
Embedded Sound Lo
alization Using

Multilateration in Network Camera Systems

Mazdak Farzone

dt07mf2�student.lth.se

Kim Smidje

dt07ks3�student.lth.se

Department of Ele
tri
al and Information Te
hnology

Lund University

Advisor: Bengt Mandersson

bengt.mandersson�eit.lth.se

April 19, 2013



Printed in Sweden

E-huset, Lund, 2013



Abstra
t

This thesis deals with the analysis of di�erent equipment and methods used in

sound sour
e lo
alization 
ombined with the use of Axis network 
ameras. The

developed system was designed to work indoors as well as outdoors.

By using the time when the sound arrives to the mi
rophones, also known as

TDOA, together with a method 
alled multilateration it is possible to determine

the position where the sound sour
e originated from. The 
al
ulated position is

then transformed and used to dire
t a PTZ 
amera to 
apture the event visually.

The problems with sound lo
alization using the TDOA te
hnique and some

of the TDOA alternatives that are a

essible when implementing and developing

su
h a system, are reviewed as well.

The �nal system 
an run the developed algorithm and position the 
amera

within 2 se
onds with an mean error of 0.6 meters, whi
h was a

eptable relative

to the size of the en
losed area.

i



ii



A
knowledgements

Our thanks go to Axis Communi
ations AB that provided us with the ne
essary

spa
e, equipment and 
ompeten
e to 
omplete this thesis. Magnus Jendbro and

Willy Sagefalk, our advisers at Axis and our supervisor Bengt Mandersson at LTH

were helpful and supported the 
hoi
es we made.

We would also like to thank Henrik Fasth at Axis for providing us with in-

formation, along with helpful thoughts and ideas regarding the audio 
hip and

everything 
on
erning ALSA.

iii



iv



Table of Contents

1 Introdu
tion 1

1.1 Ba
kground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem des
ription . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Problem analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5

2.1 Event triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Lo
alization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Noise sour
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Implementation 17

3.1 Mi
rophone assessment . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Syn
hronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Results 29

4.1 Outdoor testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Real-time indoor testing . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Con
lusions 37

6 Dis
ussion 39

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Referen
es 41

v



vi



Chapter1

Introdu
tion

1.1 Ba
kground

As the surveillan
e industry evolves, with in
reasing image quality and faster 
om-

putations, more advan
ed features are demanded. To be able to know if something

else o

urs outside of the 
ameras view 
ould be one of many desirable qualities.

Be
ause of the nature of sound and its ability to travel around obje
ts and in

darkness, sound events 
an be easier to dete
t and tra
k. But sin
e sound tra
king

depends on other things than ordinary motion tra
king, su
h as several re
eivers

and very high a

ura
y on the time syn
hronization between the devi
es, not very

mu
h have been done in the �eld of sound tra
king in smaller surveillan
e systems.

1.2 Problem des
ription

The purpose of this thesis is to investigate if existing Axis Network Cameras are

te
hni
ally 
ompatible to lo
alize sound sour
es in a de�ned indoor or outdoor

area. If so, then 
onstru
t a real time appli
ation that is able to perform sound

lo
alization from events in the en
losed area. Sin
e network 
ameras are used, the

laten
y of the tra�
 over Ethernet must be taken into a

ount.

The equipment will mainly 
onsist of several 
ameras, with mi
rophones, that

a
t as 
lients. There will also be a server that 
onne
ts to the 
lients and 
omputes

heavy 
al
ulations, su
h as the sound lo
alization algorithm.

If the results would prove to be inadequately 
al
ulated by the system, the

sour
e problems should be identi�ed to explain the performan
e loss. Also, what

is required to be able to a
hieve an a

eptable a

ura
y and performan
e on the


al
ulations? In relation with this, dis
uss possible improvements of the system

as well as further features.

1



2 Introdu
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1.3 Problem analysis

The a
tual sound lo
alization puts restraints on the way the system 
an be de-

signed. However some prin
iples are still followed and in a greater perspe
tive one

would follow these operations, or states, to a
hieve real time positioning:

Event triggering Localization Positioning

Figure 1.1: The designed system �ow

As the state diagram in Figure 1.1 des
ribes, the system would have an idle

state whi
h is 
alled Event triggering. In this state, the information is 
olle
ted and


al
ulated iteratively. If the amplitude threshold is brea
hed, the system passes

the information on to the Lo
alization-state. If not, the system returns ba
k to

�rst state and awaits the next event.

The Lo
alization-state 
onsists of several segments but is referred as a whole

to the lo
alization algorithm in this report. The algorithm 
onsists of the a
tual

sound positioning, the trimming of the signals to syn
hronize the time of ea
h

audio �le with ea
h other and the �ltering to remove the ba
kground noise.

When a reasonable position is found the last state in this iteration is entered.

The position 
oordinates are then 
onverted to mat
h the 
oordinate system used

by the 
amera and set. This 
on
ludes the last state whi
h restarts the system to

the Event triggering state again. The pro
ess then iterates 
ontinuously until the

pro
ess is 
an
elled.

1.4 Related work

There have been several papers done previously on sound lo
alization in di�erent

areas of interest. The methods and hardware they use are appli
able for their

purposes, resulting in varying methods and hardware for ea
h paper. Areas of

interest have been ranging from military appli
ations su
h as lo
ation of enemy

artillery guns, to 
onsumer appli
ation su
h as lo
alization of spee
h in 
onferen
e

speakerphones.

What di�erentiates this thesis from previous works is the uniqueness of the

entire implemented system and the use of an Ethernet network instead of having

audio 
ables 
onne
ted dire
tly to the 
omputer running the lo
alization algorithm.

There has been a master thesis previously done about basi
 sound lo
alization

indoors, however only one 
amera and two mi
rophones were used [3℄. As stated

in the thesis [3℄, the time syn
hronization between the devi
es would be an issue

and very little work have been done regarding this problem.
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1.5 Thesis outline

The states des
ribed in the Problem analysis-se
tion is thoroughly examined in

Chapter 2, evaluating di�erent approa
hes available in ea
h state. The implemen-

tation of the 
hosen methods are des
ribed in Chapter 3, giving a programming

perspe
tive of the problem. Coding issues as well as optimizations will be also

be reviewed and explained in this 
hapter. The �nal results are then presented

in Chapter 4 with further analysis on parameters su
h as a

ura
y and exe
ution

speed. The 
on
lusion of this thesis is presented in Chapter 5 together with an

error analysis of the entire system. This report 
on
ludes with a dis
ussion and

examines future work of the developed system in Chapter 6.
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Chapter2

Theory

The theory is mainly fo
used on the a
tual sound lo
alization, as the implemen-

tation of the system is 
ode-based and reviewed later on. Other ways of dete
ting

and evaluating sound is also examined and reviewed. However these will be treated

lightly and are des
ribed mainly to get an assessment of the options available.

2.1 Event triggering

Events 
an be everything from trespassing to tampering with the system. In this

thesis these events are de�ned as loud or irregular noises in the en
losed area.

There are mainly two di�erent ways to dete
t events:

• Raw data triggering:

By brea
hing a sele
ted threshold value in the amplitude measurements,

an event 
an be identi�ed. This would be the fastest and also the easiest

way to implement, as one single read will beat any re
ognition algorithm or


omplex analysis. However it will be more sus
eptible to ba
kground noise

and wind gusts.

• Algorithm-based triggering:

By examining 
hunks of audio samples and applying a mat
hing or noise

redu
ing algorithm, one 
ould get more a

urate results at the 
ost of 
om-

puting power. This is a more 
omplex way of triggering an event. This would

however have a dire
t impa
t on the speed of the Event triggering-state.

When an event has been identi�ed and triggered, the system 
an handle the situ-

ation in two ways:

• The server ignores the fa
t that other 
lients may hold vital information and


al
ulates only with the data re
eived from the 
lients that have a
tually

been triggered.

• The server is aware of how many 
lients are 
onne
ted and requests the

information from the remaining 
lients.

Both methods have advantages and disadvantages 
ompared to ea
h other but

the �rst method will be the fastest way of a
hieving a position. Sin
e sound

travels relatively fast as the analyzed area is relatively small, the server will re
eive

5



6 Theory

information from the triggered 
lients theoreti
ally at the same time. Be
ause

there is no need to wait and send a request to the untriggered 
lients, this method

will be qui
ker. Still less information may be 
olle
ted, sin
e it is not hard to

imagine a 
lient not re
eiving any or very little information 
on
erning an event,

resulting in an ina

urate answer. Even though the other method re
eives more

information, the a

ura
y may not improve the results. It 
an on the 
ontrary

deteriorate the answer.

2.2 Lo
alization

There are three di�erent methods to 
al
ulate the position of the sound, namely:

multiangulation, multilateration and trilateration. Ea
h approa
h has been used

in various systems in the world and have been proven to work in pra
ti
e. Some ex-

amples are GPS that uses trilateration, LORAN (LOng RAnge Navigation) that

uses multilateration and simple surveying that utilizes triangulation [6℄[14℄[15℄.

All of these te
hniques are based on the same prin
iples, that the sound will

be per
eived in di�erent times depending on the position of the sound sour
e, also

known as Time Di�eren
e Of Arrival or TDOA.

2.2.1 Cross-
orrelation

One way to measure TDOA is to simply extra
t the time stamps at an ampli-

tude peak and then 
ompute the time di�eren
e between them. However this

be
omes wildly ina

urate as sound waves are per
eived di�erently in ea
h mi-


rophone. Using 
ross-
orrelation will put harder restrains on the hardware 
lo
k

syn
hronization between the 
lients. Another way to derive the TDOA is to use


ross-
orrelation:

φfg(m)
def
=

∞∑

n=−∞

f(n) · g∗(n+m) (2.1)

where f(n) and g(n + m) are two similar waveforms with a time lag m and g∗

denotes the 
omplex 
onjugate of g. However as re
orded sounds always are real

signals the 
omplex 
onjugate g∗ is equal to g. The equation above 
an be visual-

ized as the signal g sliding on the signal f and 
al
ulating the sum of their produ
t

at ea
h point. The result is a fun
tion were the highest peak represents were the

signal mat
h the most, thus will TDOA be lo
ated at the highest peak from the

resulting fun
tion:

∆tfg = argmax
m

(φfg(m)) (2.2)

When transforming a signal from the time domain into the frequen
y domain, us-

ing the Fourier Transform, the numeri
al approximation of the signal is taken [18℄.

By sampling the signal one thousand times ea
h se
ond, depending on the frequen-


ies of the sour
e, the signal will maintain its shape. The sample frequen
y must

be twi
e the rate of the highest frequen
y 
omponent in the signal, in a

ordan
e
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with the Nyquist sampling theorem [25℄. The Dis
rete Fourier Transform (DFT)

is, as the name indi
ates, based on the Fourier transform. This transformation is

de�ned as follows:

X(ω)
def
=

∫
∞

−∞

x(t)e−ı̇ωtdt, ω ǫ (−∞,∞) (2.3)

Equation 2.3 has the numeri
al meaning that there will be an in�nite numbers of

points when 
al
ulating the sum. Sin
e the sampled signal has a �nite numbers of

points, the integral 
an be rewritten as [18℄:

X(ωk)
def
=

N−1∑

n=0

x(tn) · e
−ı̇ωktndt, k = 0, 1, 2, . . . , N − 1 (2.4)

The advantage of transforming into the frequen
y domain is that 
al
ulation will

be less demanding and �lters 
an easily be applied on the 
olle
ted data [18℄.

Afterwards the result 
an be transformed ba
k to the time domain by taking

the inverse of the DFT:

x(tn) =
1

N

N−1∑

k=0

X(ωk)e
−ı̇ωktndt, n = 0, 1, 2, . . . , N − 1 (2.5)

and the x(tn) is now the �ltered version of the original signal.

Based on the DFT algorithm, the Fast Fourier transform (FFT) is an algo-

rithm with the purpose of enhan
ing the 
al
ulation speed. The �rst and most


ommon version of FFT is the Cooley-Tukey-algorithm. Simply explained the N
samples is divided into two N/2 blo
ks and thereafter several butter�y operations

is performed. This is repeated until the blo
ks only 
onsist of a signal sample.

This 
an lead to the 
omplexity O(2N2), as it ordinary takes for N number of

samples, 
an be redu
ed down to the 
omplexity O(2N · log2(N)) but this is only
valid as long as N is a power of two [19℄[21℄.

Generalized 
ross-
orrelation - Phase transform

In order to determine the real peak in the 
ross-
orrelation spe
trum, a noise

free environment is desirable. When dealing with real life situations, as previously

stated, there will ambient noise and reverberation present. This noise 
an give false

peaks in the 
ross-
orrelation and thus taint the TDOA estimations of the signals.

To be able to 
ir
umvent this problem, a 
ommon alternative 
alled GCC-PHAT

is used [2℄[5℄[8℄. It stands for Generalized Cross Correlation with Phase Transform

and is de�ned as:

GPHAT (n)
def
=

X1(n) ·X2(n)
∗

|X1(n) ·X2(n)∗|+ ε
(2.6)

where X1 and X2 are two input signals, whi
h have been Fourier transformed into

the frequen
y domain. The transformed signals are 
ross-
orrelated as des
ribed

in Equation 2.1.
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The popular PHAT-weighting s
heme in GCC is used to normalize frequen
y

magnitudes, preserving phase information whi
h is of 
ourse used in TDOA 
al-


ulation. It should be noted that the variable ε is a very small 
onstant used to

avoid division by zero if X1 or X2 would somehow be
ome equal to zero. Then by

taking the inverse Fourier transform:

gPHAT (t) = F−1[GPHAT (n)] (2.7)

theoreti
ally, the behavior of the whitened 
orrelated fun
tion will be more like

an unit impulse fun
tion 
ompared to the ordinary 
ross-
orrelation fun
tion [8℄.

Like des
ribed with the ordinary 
ross-
orrelation, the highest peak of GPHAT (t)

orresponds to the TDOA [7℄.

∆tfg = argmax
t

(gPHAT (t)) (2.8)

2.2.2 Multiangulation

This te
hnique utilizes the 
al
ulated TDOA to �nd the position of the sound

sour
e. In order to 
al
ulate one position, at least four mi
rophones are required.

It is assumed that the sound 
an be treated as a plane wave due to the large

relative distan
e to the sound sour
e and the small distan
e between the individual

mi
rophones in ea
h pair. The TDOA is depi
ted as ∆t and the speed of sound is

vsound. Hen
e the angles 
an be 
al
ulated as follows:

d · cos(ψ) = ∆t · vsound ⇒ ψ = arccos(
∆t · vsound

d
) (2.9)

where ψ gives a measure of angle from ea
h mi
rophone pair and d is the distan
e
between the mi
rophones, an example of this is illustrated in Figure 2.1.

ψψ
d

Mic 1 Mic 2

Sound source

Figure 2.1: Using the triangulation to 
al
ulate from the dire
tion

of the sound sour
e.
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What remains is to 
ompare the angles from two di�erent mi
rophone pairs

to �nd an interse
tion point:

Pair 1 Pair 2

ψ
1

ψ
2

α

a

x x12

Sound source

Figure 2.2: Determining the position of the sound sour
e by using

multiangulation. Ea
h pair 
onsists of two mi
rophones.

The a
quired angles are used to 
al
ulate the remaining angle α and the a
tual

distan
e to the point of origin, by using the law of sines:

sin(180− (ψ1 + ψ2))

a
=
sin(ψ1)

x1
=
sin(ψ2)

x2
=
sin(α)

a
(2.10)

When the distan
e ve
tors x1 and x2 are known, the position be
omes simple

to 
al
ulate. If several mi
rophone pairs are used, they are 
ompared so that

ea
h 
omparison is unique. The evaluated points are then weighted together and

depending on the size of the area en
losing all points, the a

ura
y is determined.

Finally these points are then evaluated with a weighing algorithm to de
ide upon

one �nal point that will be the estimated point of the sound sour
e.

One drawba
k with this method is that for ea
h 
lient in
luded into the system,

it will require two additional mi
rophones to be able to depi
t the angle from whi
h

the sound 
ame from. So if a system has n 
ameras it will require 2nmi
rophones in
order to allow ea
h 
amera to determine from whi
h dire
tion the sound originated

from.

2.2.3 Multilateration

Another te
hnique is to use the relative distan
e between the re
orded sound from

ea
h and every one of the mi
rophones. Multilateration is based on the prin
iple
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that the TDOA shapes a hyperbola of lo
ation points around a fo
us point, whi
h

in this thesis are the mi
rophones. Consider a simple example with only two mi-


rophones: The TDOA between the mi
rophones, ∆t, 
an then be derived from

t2 − t1, were ti is the time index when mi
rophone i per
eives the sound. The the
di�eren
e 
an in distan
e between mi
rophone 1 and 2, 
an be 
al
ulated as:

srelative = vsound · (t2 − t1) = s2 − s1 (2.11)

where srelative is the travelled distan
e relative to mi
rophone 1. With the rel-

ative distan
e and the mi
rophone position 
oordinates known, a hyperbola 
an

be 
onstru
ted, based on the de�nition of the hyperbola [17℄. This is illustrated

in Figure 2.3(b). If the srelative is ≈ 0, the resulting 
urve will more or less be a

straight line, in the middle of the mi
rophones. A point 
an not be found with a

t t2
1

Mic 1Mic 2

Sound source

(a) The times t1 and t2 when the mi-


rophone re
eives the sound.

S
S1

2

P

Mic 1Mic 2

Sound source

(b) The plotted hyperbola whi
h indi-


ates three of the possible posi-

tions of the sound sour
e at point

P.

Figure 2.3: Positions of the sound sour
e.

single hyperbola equation, as 
an be seen in Equation 2.12 and Figure 2.3(b).

S12 = |S1−S2| = |
√

(x1 − xP )2 + (y1 − yP )2−
√

(x2 − xP )2 + (y2 − yP )2| (2.12)

There are two unknown variables and only one equation. If an additional re
eiver

is in
luded into the system, there will be two new equations:

S13 = |S1 − S3| = |
√

(x1 − xP )2 + (y1 − yP )2 −
√

(x3 − xP )2 + (y3 − yP )2|

and

S23 = |S2 − S3| = |
√

(x2 − xP )2 + (y2 − yP )2 −
√

(x3 − xP )2 + (y3 − yP )2|



Theory 11

Mathemati
ally, this will solve for a single point whi
h will be the sound sour
e

lo
ation in a noise-free environment. As the area of interest is noisy and reverber-

ant, the hyperbolas will interse
t at several di�erent points.

Figure 2.4: The hyperbolas marked in di�erent 
olors and mi
ro-

phone positions marked with bla
k dots.

A possible improvement is to add more mi
rophones to in
rease the number of hy-

perbolas and possible interse
tions. The number of hyperboli
 fun
tions K with

n mi
rophones 
an be des
ribed with the following relation:

(
K

2

)

=

((n
2

)

2

)

, n ǫ N∗
(2.13)

A qui
k observation yields that the system will be overdetermined as n ≥ 3 whi
h
is for every 
ase sin
e at least three mi
rophones are needed for at least another

TDOA equation. The equation system is thereby solved with one of the three

di�erent approa
hes available. The Non-linear Least squares-algorithm was the

only option assessed. Other options in
lude the Extended Kalman �lter and the

Parti
le Filter [7℄.

2.2.4 Non-linear least squares

In a system of equations the number of unique unknown variables gives a degree

of freedom. If there exists an exa
t number of equations to solve for the degree

of freedom, the system 
an be solved. When the number of equations in
reases,

the system be
omes over
onstrained, also known as overdetermined. Due to the

non-linearity of the equation system, a global minimum is sought amongst multiple

minimum points. The numeri
al solution provided by Levenberg-Marquardt, also

known as the LM-algorithm, is an optimal 
andidate.

The LM-algorithm used in data-�tting appli
ations, is an iterative algorithm

that 
ombines the best of two major methods. The Gauss-Newton algorithm and

the Gradient des
ent method. Like any non-linear least squares algorithm the LM

requires a initial guess P0. If P0 is far from the lo
al minimum the LM utilizes the

Gradient des
ent method whi
h is slow but guaranteed to 
onverge. As the LM
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iterates it either 
ontinues using Gradient des
ent or swit
hes to Gauss-Newton if

the 
urrent solution is 
lose to exhibit fast 
onvergen
e [16℄.

By using the LM-algorithm, a solution is found even if P0 is poorly 
hosen,

thus making it a bit slow but also more robust 
ompared to only using the Gauss-

Newton method [9℄[20℄.

2.2.5 Time syn
hronization

The 
lients need to be syn
hronized if the 
orrelation 
al
ulation of the audio

samples are to be 
orre
tly performed. Sin
e there are multiple 
lients, ea
h run-

ning on a separate pro
essor, the issue of syn
hronization be
omes relevant to the

system. A di�eren
e of n millise
onds yields:

A(n) = ±0.343 · n (2.14)

An iterative pro
ess is 
reated to 
ompensate for the 
lo
k drift iteratively in

ea
h pro
essor.

The 
lo
k drift is a phenomena where the internal 
lo
k does not run at the 
or-

re
t speed due to temperature 
hanges, quality of the 
lo
k, surrounding magneti


�elds and air pressure. It 
ould be assumed that every 
lo
k will drift eventually

and that it is ironi
ally only a matter of time. To syn
hronize the 
lients two

options were available:

• Proto
ols : There are proto
ols that are designed to redu
e 
lo
k drift and

in
rease pre
ision between 
lients.

• Time broad
ast : Be
ause the issue is to redu
e relative time di�eren
e be-

tween server and 
lients, the 
lients 
an inherit the server time.
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2.3 Positioning

As the positioning-
amera works in a polar 
oordinate system and the evaluated

position, Psound, is in Cartesian 
oordinates, a 
onversion is ne
essary. The origin

in the polar 
oordinate system is set to the 
amera's origin Pcamera.

Prelative = Psound − Pcamera

thus the pan of the 
amera be
omes a 
onversion from Prelative's 
oordinates [x, y]
to the polar 
oordinates [r, α]:

r =
√

(x2 + y2)

α = tan−1(
y

x
)

The derived values are then adjusted depending on whi
h quadrant of the 
oordi-

nate system they are situated in. After the pan is set, the tilt is 
al
ulated using

a �xed average height, hhuman, of the standard obje
t in observation:

h

θ
θ1
2

hc

L
Figure 2.5: The PTZ 
amera pans and fo
uses itself on a elevated

plane. hc is the height of the 
amera, h is the distan
e to the

elevated plane, θ1 is the angle to the given position and θ2 is

the angle for the new position.

As Figure 2.5 shows, the angle needs to be adjusted to fo
us on the obje
t, θ2,
and not the derived point from the Lo
alization-state, θ1. The 
amera position

height hc is known, hen
e θ2 is 
al
ulated as:

h = hc −
hhuman

2

θ2 = tan−1(
L

hc
) = tan−1(

y

hc
)

The zoom fun
tion was not evaluated in this thesis, thus the �nal position in PTZ

spa
e, [Pan, Tilt, Zoom℄ be
omes: [α, θ2, 0].
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2.4 Noise sour
es

This real-time system will evidently be a�e
ted by di�erent types of noise that


an 
orrupt the 
al
ulations, thus giving a bad result to the user. The noise 
an

be divided into two major 
ategories:

• Environmental noise and errors:

� Reverberation is one of the major issues when positioning indoors due

to the waveform's sensitivity to sound re�e
tions from e.g. ground or

walls taking other paths to the mi
rophone. The resulting waveforms

will be di�
ult to 
orrelate as they are not only phase shifted but

di�erent to ea
h other as well.

� Temperature will 
hange sound propagation, resulting in less a

urate


al
ulations espe
ially if there are variations in temperature between

the 
lients. A temperature di�eren
e of 50oC will result in ≈ 8.5%
di�eren
e in sound velo
ity.

Refra
tive e�e
ts 
an be observed when temperature varies between

the ground and in the air, shown in Figure 2.6. A normal sound

wave propagates upwards when temperature is de
reasing with alti-

tude. The situation turns during sunset or night when the ground

is hot and the air is 
older. This 
auses the sound to refra
t down

towards the ground [10℄.

� Wind 
an 
hange sound propagation and speed. Here the refra
tive

e�e
ts from temperature di�eren
e o

urs again. The sound refra
ts

down when the wind travels with the same heading, also known as

downwind. The mi
rophone will re
eive more power thus produ
e the

illusion that the sound is louder. The reversed e�e
t, when the sound

is refra
ted up o

urs when the wind blows in the opposite dire
tion.

The mi
rophone will theoreti
ally re
eive less or no power due to e�e
t

of the shadow zone, as seen in Figure 2.6 [10℄.

� Natural noise are the events that are hard to 
lassify and 
an o

ur

at any time. These events 
an be e.g. wind blowing dire
tly in the

mi
rophone or noise from distant sour
es. It is the most frequent and

apparent noise o

urring in outdoor situations and is the hardest noise

to suppress or �lter out.

• Computational errors:

� Round-o� errors o

ur when approximated variables are pro
essed

when the exa
t mathemati
al value is needed for further 
omputa-

tions.

� Timing errors will be introdu
ed be
ause of the hardship of syn
hro-

nizing devi
es with ea
h other. Harder demands of pre
ision results

dire
tly in harder restraints on the 
lo
k drift e.g. a system that needs

a position error of maximum 1 cm requires a syn
hronization with

maximum drift of 29 · 10−6 s.
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� Frequen
y sele
tion is important due to the pre
ision requirements.

With a sampling frequen
y of 44100 Hz, ea
h sample will 
orrespond

to 22 · 10−6 s of information whi
h gives a pre
ision of 0.77 cm. Com-

pared to a sampling frequen
y of 8000 Hz that has 12.5 · 10−5 s of

information resulting in ∼ 5 cm of a

ura
y. Also when using low

frequen
ies one must take the Nyquist sampling theorem into a

ount.

If band limited fun
tions are used with no higher frequen
y than B
hertz, they will be re
onstru
table with 2 · B samples/s.

Figure 2.6: Impa
t on sound rays with de
reasing and in
reasing

temperature with in
reasing elevation.
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Chapter3

Implementation

This 
hapter des
ribes details on how the proje
t progressed, what steps were

taken during the implementation of the system and why.

3.1 Mi
rophone assessment

Two options were given during the mi
rophone assessment stage of the implemen-

tation pro
ess. The internal mi
rophones, to de
rease 
ost and 
omplexity of the

system or an external alternative 
ould be bought for pre
ision and evidently in-


reased system 
ost. Outdoor tests were 
ondu
ted to get an idea of how well the

internal mi
rophone would apprehend the sound and how high the ambient noise

level would be. The indoor requirements were 
onsidered 
overed if the mi
ro-

phone would be able to handle the noise polluted outdoor environment. The test

that was 
ondu
ted with a vehi
le horn approximately 25 m from the internal and

the external mi
rophone.

Figure 3.1: Two di�erent re
ordings done with the external mi
ro-

phone (top) and the internal mi
rophone (bottom). The red

frame marks the sound from the 
ar horn.

The amplitude of the noise proved to be so powerful when using the internal

mi
rophone, that it 
ompletely drowned the amplitude of the horn. The horn 
an

not be distinguished in the re
ording done with the internal mi
rophone by only

17
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looking at the waveform. When the sound re
ording however is played, the horn


an be heard around 7 s into the sound 
lip.

Another way to analyze the signal is to transform the signal and then note

the frequen
y 
omponents. Optimally, these 
omponents will be 
lear spikes and

visually distinguished on the plot shown in Figure 3.2. Figure 3.2(b) 
learly dis-
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(a) Internal mi
rophone
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(b) External mi
rophone

Figure 3.2: Frequen
y spe
trum between the di�erent mi
rophones

plays the desired frequen
y spe
trum of an audio 
apture as was expe
ted with

an expensive and outdoor-adapted mi
rophone. Vehi
le horns are not the only

interesting audio events o

urring in the analyzed area, as human made sounds

must be analyzed as well. Human spee
h has frequen
y 
omponents that stret
hes

between 100 Hz to around 5000 Hz. Consider the two 
onsonants 'n' and 's ' that

have the following frequen
y spe
trum with amplitude ratios:
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(b) The amplitude ratio of 'n'

Figure 3.3: Di�eren
e between frequen
y 
omponents in human

spee
h.

Mi
rophones are designed di�erently to 
reate their own 
hara
teristi
 fre-

quen
y and phase responses. For s
ienti�
 purposes a more uniform response

is required to 
reate equal prerequisites for every measurement. Conditioning

them unevenly would be more appropriate for musi
ians that are imitating 
ertain
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sounds or lo
ations. The mi
rophone 
hara
teristi
s are typi
ally des
ribed with

two plots:

• A frequen
y response diagram shows the sensitivity, most often over the


ommon frequen
y range of 20− 20000 Hz.

• The polar pattern or dire
tionality des
ribes the sensitivity when sound is

arriving in di�erent angles about its 
entral axis.

Figure 3.4: Polar pattern of the external mi
rophone

Figure 3.5: Frequen
y response of the external mi
rophone
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The 
lients did not have the internal mi
rophone 
hara
teristi
s sheet available,

but they are 
ountersunk into the atta
hment plate of the 
amera. This gives an

uni-dire
tional polar pattern. The frequen
y response 
an be assumed to be more

or less uniform as well.

The uni-dire
tionality of both 
hoi
es are preferable to give the analyzed area

high sensitivity and in the surroundings lower sensitivity, but the internal mi
ro-

phone su�ers greatly outdoors due to none or low noise-
an
elling design. It is

quite 
lear that they are not su�
ient to 
apture the wide variety of sounds due to

the high signal-noise-ratio, also known as SNR, in the 600− 5000 Hz band. The
problem des
ription 
learly spe
i�es that outdoor installations are required, whi
h

makes the external mi
rophone the most appropriate 
hoi
e for this system.

With the external mi
rophone no 
omplex 
al
ulations are needed to �nd

sound events making Raw-data triggering, des
ribed in Chapter 2.1, a working

and simple solution to implement.

3.2 Equipment

Table 3.1 lists the equipment used in the entire proje
t. The proje
t's test phase


onsisted of two major stages. The �rst stage was to implement a working lo
alization-

algorithm without the 
onstraints or problems of a real-time system. To emulate

the audio �les that the 
lients would 
onstru
t and send, a multitra
k-re
order

unit 
alled Tas
am DR-680 was used. This unit is designed to re
ord multiple

tra
ks with 
lose to no delay between them, whi
h was a demand for the �rst test

stage. The unit the mi
rophones need power to work, known as phantom-power

that the multitra
k re
order delivered in both stages.

When the �rst phase was done the multitra
k-re
order was used merely to

supply power and in
rease gain of the signals.

Ea
h mi
rophone is 
onne
ted to a P3367-V 
amera that have an audio 
hipset

that is ALSA supported with sampling frequen
ies up to 16 kHz.
The M5014 PTZ 
amera is a lot smaller than the Q6035 and made the installa-

tions easier when testing in the �rst phase. At the end of the proje
t, a Q6035 was

used instead sin
e it was a mu
h more sophisti
ated PTZ 
amera with a qui
ker

response time.
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Devi
e Des
ription

Sony ECM-VG1 (a) A 
ondenser mi
rophone to be used indoors or out-

doors.

To redu
e the noise from the wind, winds
reens were

applied onto the mi
rophones. Five mi
rophones were

used during the proje
t.

Tas
am DR-680 (b) A portable multitra
k re
order used in the �rst test en-

vironment and to deliver phantom power to the mi
ro-

phones in the real-time system.

Axis P3367-V (
) The network 
amera used during the 
ourse of the

proje
t.

Ea
h 
amera is 
oupled together with one of the mi
ro-

phones. This parti
ular model does not have the ability

to move and 
an not lo
ate the position of the sound

sour
e when found.

Axis M5014 A lightweight Pan-Tilt-Zoom 
amera. Used in the �rst

phase of the proje
t.

Axis Q6035 The PTZ 
amera, used in the �nal phase of the proje
t,

sin
e it is a mu
h more 
apable 
amera than the M5014


amera.

PoE Network swit
h Two di�erent network swit
hes were used, sin
e all


ameras required PoE, Power over Ethernet and one

swit
h 
ould only power a maximum of four devi
es.

Table 3.1: Table of the equipment and tools that were used in the

proje
t. Some of the devi
es 
an be viewed in Figure 3.6

3.2.1 Power over Ethernet

The 802.3af PoE standard was developed to redu
e wiring in larger networks where

every devi
e needed a power supply as well. It states that using mere CAT-5/5e

Ethernet 
ables up to 100 m, devi
es 
ould be powered with a minimum power of

12.95 W with 350 mA at a minimum voltage of 44 V [23℄.

The provided network 
ameras powered with PoE making installation a lot

easier with only one 
able instead of two or more.

Not every devi
e is �t to deliver this power and Ethernet at the same time,

therefore the provided network swit
hes used in this proje
t were 
ompliant with

the standard to deliver the required power to the devi
es.
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(a) The mi
rophone,

with the 'dead 
at'

applied, used when

re
ording in and

outdoors.

(b) The re
order used

to sample, re
ord

and power the mi-


rophones.

(
) The 
lients, Axis

P3367-V.

Figure 3.6: Some of the equipment that were used during the

proje
t.

3.3 Syn
hronization

As des
ribed in Chapter 2.2.5, there are two ways of syn
hronize.

3.3.1 Network time proto
ol

The proto
ol-based solution utilizes the Network time proto
ol, or simply NTP,

that ensures syn
hronized devi
es in the entire variable-laten
y network with a

simple topology:

• Stratum 0:

The top layer, 
omposed of atomi
, radio and GPS 
lo
ks. Extreme pre
ision

servers are situated in this layer and 
ommuni
ate dire
tly to the lower layer

with e.g. RS-232 
ables.

• Stratum 1:

Are used to answer NTP timing requests, from devi
es situated on layer

Stratum 2.

• Stratum 2:

Devi
es on this layer peer ea
h other to ex
hange time information but

performs also NTP requests from the Stratum 1 layer, to a
hieve a solid

time. This layer is also used to handle NTP requests from Stratum 3.

A 
lient that peers the di�erent servers 
an a
hieve an a

eptable pre
ision with

some 
al
ulations and measurements, that is implemented in NTP.

NTP version 3 assures a maximal error of a few millise
onds in lo
al area

networks. It is the most used version right now but version 4 has been available

sin
e June 2010 [12℄. NTP version 4 has "the potential a

ura
y to the tens of

mi
rose
onds with modern workstations and fast LANs" [11℄[12℄.
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All of the Axis 
ameras implement an open-sour
e peer-only version, of NTP

version 3, 
alled OpenNTPD, that has lower pre
ision than the standard imple-

mentation of NTP version 3 and 4.
With this in mind, the a

ura
y is 
ompromised even further 
onsidering Equa-

tion 2.14.

3.3.2 Server time broad
ast

The �nal system is intended for lo
al networks where there is reasonable low load

on the system and low hop-
ounts for pa
kets. This advantage is employed to


onstru
t another more simple implementation of a syn
hronization algorithm,


alled server time broad
asting.

At de�ned intervals, the server broad
asts its kernel time stamp to the 
lients

that apply it in their separate 
al
ulations when fet
hing sound samples. Hen
e if

the 
lients are on the same network swit
h the theoreti
al a

ura
y loss be
omes

a matter of measuring and 
ompensating for the Pa
ket delay variation.

Pa
ket delay variation, also known as jitter, is "the di�eren
e between the

one-way-delay of the sele
ted pa
kets" [24℄. This means that for a pa
ket that has

e.g. 10 ms round-trip time and one that has 20 ms round-trip time, a jitter of

10 ms relative to the �rst pa
ket and −10 ms relative to the se
ond pa
ket, is


al
ulated.

Using the Internet Control Message Proto
ol, a mean jitter of 0.20 ms was

measured in a loaded lo
al network with �ve 
lients. By applying Equation 2.14

the solution be
omes reasonable as it gives a mere A(0.2) ≈ ±6.8 cm pre
ision

loss, 
ompared to OpenNTPD that has n = 2 ms⇒ A(2) = ±68.7 cm.

If NTP version 4 was implemented in the 
ameras then the 
hoi
e would be

proto
ol-based, but as the 
urrent implemented proto
ol la
ks pre
ision, server

time broad
ast was adequate.

3.4 Programming

The goal of the implementation was to make the system as generi
, in the aspe
t

of 
lient-
ount, as possible. Other inputs were evaluated to make the system as

user-friendly as possible while at the same time be a

urate and have advan
ed

features, su
h as the option to deliver debug-data if requested.

The 
ode was stru
tured into the three distinguishable parts des
ribed in the

report: the server and the 
lient side are both written in C-language, whereas the

lo
alization algorithm is written with MATLAB-s
ripts.
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A sound occures Sound intercepted Preamplified Sampled

Divided into packages and sent

High pass filtering Sound source algorithm Send position

Camera {

Server {

Figure 3.7: The summarized data �ow
hart of the system, showing

how the data is being pro
essed throughout the system.

3.4.1 Client implementation

The 
lient's many states 
an be summarized into the states des
ribed by Figure 3.7

and a startup state whi
h is not a part of the iterative pro
ess. The startup state


onsists of the 
onne
tion with the server, the setup of the internal bu�er and

the initialization of the audio 
omponents. As audio is 
olle
ted when measurable

sound has o

urred, it is preampli�ed and sampled with the Tas
am DR-680. This

ampli�
ation is needed to ensure good 
overage and sensitivity. Furthermore in

this phase the 
lient sends a syn
hronization request in a �xed time interval to


ompensate for the 
lo
k drift.

The ring-bu�er is also a part of the audio 
olle
tion phase and allows for some

pre-bu�ering of the data shall the threshold be brea
hed when there is a slow

amplitude in
rease. To gather the tail of the sound the sample 
olle
tion iterates

over a �xed time. This provides more 
ru
ial information when performing the


orrelation analysis whi
h will improve a

ura
y.

On
e the sound padding is done, the 
lient divides the 
ontent of the ring-

bu�er into TCP pa
kages and sends it to the server together with a time stamp

that 
orresponds to the start of the bu�er. This is used for trimming the audio

�les in the server implementation.

TCP provides reliability over laten
y whi
h guarantees less errors in the 
or-

relation 
al
ulation.
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3.4.2 Server implementation

The server's primary tasks is to keep tra
k of the 
lients by sending syn
hronization

time stamps, re
eive audio data, trimming the data and to start the lo
alization

algorithm when enough 
lients have sent data. The 
hoi
e of running tasks in

parallel was needed to run the server e�e
tively. Developed in a Unix-environment,

the intention of running on other OS:s su
h asWindows was 
on
eived as irrelevant.

This made the 
hoi
e of how to thread the server easier and redu
ed the number

of options to the following:

• Forking 
lones the pro
ess of the parent running the fun
tion and 
reates a


hild pro
ess that has a separate ID and a 
omplete 
opy of the memory in

a separate address-spa
e.

• POSIX threads or more known as pthreads, takes full advantage of the 
apa-

bilities provided by the de�nition of threads. It allows easy a

ess to shared

data with mutual ex
lusion in 
riti
al areas [26℄.

The need of having a shared address-spa
e made the 
hoi
e of using pthreads

superior, even with the danger of having deadlo
ks or other phenomenon su
h as

ra
e 
onditions [28℄.

The result was a multi-threaded solution using a manager/worker thread model.

Ea
h 
lient is supported with a single thread, having one separate thread listening

for further 
onne
tions to the system and one thread that evaluates the results

when the system is triggered. This is shown in the system �ow 
hart's �rst server-

states.

When the Trimming-state is entered the time stamps are 
ompared and the

audio is trimmed to have the same start time. A more 
onservative option is to

simply shift the �le to preserve information, but sin
e the syn
hronization di�er

theoreti
ally only a 
ouple of millise
onds, trimming of the signals be
omes easier

to perform and less 
ostly time-wise.

The laun
h of the s
ript is done from the server using the open sour
e alter-

native 
alled O
tave that is able to interpret and run MATLAB-fun
tions and


ommands.

3.4.3 O
tave implementation

As des
ribed earlier, the implementation-pro
ess started out with the MATLAB-

s
ripts, making o�ine 
al
ulations and optimizations on di�erent parameters, su
h

as algorithm speed. O
tave gave many advantages with the library fun
tions su
h

as reading the wav-�les, sampling speed, having a built-in FFT and easy a

essible

matrix/ve
tor 
al
ulations.

Sin
e the FFT algorithm usually takes O(2N2) 
omputations for N points,

the number of 
omputations 
an easily be
ome very large. One se
ond of re
orded

sound, sampled with a frequen
y of 16 kHz will yield 16000 points. If N =
16000 then 2 · 160002 = 512000000 
omputations will be needed however if the

number of points N is a power of two, the number of 
omputations will only take

O(2N · log2(N)). The 
losest number that is a power of two is 16383 = 214. So
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with N = 16383, the number of 
omputations will be:

2 · 16383 · log2(16383) = 32766 · 14 = 458724

This is less than 0.09% of the 
omputations done with the non-optimal solution.

With this knowledge, the re
orded sound will be padded up with zeros to the


losest number that is a power of two and will thus improve the speed of the

mathemati
al part of the algorithm.

GCC-PHAT was implemented using the built-in FFT due to the do
umenta-

tion stating that the algorithm implementation has been optimized and improved.

The 
omparisons resulted in n ve
tors [t1,2, t1,3, . . . , t1,n], where n was the number

of 
lients in the system and ti,j is the TDOA between 
lient i and j.
With di�erent mi
rophone referen
es a TDOA matrix was 
onstru
ted. Sin
e

the 
orrelation between t1,2 is equal to −t2,1, the matrix 
an be written like this:










t1,1 t1,2 t1,3 . . . t1,n
t2,1 t2,2 t3,2 . . . t2,n
t3,1 t2,2 t3,3 . . . t2,n
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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







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






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.
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





(3.1)

To simplify the expression, the matrix 
an be divided into two triangular matri
es:


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
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

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
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



0 0 0 . . . 0
−t1,2 0 0 . . . 0
−t1,3 −t2,3 0 . . . 0
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


︸ ︷︷ ︸

−T

(3.2)

and this 
an be viewed as (
T

−T

)

(3.3)

Only T needs to be 
al
ulated in order to derive all the time ve
tors in the TDOA

matrix. Both multilateration and multiangulation require the use of the TDOA

but they di�er in the use of this information.

Important to the system was the question of a

ura
y, simpli
ity and 
omput-

ing speed. These three parameters do not need be impli
ated to ea
h other, on

the 
ontrary they often are not as a

ura
y is often 
ompromised when 
omputing

speed is important.

Des
ribed in Chapter 2.2.2 using multiangulation, the need of the angle of

in
ident 
reates a new sour
e of a

ura
y loss. The system 
ost is greater too

due to the added mi
rophones, not to mention that trigonometri
 fun
tions are

time-
ostly for as 
omputer and approximated.

In Chapter 2.2.3 using multilateration, the only way to 
al
ulate the point is

to have a TDOA matrix whi
h promotes simpli
ity. The resulting system uses less
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mi
rophones and has no angle 
al
ulation either, whi
h made the 
hoi
e of using

multilateration apparent.

Using the derived equation system the LM-algorithm 
al
ulates the �nal esti-

mation. The overdetermined system used to 
al
ulate the position was optimized

to in
rease a

ura
y as the mi
rophone may have been 
orrupted with ex
ess noise

or other audio pollutants. The problem with the given hyperbolas, is to identify

whi
h of the hyperbolas are faulty or bad. The implementation is a simple 
om-

parison between every hyperbola to �nd a point with a small SSQ value. The

estimation that has the smallest SSQ value be
omes the point in the angle- and

pan 
al
ulations. Finally a shell-s
ript sends the parameters through the HTML-

based VAPIX interfa
e to the Q6035 
amera.



Chapter4

Results

The results from the developed system are presented in this 
hapter for both in-

and outdoors. Some reasons and re�e
tions regarding the results are also given to

spe
i�
 tests.

4.1 Outdoor testing

The system was designed to run the 
al
ulations on a 
omputer, making the out-

door tests hard to 
arry out in real-time. It was therefore de
ided that the sound

would �rst be re
orded outside and then invoke the algorithm manually to get an

estimated lo
ation of the sour
e.

The re
ording equipment was pla
ed in a roughly measured square that was

approximately 25 m at ea
h side. Two di�erent sounds were produ
ed at two

di�erent positions, a 
lap and a loud sound whi
h gave a total of four di�erent


ondu
ted tests. Ea
h test 
ontained several events, e.g. the �rst 
lap test 
on-

sisted of six di�erent 
laps. The tests were performed at x1 : (8.70, 8.50) and
x2 : (9.70, 20.45) but these 
oordinates were 
oarsely measured by hand using a

measuring tape. The error is derived by taking the Eu
lidean distan
e between x1
or x2 and the 
al
ulated point.

The sound re
ordings that were fed into the sound lo
alization algorithm gave

the following results:

Coordinates (meter) Error (meter)

(8.78,8.8207) 0.3305

(8.8185,8.7697) 0.2945

(8.6406,8.4782) 0.0632

(8.9515,8.7621) 0.3632

(8.8629,8.6852) 0.2466

(8.7319,8.8727) 0.3740

Table 4.1: The estimated 
oordinates based on a sound from the


lap at position x1, along with the estimated radius of error.
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The average of the 
oordinates are (8.797567, 8.73143) giving an error estimate of

≈ 0.25 m.

The next sound was a loud human made spee
h or more spe
i�
ally a word:

The 
orresponding average of the estimated 
oordinates are (9.0434, 8.8126)whi
h

Coordinates (meter) Error (meter)

(8.8684, 8.2554) 0.2969

(8.9031, 8.3255) 0.2677

(8.746, 8.1309) 0.3719

(10.28, 11.35) 3.2586

(8.6832, 8.4021) 0.0993

(8.7797, 8.4117) 0.1189

Table 4.2: The estimated 
oordinates from the human made sound

at position x1 along with the estimated radius of error.

is a slightly worse result 
ompared to the test des
ribed by Table 4.1. The sys-

tem's guess is however only o� by ≈ 0.46 m. Two similar tests were 
ondu
ted at

position x2 as well:

Ordinary 
lap at x2:
Coordinates (meter) Error (meter)

(9.1882, 21.286) 0.9802

(9.6249, 21.235) 0.7885

(9.6239, 21.364) 0.9171

(9.4570, 21.289) 0.8734

(9.5861, 21.693) 1.2482

(9.6467, 21.359) 0.7199

(9.4909, 21.359) 0.9327

Loud word at x2:
Coordinates (meter) Error (meter)

(10.327, 22.183) 1.8429

(10.066, 21.486) 1.0987

(9.6625, 21.628) 1.1785

(10.009, 21.961) 1.5422

(10.454, 21.685) 1.4469

(10.029, 21.643) 1.2375

(9.7858, 21.764) 1.3167

(9.5628, 21.689) 1.2465

Table 4.3: The 
oordinates from both the 
lap and the loud word

at position x2.
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The mean 
oordinates from these tests are (9.5168, 21.3420) for the 
lap and

(9.9870, 21.7549) for the loud word. The average error estimate was 
al
ulated

to ≈ 0.91 m and ≈ 1.33 m respe
tively.

Sin
e these tests were only re
orded and then pro
essed by the positioning

algorithm, many low frequen
ies are still present in the audio �les. By using the

digital audio editor Auda
ity's built in fun
tion Noise Removal, a �ltered signal

was 
reated. Auda
ity uses Fourier analysis to identify the pure tones and removes

the frequen
ies that are 
onsidered to be noise [27℄. The di�eren
es between the

signals 
an be viewed in Figure 4.1.

Figure 4.1: The un�ltered signal (top) and the �ltered signal (bot-

tom).

The �ltered version of the re
orded 
lap at position x1 was pro
essed to see if the

results would improve.

Coordinates (meter) Error (meter)

(8.8019,8.8428) 0.3576

(8.5167,8.9950) 0.5278

(9.2058,8.3700) 0.5222

(8.6905,8.5937) 0.0941

(8.8625,8.6857) 0.2467

(9.2544,8.5891) 0.5615

Table 4.4: The results after the re
orded sound have been �ltered

and then pro
essed by the lo
alization algorithm.

The results are listed above in Table 4.4 and they yield an average of (8.89, 8.68)
whi
h is ≈ 0.26 m wrong. Comparing this result with the �rst outdoor test in
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Table 4.1, the error estimate is not better but 0.01 m greater. This means that

the signals are less 
orrelated when �ltered without pre
autions.

4.2 Real-time indoor testing

Most of the tests were 
ondu
ted indoors in various rooms, even if the system was

initially mostly intended to be used outside. When tests were 
arried out in the of-

�
e lands
ape, the environmental noises were reversed giving strong reverberation

and minimal weather e�e
ts. Even with the presumed better 
onditions the result

�u
tuated from positioning with 
lose to no error, to positioning with an angular

error of 180o in 
amera spa
e. This is likely 
aused by the shape and design of the

o�
e, mostly 
onsisting of walls of glass. What also 
ontributed to the poor result

was that the system was 
onne
ted to Axis own lo
al area network. The network

is often heavily loaded with video and audio streams from several other streaming


ameras.

After those tests, a new test environment was de
ided upon. Instead a base-

ment room was used for the indoors tests. This room has almost no glass windows

and therefore more preferably to 
ondu
t tests in.

The outline 
an be seen in Figure 4.2 with the positions of the mi
rophones

S1 to S5 and the PTZ 
amera lo
ated at 
oordinate (3.0, 3.3):

S1

2

3

4

5

S

S

S

S

Y

X

Camera

Figure 4.2: A simple outline of the setup during the indoor tests

with �ve mi
rophones.

Various types of sound were made to verify that the system would be able to dete
t

all of them. Ordinary 
laps, thumps with a sti
k and thrown 
hairs are examples

of sounds that were made. Two di�erent tests were 
arried out and measured. In

�rst test, a thump with a sti
k against the �oor was done 146 times, all at di�erent
positions inside the en
losed area. The resulting frequen
y of deviation from the

true positions 
an be viewed in Figure 4.3(a), with a mean of 0.535m in deviation.

The system will almost never derive the exa
t position of the sound sour
e.

The interpretation of how exa
t the position is, may be a relative term. Even if the

estimation is o

asionally up to one meter from the true position, the estimation
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Mi
rophone Coordinates (meter)

S1 (0.0, 0.0)

S2 (7.16, -0.6)

S3 (3.0, 3.0)

S4 (-0.6, 8.04)

S5 (5.95, 8.04)

Table 4.5: Coordinates for the setup during the tests indoors, seen

in Figure 4.2.


an nevertheless be regarded as '
orre
t' for the observer. The sour
e of the sound

is most of the time visible in the 
amera's �eld of view, e.g. a person or the

broken window on a 
ar. Out of the 146 tests done with the thump from the sti
k,

the 
amera was unable to see the 
ause of the sound only two times. Hen
e the

reliability is ≈ 98.6%. An example of this 
an be viewed in Figure 4.3(b).

Sometimes the system did not respond at all to an event. The 
ause is, as

shown in the �ow 
hart in Chapter 3.4, a large SSQ value from LM-algorithm

making the derived position un
ertain. When a large SSQ value is a
quired, the

interse
tion points between the hyperbolas are s
attered, giving a bad estimation.

The system then ignores the derived position and does not position at all. Another

reason would be if the mi
rophone did not register the sound event, i.e if the 
lap

was not loud enough. The system did however responded to ≈ 88.2% of the events.
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(a) The histogram of the deviation from

the true position in the meters during

the �rst test (thump with sti
k).

S1

2

3

4

5

S

S

S

S

γ
Camera Sound source

(b) Even though the system estimated the

position γ meters wrong, the 
am-

era might still be able to visualize the

sound sour
e.

Figure 4.3

In Figure 4.4 the positions where the sounds originated from are marked with


rosses. From ea
h point where a sound was made, a 
ir
le of deviations is drawn

for that spe
i�
 re
orded event. This shows that most of the 
ir
les grow as
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lo
ation of the sound sour
e approa
hes the edges of the en
losed area. Also, as

seen in Figure 4.2, there is a beam present in the en
losed area. This did most

likely 
ause the larger radius on the estimated error 
ir
le around the beam.

Figure 4.4: Plot showing where the sound (thump with sti
k) origi-

nated from along with their 
orresponding estimated error 
ir
le.

The next test was done with an ordinary 
lap, dire
ted against the PTZ 
amera

in the middle of the en
losed area. The graph in Figure 4.6 shows the histogram

of the deviation from the true position. With a total of 148 
laps and a mean

deviation of approximately 0.762 m, it yields a slightly worse result 
omparing

to the �rst test. During this test the system responded to ≈ 80.8% out of 183
events and failed to position 
orre
tly four times in total, giving it a reliability of

≈ 97.3%.

Summing up both tests, 294 sound events were analyzed with a total mean

deviation of 0.649m and a total reliability value of 97.8% during the indoor testing

and is illustrated in Figure 4.6 and Figure 4.7. Out of 262 events the system
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Figure 4.5: Plot showing where the sound (ordinary 
lap) originated

from along with their 
orresponding estimated error 
ir
le.

responded to ≈ 82% of them and positioned in
orre
tly 47 times.

The response time for the algorithm from the moment the server initiates the


al
ulations to the position is sent to the 
amera, was measured and the average

response time was 0.23495 s. The most time expensive part is the non-linear

least squares, also known as NLMS, when the solution is sought amongst all the

interse
tions.
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Figure 4.6: The graph shows the histogram on the deviation from

the true position in the meters during the se
ond test (ordinary


lap). Totally 148 events measured with a mean deviation of

0.762 meters.
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Figure 4.7: The graph shows the histogram on the deviation from

the true position in the meters based on the two tests indoors.

Totally 294 measurements were made with a mean deviation of

0.649 meters.



Chapter5

Con
lusions

The main purpose of the thesis was to 
reate a system that is able to dete
t

and lo
ate sound events. By doing so, the system would know were the sound

o

urred and forward this position to a PTZ 
amera. A system was designed and


onstru
ted as des
ribed by the �ow-
hart in Chapter 3.4 and Figure 3.7, using

the equipment des
ribed in Table 3.6. The 
lients syn
hronizes with the server

by allowing the server to send its kernel time that they adjust upon at �xed time

intervals.

When an event has o

urred the server gathers the re
orded data from all the

triggered 
lients and trim the re
eived data to make the starting sample for all

audio 
lips 
orrespond to the same time. The sound lo
alization-algorithm, that

is implemented with O
tave, is then able to �nd a position by 
al
ulating using

multilateration and the Levenberg-Marquardt-algorithm.

Several di�erent types sounds and noise were tested, to see what the sys-

tem would 
omprehend but mostly ordinary 
laps were tested. The indoor tests

showed problems with re�e
tions from walls, furniture and beams but the system

gave often a reasonable result, giving a position with a small error relative to the

analyzed area. During the outdoor tests, the sound was only re
orded o�ine then

later 
omputed with the sound lo
alization-algorithm. These tests did also show

relatively good results with a reliability of over 90 %. Making the PTZ 
amera

very likely to 
apture the sound sour
e within its �eld of view.

Sin
e the tests outdoors were fairly few in 
omparison with how many were


ondu
ted indoors, it 
an be a bit optimisti
 to assume that the system would

perform as well outdoors as indoors. Nevertheless, should the system be pla
ed

outdoors with optimal weather 
onditions, it will not have the major issue of

reverberation or other types of noise making the system, most likely, reliable.

With some improvements of the system and better 
onditions, the results of the

sound lo
alization 
ould be enhan
ed in many ways su
h as pre
ision, 
al
ulations

speed and �ltration.

In 
on
lusion, the system performed as expe
ted.
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Chapter6

Dis
ussion

6.1 Future work

The lo
alization 
an be used to perfe
t many already existing features. The fea-

tures that analyze images to �nd 
ertain obje
ts 
an use this system in synergy

with its own position lo
alization algorithm. An example of su
h a feature is mo-

tion dete
tion, that 
an be initialized by �nding the position of the sound sour
e

�rst and then analyze the surroundings for motions.

By 
hara
terizing the sound of the event su
h as weapons, s
reams or vehi
les,

sound lo
alization 
an be used in parallel to enhan
e se
urity and 
apture the

spe
i�
 event. Other environments have restri
tions on video 
apture of 
ertain

obje
ts. Sound mat
hing 
an be used in this system as well, giving the lo
alization-

algorithm a se
urity 
he
k before positioning on the event.

Even though the sound dete
tion system is working, it 
ontains some �aws and

weaknesses that is known already. These a

ura
y losses were des
ribed through-

out the proje
t and are des
ribed below:

Client bu�er When designing the 
lient program for the 
ameras, it was de
ided

that the bu�er 
ontaining the raw sound data would only be able to transmit

the bu�er if it had been �lled. Thus will the system only be able to dete
t

sound events when the bu�er was full. Sin
e the bu�er is 
leared on
e an

event o

urs, the system be
omes 'deaf' during the time it re�lls the bu�er.

This has an advantage being the ability to re
over and not adjust the PTZ


onstantly, the disadvantage being the obvious ability to tri
k the system

during the re�ll pro
ess. This be
omes an optimization problem to �nd the

optimal size of the ring-bu�er.

Client hardware The audio 
ode that is implemented supports only low sam-

pling frequen
ies that allow for a

ura
y losses des
ribed in Chapter 2.4.

With higher frequen
y the a

ura
y in
reases at a 
ost of more samples to


al
ulate upon. The timing and syn
hronization problem has roots in the

hardware too. The need of mi
rose
ond pre
ision requires the use of NTP

version 4 whi
h was unfortunately not portable due to the 
omplexity of

the program 
ode. Future versions of the 
amera may support NTPv4 and

therefore be
ome more a

urate than using Server time broad
ast.

Filtering Sin
e the 
ameras only send raw data dire
tly to the server, no �ltering
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is done at all. An improvement would be �lter the data in the bu�er before

sending it to the server, thus removing uninteresting information from the

signal.

Numeri
al errors When 
onstru
ting the TDOA matrix at se
tion 3.4.3 the top

triangle should be mirrored in the diagonal expe
t the 
hange of sign. When

the matrix however was 
omputed by the server, this was not the 
ase. There

were small di�eren
es between the the mirrored elements, e.g. t1,2 and t2,1.
This is 
aused by small numeri
al error when 
omputing the values of the

time di�eren
es. In this thesis, in order to both a
hieve better results and

to improve the speed of the system, it was de
ided that instead of deriving

the whole matrix, only the upper triangular matrix was needed. With this,

the whole matrix 
ould easily be done by only 
opying the elements already


al
ulated and 
hanging signs on them, as des
ribed in se
tion 3.4.3.

Alternatives to the LM-algorithm There are other numeri
al approximations

to the non-linear least squares problem, su
h as parti
le �lters that use

Monte Carlo based te
hniques. Other options in
lude interpreting the bad

sound audio 
lips properly and not analyze them at all.



Referen
es

[1℄ Ralph Bu
her and D. Misra

A Synthesizable VHDL Model of the Exa
t Solution for

Three-dimensional Hyperboli
 Positioning System

Department of Ele
tri
al and Computer Engineering,

New Jersey Center for Wireless and Tele
ommuni
ation,

New Jersey Institute of Te
hnology,

Newark, NJ 07102, USA, 2001.

[2℄ Bassilio Dahlan, Wathiq Mansoor, Milad Abbasi, Parham Honarbakhsh

Sound Sour
e Lo
alization for Automati
 Camera Steering

Ameri
an University in Dubai S
hool of Engineering

Department of Ele
tri
al and Computer Engineering, 2011.

[3℄ K. Björk, N. Svensson

Embedded Sound Lo
alization on an Axis Camera.

Deparment of Ele
tri
al and Information Te
hnology,

Fa
ulty of Engineering, LTH, Lund University, 2011.

[4℄ G. Valenzise, L. Gerosa, M. Tagliasa

hi, F. Antona

i, A.Sarti

S
ream and Gunshot Dete
tion and Lo
alization for

Audio-Surveillan
e System

Dipartimento di Elettroni
a e Informazione - Polite
ni
o di Milano, 2007.

[5℄ Ali
e Cli�ord, Josh Reiss

Cal
ulating Time Delays of Multiple A
tive Sour
es In Live Sound

Centre for Digital Musi
, Queen Mary

University of London, London, E1 4NS, UK, 2010.

[6℄ Lantmäteriverket

Anvisningar För Planläggningsmätning

Lantmäteriverkets Centralförvaltningen

[7℄ Fredrik Gustafsson and Fredrik Gunnarsson

Positioning Using Time-di�eren
e of Arrival Measurments

Department of Ele
tri
al and Engineering,

Linköping University, SE-581 83 Linköping, Sweden.

41



42 Referen
es

[8℄ Bert Van Den Broe
k, Alexander Bertrand, Peter Karsmakers,

Bart Vanrumste, Hugo Van hamme, Mar
 Moonen

Time-domain GCC-PHAT Sound Sour
e Lo
alization For Small Mi
rophone

Arrays

ESAT, KU Leuven, IBBT, Future Healt Department �

Kasteelpark Arenberg 10, 3001, Heverlee, Belgium

MOBILAB, KH Kempen �

Kleinhoefstraat 4, 2440, Geel, Belgium

[9℄ Manolis I.A. Lourakis and Antonis A. Argyros

Is Levenberg-Marquardt the Most E�
ient Optimization

Algorithm for Implementing Bundle Adjustment?

Institute of Computer S
ien
e, Foundation for Resear
h and Te
hnology -

Hellas Vassilika Vouton, P.O. Box 1385, GR 711 10, Heraklion, Crete, Gree
e

[10℄ Stephanie L. Heath and Gerry L. M
Anin
h

Propagation E�e
ts of Wind and Temperature on

A
ousti
 Ground Contour Levels

NASA Langley Resear
h Center

Hampton, Virginia 23681-2199

Websites:

[11℄ David L. Mills

Network Time Proto
ol (Version 3) Spe
i�
ation,

Implementation and Analysis

http://tools.ietf.org/html/rf
1305

University of Delaware, 1992.

Read 2012-10-24

[12℄ David L. Mills

Network Time Proto
ol Version 4: Proto
ol and Algorithms Spe
i�
ation

http://tools.ietf.org/html/rf
5905

University of Delaware, 2010.

Read 2012-10-24

[13℄ John Loomis

Cross Correlation

http://www.johnloomis.org/e
e561/notes/x
orr/x
orr.html

University of Dayton, 2005 Read 2013-02-18

[14℄ Konowa.de

Position Determination with GPS

http://www.kowoma.de/en/gps/positioning.htm

Read 2013-02-20

[15℄ United States Coast Guard

LORAN-C General Information

http://www.nav
en.us
g.gov/?pageName=loranMain

Read 2013-02-20



Referen
es 43

[16℄ Eri
 W. Weisstein - MathWorld

Method of Steepest Des
ent

http://mathworld.wolfram.
om/MethodofSteepestDes
ent.html

Read 2013-02-21

[17℄ Eri
 W. Weisstein - MathWorld

Hyperbola

http://mathworld.wolfram.
om/Hyperbola.html

Read 2013-02-21

[18℄ Julius Orion Smith III

Mathemati
s of The Dis
rete Fourier Transform (DFT)

https://

rma.stanford.edu/ jos/st/

Read 2013-02-26

[19℄ Eri
 W. Weisstein - MathWorld

Fast Fourier Transform

http://mathworld.wolfram.
om/FastFourierTransform.html

Read 2013-02-27

[20℄ Eri
 W. Weisstein - MathWorld

Levenberg-Marquardt Method

http://mathworld.wolfram.
om/Levenberg-MarquardtMethod.html

Read 2013-02-27

[21℄ C. Sidney Burrus

The Cooley-Tukey Fast Fourier Transform Algorithm

http://
nx.org/
ontent/m16334/latest/

Read 2013-03-11

[22℄ Advan
ed Linux Sound Ar
hite
ture (ALSA) Introdu
tion

http://www.alsa-proje
t.org/main/index.php/Introdu
tion

Read 2013-03-14

[23℄ Hirs
hmann Automation and Control GmbH

Power over Ethernet - IEEE 802.3af

http://www.belden.
om/do
s/upload/poe_basi
s_wp.pdf

Read 2013-03-14

[24℄ C. Demi
helis, P. Chimento

IP Pa
ket Delay Variation Metri
 for IP Performan
e Metri
s (IPPM)

http://tools.ietf.org/html/rf
3393#se
tion-1.1

Read 2013-03-14

[25℄ Eri
 W. Weisstein - MathWorld

Sampling Theorem

http://mathworld.wolfram.
om/NyquistFrequen
y.html

Read 2013-03-13

[26℄ Barney Blaise - Lawren
e Livermore National Laboratory POSIX Threads

Programming https://
omputing.llnl.gov/tutorials/pthreads/ Read

2013-03-19



44 Referen
es

[27℄ Auda
ity

How Noise Removal Works

http://wiki.auda
ityteam.org/wiki/How_Noise_Removal_Works

Read 2013-03-19

[28℄ FreeBSD Developers' Handbook

http://www.freebsd.org/do
/en/books/developers-handbook/se
ure-

ra
e-
onditions.html Read 2013-03-22

Images:

[29℄ Axis Camera P3367

http://www.axis.
om/files/image_gallery/

ph_p3343_p3344_
eiling_mount.jpg

27-12-2012

[30℄ Tas
am DR-680

http://www.performan
eaudio.
om/images/produ
ts/212/20293_1.jpg

27-12-2012

[31℄ Sony ECM-VG1

http://www.visuals-switzerland.net/4133-thi
kbox/sony-e
m-

vg1-ele
tret-
ondenser-mi
rophone.jpg

27-12-2012

[32℄ Axis Q6035

http://www.axis.
om/files/image_gallery/low_res/ph_q6034e_left_

1108_low.jpg

03-01-2013


