path to where the hash table

exists.
a_seq The output sequence from the

LFSR without noise.

�Exjobbreport� � 2013/6/11 � 20:27 � page 56 � #62

56 Implementation Documentation

A.10 bllr.h

Handles the simulations of the LLR versions of Algorithm B.

void weight3LLR (hash_table_t∗ hash_table ,
pos i t i on_t ∗∗ po s i t i on s , int z_len ,
long double∗ new_llr) ;

void weight4LLROrg (hash_table_t∗ hash_table ,
pos i t i on_t ∗∗ po s i t i on s ,
long double∗ new_llr) ;

void weight4LLRMod(hash_table_t∗ hash_table ,
pos i t i on_t ∗∗ po s i t i on s ,
long double∗ new_llr) ;

void runAlgBLLR(int∗ z_seq , int z_len , int l f s r_ l en ,
long double p , pos i t i on_t ∗∗ po s i t i on s ,
int∗ a_seq , const char∗ path ,
hash_table_t∗ hash_table) ;

void runAlgBLLRModified (int∗ z_seq , int z_len , int l f s r_ l en ,
long double p , pos i t i on_t ∗∗ po s i t i on s ,
int∗ a_seq , const char∗ path ,
hash_table_t∗ hash_table) ;

weight3LLR Calculates the LLR value for weight 3 relations.
hash_table The hash table.
positions The array of pointers to all posi-

tions.
z_len The length of the output sequence.
new_llr An array to store the new LLR val-

ues in.
weight4LLROrg Calculates the LLR value for weight 4 relations ac-

cording to the original approach.
hash_table The hash table.
positions The array of pointers to all posi-

tions.
new_llr An array to store the new LLR val-

ues in.
weight4LLRMod Calculates the LLR value for weight 4 relations ac-

cording to the modi�ed approach.
hash_table The hash table.
positions The array of pointers to all posi-

tions.
new_llr An array to store the new LLR val-

ues in.

�Exjobbreport� � 2013/6/11 � 20:27 � page 57 � #63

Implementation Documentation 57

runAlgBLLR Run a simulation of the original LLR approach.
z_seq The output sequence with noise.
z_len The length of the output sequence.
lfsr_len The length of the LFSR.
p The probability a position has the

correct bit value.
positions The array of pointers to all posi-

tions.
a_seq The output sequence from the

LFSR without noise.
path The path to where the hash table

exists.
hash_table The hash table.

runAlgBLLRModified Run a simulation of the modi�ed LLR approach.
z_seq The output sequence with noise.
z_len The length of the output sequence.
lfsr_len The length of the LFSR.
p The probability a position has the

correct bit value.
positions The array of pointers to all posi-

tions.
a_seq The output sequence from the

LFSR without noise.
path The path to where the hash table

exists.
hash_table The hash table.

�Exjobbreport� � 2013/6/11 � 20:27 � page 58 � #64

58 Implementation Documentation

A.11 calculation.h

Handles di�erent calculations.

long double LLR(void∗ pos_or_val , int nbr_of_pos ,
pos i t i on_t ∗∗ po s i t i o n s) ;

long double computeS (long double∗∗ probs , int t) ;

int computeM(int N, int k , int t) ;

long double computePStar (long double p , long double s , int h ,
int m) ;

LLR Calculates the LLR sum value for the given LLR val-
ues or the given positions.
pos_or_val Either an array of LLR values or

an array of positions.
nbr_of_pos The number of LLR values or po-

sitions in the array.
positions The array of pointers to all posi-

tions. This is set to NULL if the
array contains LLR values.

computeS Calculates the s value, which algorithm A and B
needs.
probs The probabilities for the positions

in the relation.
t The number of probabilities in

probs.
computeM Calculates an approximation of the total number of

relations for each position.
N The length of the LFSR output se-

quence.
k The length of the LFSR.
t The number of feedback taps.

computePStar Calculates the new probability for a position.
p The current probability for the po-

sition.
s The s value for the probabilities

of the positions in relations to the
current position.

h The total number of satis�ed rela-
tions for the current position.

m The total number of relations for
the position.

�Exjobbreport� � 2013/6/11 � 20:27 � page 59 � #65

Implementation Documentation 59

A.12 util.h

Functions used in di�erent source �les.

const char∗ pr intBinary (uint64_t x , int nbr_of_bits) ;

void∗ xmalloc (s i ze_t s i z e) ;

void openManyFiles (FILE∗∗ f , struct d i r en t ∗∗ f i l e l i s t ,
int nbr_of_f i l e s , const char∗ path) ;

printBinary Prints the binary representation of the given integer
x.
x The integer to print in binary form.
nbr_of_bits The number of bits of the integer

to print.
xmalloc Allocates memory and returns a pointer to it. It also

handles out of memory errors.
size The size of the memory which

should be allocated.
openManyFiles Open all �les in the directory path listed in filelist.

f An array where the pointers to the
open �les will be placed.

filelist A list of all the �les in a directory.
nbr_of_files The number of �les in filelist.
path The path to the directory where

the �les are located.

