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Abstract

For space applications a circular polarization equivalent of a Dual Grid-
ded Reflector (DGR) would be desirable. Such a structure could be created
using Circular Polarization Selective Surfaces (CPSS). In this thesis, various
CPSS designs are examined and evaluated for this purpose. The surfaces
are evaluated based on how wide a bandwidth can be achieved while stay-
ing within requirements on Insertion Loss (IL), Return Loss (RL) and Axial
Ratio (AR) as previously used by the European Space Agency (ESA).

The report covers background information on circular polarization, scat-
tering parameters and general CPSS notation that is needed to understand
the work as well as more information on the structure requirements. Previ-
ously proposed CPSS concepts by Pierrot, Tilston and Morin are explained
and a few different implementations based on these concepts are simulated.

The surfaces are designed at 10 GHz and simulated for 8−12 GHz. Each
of the structures are simulated for normal incidence as well as for oblique
incidence at up to 30◦. For the oblique incidence various incidence planes are
also examined. The result for each of the simulated structures is presented.

The results are summarized and based on the results it is concluded that
the CPSS structures have quite a small bandwidth limited mainly by the
AR and that for oblique angles greater than 10◦ − 20◦ the performance of
most of the structures is greatly reduced.
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1 Introduction

When sending information using electromagnetic waves the available frequency
bands are limited and it is often desirable to maximize the amount of information
sent. One way to do this is to utilize the polarization of the waves to send two
channels at the same frequency. By using two orthogonal polarizations it is possible
to efficiently separate between the two channels using differently polarized receiver
antennas.

Figure 1: Two sets of transmitter and receiver antennas. At the top the receiver is oriented to
receive vertical polarization while at the bottom it is oriented for horizontal polarization. As the
transmitted signal is vertically polarized only the top one will receive the signal.

Depending on the implementation either linear or circular polarization can be
used. Linear polarization is simple and well understood and changing between
polarizations is achieved by rotating the antenna 90◦. This however means that
to receive a certain polarization the transmitting and receiving antenna must be
aligned as demonstrated in Figure 1 [5, pp. 119-120]. If one can see the transmitter
as in Figure 1 then achieving this alignment is not a big problem, however when
trying to communicate with satellites in space that cannot be seen, it is difficult to
set up and maintain proper alignment. Instead circular polarization is preferred,
as there is no need to align the transmitter and the receiver [5, pp. 122-123]. The
receiving antenna must instead be specifically designed to receive (or transmit) Left
Hand Circular Polarization (LHCP) or Right Hand Circular Polarization (RHCP)
and the antennas must simply be pointed at each other.

1



Figure 2: An antenna arrangement using two solid reflectors (left) and an arrangement using a
single CPSS reflector to separate the polarizations (right). Figure based on concepts from [14].

A simple configuration to receive two different polarizations on a satellite can be
seen on the left in Figure 2. In this arrangement a plane wave containing both
polarizations is focused using two solid parabolic dish reflectors onto two different
receiving antennas, one which will pick up the LHCP signal and one the RHCP
signal. This is however a large and heavy arrangement using two reflectors, so
instead a system as can be seen on the right would be preferred.

In this arrangement a two layered reflector would be used [14]. The first layer
would reflect one polarization onto the suitable antenna, while at the same time be
invisible to the other polarization. The other layer would then focus the remaining
polarization onto the other antenna. For linear polarization this could be achieved
using a Dual-Gridded Reflector (DGR). A DGR however does not work for circular
polarization and so creating a DGR equivalent would be desirable [6].

One way to do this would be to make the reflector out of a Circular Polariza-
tion Selective Surface (CPSS) which ideally would function exactly as desired:
one polarization would be completely reflected by the surface and one would be
completely transmitted. Such surfaces can be constructed [13], however whether
their performance is good enough to construct a proper reflector out of them is
unclear.

Using performance requirements used by the European Space Agency (ESA) [14]
this thesis will attempt to evaluate different CPSS designs to see how well they
might function for space applications. How practical the design is from a realization
point of view will also to some extent be part of the evaluation.
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2 Background

In this section some of the background theory needed to understand the thesis work
is detailed. First there is a section on circular polarization which summarizes the
basics on how it is defined. This part will also review how oblique incidence is
handled.

In the next section the S-parameters used to evaluate the different surfaces are
explained. Then a more in-depth definition of CPSS is given together with ba-
sic definitions and conventions. In the final section there is a run-down of the
structure requirements used to evaluate the CPSS designs, giving the basic CPSS
requirements as well as a description of how such a surface could be used and what
other alternative approaches could be viable.

Much of the theory in this section is based on the presentation given in [12].

2.1 Circular Polarization

If a time-harmonic wave moves forward in the positive z-direction it can be defined
as:

E+(z, t) = E0e
j(ωt−kz)

E0 = A+x̂ +B+ŷ
(2.1)

where A+ and B+ are complex constants. The field is complex valued and so the
physical wave is represented by E = Re(E+). The direction the E-field points in
determines the polarization. If either A+ or B+ is 0 then the field will only be
oscillating in either the x̂- or the ŷ-direction giving a linear polarization. However
in the case where A+ 6= 0 and B+ 6= 0 the field could, for a fixed value of z, be
tracing a fixed line, a circle or an ellipse.

Expanding the A+ and B+ constants into their polar form they become A+ = Aejφa

and B+ = Bejφb where A and B are positive magnitudes and φa and φb are phases.
This gives the complete field:

E+(z, t) = (x̂Aejφa + ŷBejφb)ej(ωt−kz) = x̂Aej(ωt−kz+φa) + ŷBej(ωt−kz+φb) (2.2)

By using Euler’s Formula (ejx = cos(x)+j sin(x)), E = Re(E+) then becomes:

E(z, t) = A cos(ωt− kz + φa)x̂ +B cos(ωt− kz + φb)ŷ (2.3)
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If z is then fixed at a specific value, for example z = 0 it becomes:

E(t) = A cos(ωt+ φa)x̂ +B cos(ωt+ φb)ŷ (2.4)

Figure 3: A) Linear polarization, A = B,φa = φb B) Linear polarization, A 6= B,φa = φb
C) Circular polarization, A = B,φa = φb ± π

2 D) Elliptical polarization

The relation between A,B, φa and φb determines the polarization state. The dif-
ferent states can be seen in Figure 3. As long as φa = φb the polarization is linear.
If A = B and φa = φb ± π

2
the polarization is circular and if none of these cases

apply some form of elliptical polarization is achieved.

Assuming the polarization is circular, the exact relation between φa and φb will
determine the direction of the rotation. If for example A = B, φa = 0 and φb = π

2

then the E-field becomes:

E(t) = A cos(ωt)x̂ + A cos(ωt+
π

2
)ŷ = A cos(ωt)x̂− A sin(ωt)ŷ (2.5)

which represents clockwise rotation around the unit circle in the xy-plane. Simil-
arly for A = B, φa = 0 and φb = −π

2
the E-field becomes:

E(t) = A cos(ωt)x̂ + A cos(ωt− π

2
)ŷ = A cos(ωt)x̂ + A sin(ωt)ŷ (2.6)

which represents counter-clockwise rotation. These two types of rotation are called
right and left hand circular polarization (RHCP and LHCP). It is not trivial to de-
termine which is which though. In this thesis the IEEE convention is used. Accord-
ing to this convention, if the wave is viewed in the direction of propagation (that
is, the wave propagates away from the viewpoint) then a clockwise rotation cor-
responds to RHCP and counter-clockwise rotation corresponds to LHCP [2].

So far the E-field has been represented using x and y components. When dealing
with circular polarization it makes sense to introduce new unit vectors, specifically
dealing with RHCP and LHCP.
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Going back to the complex form, the E-field for a circularly polarized wave be-
comes:

E+(z, t) = Aej(ωt−kz+φa)x̂ + Aej(ωt−kz+φa±
π
2
)ŷ

= A(x̂ + ŷe±j
π
2 )ej(ωt−kz+φa) = A(x̂± jŷ)ej(ωt−kz+φa) (2.7)

The new unit vectors can then be easily found as:

ê+ =
x̂− jŷ√

2
ê− =

x̂ + jŷ√
2

(2.8)

Which then relates back to xy-coordinates as:

x̂ =
ê+ + ê−√

2
ŷ = j

ê+ − ê−√
2

(2.9)

For a wave that moves in positive z-direction, the ê+ vector corresponds to RHCP
while the ê− vector corresponds to LHCP, and vice versa for a wave moving in the
negative z-direction.

2.2 Oblique incidence

Not all waves will necessarily hit at normal incidence, it is also possible to have
oblique incidence. In order to determine how an oblique wave hits a surface two
angles, θ and ϕ, are defined as in Figure 4.

θ determines the angle of incidence of the incoming wave, while ϕ determines
which incidence plane the wave is travelling in. It is possible for two waves to
have the same angle of incidence but be in different incidence planes, as shown in
Figure 5 where incidence in the xz-plane (ϕ = 0◦) and the yz-plane (ϕ = 90◦) are
shown.

It is also possible to define a relation between circular and linear polarization as
demonstrated in Section 2.1 for oblique incidence. If a wave, instead of propagating
along the z-axis, propagates at an angle θ to the z-axis it will trace an ellipse
instead of a circle. If, for example, the wave propagates in the xz-plane (ϕ = 0◦)
the relation becomes:
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Figure 4: Definition of the θ and ϕ angles.

Figure 5: Demonstration of incidence planes. Two waves are hitting the sphere with the same
incidence angle θ but in different incidence planes.

ê+ =
x̂ cos(θ)− jŷ√

2
ê− =

x̂ cos(θ) + jŷ√
2

(2.10)

x̂ =
ê+ + ê−√

2 cos(θ)
ŷ = j

ê+ − ê−√
2

(2.11)

Using the same reasoning it is also possible to get the relation for incidence in
other planes.
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2.3 S-Parameters

When dealing with a large and complex system it can be difficult to characterize
it in terms of its individual components, often those components might not even
be known or well defined. A more simple way to define the system is to treat it as
a black box, that is, to only be concerned about the inputs and the outputs.

Figure 6: A two-port network with Ein
1 , E

in
2 , E

out
1 and Eout

2 representing incoming and outgoing
waves.

A black box can have any number of input and output ports however a common
one is the two-port as can be seen in Figure 6. In this simplified model where the
polarization of the fields are not considered the network has two ports, one on the
left and one on the right and each port can have a wave going into the black box
and one going out of it.

The relation between the waves are defined by the scattering matrix where each
element is known as a scattering parameter or S-parameter. The scattering matrix
for the two-port in Figure 6 can be seen below:

(
Eout

1

Eout
2

)
=

(
S11 S12

S21 S22

)(
Ein

1

Ein
2

)
(2.12)

This gives the relationship between the waves as follows:

Eout
1 = S11E

in
1 + S12E

in
2

Eout
2 = S21E

in
1 + S22E

in
2

(2.13)

However, measurement of S-parameters are supposed to be done by sending one
wave at a time, and connecting a matched load to the other input. This means
that the S-parameters become defined as:
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S11 =
Eout

1

Ein
1

∣∣∣∣
Ein

2 =0

S21 =
Eout

2

Ein
1

∣∣∣∣
Ein

2 =0

S12 =
Eout

1

Ein
2

∣∣∣∣
Ein

1 =0

S22 =
Eout

2

Ein
2

∣∣∣∣
Ein

1 =0

(2.14)

S11 and S22 are generally known as reflection coefficients as they describe the rela-
tion between the reflected and incident wave. S12 and S21 are similarly known as
transmission coefficients since they describe the relation between the transmitted
and incident wave.

Figure 7: A four-port network treating LHCP and RHCP polarizations as different waves.

For measurements in this thesis, S-parameters will be used to measure the differ-
ence between the incoming and outgoing E-field. However, since it is important
to differentiate between the polarizations, each field now has to be treated as two
different inputs making the whole system a 4-port as seen in Figure 7 where the
total E-fields are divided into LHCP and RHCP fields:

Eout
1 = ER

1 ê− + EL
1 ê+ (2.15)

Eout
2 = ER

2 ê+ + EL
2 ê− (2.16)

Ein
1 = ER

10ê+ + EL
10ê− (2.17)

Ein
2 = ER

20ê− + EL
20ê+ (2.18)

This four-port then gives a 4x4 scattering matrix as:
ER

1

EL
1

ER
2

EL
2

 =


SRR
11 SRL

11 SRR
12 SRL

12

SLR
11 SLL

11 SLR
12 SLL

12

SRR
21 SRL

21 SRR
22 SRL

22

SLR
21 SLL

21 SLR
22 SLL

22



ER

10

EL
10

ER
20

EL
20

 (2.19)
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where the scattering parameters are defined as Sklmn = Ek
m/E

l
n0, assuming that

El
n0 is the only input field. For example SRL

12 = ER
1 /E

L
20. While the matrix is

significantly larger than the 2x2 case, the fundamentals are still the same, such that
S12 and S21 parameters are transmission. coefficients and S11 and S22 parameters
are reflection coefficients. For example, SRR

11 represents a reflection coefficient for
an incident wave at port 1 with an RHCP polarization where the reflected wave
also has RHCP polarization.

While the S-parameters are a powerful tool when analysing a system, they are
often manipulated to more clearly show results that are of interest. The following
definitions are used in this thesis.

2.3.1 Return loss (RL)

The return loss is defined as the ratio in decibels of the power of a wave incident to
a discontinuity relative to the power of the wave reflected by the discontinuity [1].
Using S-parameters the RL is defined as:

RL = −20 log10

(∣∣Sklmm∣∣) (2.20)

Often the return loss is only interesting for co-polarized components (l = k) as
this represents a more pure reflection. As can be seen in the definition, the return
loss is always a positive value unless the reflected wave has more power than the
incident wave, which is only possible with an active system.

2.3.2 Insertion loss (IL)

The insertion loss is defined as the ratio of the power transmitted between two ports
before the insertion of a load between them relative to the power transmitted after
the load is inserted [1]. In terms of S-parameters it is defined as:

IL = −20 log10

(∣∣Skkmn∣∣) ,m 6= n (2.21)

As with the return loss, the IL is positive unless the system is active and works as
an amplifier.

2.3.3 Axial ratio (AR)

The axial ratio refers to the ratio between the major and minor axis of the polar-
ization ellipse [2]. In the case of fully circular polarization the major and minor
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axes are the same and the AR is 1 (0 dB), otherwise it represents how elliptical
the polarization is. Since mixing RHCP and LHCP results in an overall elliptical
polarization the AR is a good way of measuring how pure the polarization is.

Assuming the major(A) and minor(B) axes are known, the AR would be defined
as A/B. Considering the complex wave E = ERê+ +ELê−, the Stokes parameters
provide a way to link the magnitudes of the wave to its major and minor axes and
eventually calculating the AR. The Stokes parameters are defined as follows [8,
p. 301]:

I = |EL|2 + |ER|2 , Q = 2Re (E∗REL) , U = 2Im (E∗REL) , V = |EL|2 − |ER|2
(2.22)

Combing the Stokes parameters with Ip =
√
Q2 + U2 + V 2, the total polarization

intensity and L = Q+ jU , the complex intensity of linear polarization, the major
and minor axes can be found as [12, p. 50]:

A =

√
1

2
(Ip + |L|) B =

√
1

2
(Ip − |L|) (2.23)

The axial ratio can then be calculated by:(
A

B

)2

=

√
Q2 + U2 + V 2 +

√
Q2 + U2√

Q2 + U2 + V 2 −
√
Q2 + U2

=

√
1 + α + 1√
1 + α− 1

(2.24)

where α is defined as (assuming El
n0 as the input wave):

α =
V 2

Q2 + U2
=

(∣∣Sklmn∣∣2 − ∣∣Sllmn∣∣2)2
[2Re((Sklmn)∗ Sllmn)]

2
+ [2Im((Sklmn)∗ Sllmn)]

2

=

(∣∣Sklmn∣∣2 − ∣∣Sllmn∣∣2)2
[2 (Sklmn)∗ Sllmn]

2 =
1

4

(∣∣∣∣SklmnSllmn

∣∣∣∣− ∣∣∣∣SllmnSklmn

∣∣∣∣)2

(2.25)

where k 6= l must apply. If m = n the AR refers to reflection and if m 6= n it
refers to transmission. Note that whether Sklmn corresponds to ER or EL depends
on whether the incoming wave El

n0 is LHCP or RHCP. Due to the symmetry and
the square however, the placement of the complex conjugate is not a factor hence
this can be safely ignored. The axial ratio in dB can be given as:

AR = 20 log10

(
A

B

)
, k 6= l (2.26)
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An alternative way to measure the polarization purity is by using the Cross-
polarization discrimination (XPD) which is defined as the ratio of the average
received power of the desired polarization (co-polarized) relative to the average
received power of the undesired one (cross-polarization) [10] and can be calculated
as:

XPD = 20 log10

(∣∣∣∣SkkmnSklmn

∣∣∣∣) , k 6= l (2.27)

The XPD is generally equivalent to the AR when measuring polarization purity,
however in this thesis only AR will be used.

2.4 CPSS

A circular-polarization-selective surface (CPSS) is defined as a surface which will
reflect one circular polarization (left or right) while at the same time be transparent
to the other polarization [14]. How to design a CPSS is not trivial, and in fact it
has been argued that such a surface cannot be physically realized [4, pp. 322-323]
although this was later disproved in [13]. Actual designs on how to construct a
CPSS however are described in Section 3 as this section will only deal with the
basic definitions of how a CPSS should behave.

The definition of a CPSS does not state which polarization should be reflected
and which should be transmitted. To make the distinction more clear a CPSS
which reflects LHCP polarized waves will be referred to as a left-hand circular-
polarization-selective surface (LHCPSS). Similarly a CPSS which reflects RHCP
is called an RHCPSS. Aside from the difference in which polarization the two
should function identically, so for simplicity the rest of the definitions will assume
an LHCPSS structure is used.

The CPSS definition does not state specifics of what happens to a wave after it
has been reflected or transmitted, as such four different types of CPSS can be
envisioned [13]. The different types for an LHCPSS can be seen in Figures 8-
11.

For type A and B the handedness of the reflected wave remains the same as
the incident one while it changes for type C and D. The reciprocity principle
of electromagnetism states that for a reciprocal structure, the operation remains
unchanged if the direction is reversed but the polarization remains the same. This
can be seen to apply for type A and B, but not for C and D. Therefore A and B
are referred to as reciprocal while C and D are non-reciprocal.

For the reciprocal structures, type A reflects LHCP both from the right and from
the left, and any transmitted wave maintains its handedness. For type B on the
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Figure 8: The operation of a reciprocal - symmetrical LHCPSS (Type A).

Figure 9: The operation of a reciprocal - asymmetrical LHCPSS (Type B).

Figure 10: The operation of a non-reciprocal - symmetrical LHCPSS (Type C).

Figure 11: The operation of a non-reciprocal - asymmetrical LHCPSS (Type D).
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other hand, the handedness of a transmitted wave changes, and the left and right
side reflects different polarizations. Due to this difference, type A is referred to as
symmetrical, while type B is asymmetrical.

Using a similar definition for the non-reciprocal structures, for type C a trans-
mitted wave maintains its handedness while it does not for type D. Based on the
similarities with the reciprocal case type C is called symmetrical while type D is
called asymmetrical.

While there are potential usages of the non-reciprocal surfaces, the fact that they
result in non-reciprocal scattering implies that they are not reciprocal devices [13]
and cannot be made of only reciprocal materials such as metallic wires. This is
problematic when trying to design a simple structure for space applications. For
the reciprocal surfaces however, there are currently no previously suggested designs
for a reciprocal-asymmetric (type B) surface. As such, only reciprocal-symmetrical
CPSS structures are examined and unless otherwise stated, whenever a CPSS is
mentioned it will refer to the reciprocal-symmetrical variety.

2.5 Structure requirements

The requirements set for the CPSS surface is based on ideas from the European
Space Agency (ESA) on how such a surface could be used [6, 14]. Currently
the main problem is that while circular polarization is very practical for space
applications, two separate solid reflector antennas have to be used on the satellite
to separate between the two channels (as was previously seen in Figure 2).

For linear polarization a structure known as a dual-gridded reflector (DGR) can be
used to separate two orthogonal polarizations and focus them at different points,
as illustrated in Figure 12. If an equivalent structure could be designed for circular
polarization there would be several advantages. For example, by combining the
two solid reflectors into a single unified one the size and weight is reduced. Another
advantage is that by separating the polarizations before they reach the antenna the
polarization purity of the signal is increased which reduces the cross-talk between
the two channels.

To create a DGR-like reflector for circular polarization ESA has suggested three
different approaches using CPSS surfaces [6]. These can be seen in Figure 13.
Two of the suggestions use non-reciprocal CPSS surfaces which as explained in
Section 2.4 is not suitable for space applications. As such, the most appropriate
CPSS based suggestion is type A in Figure 13.

Since the CPSS will be used to form a parabolic dish, waves will not hit it at
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Figure 12: The two polarizations P1 and P2 are reflected in different directions by the DGR.

Figure 13: Circular polarization equivalent of a DGR using A) two reciprocal - symmetrical
CPSS surfaces B) one reflector and one non-reciprocal - symmetrical CPSS C)one reflector and
one non-reciprocal - asymmetrical CPSS.

normal incidence. The dish might be angled such that waves hit the center at,
for example, a 20◦ angle. The surface must therefore be able to function even for
oblique angles. Additionally each part of the wave will not hit at the same angle,
so the surface must also be able to handle variance around the center angle. There
are no set requirements here as they depend on the implementation of the dish
in the broader antenna system, however the greater variance that can be achieved
the more freedom is allowed when designing the dish. In an application to ESA
there are a few different proposals for how the full system could look [7]. In this
application, the largest angle of incidence in a proposed concept is 36.9◦ while
most of the concepts were in the 20◦ − 30◦ span. For the sake of simplicity, each
design in this thesis will be tested at up to 30◦.
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Additionally, the smallest variance in angle of incidence was 13.6◦, as such it is
considered that the designs must at least be capable of a 10◦ angle of incidence to
be able to have any usage.

Another requirement is that the CPSS should be made of materials practical for
usage in space. Ideally the surface would be made only out of metals although
some dielectric materials can also be used.

There are also requirements when it comes to the reflective and transmissive prop-
erties of the CPSS. While actual performance requirements are set not for the
CPSS surface alone but for the entire system [6], ESA themselves have been work-
ing on well defined requirements of an IL and RL lower than 0.5 dB. Since the
surface is supposed to give greater polarization purity, there is also a requirement
of an AR lower than 0.75 dB [14]. These requirements will form the basis of the
evaluation of the CPSS surfaces examined in this thesis.

While there are several different frequency bands where the surfaces could oper-
ate, in ESA’s previous CPSS tests they designed it to function around 10 GHz [14].
There were no bandwidth requirements, rather it was desired to get as great band-
width as possible. Based on this, in this thesis the designs will be examined
between 8− 12 GHz with no minimum bandwidth requirements but with a goal to
get it as large as possible.

As a final requirement, each of the CPSS structures will consist primarily of thin
metal wires and in order to ensure some structural stability the wire diameter,
called a, must be at least 0.2 mm. All of the goals and requirements stated above
can be summarized as:

• IL ≤ 0.5 dB

• RL ≤ 0.5 dB

• AR ≤ 0.75 dB

• IL, RL and AR bandwidth should be as wide as possible

• The structures should be examined at up to 30◦ angle of incidence

• The structures should be able to handle at least 10◦ variance in angle of
incidence

• The structures will be designed for operation at 10 GHz(λ = 30 mm) and
simulated for 8− 12 GHz

• The wire diameter, a, must be at least 0.2 mm
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Figure 14: Three concepts using polarizers instead of CPSS surfaces [3].

As an aside, while the CPSS solution is the one that is of interest in this thesis it
is not the only possible structure that ESA proposes. Another possible solution is
to use polarizers to go from circular to linear polarization and do the polarization
selection in linear polarization where such operations are easier [6]. A few proposed
concepts can be seen in Figure 14. Such solutions are perhaps not as elegant as
a CPSS one and the placement of the polarizer can be problematic. However as
polarization selection is more well understood in linear polarization it might lead
to a more robust solution.

Another proposed use of polarizers is to use them to create a CPSS by first using
a polarizer to switch to linear polarization, then doing the polarization selection
and finally have another set of polarizers to switch back to circular polarization.
Such a CPSS has previously been made [9], a problem with this design however
is that each polarizer actually need to consist of several cascaded polarizer layers
in order to achieve proper polarization purity. This means that the full CPSS
becomes significantly thicker than using a single inherently selective surface.

2.6 Simulation software

To evaluate the different CPSS designs they will be simulated using the commer-
cial software CST Microwave Studio (CST Computer Simulation Technology AG,
http://www.cst.com/). The simulation method used by CST is the Finite Integra-
tion Technique (FIT) [16], although in the frequency domain the implementation
is very similar to the Finite Element Method (FEM) as described in [15]. The
method works by solving Maxwell’s equation in their integral form unlike many
other numerical methods which solve them in their differential form [16]. Expli-
citly, the equations on integral form are given by:
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∮
∂S

E · dr = −
∫
S

∂B

∂t
· dS

∮
∂V

D · dS =

∫
V

ρ · dV

∮
∂S

H · dr =

∫
S

(
∂D

∂t
+ J

)
· dS

∮
∂V

B · dS = 0

(2.28)

In order to solve these equations numerically, a finite calculation domain must be
defined such that it encloses the considered problem. In order to do this CST
creates a mesh of the domain and the structure, and then formulates Maxwell’s
equations for each cell separately. This can then be summarized into a large matrix
problem to solve for the entire domain.

Figure 15: The smooth wire on the left has been meshed by CST for the simulation.

Due to the discrete mesh there are numerical inaccuracies introduced. How large
these errors are depends on the complexity of the simulated structure and on how
fine the meshing is. How fine the mesh should be then becomes a balancing act
between available memory, simulation time and acceptable error size. In order to
improve the results and performance CST does have certain tools to improve the
meshing, there is for example an adaptive mesh option which will estimate the
error during the simulation and then improve the mesh in areas where the error
is estimated to be high. CST does provide guidelines for mesh settings which are
followed for all of the simulations in the results.

CST Microwave Studio provides two different solvers for calculating the S-parameters,
the Transient Solver and the Frequency Domain Solver. The Frequency Domain
Solver is recommended for use in, among other, cases with unit cell boundaries.
Since each of the CPSS designs examined are unit cells in a larger periodic struc-
ture this is the solver used. In a sweep over several frequencies, the solver will
solve the problem for one frequency at the time and chooses which frequencies to
compute adaptively and interpolates the others.

A useful feature of CST is that it allows for post processing of all calculated data.
This means that it is possible to calculate the IL, RL and AR from the S-parameters
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as specified in Section 2.3 directly in CST without the need to first export them
to an outside program. This post processing is also useful to define goals for the
built in optimizer. By defining goals to keep the IL, RL and AR below the defined
limits CST can optimize the system more efficiently than manual iteration. CST
offers several different optimization algorithms, the one used is the default Trust
Region Framework which CST claims is the most modern.

There are several different settings available in CST not mentioned in this sec-
tion. In general if a setting is not mentioned then it has been left to its default
value.

During most of the work, CST’s internal post processing was used to examine
the S-parameters, however at the end there was a need to export the final S-
parameters for external processing. While the theoretical scattering matrix for
circular polarization can be seen in Equation (2.19), it is not certain that the
scattering matrix exported by CST is organized like this.

In order to verify the element numbering of the S-matrix from CST, a linear
polarizer was simulated. Since such a shape has a well known theoretical S-matrix.
In [14] a Pierrot cell with well explained dimensions was experimentally tested and
IR, RL and AR data was provided. By recreating and simulating this cell in CST
combined with the linear polarizer it was possible to figure out the transformation
needed to rearrange the exported matrix into the theoretical one. More information
on the verification can be found in Appendix A.
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3 CPSS designs

In this section various CPSS concepts will be explained. First in sub-section 3.1
three previously proposed designs will be introduced in their purest form and the
basic theory of how they work will be explained. In Section 3.2 various implement-
ations of these basic concepts are introduced. The implementation includes basics
such as which parameter of the design can be altered, but also some alternative
designs based on the basic concepts. The designs introduced in this sub-section
are the ones that will be simulated later.

Each of the concepts introduced will consist of small cells each working as a CPSS.
The full surface however will consists of several of these cells repeated in order to
cover a large area.

3.1 Basic concepts

3.1.1 Pierrot

The oldest known design was first introduced by Pierrot in a French patent in
1966 16 [13]. It is the simplest of the designs and is essentially a bent wire as can
be seen in Figure.

Figure 16: Geometry of a Pierrot cell. The figure depicts an LHCPSS (assuming the wave is
travelling in the positive z-direction).

19



The idea behind the design is based on the fact that a circularly polarized wave can
be broken up into two linearly polarized components as explained in section 2.1.
A wire stretched out in one direction will only react to waves polarized in that
direction. That is, if a wire lies in the x-direction it will only react to the part of the
wave that is polarized in the x-direction and not to the part that is polarized in the
y-direction. On the other hand, a wire that lies in the direction of propagation(z-
direction) will not react to the wave at all.

When moving along a circularly polarized wave, it takes one wavelength for the
wave vector to rotate one full revolution. As such, moving a quarter wavelength is
the same as rotating a quarter of a revolution. If the circularly polarized wave in
the current location is entirely in the positive x-direction, a quarter of a wavelength
further ahead it will be entirely in the positive or negative y-direction(depending
on whether the wave is LHCP or RHCP).

An LHCP wave illuminating the LHCPSS in Figure 16 at normal incidence will
trace a right handed helix along the z-axis and induce currents along the x- and
y-aligned parts of the wire. The wave will induce a current in the wire, and
due to the quarter wavelength difference between the transverse parts, when it
induces a current in the x-direction it will also induce an in-phase current in the
y-direction. These induced currents will add in-phase along the entire wire. The
overall current distribution becomes sinusoidal with the null at the center of the
z-aligned part.

Due to the total wire length of one wavelength the wire will be operating at a
resonance and each of the transverse arms can now be seen as dipoles, radiating
in the positive and negative z-direction. Due to the quarter wavelength difference
between the arms, the radiated wave will gain an LHCP polarization in both
directions. In the positive z-direction however, it will be out of phase with the
illuminating wave, to ideally completely block all transmission and reflect the entire
wave.

If the cell is instead illuminated by an RHCP wave, the wave will trace a left
handed helix and the induced currents will now add out of phase along the entire
wire. The wire will no longer be at resonance and the overall current will be very
weak. The wire will ideally not radiate any wave and the entire illuminating wave
will be transmitted.

3.1.2 Tilston

The second design was introduced by Tilston 16 [13]. Like the Pierrot cell it relies
on the linear components of the circularly polarized wave and a quarter wavelength
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division between the two components. There are however quite a few differences
in how they are used.

The Tilston cell consists of two dipoles, connected together by a transmission line
as can be seen in Figure 17 [13]. Which ends of the dipoles are connected together
by the transmission line determines whether it is an LHCPSS or RHCPSS.

Figure 17: Geometry of a Tilston cell. The figure depicts an LHCPSS (assuming the wave is
travelling in the positive z-direction).

If a circularly polarized wave illuminates the LHCPSS Tilston cell as seen in Fig-
ure 17 at normal incidence its linear components will be picked up by the dipoles
causing voltages over the central gaps. If the incoming wave was LHCP then the
voltages are in phase, that is if there is a positive voltage on one end of the trans-
mission line there will also be one on the other end. If the incoming wave was
RHCP the voltages would be out of phase instead.

If the cell is illuminated by an LHCP wave and the voltages are in phase, there
will be a symmetry around the transmission line. From each side, it will appear as
if the transmission line was half as long and the wave had been positively reflected
at the center, the same as if there was an open-circuit. A quarter-wavelength
transmission line transforms an open-circuit into a short-circuit, which is what
will be seen at the feed of the dipoles. The two dipoles are then in resonance and
will radiate an LHCP wave, as with the Pierrot cell, adding out of phase with the
transmitted wave leaving only an LHCP polarized reflected wave.

For an input RHCP wave the voltages will instead be out of phase. Similar to
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the thinking with the LHCP wave, the midpoint of the transmission line will now
appear to be a short-circuit which is transformed through the quarter-wavelength
transmission line into an open-circuit at the feed of the dipoles. With an open
circuit there is no current at the center of the dipoles and they are not in resonance,
hence they will not radiate and the RHCP wave will be transmitted through the
structure unimpeded.

It is important to note that the transmission line must have an electrical length
of a half-wavelength in order to properly transform the open- and short-circuits,
but at the same time have a physical length of a quarter-wavelength in order to
ensure the dipoles pick up the orthogonal components in phase. In the original
design this was achieved by using a dielectric material to enclose the transmission
line.

3.1.3 Morin

The final design was introduced by Morin [11] and is different from the other two
in that each of the cells are interconnected forming a long helix like structure as
can be seen in Figure 18.

Figure 18: On the left is the geometry of an RHCPSS Morin cell, each side of the cube it borders
is a quarter-wavelength long. On the right several interconnected cells can be seen forming a
helix.

The design is similar to the previous designs in that two transverse portions are
separated by a quarter-wavelength. Looking at the interconnected RHCPSS on
the left in Figure 18, when it is illuminated at normal incidence by an RHCP
wave currents will be induced on the transverse parts. The currents on the two
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different parts will be out of phase due to the turn of the wire. However, when the
current from the center of the top layer reaches the center of the bottom layer, it
has travelled a distance of a half-wavelength and as such it adds in phase with the
other induced current.

As the currents add in phase the wire will be in resonance and fields will be
radiated. Waves from the top wire will travel λ

4
to reach the lower wire and waves

radiated from the lower wire are already λ
2

out of phase, giving a total phase
difference of 3λ

4
, resulting in an RHCP wave, which just as in the other two cases

is out of phase with the original transmitted wave leaving only a reflected RHCP
polarized wave.

If the CPSS is instead illuminated by an LHCP wave the induced currents will be
in phase at first, but then add out of phase due to the half-wavelength distance.
As the currents add out of phase, there will be no current flowing and the structure
appears transparent.

Compared to the other two designs, the Morin helix has an advantage in that each
cell is interconnected. As such it would be possible to hold it up by attaching
the side of the helix in a frame. The other two cells are supposed to float freely
in space, so while the Pierrot cell does not include any dielectric materials in its
design, in order to realize it in practice each cell would have to be held in place by
some sort of dielectric material.

3.2 Implementations

The designs explained in the previous subsection are relatively simple theoretical
ones with well motivated dimensions. When implementing these designs for simu-
lations, those dimensions might change as a result of optimization, and also other
dimensions not mentioned in the previous text may need to be specified. The
exact parameter dimensions that lead to the best performance will be presented
in Section 5, however in this subsection the structures as they were prepared for
the simulation are presented. Some of the designs are more or less direct imple-
mentations of the theoretical one, however others provide a slightly different take
on the same base ideas. One trait that is shared among all of the designs is that
the thickness of the wire must be specified. While there is no maximum value,
as stated in Section 2.5 there is a minimal requirement of at least a diameter of
0.2 mm.

The dimensions seen in the figures do not necessarily represent fully optimized
parameter values and are in some cases chosen specifically to highlight the shape
of the structure.

23



3.2.1 Pierrot

The Pierrot cell is the simplest of the designs and as such no major changes has
been suggested for it. The implemented design can be seen in Figure 19. The main
new parameters that need to be specified are the separation between the unit cells
in both x- and y-direction. There are no theoretical values for these parameters
however it is common to set them around λ

2
for unit cell structures.

Another thing to notice is the orientation of the cells. As can be seen, particularly
in the right figure, they are placed at a 45◦ angle. The theoretical design does
not specify how the individual unit cells should be oriented to each other, however
putting it at an angle allows for the possibility of grouping the cells closer together
(as can be seen in Figure 19 where the unit cells are partially overlapping).

Figure 19: A view of the Pierrot unit cell and the full structure.

3.2.2 Tilston

With the Tilston cell, the main idea is that the center piece connecting the two di-
poles has an electrical length of a half-wavelength but a physical height of a quarter-
wavelength. The theoretical design suggested a λ

2
transmission line, which can be

achieved using a dielectric. This implementation can be seen in Figure 20.

The most interesting new parameter to specify is the relative permittivity of the
dielectric material (theoretically, εr = 4 gives an electrical length twice as long as
the physical one). However, the diameter of the dielectric cylinder as well as the
separation of the two wires going inside it also need to be specified.

As an alternative implementation, instead of using a dielectric to achieve the dif-
ference in electrical and physical length, a helical structure can be used. An
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Figure 20: A view of the Tilston unit cell and the full structure.

implementation of this idea, henceforth referred to as a Helical Tilston, can be
seen in Figure 21.

Compared to the dielectric implementation the difference is that instead of using
a dielectric cylinder to realize the transmission line, the two wires connecting the
dipoles instead form a double helix such that the length of the wires is twice the
height of the helix. A new parameter that needs to be specified is the amount of
turns of the helix. Note that due to the geometry, the amount of turns cannot be
an even integer as the two dipoles would not properly connect then. For RHCPSS
a quarter of a turn need to be added (for example, 5.25 turns) while for LHCPSS
three quarters of a turn should be added (for example, 5.75 turns). The diameter
of the helix also need to be specified. As the main requirement is that the wire
length is twice as long as the height, these two parameters can theoretically not
be entirely freely chosen.

Figure 21: A view of the helical Tilston unit cell and the full structure.

Assuming that the number of turns is set at N , the helix diameter is D and the
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total z-height of the helix is lz, then the length of the wire is
√

(Dπ)2 +
(
lz
N

)2 ·N .

Since the length should be 2 · lz, the diameter should be D =
√
3·lz
πN

. Of course, as
with the other parameters this can be changed by the optimization.

As with the Pierrot cell, both of these structures are placed at an angle to allow
for more freedom in the unit cell size.

3.2.3 Morin

A standard implementation of the Morin cell can be seen in Figure 22 (called a
Single Morin to differentiate from other Morin based designs). Unlike the Tilston
and Pierrot designs, there is not complete freedom in choosing the cell sizes. If
the transverse wire length is defined as lxy, then in order for the unit cells to link
together and form complete helices the separation in the x-direction (or whichever
runs along the helices) need to be

√
2 · lxy. The y-separation on the other hand

can be set freely which allows the freedom to pack the helices very close together
should this prove advantageous.

Figure 22: A view of the single Morin unit cell and the full structure where they form helices.

There are quite a few proposed adjustments to the Morin cell. The ideas behind
the adjustments is to provide a denser pattern, which potentially can improve
performance. A simple adjustment can be seen in Figure 23. In this design, called
a Double Morin, the helices are differently aligned, creating an overall different
pattern. Since the peaks of the helices (where the red and the black helix meet in
the figure) are now potentially very close together (if the gap is made very small) it
could be possible to attach the helices to each other using some form of dielectric
material to improve structural stability. The effects of such a structure on the
performance however has not been evaluated and as such it is purely a potential
benefit.
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Figure 23: A view of a double Morin unit cell and the full structure.

A similar structure to the Double Morin can be achieved using a simpler unit cell
as in Figure 24. The unit cell now looks similar to the Tilston design, hence it
is called a Morin-Tilston. Functionally the Morin-Tilston works like a Morin cell
and the similarity with the Tilston cell is purely aesthetic.

Compared to the Double Morin, the Morin-Tilston has a noticeably smaller and
simpler unit cell, but the overall shape becomes very similar. However, while
the two helices can be freely separated in the Double Morin, large separation is
not possible with the Morin-Tilston or the connecting z-wire will get significantly
bent.

Figure 24: A view of a Morin-Tilston unit cell and the full structure.

The final variation on the Morin design can be seen in Figure 25. In this design,
two helices cross each other at a 90◦ angle, thus it is called the Crossed Morin.
The idea is that by crossing the helices they might provide a better coverage of
the area and have better performance.
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Figure 25: A view of crossed a Crossed Morin unit cell and the full structure.

4 Aim

The aim of the thesis is to examine and evaluate how suitable CPSS surfaces would
be for creating a DGR equivalent for circular polarization. The main basis of the
evaluation are requirements defined by the European Space Agency (ESA), but
other goals include examining the structures for oblique incidence angles. The re-
quirements have previously been stated in Section 2.5 but are repeated below:

• IL ≤ 0.5 dB

• RL ≤ 0.5 dB

• AR ≤ 0.75 dB

• IL, RL and AR bandwidth should be as wide as possible

• The structures should be examined at up to 30◦ angle of incidence

• The structures should be able to handle at least 10◦ variance in angle of
incidence

• The structures will be designed for operation at 10 GHz(λ = 30 mm) and
simulated for 8− 12 GHz

• The wire diameter, a, must be at least 0.2 mm
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5 Simulations

The simulations were made using CST (as described in Section 2.6) and the general
process was to first recreate the design with parameters as close to the theoretical
values as possible under normal incidence. When the design had been successfully
modelled each parameter was manually changed in order to give an idea of how the
parameters affected the performance. When the effect of the parameters were more
well understood a rough manual attempt at optimizing the performance was made
before eventually using CST’s internal optimization tool to optimize the design.
All of the design work and optimization was done for normal incidence.

The optimization goals used were the IL, RL and AR requirements specified above.
While the structures were simulated for 8-12 GHz if the optimization ran over the
entire range it was sometimes found that the optimum parameters were such that
the IL, RL and AR did not overlap (for example, the RL might be centered at
10.5 GHz while the AR at 11 GHz), in order to prevent this the optimizer was
limited to only operate between 9 and 11 GHz.

Once the design was optimized it was also tested for oblique incidence with angles
of 5◦, 10◦, 20◦ and 30◦. When simulating some of the structures at oblique angles
it was found that the performance was not symmetrical (the response was not
the same when going from port 1 to port 2 as it was for port 2 to port 1). It was
discovered that each of the structures have certain incidence planes where they are
symmetrical for oblique incidence, most likely caused by a lack of structural sym-
metry between the two directions although it is difficult to see from just visually
analysing the structures.

In this section the result for each of the designs previously explained in section 3 is
presented for normal incidence, as well as which incidence planes gives symmetrical
responses and the results of oblique incidence for these planes. The results will
consist of the IL, RL and AR as well as the physical parameters of the optimized
unit cells.

The simulation is set up with two ports on each side of the structure with waves
travelling between them. The structures simulated are RHCPSS’s and for the
results only the relevant graphs are shown. That is, for an RHCPSS only the
RHCP return loss and the LHCP insertion loss are shown.

The parameter dimensions presented in this section are taken from the optimiza-
tion and presented at a relatively high accuracy which is probably not achievable
if the structures were to be physically realized. After some testing with the sim-
ulation it appears that rounding the parameters to a 0.1 mm accuracy appears to
only marginally affect the performance.
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5.1 Normal Incidence

5.1.1 Pierrot

Figure 26: The Pierrot cell with all variable parameters specified.

The structure can be seen in Figure 26. The best parameters were found as:

lxy = 13.590 mm (≈ 0.45λ)

lz = 7.508 mm (≈ 0.25λ)

px = 13.328 mm (≈ 0.44λ)

py = 11.929 mm (≈ 0.40λ)

a = 0.362 mm

Achieved bandwidth: 1.05 GHz (10.5%)

This resulted in the IL, RL and AR as can be seen in Figures 27.

The Pierrot cell is generally bandwidth limited by the AR. The center of the AR is
in turn almost entirely determined by the lz height as long as the other parameters
don’t vary too much. The bandwidth of the AR is also quite difficult to improve,
as it is barely affected by the other parameters. Improving the IL and RL is more
easily achieved.
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Figure 27: IL, RL and AR for an RHCPSS Pierrot structure at normal incidence.
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5.1.2 Tilston

Figure 28: The Tilston cell with all variable parameters specified.

The structure can be seen in Figure 28. The best parameters were found as:

lxy = 16.399 mm (≈ 0.55λ)

lz = 7.121 mm (≈ 0.24λ)

px = 12.469 mm (≈ 0.42λ)

py = 12.529 mm (≈ 0.42λ)

D = 3.934 mm

sx = 0.693 mm

a = 0.257 mm

ε = 4.267

Achieved bandwidth: 0.83 GHz (8.3%)

Note that while the z-height of the dielectric cylinder is not marked, it is the same
as lz.

The IL is quite good, as is the RL. The AR has a slightly lower bandwidth than
the Pierrot cell which means that overall the performance is slightly worse.

As before, the center of the AR can be set by the lz length while the IL and RL
depend more on the lxy length. The relative permittivity, ε, generally affects both
the RL, IL and the AR however it can be counteracted by the lz and lxy parameters.
As such, if the permittivity cannot be freely chosen to any value desired, it is
possible to design the rest of the structure around the available material. The px
and py lengths affects primarily the IL and RL, with a smaller unit cell resulting
in a higher RL and a lower IL.
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Figure 29: IL, RL and AR for an RHCPSS Tilston structure at normal incidence.
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5.1.3 Helical Tilston

Figure 30: The Helical Tilston cell with all variable parameters specified.

The structure can be seen in Figure 30. The best parameters were found as:

lxy = 16.392 mm (≈ 0.55λ)

lz = 7.500 mm (≈ 0.25λ)

px = 11.892 mm (≈ 0.40λ)

py = 11.870 mm (≈ 0.40λ)

N = 5.25

R = 0.674 mm (≈ 0.86 ·
√

3 · lz
π ·N

)

a = 0.2 mm

Achieved bandwidth: 1.08 GHz (10.8%)

The AR bandwidth is improved slightly compared to the dielectric implementation
of the Tilston cell while the RL is similar. As usual, the lz length mainly determines
the center of the AR bandwidth while the lxy length the RL. The amount of turns,
N , mainly affects the AR with a higher amount of turns giving better performance,
although there are diminishing returns and eventually adding more turns does not
change performance much.
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Figure 31: IL, RL and AR for an RHCPSS Helical Tilston structure at normal incidence.
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5.1.4 Single Morin

Figure 32: The Single Morin cell with all variable parameters specified except for the wire
diameter, a, which is defined the same as for the other structures.

The structure can be seen in Figure 32. The best parameters were found as:

lxy = 14.360 mm (≈ 0.48λ)

lz = 7.500 mm (≈ 0.25λ)

px = 20.308 mm (
√

2 · lxy)
py = 4.062 mm (0.2 ·

√
2 · lxy)

a = 0.245 mm

Achieved bandwidth: 1.04 GHz (10.4%)

The Single Morin cell has relatively decent bandwidth with over 1 GHz for the AR.
In order to increase the RL bandwidth the helices are placed very close together,
which is also the cause of the odd shape of the IL. The lxy length is almost twice
what it should theoretically be, this is because normally the peak of the AR and
the RL do not overlap, but by adjusting the lxy length it is possible to adjust the
center of the RL with minimal effect on the AR. As previously, the center of the
AR bandwidth is almost entirely determined by the lz length.
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Figure 33: IL, RL and AR for an RHCPSS Single Morin structure at normal incidence.
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5.1.5 Double Morin

Figure 34: The Double Morin cell with all variable parameters specified.

The structure can be seen in Figure 34. The best parameters were found as:

lxy = 7.814 mm (≈ 0.26λ)

lz = 7.500 mm (≈ 0.25λ)

sx = 1.050 mm (0.035λ)

px = 11.051 mm (
√

2 · lxy)
py = 13.151 mm (

√
2 · lxy + 2 · sx)

a = 0.2 mm

Achieved bandwidth: 0.98 GHz (9.8%)

The Double Morin has comparable performance to the Single Morin for normal
incidence. As usual the AR is the limiting factor. The lz length is pretty much
the only factor determining the center of the AR bandwidth, while the lxy length
can be used to adjust the RL bandwidth so that it overlaps. The sx size slightly
affects the bandwidth of the AR slightly, however it does not affect both equally.
A smaller sx leads to a larger transmission bandwidth but a smaller reflection
bandwidth. Overall the changes in the AR caused by the sx is quite small, as it
mainly affects the IL and RL. A smaller sx leads to worse IL performance (and
due to the shape of the IL, it is possible to reach a point where it never goes below
0.5 dB) but a better RL bandwidth.
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Figure 35: IL, RL and AR for an RHCPSS Double Morin structure at normal incidence.
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5.1.6 Morin-Tilston

Figure 36: The Morin-Tilston cell with all variable parameters specified.

The structure can be seen in Figure 37. The best parameters were found as:

lxy = 7.000 mm (≈ 0.23λ)

lz = 7.500 mm (≈ 0.25λ)

sx = 0.774 mm (0.026λ)

px = 7 mm (lxy)

py = 7 mm (lxy)

a = 0.2 mm

Achieved bandwidth: N/A

No working design was found for the Morin-Tilston structure. Despite having a
very similar structure to the Double Morin it appears that the changes made to
create a smaller unit-cell is not necessarily a worthwhile trade-off.

However, in [7] a version of the Morin-Tilston was presented. In this version,
thinner wires than what was allowed here was used and the structure was held up
by having it rest on a dielectric foam. There is also a small hole in the foam around
the vertical wires (like an inverted Tilston, with a dielectric material everywhere
but around the vertical wires). With this type of structure the Morin-Tilston in [7]
performs in line with the Double Morin (slightly worse, but the design presented
is only marginally optimized).

This type of modified Morin-Tilston is not examined in this thesis, but seems to
be a viable design. The Morin-Tilston as examined here however does not perform
well enough to meet the requirements.
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Figure 37: IL, RL and AR for an RHCPSS Morin-Tilston structure at normal incidence.
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5.1.7 Crossed Morin

Figure 38: The Crossed Morin cell with all variable parameters specified.

The structure can be seen in Figure 38. The best parameters were found as:

lxy = 6.819 mm (≈ 0.23λ)

lz = 8.086 mm (≈ 0.27λ)

sx = 0.404 mm (0.013λ)

px = 9.644 mm (
√

2 · lxy)
py = 9.644 mm (

√
2 · lxy)

a = 0.2 mm

Achieved bandwidth: 0.89 GHz (8.9%)

The Crossed Morin design has slightly lower AR bandwidth than the Single and
Double Morin designs but is comparable. The RL bandwidth on the other hand is
significantly lower, however as the overall performance is still limited by the AR
bandwidth this is not a significant issue.

The lz length affects all of the measured parameters, and remains the main way to
set the center of the AR bandwidth. The lxy length primarily affects the IL and RL
bandwidths and can be used to fine tune these parameters without greatly changing
the AR. sx also affects all of the parameters. The IL is generally higher when sx is
smaller, while the RL peak is mainly moved around. The AR is minimally affected
by the sx size.
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Figure 39: IL, RL and AR for an RHCPSS Crossed Morin structure at normal incidence.
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5.1.8 Bandwidths

The achieved bandwidths for each of the structures are summarized below:

Design Achieved bandwidth (GHz)

Pierrot 1.05
Tilston 0.83
Helical Tilston 1.08
Single Morin 1.04
Double Morin 0.98
Morin-Tilston N/A
Crossed Morin 0.89
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5.2 Incidence Plane

When the designs were tested for oblique incidence it was found that they only
had symmetrical characteristics for certain incidence planes. An example of non-
symmetrical behaviour can be seen in Figure 40 where the graphs should be
identical for both directions but are clearly not. All of the designs were analyzed
for various planes of incidence and the ones which gave symmetrical responses are
marked in Figures 41-42. The performance for oblique incidence for these planes
can be found in Section 5.3.
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Figure 40: The non-symmetrical behaviour demonstrated for the Cross Morin structure in the
ϕ = 0 plane.

The different planes will be named after which ϕ angle they are positioned at rel-
ative to the xz-plane as seen in Section 3.2 which the cells were designed for.

Figure 41: The only plane which gives symmetrical behaviour for the Pierrot cell is at ϕ = 0◦.
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Figure 42: The various symmetrical incidence planes marked for the (A) Tilston, (B) Helical
Tilston, (C) Single Morin, (D) Double Morin, (E) Morin-Tilston and (F) Crossed Morin designs.

46



5.3 Oblique Incidence

In this subsection the performance for different angles of incidence was recorded.
The angle of incidence, θ, was changed while ϕ was held constant in one of the
symmetrical planes found in the Section 5.2. The structures were simulated for
θ values of 0◦, 5◦, 10◦, 20◦ and 30◦. Note that for most of these structures the
performance is identical for incidence at positive and negative values (for example,
±10◦ is identical). This means that −5◦ to +5◦ will give a total span of 10◦. The
Pierrot cell is the only one for which this is not the case, as such it is simulated
for positive and negative angles of incidence.

5.3.1 Pierrot

The results can be seen in Figure 43. The Pierrot cell performs differently for
positive and negative angles of incidence (although only for the AR). This demon-
strates a lack of symmetry with respect to positive and negative angles of incidence
in this plane, and means that one needs to think about which side the incoming
waves are hitting in order to get the expected performance.

The impact on the IL and RL performance is minimal at up to 10◦ and could
probably be manageable even at 20◦. The AR however experiences a strong fre-
quency shift which means that even at 10◦ the impact is notable. A 0◦ to ±10◦

or a −5◦ to +5◦ range could probably be manageable although with reduced AR
bandwidth.

5.3.2 Tilston

The results can be seen in Figure 44. For both incidence planes the IL performance
remains good even for very large angles of incidence. The RL on the other hand
is largely unaffected at up to 10◦ and potentially manageable at 20◦ although it is
starting to drift away.

For ϕ = 0◦ the AR remains largely unaffected by the incidence angle at up to 10◦

and could be managed even at 20◦ although at this point the bandwidth would be
decreased slightly from the shift in frequency. For ϕ = 90◦ the AR starts to drift
away already at 10◦ although not greatly. At 20◦ though it has drifted away quite
a lot. The Tilston generally seems quite stable when it comes to incidence angle,
especially for the ϕ = 0◦ plane.
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Figure 43: IL, RL and AR for an RHCPSS Pierrot structure at various angles of incidence in
the ϕ = 0◦ plane. Left: Positive angles, Right: Negative angles.
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Figure 44: IL, RL and AR for an RHCPSS Tilston structure at various angles of incidence.
Left:ϕ = 0◦, Right: ϕ = 90◦.
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5.3.3 Helical Tilston

The results can be seen in Figure 45. For the ϕ = 0◦ plane the effects on IL and
RL are minimal up to 10◦ while for the ϕ = 90◦ plane the RL does not start to
drift away until 30◦.

For the ϕ = 90◦ plane the effects on the AR is minimal at up to 10◦ but at 20◦ it
has already shifted away substantially. For the ϕ = 0◦ plane the AR starts to drift
slightly at 10◦ however with a reduced bandwidth it could still be manageable.
Overall it has worse performance at higher angle of incidence than the dielectric
Tilston implementation.

5.3.4 Single Morin

The results can be seen in Figure 46. The Single Morin does not perform par-
ticularly well for oblique angles in either plane and there appear to be several
resonances that were not noticeable for normal incidence. It is possible that the
cause of these resonances is the fact that the helices are significantly longer than
what the theoretical models described (lxy is almost twice as long as the theoretical
model suggested). These longer helices might allow for more resonances than were
previously not visible at normal incidence. As this extra length was necessary to
achieve good performance at normal incidence, this could be a weakness of the
Single Morin design.

5.3.5 Double Morin

The results can be seen in Figure 47. For both planes the performance impact is
minimal at up to 10◦. For the ϕ = 0◦ plane the RL and AR has drifted noticeable
in frequency at 20◦ however with a reduced bandwidth it could work. For the
ϕ = 90◦ plane however the AR bandwidth is so significantly reduced at 20◦ that
it is probably unusable.
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Figure 45: IL, RL and AR for an RHCPSS Helical Tilston structure at various angles of
incidence. Left:ϕ = 0◦, Right: ϕ = 90◦.
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Figure 46: IL, RL and AR for an RHCPSS Single Morin structure at various angles of incidence.
Left:ϕ = 0◦, Right: ϕ = 90◦.
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Figure 47: IL, RL and AR for an RHCPSS Double Morin structure at various angles of
incidence. Left:ϕ = 0◦, Right: ϕ = 90◦.
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5.3.6 Morin-Tilston

The results can be seen in Figure 48. As the Morin-Tilston design did not meet the
requirements for normal incidence, it does not do so for oblique either. However,
the ϕ = +45◦ plane is quite stable for larger incidence angles so if a modified
Morin-Tilston could achieve better performance for normal incidence, it could
then possibly perform quite well oblique incidence in that plane.

5.3.7 Crossed Morin

The results can be seen in Figure 49. For both planes the performance impact is
largely negligible for up to 10◦. At 20◦ the RL in the ϕ = −45◦ plane has started
to drift slightly, and the AR bandwidth has been noticeable reduced.

For the ϕ = +45◦ plane however, the performance seems to increase with the
incidence angle. It is the only design which can work at 30◦ and due to this
behaviour it would be possible to have a 20◦ − 30◦ range making it the most
versatile of the designs.

5.3.8 Small angles

While the designs are only symmetrical for oblique angles in the specified incidence
planes, for small variations in either θ or ϕ the result is generally close enough that
the differences can be disregarded. How large the angles can get depends on the
design, however generally somewhere in the range of 5◦ − 10◦ is acceptable.

If the θ angle is small, then large variations in ϕ outside of the intended incidence
plane can be accepted. On the other hand, even for larger θ angles, small variations
on ϕ is also acceptable. The results of these types of small angle differences for
the Crossed Morin design can be seen in Figure 50. Only the AR is displayed as
the IL and RL is less affected and as such no difference can be noticed for these
small angles.

Note that while the performance is not symmetrical, since the difference is so
small they can still be used in these circumstances with slightly reduced perform-
ance.
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Figure 48: IL, RL and AR for an RHCPSS Morin-Tilston structure at various angles of incid-
ence. Left:ϕ = +45◦, Right: ϕ = −45◦.
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Figure 49: IL, RL and AR for an RHCPSS Crossed Morin structure at various angles of
incidence. Left:ϕ = +45◦, Right: ϕ = −45◦.
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Figure 50: AR for the Crossed Morin structure at various incidence planes for θ = 10◦ at the
top and θ = 20◦ at the bottom.
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5.4 Angle Compensation

Most of the structures worked well for smaller angles around normal incidence
(−5◦ to +5◦ for example), however it would be desirable to be able to achieve the
same range around a larger incidence angle, for example 15◦ to 25◦.

After a few attempts at compensating the designs for a higher angle of incidence, it
appears that as long as the bandwidth has simply shifted away to other frequencies
it is possible to compensate the design such that the bandwidth is centered at
10 GHz for a higher angle.

As an example, consider the Double Morin performance from Figure 47. For the
ϕ = 0◦ plane compensation is possible as the AR and RL is simply shifted to
another center frequency, while for the ϕ = 90◦ plane such compensation is not
possible.

Compensation is done by designing the structure for a higher frequency, such that
the frequency shift caused by the oblique incidence angle shifts it to the desired
center frequency, in this case 10 GHz. The sensitivity to oblique angles is not
linear, as a shift from 20◦ to 30◦ is more noticeable than a shift from 0◦ to 10◦.
Since the compensation only shift the center frequency the compensated structures
will be less stable for variation around the center frequency than the ones designed
around normal incidence.

As a proof of concept the Double Morin structure was compensated for an incidence
angle of 20◦ (in the ϕ = 0◦ plane). The results can be seen in Figure 51. The
structure was compensated manually and was achieved by taking the previously
optimized design, simulating it for θ = 20◦ and then gradually adjusting each
parameter until the structure performed as desired. The compensated design had
the following parameters:

lxy = 7.51 mm (≈ 0.25λ)

lz = 7.10 mm (≈ 0.24λ)

sx = 1.25 mm (≈ 0.042λ)

px = 10.621 mm (
√

2 · lxy)
py = 13.121 mm (

√
2 · lxy + 2 · sx)

a = 0.2 mm

As can be seen in Figure 51 the bandwidth is now centered at 10 GHz at θ = 20◦.
It can also be seen that it performs almost identically to the uncompensated design
aside from the shift to another center frequency.
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Figure 51: IL, RL and AR for an RHCPSS Double Morin structure compensated for 20◦

incidence (left) compared with an uncompensated one (right). ϕ = 0◦.
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6 Conclusions

Several different CPSS designs were evaluated for normal and oblique incidence.
Most of the designs were limited by the AR bandwidth, which for normal incidence
were around 9.5− 10.5 GHz giving a percentage bandwidth of about 10%.

Note that aside from the necessary dielectric material needed for the Tilston design
to work, no dielectrics were used. Since the Tilston and Pierrot designs require
the cell to float freely in air, any actual implementation would require the cell to
be embedded in a dielectric slab of some form. This means practical performance
for these designs could to some extent, be reduced compared to what is found in
this thesis.

For the Morin-Tilston structure no working design was found utilizing only metal
wires. However, the design found in [7] achieved performance similar to the Pier-
rot cell for normal incidence and did this by smart usage of dielectric materials
as part of the design. This suggests that adding dielectric materials is not ne-
cessarily a negative, as it can be incorporated in the design to achieve a different
behaviour.

The Morin based designs can theoretically be attached at the ends and held up
without any dielectrics, however it is possible that some dielectrics need to be used
to give stability to the structure. How this might affect the performance has not
been examined.

During the simulation the metal wires were approximated as Perfect Electrical
Conductors. If the wires were to be made using real materials (such as Copper, for
example) there would be losses in the wires which are currently not modelled.

It was found that for oblique incidence, the structures are only symmetrical for
certain incidence planes and each incidence plane has different performance. This
means that it is important to make sure the cells are properly oriented. Since the
main usage case outlined was to design a parabolic dish, ensuring all waves hit in
the same incidence plane can be difficult. However it was found that it is possible
to deviate slightly from the intended incidence plane (around ±5◦ worked well)
with minimal impact on the performance.

Most of the designs had at least one incidence plane where they worked well at
incidence angles of up to 10◦, some worked up to 20◦ but at that point a smaller
bandwidth must usually be accepted as the performance degrades. The Crossed
Morin design in the ϕ = +45◦ plane was an exception as performance seemed
stable all the way up to 30◦.

It was found that for certain designs the effect of larger oblique angles is a shift
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in frequency. This can be compensated for making these structures more viable
for use at larger angles. The compensated designs are however more sensitive to
deviations in incidence angle than they were for normal incidence, so even a small
5◦ deviation can have a noticeable impact on the performance.

Overall, the structures are very bandwidth limited with seemingly few ways to im-
prove it. They are quite sensitive to oblique angles and must be oriented properly
in order to perform well. The Pierrot and Tilston designs require the cell to be
enclosed in a dielectric material which suggests that the Morin based structures
are more practical.

All of the designs are quite light and thin, so if the bandwidth performance is
acceptable for the application they could be useful, especially the Crossed Morin
structure which seems to perform very well for oblique angles. However work must
be done to ensure that the cells are properly oriented to get the desired incidence
plane. And since the effects of dielectric materials were not properly examined in
this thesis, work still needs to be done to evaluate to what extent such materials
could be used to improve the performance, or alternatively how much they might
negatively affect it.
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A CST S-matrix verification

When exporting the S-parameters from CST it is important to know how the
exported S-matrix is organized, in this case so that it can be transformed into
the theoretical S-matrix introduced in Equation (2.19), which can also be seen
below:.


SRR
11 SRL

11 SRR
12 SRL

12

SLR
11 SLL

11 SLR
12 SLL

12

SRR
21 SRL

21 SRR
22 SRL

22

SLR
21 SLL

21 SLR
22 SLL

22

 (A.1)

From studying output and settings in CST it becomes clear that there are two
ports, called Zmin (or 1) and Zmax (or 2). These ports can be excited by different
modes, by default they are as follows for circular polarization:

1 = LHCP, 2 = RHCP

This ordering can however be manually changed for each port. Another thing that
has been found by studying CST’s output is that it refers to each mode as LHCP
or RHCP regardless of which direction the wave is travelling in. In other words,
CST is in fact using the ê− and ê+ bases internally even if they are called LHCP
and RHCP.

The theoretical S-matrix used here defines LHCP and RHCP depending on the
propagation direction, as such CST’s definition only matches up for waves excited
at port 1. This means that if CST claims that port 2 is excited by RHCP, it is by
our definition excited by LHCP.

Figure 52: A simple Pierrot cell with both of CST’s ports marked.
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
−0.0984− 0.1089j 0 0 0
−0.1552− 0.2295j 0 0 0
0.4675 + 0.8121j 0 0 0
−0.1510 + 0.0237j 0 0 0




0 0.8312− 0.3641j 0 0
0 −0.0984− 0.1087j 0 0
0 0.1517− 0.0181j 0 0
0 0.3397− 0.1265j 0 0


Zmin, LHCP Zmin, RHCP

0 0 0 0.1517− 0.0182j
0 0 0 0.4675 + 0.8121j
0 0 0 0.1553 + 0.2312j
0 0 0 −0.0930− 0.1096j




0 0 0.3397− 0.1264j 0
0 0 −0.1509 + 0.0238j 0
0 0 −0.0929− 0.1094j 0
0 0 −0.8311 + 0.3655j 0


Zmax, LHCP Zmax, RHCP

Table 1: The output from CST. LHCP and RHCP are here defined as in the theoretical S-
matrix.

To begin figuring out CST’s ordering a simple Pierrot cell was examined (Fig-
ure 52). The structure was illuminated at normal incidence by circularly polarized
waves. It is possible in CST to specify which modes should be excited in which port.
By only exciting, for example, LHCP at port 1 the only S-parameters which can be
measured are SLL

11 , S
RL
11 , S

LL
21 and SRL

21 . The result of doing this for each port/mode
combination and reading the output from CST can be seen in Table 1.

From these matrices, it is possible to deduce half of the necessary information
about the exported S-matrix:

S L
1 S R

1 S R
2 S L

2

S L
1 S R

1 S R
2 S L

2

S L
1 S R

1 S R
2 S L

2

S L
1 S R

1 S R
2 S L

2


To get more information about the output the port modes are switched around.
The port that is excited stays the same, but for the other port mode 1 becomes
RHCP and mode 2 LHCP. This means that the output for this port should change,
that is if port 1 is excited by LHCP, SRL

21 and SLL
21 should switch places. By redoing

the measurements and comparing with the previous ones it is therefore possible to
learn more about the output. The output from CST can be seen in Table 2.

Using the information from Table 2 and comparing it to Table 1 it is possible to
learn more about the exported matrix:

S L
11 S R

11 S R
12 S L

12

S L
11 S R

11 S R
12 S L

12

S L
21 S R

21 S R
22 S L

22

S L
21 S R

21 S R
22 S L

22


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
−0.0984− 0.1089j 0 0 0
−0.1552− 0.2295j 0 0 0
−0.1510 + 0.0237j 0 0 0
0.4675 + 0.8121j 0 0 0




0 0.8312− 0.3641j 0 0
0 −0.0984− 0.1087j 0 0
0 0.3397− 0.1265j 0 0
0 0.1517− 0.0181j 0 0


Zmin, LHCP Zmin, RHCP

0 0 0 0.4675 + 0.8121j
0 0 0 0.1517− 0.0182j
0 0 0 0.1553 + 0.2312j
0 0 0 −0.0930− 0.1096j




0 0 −0.1509 + 0.0238j 0
0 0 0.3397− 0.1264j 0
0 0 −0.0929− 0.1094j 0
0 0 −0.8311 + 0.3655j 0


Zmax, LHCP Zmax, RHCP

Table 2: The output from CST after switching the modes. LHCP and RHCP are here defined
as in the theoretical S-matrix.

It is now known which S-parameters are reflection and which are transmission.
The Pierrot element for normal incidence is symmetric which means that, for
example, SLL

12 = SLL
21 , by using this and checking which S-parameters are identical

it is possible to get more information about the S-matrix:
S L
11 S R

11 SRR
12 SRL

12

S L
11 S R

11 SLR
12 SLL

12

SLL
21 SLR

21 S R
22 S L

22

SRL
21 SRR

21 S R
22 S L

22


Assuming symmetry in the placement (an assumption that will later be verified)
the final S-matrix should look like this:

SRL
11 SRR

11 SRR
12 SRL

12

SLL
11 SLR

11 SLR
12 SLL

12

SLL
21 SLR

21 SLR
22 SLL

22

SRL
21 SRR

21 SRR
22 SRL

22


This means that to get the theoretical matrix the following transformation is
needed:

S =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



SCST
11 SCST

11 SCST
12 SCST

12

SCST
11 SCST

11 SCST
12 SCST

12

SCST
21 SCST

21 SCST
22 SCST

22

SCST
21 SCST

21 SCST
22 SCST

22




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (A.2)

To verify this assumption a known structure is simulated. It is possible to create
a linear polarizer using a simple grating as can be seen in Figure 53, consisting
of thin metal wires running in one direction. If the grating is placed between the
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Figure 53: A linear polarizer consisting of PEC wires.

two ports and running in the x-direction the S-matrix in linear polarization should
theoretically be:

SLP
theory =


SXX
11 SXY

11 SXX
12 SXY

12

SYX
11 SYY

11 SYX
12 SYY

12

SXX
21 SXY

21 SXX
22 SXY

22

SYX
21 SYY

21 SYX
22 SYY

22

 = e−jφ


−1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

 (A.3)

The total fields in ports 1 and 2 can be written as:

E
(out)
1 = EX

1 x̂ + EY
1 ŷ = ER

1 ê− + EL
1 ê+ E

(in)
1 = EX

10x̂ + EY
10ŷ = ER

10ê+ + EL
10ê−

E
(out)
2 = EX

2 x̂ + EY
2 ŷ = ER

2 ê+ + EL
2 ê− E

(in)
2 = EX

20x̂ + EY
20ŷ = ER

20ê− + EL
20ê+

Based on the unit vector relations introduced in Equation (2.8), this implies a
relation between circular and linear fields as follows:
ER

1

EL
1

ER
2

EL
2

 =
1√
2


1 −j 0 0
1 j 0 0
0 0 1 j
0 0 1 −j



EX

1

EY
1

EX
2

EY
2

 ,


EX

10

EY
10

EX
20

EY
20

 =
1√
2


1 1 0 0
j −j 0 0
0 0 1 1
0 0 j −j



ER

10

EL
10

ER
20

EL
20


This gives the transformation between circular and linear S-matrices as:

SCP =


SRR
11 SRL

11 SRR
12 SRL

12

SLR
11 SLL

11 SLR
12 SLL

12

SRR
21 SRL

21 SRR
22 SRL

22

SLR
21 SLL

21 SLR
22 SLL

22



=
1

2


1 −j 0 0
1 j 0 0
0 0 1 j
0 0 1 −j



SXX
11 SXY

11 SXX
12 SXY

12

SYX
11 SYY

11 SYX
12 SYY

12

SXX
21 SXY

21 SXX
22 SXY

22

SYX
21 SYY

21 SYX
22 SYY

22




1 1 0 0
−j j 0 0
0 0 1 1
0 0 j −j

 (A.4)
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This transformation then gives the linear polarizer in circular polarization as:

SCP
theory = e−jφ

1

2


1 −j 0 0
1 j 0 0
0 0 1 j
0 0 1 −j



−1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0




1 1 0 0
−j j 0 0
0 0 1 1
0 0 j −j



=
e−jφ

2


−1 −1 +1 −1
−1 −1 −1 +1
+1 −1 −1 −1
−1 +1 −1 −1

 (A.5)

After simulating the grating in CST, applying the transformation from Equa-
tion (A.2) and normalizing with the negative of the top left element, the S-matrix
becomes as follows:

−1.0000 0.9986 + 0.0723j −0.9985− 0.0616j −1.0015 + 0.0218j
0.9986 + 0.0723j −1.0001− 0.0000j −1.0015 + 0.0219j −0.9985− 0.0617j
−0.9985− 0.0617j −1.0015 + 0.0219j −1.0000 + 0.0005j 0.9986 + 0.0718j
−1.0015 + 0.0219j −0.9985− 0.0617j 0.9986 + 0.0718j −1.0000 + 0.0005j


which is clearly not the expected theoretical results. After re-examining the results
it appears that CST adds a minus sign in front of some S-parameters. Changing
the transformation to:

S =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



SCST
11 −SCST

11 SCST
12 −SCST

12

−SCST
11 SCST

11 −SCST
12 SCST

12

SCST
21 −SCST

21 SCST
22 −SCST

22

−SCST
21 SCST

21 −SCST
22 SCST

22




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (A.6)

With this transformation the results for the linear polarizer becomes:
−1.0000 −0.9986− 0.0723j 0.9985 + 0.0616j −1.0015 + 0.0218j

−0.9986− 0.0723j −1.0001− 0.0000j −1.0015 + 0.0219j 0.9985 + 0.0617j
0.9985 + 0.0617j −1.0015 + 0.0219j −1.0000 + 0.0005j −0.9986− 0.0718j
−1.0015 + 0.0219j 0.9985 + 0.0617j −0.9986− 0.0718j −1.0000 + 0.0005j


Which is in line with the theoretically expected result, aside from slight differences
due to the numerical accuracy of the simulation.

To further verify the transformation it is verified compared to published results.
In [14] a Pierrot cell was experimentally tested together with detailed dimensions
which allows it to be accurately recreated in CST. The geometry can be seen in
Figure 54. The results in Figure 55 agree with results published in [14].
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Figure 54: The Pierrot cell from [14]. The cell is encased in a dielectric material to hold it in
place.

As a final verification, oblique incidence must also be verified. Based on the unit
vectors from Equation (2.8), relations between linear and circular vectors can be
found as:

ê+ =
x̂ cos(θ)− jŷ√

2
ê− =

x̂ cos(θ) + jŷ√
2

(A.7)

x̂ =
ê+ + ê−√

2 cos(θ)
ŷ = j

ê+ − ê−√
2

(A.8)

at which point the wave traces an ellipse instead of a circle. This gives the following
relations between circular and linear fields:

ER
1

EL
1

ER
2

EL
2

 =
1√
2


1/ cos θ −j 0 0
1/ cos θ j 0 0

0 0 1/ cos θ j
0 0 1/ cos θ −j



EX

1

EY
1

EX
2

EY
2



EX

10

EY
10

EX
20

EY
20

 =
1√
2


cos θ cos θ 0 0
−j j 0 0
0 0 cos θ cos θ
0 0 j −j



ER

10

EL
10

ER
20

EL
20


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Figure 55: IL, RL and AR for the LHCPSS Pierrot from [14]
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which gives a transformation of:

SCP =

1

2


1/ cos θ −j 0 0
1/ cos θ j 0 0

0 0 1/ cos θ j
0 0 1/ cos θ −j



SXX
11 SXY

11 SXX
12 SXY

12

SYX
11 SYY

11 SYX
12 SYY

12

SXX
21 SXY

21 SXX
22 SXY

22

SYX
21 SYY

21 SYX
22 SYY

22




cos θ cos θ 0 0
−j j 0 0
0 0 cos θ cos θ
0 0 j −j


(A.9)

ultimately resulting in the transformation of the linear polarizer as:

SCP
theory = e−jφ

1

2


1/ cos θ −j 0 0
1/ cos θ j 0 0

0 0 1/ cos θ j
0 0 1/ cos θ −j



−1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0




cos θ cos θ 0 0
−j j 0 0
0 0 cos θ cos θ
0 0 j −j



=
e−jφ

2


−1 −1 +1 −1
−1 −1 −1 +1
+1 −1 −1 −1
−1 +1 −1 −1

 (A.10)

The result is identical to the case with normal incidence, which means that for
oblique incidence the S-matrix should not change. The result of simulating the
polarizer at θ = 15◦ is:

−1.0000 −0.9987− 0.0698j 0.9986 + 0.0597j −1.0014 + 0.0211j
−0.9987− 0.0698j −1.0001− 0.0000j −1.0014 + 0.0211j 0.9986 + 0.0597j
0.9986 + 0.0597j −1.0014 + 0.0211j −1.0000 + 0.0005j −0.9987− 0.0693j
−1.0014 + 0.0211j 0.9986 + 0.0597j −0.9987− 0.0693j −1.0000 + 0.0005j


and for θ = 30◦:

−1.0000 −0.9989− 0.0629j 0.9989 + 0.0537j −1.0011 + 0.0187j
−0.9989− 0.0629j −1.0000− 0.0000j −1.0011 + 0.0187j 0.9988 + 0.0537j
0.9989 + 0.0537j −1.0011 + 0.0187j −1.0000 + 0.0005j −0.9989− 0.0625j
−1.0011 + 0.0187j 0.9988 + 0.0537j −0.9989− 0.0625j −1.0000 + 0.0005j


They are both in line with the expected result.
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