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Abstract  
 
Nowadays the demanding for wireless communication increases dramatically 
across the world. Multiple-input multiple-output (MIMO) is a wireless 
communication technology with great prospect. For baseband receivers, various 
sophisticated MIMO detection algorithms have been proposed in literature to 
exploit the gains provided by MIMO. However, it is challenging to implement 
algorithms on hardware platforms under different system operating scenarios. 

In this thesis, two kinds of linear minimum mean square error (MMSE) 
MIMO detection algorithms are studied for MIMO systems with the same 
transmitting and receiving antenna numbers: squared MMSE and square-root 
MMSE. Specifically, three matrix inversion approaches are introduced to the 
former algorithm, including analytic or block-wise inversion, direct matrix 
inversion, and QR-decomposition (QRD) based inversion. As to the latter 
algorithm, QRD method is adopted. 

First of all, computational complexity of the four schemes mentioned above 
are considered on two platforms which are application-specific integrated circuit 
(ASIC) and reconfigurable cell array (RCA) architecture. Comparisons show that 
QRD-based square-root MMSE requires the least operation amount on both 
platforms. Note that no matter which scheme is used, the operation amount on 
RCAs is higher than that on ASICs. However, the difference of complexity 
between two platforms decreases when antenna number increases.  

Next, computation accuracy of the four aforementioned schemes is evaluated. 
Because of lower computational complexity, two QRD-based schemes are 
compared in 16-bit fixed-point format. Results show that square-root MMSE 
algorithm has a better performance. 

Finally, due to the high computational accuracy and low complexity, QRD-
based square-root MMSE is implemented using standard digital cell libraries 
and demonstrated on FPGA using 16-bit fixed-point format for a 4×4 MIMO 
system. Three different architectures are designed, including two pipeline versions 
and a time-multiplexed scheme. The throughput of the first pipeline version is 3 
times faster than the second one, while its device utilization is twice as much as 
the latter. Time-multiplexed design has the lowest resource utilization; however, it 
reveals a lowest throughput because of the high data dependency in the QRD 
algorithm. 
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CHAPTER 1 
 

1 Introduction 
 
Multiple-input multiple-output (MIMO) is one of the main technologies in 3GPP 
Long Term Evolution Advanced (LTE-A). By exploiting spatial resources, MIMO 
improves channel capacity and link reliability without additional bandwidth.  
        However, comparing to single antenna systems, the computational 
complexity is significantly increased in MIMO systems, because of the 
sophisticated signal processing required to combat with inter-antenna interference. 
Therefore, implementation of MIMO signal processing has gained increasing 
attention in both academia and industry.  

Application-specific integrated circuit (ASIC) is widely used in wireless 
communication system. However, it is designed to perform specific tasks [1]. By 
contrast, reconfigurable cell array (RCA) architecture is able to offer high 
flexibility by dynamic reconfigurations [2]. Hence, it is a promising platform to 
operate in diverse wireless communication scenarios.  

This thesis focuses on two linear MIMO detection algorithms squared MMSE 
and square-root MMSE, and aims to implement one of them in a specific platform. 
Three matrix inversion approaches are introduced to solve the most 
computationally demanding part of the squared MMSE algorithm, that is, matrix 
inversion. For square-root MMSE, QR Decomposition (QRD) method is 
employed to simplify computation.  

The contributions of the thesis are mainly in two aspects. First, computational 
complexity and accuracy of different MIMO detection schemes are analyzed. 
Computational complexity is evaluated based on ASIC and RCA platform 
respectively. For accuracy, both floating-point accuracy and fixed-point accuracy 
are taken into consideration. Second, on the basis of the comparison results, QRD-
based square-root MMSE is chosen for hardware implementation due to its low 
complexity and high accuracy. Three fixed-point architectures are proposed with 
different performance in throughput and area consumption, including two pipeline 
versions and a time-multiplexed scheme. 
1.1 MIMO system  
Fig. 1.1 shows the block diagram of a typical MIMO system with N transmit and 
M receive antennas.  
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Fig. 1.1 MIMO system model with N transmit and M receive antennas 

 
In such MIMO system, wireless channel model can be expressed by a M×N 

matrix H as (1.1) shows, 
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For each subcarrier, the M×1 received symbol vector y is given by (1.2) 

nHxy  ,                                                      (1.2) 

where x is the N×1 transmitted symbol vector, and n is the M×1 additive white 
Gaussian noise vector.  

An N×N channel matrix means the MIMO system has the same number of 
transmit and receive antennas, for example, 2×2, 4×4 and 8×8 MIMO are 
commonly used configurations. 

1.2 MIMO detection technology and algorithms 
MIMO detector is used to estimate the transmitted symbol vector x from the 
received signal vector y, which is the main study subject of this thesis. There are 
various MIMO detection methods. Maximum likelihood (ML) detector provides 
the optimal performance, however its complexity dramatically increases when 
antenna number grows; by contract, linear detectors have low computational 
complexity but provide suboptimal performance [3], such as zero forcing (ZF) and 
minimum mean square error (MMSE) detectors. This thesis focuses on the linear 
MMSE detector which has the reasonable complexity and performance.  
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Varieties of algorithms exist to realize the linear MMSE MIMO detection 
strategy. Two linear MMSE MIMO detection algorithms are considered in the 
thesis, which are squared MMSE and square-root MMSE algorithm. 

For squared MMSE, the estimation of transmitted signal is given by (1.3) 

yGyHIHHx MMSE
H

N
H  


12 )(  ,                         (1.3) 

where 2 is additive white Gaussian noise power, and IN is the identity matrix of 
size N. For this function, matrix inversion is the main problem to solve. There are 
various approaches used to deal with matrix inversion, for example, QR 
decomposition (QRD) based inversion, analytic or block-wise inversion, and direct 
matrix inversion (DMI).  

Since matrix inversion is a computational demanding operation, a square-root 
MMSE algorithm [4] was proposed which avoids matrix inversion by introducing 
a compound matrix. The disadvantage of this method is the increase of matrix 
dimension. 

1.3 Reconfigurable architecture  
Since ASICs have poor hardware reusability, reconfigurable architectures have 
been proposed, capable of implementing different algorithms onto the same 
platform. Fine-grained reconfigurable architectures, such as Field-programmable 
Gate Arrays (FPGAs), are able to provide “full” flexibility because of their bit-
level manipulations. Compared with coarse-grained reconfigurable architectures, 
however, their performances are lower in terms of hardware utilization, power 
consumption, and configuration time [5]. As a result, although they have reduced 
flexibility due to word-level processing, coarse-grained reconfigurable 
architectures are increasingly considered in overhead-sensitive wireless 
communication systems.  

This thesis is based on a kind of coarse-grained architecture, RCA, which 
consists of memory cells (MC) for data storage and processing cells (PC) to 
execute instruction, and their communication is via local connection and global 
network (GN) [2], as illustrated in Fig. 1.2.  

 
 
 
 
 
 
 
 

 
 

Fig. 1.2 An overview of a RCA 
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Specifically, Fig. 1.3 describes the structure of processing cell: several 
functional units (FU) are used to perform basic arithmetic operations, such as 
addition and multiplication of two complex-valued numbers, and by this way, 
several functional units can be used to process complex-valued matrix. 

 
 
 
 
 
 
 
 
 

 
 

 
Fig. 1.3 PC composed of a FU array 

1.4  Thesis Structure  
The rest of the thesis is organized as follows. Chapter 2 analyzes computational 
complexity of different linear MMSE MIMO detection algorithms with the 
consideration of two different hardware platforms. Chapter 3 discusses the 
accuracy of algorithms in floating-point and fixed-point format respectively. How 
to realize QRD-based square-root MMSE algorithm on hardware platforms is 
given in Chapter 4. In detail, three fixed-point architectures are implemented, 
which are two pipeline versions and a time-multiplexed version. Comparisons 
among them are summarized in terms of throughput, device usage and processing 
speed. Finally, the conclusion of this research and suggestion of future work are 
presented in Chapter 5. 
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CHAPTER 2 

 

2 Complexity Analysis of Linear MMSE MIMO 
Detection Algorithms 
 
Matrices discussed in this thesis are composed of complex-valued numbers which 
require more computation resources than real numbers. Besides, matrix processing 
usually has high complexity. Therefore, it is necessary to compute the operation 
numbers of various algorithms in order to choose relatively simpler ones. In 
addition, hardware platforms also have some significant influence on algorithmic 
complexity. Thus, complexity analysis in this chapter will be based on two 
potential platforms: ASICs and RCAs.  

For squared MMSE algorithm, the complexity analysis is mainly focused on 
different possible matrix inversion approaches involved in this algorithm. Three 
matrix inversion approaches are evaluated in terms of computational complexity. 
The operation amounts of square-root MMSE algorithm are exploited on the basis 
of a QRD method. Also, the comparison among the four linear MMSE MIMO 
detection schemes is presented on both platforms. This provides a reference for 
choosing algorithm and the corresponding hardware platform. 

2.1 Complex numbers and complex arithmetic 
Complex arithmetic has wide applications in the field of communications, signal 
processing, statistics, industry control, etc. Each complex number contains two 
real numbers. Hence, a complex-valued operation requires several steps of real-
valued operations. Some examples are shown in (2.1)~(2.3). If z1 = a1 + b1 i and z2 

= a2 + b2 i, then 

ibbaaibaibazz )()()()( 2121221121  ,               (2.1) 

ibababbaaibaibazz )()()()( 12212121221121  ,          (2.2) 

2
1

2
111111

*
1 ))(( baibaibazz  .                                (2.3) 

In the following discussion, the complexity of algorithms involving complex-
valued arithmetic is evaluated based on the corresponding real-valued operations, 
since it is clear to compare the operation numbers of real-valued arithmetic. 
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2.2 Complexity of matrix inversion approaches in 
squared MMSE algorithm 

As described in Chapter 1, for squared MMSE MIMO detection, the difficulty is to 
solve the inversion of matrix V which is defined in (2.4) 

.)( 112 yGyHVyHIHHx MMSE
HH

N
H  


                       (2.4) 

Therefore, in the following discussion, three matrix inversion approaches are 
evaluated in terms of complexity on ASICs and RCAs, including analytic or 
block-wise inversion, direct matrix inversion (DMI), and QRD-based inversion. 

2.2.1 Complexity of a pre-process procedure 
In addition to investigating matrix inversion approaches, it is necessary to 
calculate the operation numbers of computing matrix V before inverting it. This is 
because some matrix inversion methods require the computation of V, while DMI 
does not. To fairly compare with DMI, the other two inversion methods have to 
count this part of operations into their total complexity.  

Define channel matrix H as (2.5) 
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,                                        (2.5) 

where N is the antenna number (this thesis focuses on commonly used antenna 
setups, which are N=2, 3, 4, 8), and hij is a complex number. Then,  
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where M is a Hermitian matrix. 
Firstly, consider the complexity of calculating V on ASIC platforms. To attain 

every diagonal element mii, there are N multiplications of a complex number and 
its conjugate. This leads to a real-valued mii. By contrast, N complex-valued 
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multiplications are involved to compute non-diagonal element mij. Taking 
advantage of dedicated hardware design, ASIC approach is able to deal with 
computations of diagonal element and non-diagonal element in a different way. 
Therefore, the amount of real operations for mii is less than that of mij, derived 
from (2.1) ~ (2.3). Since M is a Hermitian matrix, mji can be obtained from a 
simple conjugate operation of mij. This property is used to reduce processing 
complexity by almost half. The total operation numbers for the calculation of V 
using ASIC platforms are listed in Table 2.1. 

Table 2.1 Computational complexity of calculating V on ASIC and RCA platforms 

  real multiplication real addition conjugate 

ASICs 

HH    2N  

HHM H  
diagonal 22N  NN 22   

non-diagonal 23 22 NN   NNN  23 32
2

2 NN   

IMV 2   N   

total 32N  NNN  232
2

3 2 NN   

RCAs 

HH    2N  

HHM H  23 22 NN   NNN  232
2

2 NN   

IMV 2   N   

total 23 22 NN   232 NN   
2

3 2 NN   

Secondly, map the calculation of matrix V on RCA platforms. In RCAs, every 
element of matrix M is treated in the same way, because FUs are designed for 
general purpose usage. The required operation for each element is the same as that 
mij in ASICs. Similar to ASICs, only N(N+1)/2 elements needs to be calculated, 
given the conjugate property of the Hermitian matrix. The computational 
complexity for calculating V on RCA platforms is shown in Table 2.1. 

2.2.2 Complexity of analytic and block-wise matrix 
inversion approach 

The analytic inversion method [6] for an N×N matrix V is described in (2.7) 

V

C

V

Vadj
V

T

 )(1 ,                                                 (2.7) 

where V  is the determinant of matrix V, and adj(V) is the transpose of the matrix 
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of cofactors, known as the adjugate matrix. The element Cij of adjugate matrix can 
be obtained by deleting the ith row and jth column of V and then taking the 
determinant of the (N-1)×(N-1) matrix times by (-1)(i+j).  

Analytic inversion is an efficient method for low-dimension matrices, 
because it is easy to compute the determinant and the adjugate matrix for small 
matrices. However, for large matrices, this recursive analytic method requires a 
huge amount of calculation and an alternative method, block-wise inversion [7], is 
better to be adopted.  

Block-wise inversion solves matrix inversion by inverting some small sub-
matrices and then doing some multiplications and additions. The matrix inversion 
lemma is as follows 















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11111

111111111

1

)()(

)()(

BCADCABCAD

BCADBACABCADBAA

DC

BA
V ,    (2.8) 

where A, B, C and D are sub-blocks of arbitrary size, and A and D must be square 
matrices [8]. Because it can reduce the amount of operations by partitioning a 
large matrix into smaller ones, block-wise inversion can be used to process large 
matrices [7]. 

1. Analytic inversion for small matrices 

In this thesis, analytic inversion is used in 2×2 and 3×3 MIMO systems. If V is a 
2×2 matrix, then     

                    







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dc

ba
V    













 

ac

bd

bcad
V

11 .                          (2.9) 

Because V is a Hermitian matrix, the denominator is a real number and the 
inversion of V is a Hermitian matrix too. The complexity counting is very simple 
and the results based on real numbers are listed in Table 2.2. 

Table 2.2 Complexity comparison of 2×2 analytic matrix inversion on two platforms 

 real multiplication real addition real division conjugate 
ASICs 7 3 1 1 
RCAs 14 7 1 1 

For the 3×3 matrix case, the inversion of V can be obtained using (2.10) 
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1 .     (2.10) 

Consider the Hermitian property of matrix V, 
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
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V *
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****
1

)Re(2

1
.        (2.11) 

Table 2.3 compares the computational complexity of 3×3 matrix analytic 
inversion on the two platforms. 

Table 2.3 Complexity comparison of 3×3 analytic matrix inversion on two platforms 

 real multiplication real addition
double of a real 

number 
real division conjugate 

ASICs 46 30 1 1 3 
RCAs 84 64 0 1 3 

2. Block-wise inversion for large matrices 

For MIMO system with more than 3 receiving/ transmitting antennas, block-wise 
inversion is used. 

When N is 4, V can be divided into four 2×2 matrices,  
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V .    (2.12) 

According to (2.8), only two 2×2 matrix inversions need to be solved; both 
inversions can be easily solved by using the simple 2×2 analytic inversion method 
as shown in (2.9). In addition, the conjugate property of the Hermitian matrix 
should be considered for simplifying computations on the two platforms. The 
operation numbers when using RCA and ASIC platforms are listed in Table 2.4. 

Table 2.4 Complexity comparison of 4×4 block-wise matrix inversion on two platforms 

 real multiplication real addition real negated real division conjugate 
ASICs 134 96 10 2 10 
RCAs 172 132 10 2 10 

        For N=8, matrix V is divided into four 4×4 matrices 

V = 












4444

4444

DC

BA
.                                       (2.13) 

The inversion of A and )( 1BCAD   can be solved iteratively by using 2×2  
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block-wise inversion method, since they are 4×4 matrices. The operation numbers 
for RCA and ASIC platforms are summarized in Table 2.5. 

Table 2.5 Complexity comparison of 8×8 block-wise matrix inversion on two platforms 

 real multiplication real addition real negated real division conjugate 
ASICs 1060 1080 52 4 60 
RCAs 1432 1256 52 4 60 

2.2.3 Complexity of QRD-based matrix inversion approach 
QR decomposition is a special factorization method and plays an important role in 
linear equations, least squares and eigenvalue problems [9]. By QR 
decomposition, matrix A is factorized by the multiplication of an orthogonal 
matrix Q and an upper triangular matrix R, expressed as 

RQA  .                                               (2.14) 

Hence, the inversion of matrix A can be solved by (2.15), 
HQRA   11 .                                         (2.15) 

In this section, the QRD-based squared MIMO detection formulation is 
derived after explaining a QRD algorithm. Then the complexity of this QRD-
based inversion method is calculated. 

1. Introduction of QRD 

There are several algorithms to realize QR decomposition, and this thesis adopted 
Gram-Schmidt orthogonalization. Its main procedure is to sequentially 
orthogonalize the columns of A. However, the classic Gram-Schmidt (CGS) 
process may lead to numerical instability due to round off errors [10]. As a result, 
the modified Gram-Schmidt method was proposed as Algorithm 1 describes [10],   

 
Algorithm 1: Modified Gram-Schmidt algorithm 

where <Qi, Aj> is the inner-product of column vectors Aj and Qi, iA is the norm 

for  i=1  to N
            iii AR    

            iiii RAQ            

            for  j=i+1  to N 
                 jiij AQR ,  

iijij QRP                   

                ijjj PAA   

            end  for 
        end for
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of Ai, and A is an N×N matrix; Rij denotes the ith row and jth column element of 
matrix R.  

This algorithm involves a nested loop: the outer loop is to obtain normalized 
vectors Q1, Q2... Qi; and the inner loop is to project Aj orthogonally onto the line 
spanned by Qi and then update Aj by subtracting the projection from Aj. 

2. QRD-based matrix inversion for squared MMSE MIMO detection 

For squared MMSE MIMO detection formula given by (2.4), define A as V. Based 
on the aforementioned QR decomposition scheme, the estimated value of 
transmitted signal can be solved by the following QR decomposition steps 

,)()( 111211 H
N

H QRQRIHHVA         

,)( 1112 HHHH
N

H
MMSE HQRHAHIHHG               (2.16) 

.1 yHQRyGx HH
MMSE




                                

The inversion of the upper triangular matrix R can be computed by the algorithm 
shown in Algorithm 2 [11]. 
 

 
Algorithm 2: Inversion of an upper triangular matrix R 

3. Complexity of QRD-based matrix inversion 

This QDR-based inversion method can be divided into three parts: QR 
decomposition, inversion of an upper triangular matrix R, and matrix 
multiplication between R’s inversion and QH.   

The main computational complexity of this scheme comes from QR 
decomposition. As shown in Algorithm 1, MGS is an iterative algorithm. The 
outer loop is repeated for N times. The iteration number of inner loop depends on 
the outer loop. Specifically,  

(1)      for  j=1  to N
(2)          for  i=N  downto 1

 
 

(3)              if  i>j 
    (4)                      wij=0                      

(5)              elseif  i=j 
(6)                      wij=1/Rij                
(7)              else 

(8)                      
jj

j

m
mjimij RRww 






1

1

            

                (9)              end  if 
(10)         end  for 
(11)      end  for 
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(1) After Q1 is calculated, Aj (j=2,3...N) are processed to get corresponding 
R1j, orthogonal projection P1j  and then update themselves. The updated sequence 
is denoted as Aj_upd_1st throughout the following discussion. 

(2) Similarly, when Q2  is computed, Aj_upd_1st (j=3,4...N) need to be dealt 
with for obtaining R2j , P2j  and to be updated. The updated sequence in this step is 
denoted as Aj_upd_2nd. 

(3) The same principle is applicable to Qi (i=3, 4…N-1). 
Thus, the inner loop need to be executed N(N-1)/2 times. To invert an N×N 

matrix involved in squared MMSE algorithm, the complexity of QR 
decomposition on RCAs and ASICs are summarized in Table 2.6. 

Considering the other two parts of this inversion scheme. Because R is an 
upper triangular matrix, its inversion matrix W is an upper triangular matrix too. 
This characteristic simplifies the inversion of R, and it is also utilized when 
analyzing the complexity of matrix multiplication WQH. Besides, the inversion of 
A is a Hermitian matrix, therefore, its conjugate property can further simplify the 
computation process on the two platforms.  

The total complexity of QRD-based matrix inversion scheme is summarized 
in Table 2.6. 

Table 2.6 Computational complexity of QRD-based matrix inversion on two platforms 

  real multiplication real addition 
square 

root 
real 

reciprocal 

ASICs 

QRA   464 3  NN  684 23  NNN  N  N  

1 RW  
3

22 3 NN   
3

3762 23  NNN    

HWQA 1  
3

32 23 NNN   
6

34 23 NNN     

total 
3

1219316 23  NNN

6

30351532 23  NNN
N  N  

RCAs 

QRA   34N  NNN  234  N  N  

1 RW  
3

532 23 NNN   
3

3432 23  NNN    

HWQA 1  
3

462 23 NNN   
6

594 23 NNN     

total 
3

916 23 NNN   
6

67332 23  NNN  N  N  

2.2.4 Complexity of direct matrix inversion approach 

DMI is developed from the updating procedure of the gain in Kalman filters [12]. 
Starting from (2.17) 

I
N

P
2

)0( 1


 ,                                            (2.17) 
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the next N iterative operations are processed as 

)
1

(
)1(

)1(
)1()(

H
j

j
j

j
j

H
jjj

HPH

PHH
IPP 





 ,                           (2.18) 

where j is the iteration number, and the result P(N) is the inversion of matrix V. 
This procedure can be divided into eight steps with the operation numbers 

listed in Table 2.7 for RCA and ASIC platforms. 

Table 2.7 Computational complexity of DMI for an NN  matrix on two platforms 

  real multiplication real addition real division 

ASICs 

)1()1(  j
j PHx  NN 24 2   NN 24 2    

H
jHxy )2(  N2  13 N   

yz 1)3(   1  
Hxu )4(   N  

xxxuv H)5(  22N  2N   

zq 1)6(     1 

vqw )7(  2N    

wPP jj  )()()8(   
2

3 2 NN    

subtotal  
(each iteration) 

27N  
2

313 2 NN   1 

total  
(N iterations) 

37N  
2

313 23 NN   N 

RCAs 

)1()1(  j
j PHx  24N  NN 24 2    

H
jHxy )2(  N2  13 N   

yz 1)3(   1  
Hxu )4(   N  

xxxuv H)5(  NN 22 2   NN 2   

zq 1)6(     1 

vqw )7(  NN 2    

wPP jj  )()()8(   
2

3 2 NN    

subtotal 
 (each iteration) NN 57 2   

2

713 2 NN   1 

total  
(N iterations) 

23 57 NN   
2

713 23 NN   N 
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2.2.5 Complexity evaluation on different matrix inversion 
approaches 

Table 2.8 summarizes the computational complexity of three matrix inversion 
approaches when antenna number N is 2, 3, 4, and 8 on both RCA and ASIC 
platforms. Note that conjugate operation and real-valued negation are all counted 
as real-valued addition. Operation numbers for computing matrix V are counted 
for analytic/block-wise inversion and QRD-based inversion, since the DMI 
scheme is able to obtain it inversion without computing V (see (2.17) and (2.18) in 
section 2.2.4). 

Table 2.8 Computational complexity comparison of different matrix inversion approaches 

approach 
platform RCA ASIC 

antenna number N=2 N=3 N=4 N=8 N=2 N=3 N=4 N=8 

analytic/ 
 block-wise 

real 
multiplication 

38 156 332 2584 23 101 262 2084 

real addition 33 142 318 2548 23 93 254 2252 

division (1/real) 1 1 2 4 1 1 2 4 

DMI 

real 
multiplication 

76 234 528 3904 56 189 448 3584 

real addition 66 207 472 3552 50 171 408 3296 

division (1/real) 2 3 4 8 2 3 4 8 

QRD-based 

real 
multiplication 

78 242 548 4072 54 192 464 3772 

real addition 67 217 503 3887 43 167 419 3587 

division (1/real) 2 3 4 8 2 3 4 8 

square root 2 3 4 8 2 3 4 8 

From Table 2.8, two points can be observed. 
Firstly, consider the complexity in terms of different inversion approaches. 

Fig. 2.1 shows the amount of additions and multiplications required in each 
inversion approach. Note that division numbers are ignored, since they are too 
small to be presented in the same figures.  

For RCA platforms as Fig. 2.1(a) illustrates, the analytic or block-wise 
scheme is the least computational demanding way of calculating the inversion of V 
regardless of the number of antennas. Its operation numbers of multiplication, 
addition and division are all around half of the QRD-based inversion and about 
65% of the DMI method. Although DMI and QRD-based inversion require almost 
the same amount of operations, the latter involves square root operation and is thus 
more complicated to compute. This conclusion also applies to ASIC platforms as 
seen from Fig 2.1(b). 
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Secondly, let's think about the impact of hardware platform on computational 
complexity. For a given antenna number, division operations are the same for 
every inversion approach regardless of the hardware platform. Besides, the 
number of square root operations required in the QRD-based inversion is the same 
for both platforms. The multiplication and addition numbers of each approach are 
less when using ASICs than those using RCAs. Although the operation amounts 
on both platforms increase when antenna number grows, the gap between different 
platforms decreases. For example, for each approach, multiplication and addition 
numbers on ASICs are between about 60% and 76% of those on RCAs when N = 
2, while this ratio increases to up to 92% when N = 8.  

2.3 Square-root MMSE MIMO detection based on QR 
Decomposition 

For MMSE MIMO detection formula in (2.4), define transmitted signal x and 
received signal y by extending x and y with a null vector respectively, and an 
augmented channel matrix H by extending H with a noise covariance matrix, i.e.,  

NNNI

H
H


 










2


 ,         
1210
 










NN

x
x  ,        

1210












NN

y
y .          (2.19) 

Correspondingly, the MIMO detection formula can be rewritten as 

,2


 HHIHHA HH   

Fig. 2.1 Complexity comparison of matrix inversion approaches on RCAs and ASICs  
(multiplication: solid lines, addition: dashed lines) 
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where H+ is a pseudo inversion of matrix H. Because pseudo inversion is 
computationally demanding, QR decomposition can be used to achieve a relatively 
simple method as (2.21)~(2.23) describe [5]. 
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MMSE QQG 12
' 1


                                           (2.23) 

Here Q1 and Q2 are N×N matrices, and Q2 is an upper triangular matrix with real-
valued diagonal elements. It can be seen from (2.21) that the inversion of matrix R 
can be directly given by the result of QR decomposition. By doing this, 
computationally demanding matrix inversion is avoided. Hence, square-root 
MMSE scheme can be achieved by a QRD procedure for 2N×N matrix H followed 
by multiplication of two N×N matrices and a real reciprocal. 

Except different matrix size, this complexity analysis process is the same as 
that of QRD-based squared MMSE method (see section 2.2.3). The complexity 
results are given in Table 2.9 where N is the antenna number.  

Table 2.9 Computational complexity of QRD based square-root MMSE on two platforms 

  
real 

multiplication 
real addition 

square 
root 

real 
reciprocal 

ASICs 


 RQH  

3

5316 23 NNN   
3

341525 23  NNN  N N 

H
MMSE QQG 12
' 1


  232 NN   23 22 NN    1 

total 
3

522 3 NN   
3

342131 23  NNN  N N+1 

RCAs 


 RQH  

38N  NNN 28 23   N N 

H
MMSE QQG 12
' 1


  NNN  23 32  NN 32   1 

total NNN  23 310  NNN  2310  N N+1 
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2.4 Complexity of different linear MMSE MIMO 
detection schemes 

To choose suitable algorithms for hardware implementation, the complexity of 
different MIMO detection schemes needs to be compared for RCA and ASIC 
platforms, respectively. The comparison is performed between QRD-based square-
root MMSE scheme and three squared MMSE MIMO detection schemes using 
different matrix inversion approaches.  

2.4.1 System requirement for matrix R 
Linear MMSE MIMO detectors aim to obtain matrix GMMSE so that the transmitted 
symbols can be estimated by multiplying the received symbols with GMMSE. 
However, numerous processing procedures following MIMO detection require 
matrix R given by QR decomposition. For example, it can be used to calculate 
squared Euclidean distance (ED) during symbol detection. The complexity 
involved by ED calculation can be reduced by half because of the property of the 
upper triangular matrix R [13]. Therefore, the complexity of solving both GMMSE 
and R should be counted in order to figure out suitable solutions for hardware 
implementation. Considering that squared MMSE algorithm based on block-wise 
or DMI inversion method can not provide R, additional QR decomposition is 
needed for these two squared MMSE schemes after computing GMMSE. In addition, 
for three squared MMSE schemes, the operation amounts for computing V-1HH 

need to be counted.  

2.4.2 Complexity evaluation on linear MMSE MIMO 
detection schemes 

Table 2.10 gives the total operation numbers of the four schemes on RCA and 
ASIC platforms, including three squared MMSE schemes with DMI, block-wise 
and QRD-based matrix inversion method, and one square-root MMSE scheme on 
the basis of QRD. 
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Table 2.10 Complexity comparison of MIMO detection schemes on two platforms 

scheme 
platform RCA ASIC 

antenna number N=2 N=3 N=4 N=8 N=2 N=3 N=4 N=8 

squared 
MMSE 

with analytic/ 
block-wise 
inversion 

real 
multiplication 

102 372 844 6680 71 285 726 6008

real addition 83 328 778 6444 55 244 658 5968

division (1/real) 3 4 6 12 3 4 6 12

square root 2 3 4 8 2 3 4 8

with DMI 
inversion 

real 
multiplication 

132 414 944 7104 96 337 812 6612

real addition 117 378 874 6708 85 310 758 6280

division (1/real) 4 6 8 16 4 6 8 16

square root 2 3 4 8 2 3 4 8

with QRD-
based 

inversion 

real 
multiplication 

110 350 804 6120 86 300 720 5820

real addition 91 307 727 5807 67 257 643 5507

division (1/real) 2 3 4 8 2 3 4 8

square root 2 3 4 8 2 3 4 8

square-root MMSE 
(QRD-based)  

real 
multiplication 

94 300 692 5320 62 203 476 3768

real addition 74 258 620 5048 41 159 401 3489

division (1/real) 3 4 5 9 3 4 5 9

square root 2 3 4 8 2 3 4 8

 
    First, an important observation comes from the comparison among different 
schemes. In terms of addition and multiplication, QRD-based square-root MMSE 
is the least expensive scheme in terms of computational complexity for given 
antenna numbers. This is followed by QRD-based squared MMSE and then block-
wise squared MMSE. See Fig. 2.2. DMI is the most computationally intensive 
method, because QR decomposition for solving R contributes a large amount of 
additional workload.  
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Second, Fig. 2.3 shows the operation ratio of the two platforms in terms of 
multiplication and addition. 

 
 

 
It can be seen that all the ratios are less than 1. This means mapping on 

ASICs still leads to lower complexity than that on RCAs, since FUs in RCA 
platforms are developed to map several operations while ASICs are designed to 
process each specific operation. Similar to the analysis of matrix inversion 
approaches, the computational complexity of all MIMO detection schemes 

Fig. 2.2 Complexity comparison of MMSE MIMO detection schemes on two platforms 
(multiplication: solid lines, addition: dashed lines) 

Fig. 2.3 Complexity ratio of MMSE MIMO detection schemes on two platforms  
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increases with antenna numbers for both platforms. However, the differences in 
complex between two platforms reduce when antenna number increases. It is 
worth mentioning that the operation ratios dramatically increase by about 0.2 for 
three squared MMSE schemes when antenna number changes from 2 to 8, while 
only increase by 0.05 for multiplication and less than 0.15 for addition considering 
square-root MMSE. This means the advantage of ASICs is more obvious than 
RCAs to map QRD-base square-root MMSE scheme that is the least 
computationally demanding scheme. Nevertheless, RCAs have some strength over 
ASICs. For example, when it is required to deal with different antenna numbers, 
RCA platform can be configured dynamically to fulfill system requirement. Also, 
RCAs can be used to map various functions in a time-multiplexing manner. For 
example, a MMSE estimation algorithm is first mapped on a RCA platform for 
channel estimation, and after that, its hardware resources are reallocated to 
perform linear MMSE MIMO detection [2].  

To summarize, two QRD-based schemes are the least computationally 
demanding linear MMSE MIMO detection solutions for the two hardware 
platforms. Furthermore, the influence of hardware platform on algorithmic 
complexity decreases as antenna number increases. In addition, ASICs are more 
suitable to map QRD-base square-root MMSE scheme than RCAs. 
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CHAPTER 3 
 

3 Accuracy Comparisons of Linear MMSE MIMO 
Detection Algorithms 
 
Algorithmic accuracy is another significant factor to be considered in additional to 
the computational complexity discussed in the previous chapter.  

In this chapter, the mean squared error (MSE) of GMMSE is used to measure 
algorithmic accuracy, as defined in (3.1) 

2

1

)(
1

ii

N

i

GG
N

MSE 



 ,                                   (3.1) 

where iG


 is the result of matrix GMMSE  calculated using different MIMO detection 
schemes, Gi is the result of GMMSE obtained from floating-point computations using 
Matlab inversion function, and N is the total number of GMMSE computations, 
which is equal to the multiplication of frequency subcarriers number and 
simulation iteration number. To clearly compare MSEs of various schemes in one 
figure, only the magnitude of the result is used.  

By comparing the mean squared errors (MSEs) of different schemes 
introduced in Chapter 2, the scheme with the minimum MSE will be considered 
for hardware implementation. Note that both floating-point and fixed-point 
accuracy are considered in this chapter. 

3.1 Environment setup 
This chapter employs an N×N MIMO system (N= 4 or 8) and simulates using an 
802.11n setup. Assume that channel model is 3GPP_EVA_70, frequency 
subcarrier number is 512 and carrier frequency spacing is 15kHz. Channel coding 
rate is 1/2 and BCJR algorithm with 6 internal iterations is used for decoding; 
modulation adopts 64-QAM. The number of simulation iteration is set to be 3000. 

3.2 Algorithm enhancement by dynamic scaling 
According to the comparison result in Chapter 2, two QRD-based MMSE schemes 
require the least operation amounts, which are the potential solutions for 
implementation. However, division and square root are two computationally 
complex operations involved in QR decomposition, thus how to simplify them is 
an important problem during hardware design. One solution is to limit input data 
range by employing dynamic scaling technique. 
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3.2.1 QRD with dynamic scaling technique 
QRD with dynamic scaling technique is shown in Algorithm 3 in which line 
(2)~(8) are the corresponding dynamic scaling steps [4]. 
 

 
Algorithm 3: QRD with dynamic scaling 

Scaling factor for column norm’s square is computed in line (3). In 
hardware, this factor means a multiple of 2 for shifting operations. Line (4) is used 
to scale input value of square root operation into the range from 0.25 to 1. 
Consequently, the square-root result in line (5) is limited to the range of 0.5 and 1. 
Correspondingly, the divisor in line (6) does not exceed the desired range that is 
from 0.5 to 1. Diagonal R elements and column Q are restored by exploiting line 
(7) and (8), that is to say, the scaling impact on QRD result is eliminated. 

3.2.2 Impact of dynamic scaling on algorithm accuracy 
Table 3.1 summarizes MSEs of four scenarios for QRD-based squared MMSE and 
square-root MMSE with / without using dynamic scaling technique for a 4×4 
MIMO system. All results are obtained by using floating-point computations. 

Table 3.1 MSE comparison in terms of dynamic scaling 

 squared MMSE 
based on QRD 

square-root MMSE 
based on QRD 

without dynamic scaling 1.333459e-025 1.130604e-029 
with dynamic scaling 1.608063e-025 1.126297e-029 

 

(1) for i=1  to N 

(2)     2
)( iAix    

(3)     )2/))(((log2 ixceil        % Scaling factor 

(4)      )2(2)(_  ixinu  

(5)      )_( inusqrtu                   % )(2))(()_(  ixsqrtinusqrtu  

(6)      ud /1                              % ))(2))((/(1/1  ixsqrtud  

(7)       2uRii                     % iii AixsqrtuR   ))((2   

(8)      ii AdQ   )(2          % iiii AAAdQ /)(2     

(9)      for  j=i+1  to N 
(10)            jiij AQR ,                                 

(11)           iijij QRP   

(12)           ijjj PAA   

(13)       end  for 

(14) end  for 
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From Table 3.1, it can be seen that dynamic scaling does not bring obvious 
effects on MSE for the two QRD-based linear MMSE MIMO detection schemes. 
Hence, dynamic scaling technique can be adopted to save hardware resources. 

3.3 Fixed-point word length for QRD-based schemes 
This thesis aims to implement a MIMO detection algorithm in 16 bits fixed-point 
platform. Therefore, besides floating-point accuracy, it has to include the accuracy 
comparison of two QRD-based schemes with fixed-point format. 

To evaluate fixed-point accuracy of the two algorithms, the first step is to 
find the maximum and minimum value of every intermediate variable and final 
result so that their fixed-point representation can be determined.  

Table 3.2 list recorded data distributions and representation formats of some 
key variables for the two schemes with dynamic scaling. Q and R are the QRD 
results given by Algorithm 3 (QRD algorithm with dynamic scaling). Squared 
norm, scaling factor, u_in, and u are variables related to dynamic scaling in line 
(2) ~ (6) of Algorithm 3, projection means the orthogonal projection Pij in line 
(11), and internal Q is the updated vector Aj in line (12). x is an intermediate 
variable in line (8) of Algorithm 2 (inversion algorithm for upper triangular 
matrix) required in squared MMSE method only. 

For columns of fixed-point format in the tables: totally 16 bits are used to 
represent every variable; the part before decimal point indicates bit number 
allocated to both sign bit and integer part, while part after decimal point indicates 
bit number for fraction part. The corresponding MSEs based on these fixed-point 
format computations will be presented in section 3.4. 

It can be seen from Table 3.2 that, the representation format of most variables 
are the same for both schemes when comparing a 4×4 MIMO system with an 8×8 
system. For squared MMSE scheme, only four variables have different formats, 
for example x and  . Their bit numbers for fraction parts or bit number for 
integer are less when N=4. This may lead to a lower accuracy for a 4×4 MIMO 
system compared with an 8×8 system, because some numbers are too small to be 
represented with limited fraction bits. For square-root MMSE, majority of 
variables have the same fixed-point representation format except . 

On the other hand, two schemes can be compared considering the same 
antenna number. For those variables that both schemes employ, the majority of 
them have smaller value range when using square-root MMSE so that more bits 
are allocated for their fraction part. For example, for variable projection, 12 bits 
are assigned to fraction part using squared MMSE when N=4 or 8, whereas 2 more 
bits are assigned to its fraction part (signed 2.14 format) when using square-root 
MMSE. This may result in higher accuracy for square-root MMSE than for 
squared MMSE.  
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Table 3.2 Key data ranges and fix-point formats of two QRD-based schemes 

scheme variable N=4 N=8 
data range format data range format 

Squared 
MMSE 

Q 
min -0.979572

signed 1.15 
min -0.904264

signed 1.15 
max 0.998216 max 0.984754 

R 
min -5.68403

signed 4.12 
min -6.47751 

signed 4.12 
max 5.90923 max 7.84291 

internal Q 
min -2.79354

signed 4.12 
min -3.48027 

signed 4.12 
max 4.57374 max 6.56899 

projection 
min -3.51224

signed 4.12 
min -4.06102 

signed 4.12 
max 4.23233 max 4.73996 

2
iA  min 1.22e-05

unsigned 6.10 
min 5.3145e-05

unsigned 6.10 
max 34.919 max 61.5113 

  min -8 signed integer 
5 bits 

min -7 signed integer 
4 bits max 3 max 3 

u_in 
min 0.25 

unsigned 1.15 
min 0.25 

unsigned 1.15 
max 1 max 1 

u 
min 0.5 

unsigned 1.15 
min 0.5 

unsigned 1.15 
max 1 max 1 

x 
min -561.826

signed 11.05 
min -265.576 

signed 10.06 
max 528.77 max 195.114 

GMMSE 
min -7.60842

signed 4.12 
min -3.97635 

signed 4.12 
max 7.41672 max 4.65013 

square 
root 

MMSE 

Q 
min -0.987303

signed 1.15 
min -0.931782

signed 1.15 
max 0.99083 max 0.916176 

R 
min -1.69019

signed 3.13 
min -1.69498 

signed 3.13 
max 2.20791 max 2.48328 

internal Q 
min -1.4064 

signed 2.14 
min -1.31563 

signed 2.14 
max 1.33951 max 1.35066 

projection 
min -1.26241

signed 2.14 
min -1.06896 

signed 2.14 
max 1.26895 max 1.05804 

2
iA  min 3.65e-03

unsigned 3.13 
min 8.708e-03

unsigned 3.13 
max 4.87486 max 6.16668 

  min -4 signed integer 
4 bits 

min -3 signed integer 
3 bits max 2 max 2 

u_in 
min 0.25 

unsigned 1.15 
min 0.25 

unsigned 1.15 
max 1 max 1 

u 
min 0.5 

unsigned 1.15 
min 0.5 

unsigned 1.15 
max 1 max 1 

GMMSE 
min -7.60842

signed 4.12 
min -4.18985 

signed 4.12 
max 7.41672 max 4.18585 



 
 

29

However, it is worth noting that when validating fixed-point representation 
format, some variables of squared MMSE scheme overflow. By contrast, this does 
not happen with square-root MMSE method. In the following, reasons of the 
overflow problem and the proposed solution are discussed.  

First, the bits assigned to fraction parts of squared norm are not enough and 
its accuracy can not be guaranteed. This leads to some errors in the following 
computation steps. In some cases, its value is too small to be represented correctly 
using assigned bit numbers, which consequently results in wrong scaling factor . 
After shifting wrong bits, the inputs of square root and division will have wrong 
results. Hence, subsequent variables may not be represented by the assigned bits 
and overflow happens.  

Second, the process used to invert upper triangular matrix R introduces errors 
when using fix-point format. Data ranges are quite large for some intermediate 
variables in this algorithm, such as x in Table 3.2. This is also true for the matrix 
inversion result. This means that some small values will be represented with errors 
due to the limited precision. Moreover, this is an iterative algorithm and errors will 
be accumulated. In addition, if R cannot be denoted with high accuracy, errors will 
be propagated to the following computations. To sum up, overflow may happen 
for intermediate variables involved in this matrix inversion approach, and this may 
result in overflow in squared MMSE scheme. 

Third, overflow occurs most frequently for the last column of matrix Q. This 
reveals that error is accumulated as QRD proceeds. Thus, some intermediate 
variables such as projection and internal Q need to use more bits. 

To avoid overflow for squared MMSE scheme, bit numbers for fraction part 
of some variables should be increased, such as squared norm, elements of matrix 
R, and some intermediate variables used for upper triangular matrix inversion and 
QR decomposition. Table 3.3 lists representation formats which eliminates 
overflows for 4×4 systems. y and q  are two intermediate variables used in 
Algorithm 2. 

Table 3.3 Adjusted representation formats and MSE for squared MMSE method 

 2
iA  R internal Q projection x y q 

total bits 27 22 22 22 22 22 22 

format 
unsigned 

6.21 
signed 
4.18 

signed 
4.18 

signed 
4.18 

signed 
11.11 

signed 
11.11 

signed 
12.10 

3.4 Fixed-point word length for QRD-based schemes 
In this part, MSEs of all four schemes are calculated in floating-point format. 
Additionally, two QRD-based schemes with the dynamic scaling technique are 
studied in fixed-point format. Table 3.4 shows all the results considering 4×4 and 
8×8 MIMO systems. 
 
 



 
 

30

 

Table 3.4 MSEs of different schemes in floating-point/ fixed-point format 

scheme representation format N=4 N=8 

squared 
MMSE 

block-wise 
inversion 

floating point 2.041885e-29 4.22965e-30 

DMI floating point 3.220027e-28 3.22176e-29 

QRD-based 
inversion 

floating point 
(without dynamic scaling) 

1.333459e-25 1.1204e-26 

floating point 
(with dynamic scaling) 

1.608063e-25 1.29745e-26 

16-bit fixed point without overflow 
(with dynamic scaling) 

1.271787e-02 2.83619e-03 

square-root MMSE 
(QRD-based) 

floating point 
(without dynamic scaling) 

1.130604e-29 2.5093e-30  

floating point 
(with dynamic scaling) 

1.126297e-29 2.56651e-30  

16-bit fixed point 
(with dynamic scaling) 

1.216228e-05 5.82651e-06  

 
For floating-point computations, two facts are observed. First, no matter how 

many antennas a communication system has, QRD-based square-root MMSE 
provides the highest computation accuracy for MIMO detection. Block-wise 
squared MMSE is the second best solution with doubled MSE. The MSE of DMI 
squared MMSE is about ten times higher than that of the block-wise based 
approach. The worst situation occurs when using QRD-based squared MMSE 
scheme given that the MSE is 4 orders of magnitude bigger than that of the best 
solution. Second, based on the comparison between different antenna numbers, the 
MSE for the scenario of N=4 is about nine times bigger than that of N=8 for each 
scheme. One possible reason for this experimental result may come from the 
reference value of GMMSE given by MATLAB function, since the MSEs in this 
thesis are the mean square error between the result of each scheme and the 
reference calculated by MATLAB. 

Considering the fixed-point format of two QRD-based MMSE schemes, the 
following conclusion is drawn. For N×N systems, the squared MMSE approach 
needs more bits than the square-root MMSE scheme, while still showing a lower 
computational accuracy. Additionally, the squared MMSE method requires more 
computation steps than the square-root MMSE approach, including the 
computation of matrix V and R’s inversion. This may result in more computation 
errors and thus the lower MSE value.  
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3.5 Simulation of MIMO system performance 
Combining the complexity discussion in chapter 2 and the accuracy comparison in 
this chapter, QRD-based square-root MMSE scheme shows the least computation 
complexity among four different schemes and higher accuracy in comparison to 
QRD-based squared MMSE scheme in fixed-point computation. Therefore, QRD-
based square-root MMSE scheme is adopted in this work for hardware 
implementation. 

Before implementation, system simulation is performed to assess the 
performance of the whole MIMO system when employing the adopted detection 
scheme. In this work, frame error rate (FER) is adopted.  Simulation results are 
shown in Fig. 3.1. 

 
Fig. 3.1 Simulation of system performance 

From Fig. 3.1, it can be seen that system performance when using 16-bit 
fixed-point format is almost the same as those using 18-bit fixed point format. 
Moreover, floating-point format does not show apparent advantage over two fixed-
point formats until SNR goes above 22dB. Therefore, 16-bit fixed-point format is 
used to implement the adopted QRD-based square-root MMSE scheme. 
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CHAPTER 4 
 

4 Hardware Implementations for Fixed-point 
Square-root MMSE Algorithm 
In this chapter, three architectures of QRD-based square-root MMSE MIMO 
detection algorithm are developed for 4×4 MIMO systems using standard digital 
cell libraries and are verified using an FPGA platform. The three architectures 
include two pipeline versions and a time-multiplexed scheme. Performance of 
these three implementations with respect to throughput, speed and resource 
utilization, are summarized.  

4.1 Description of main building blocks 
According to the QRD-based square-root MMSE scheme described in Chapter 2, 
an augmented channel matrix H is constructed to calculate GMMSE by extending 
matrix H. In this chapter AugH is used to denote the matrix of augmented H. 
Recall that the modified Gram-Schmidt QRD (Algorithm 1) is an iterative 
algorithm and consists of two processes: a) the outer loop is used to obtain norm 
(Rii) and normalization vector (Qi) of AugHi; b) the inner loop is to update columns 
AugH j ( j=i+1 to N) by first calculating inner-product (Rij) of vector AugHj and Qi, 
and then updating AugH j. Thus, two components are designed. One is used to 
receive column vector AugHi and produce the corresponding Rii and Qi, called 
Qi_Rii Component (Qi_Rii C). The other is to calculate Rij and update augmented 
AugHj, called Rij_HjUpd Component (Rij_HjUpd C). In the following, the two 
blocks are described in details and their device utilization after place and route 
(PNR) are shown. 

4.1.1 Qi_Rii Component 
The block diagram of Qi_Rii Component is shown in Fig. 4.1 with five sub-blocks 
and two delay elements. 

1. Norm_alfa module 

This module is developed to calculate scaling factor and the scaled norm-square 
for vector AugHi using dynamic scaling technique.  

The non-scaled norm-square is calculated by multiplications of vector 
elements and additions of multiplication results. Note that fixed-point 
implementation requires adjustments of operation’s results according to the word 
length given in Table 3.2, and the word length adjustments are performed 
throughout the entire hardware design.  
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Next, the norm-square for vector AugHi is scaled to the range between 0.25 

and 1, denoted as u_in. Scaling factor  is found based on squared norm. It is the 
bit location where the first ‘1’ appears in binary squared norm. Then, scaling can 
be done by shifting the squared norm to the right 2  bits according to line (4) in 
Algorithm 3. After that, result adjustment has to be done because u_in has 
different fixed-point format with the scaled norm-square. The latter is represented 
by unsigned 3.13 format, whereas u_in is by unsigned 1.15. This means, the result 
should be further shifted two bits to the left to get the correct representation of 
u_in. The relationship between and shift operation is shown in Table 4.1. 

Table 4.1 Shift operation to scale norm-square 

 
 
 
 
 
 
 

 
2. Square-root module  

This module receives scaled norm-square named u_in in Fig. 4.1 and send out the 
vector norm u. Xilinx IP Core Generator is used to implement this module. Since 
square root is a compute-intensive operation and this module is part of critical path 
of the entire system, its performance is a bottleneck of system’s frequency. As 

  shift direction shifting bit 

-4 left 10 
-3 left 8 
-2 left 6 
-1 left 4 
0 left 2 
1 No shift 0 
2 right 2 

Fig. 4.1 Block diagram of Qi Rii Component

rst 

clk 

ce 

Qi(-33) 

d(-33) 
u(0) 

divider 
(33cc)

 
 
 

Qi_calculator

Rii_calculator 
Rii(0) 

delay element 
(33cc)

delay element 
(33cc)

alfa(-33) 

AugHi(-33)

alfa(0) 

u_in(0) 
AugHi 

norm_alfa 
module 

square-root 
module 
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synthesis report shows, the minimum period of square-root module is 
28.913ns including 33.3% logic and 66.7% route; and the device usage of this 
block after PNR is shown in Table 4.2. 

Table 4.2 Resource utilization of square-root module  

 
 
 
 
 
 
 

3. Rii_calcultor  

It is designed to eliminate the impact of the dynamic scaling on Rii. According to 
line (7) in Algorithm 3, R can be restored by shifting u to the right   positions. 
However, similar to the scaling of norm-square, u should be shifted to the right 2 
more bits due to different fixed-point formats of R and u. The shifting operation is 
concluded in Table 4.3. 

Table 4.3 Shift operation to restore Rii      

 
 
 
 
 
 
 
 

4. Divider  

The divider is used to compute the reciprocal of a vector norm and is implemented 
by Xilinx IP Core Generator. Unsigned operation is selected, since norm is a 
positive real number. Regarding the word-length, the fractional is set to be 29 bits 
according to Table 3.2. The adopted divider is fully pipelined, resulting in a 
throughput of 1 division per clock cycle. Note that the latency of the generated 
divider is decided by  

Latency= quotient’s word length + fractional’s word length +2.          (4.1) 

In this work, quotient and dividend have the same wordlength and the latency 
is 33 clock cycles (cc). Divider’s maximum frequency is 515.464MHz as synthesis 
report shows. Table 4.4 summarizes PNR results of the adopted divider.  

slice logic utilization used 
number of slice registers 0 
number of slice LUTs 248 
number of occupied slices 78 
number of LUT flip flop pairs used 248 
number of OLOGICE1/OSERDESE1s 14 

  shifting direction shifting bit 

-4 right 6 
-3 right 5 
-2 right 4 
-1 right 3 
0 right 2 
1 right 1 
2 No shift 0 
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Table 4.4 Divider’s device utilization 

 

5. Qi_calculator  

In this module, AugHi is multiplied with the reciprocal of its norm. 16-bit Qi is 
obtained by truncating the 32-bit multiplication result in accordance to  , see 
Table 4.5.  

Table 4.5 Truncating operation to restore Qi 

 MSB LSB 

-4 24 9 
-3 25 10 
-2 26 11 
-1 27 12 
0 28 13 
1 29 14 
2 30 15 

 
6. Two 33cc delay elements 
Because the divisor has a 33 cc latency, the corresponding AugHi and need to be 
delayed for 33cc to produce correct Qi. Thus, one delay element is inserted on the 
AugHi to Qi_calculator path and the other on the  to Qi_calculator path. 

Because of the involved divider and multipliers, Qi_Rii Component consumes 
a large amount of hardware resources, see Table 4.6.  

                 Table 4.6 Device utilization comparison of Qi_Rii Component  

 
 

4.1.2 Rij_HjUpd Component 
Fig. 4.2 shows the block diagram of Rij_HjUpd Component.  

 
 

slice logic utilization used 
number of slice registers 1145 

number of slice LUTs 620 
number of occupied slices 290 

number of LUT flip flop pairs used 895 

slice logic utilization Qi_Rii Component 
number of slice registers 1695 
number of slice LUTs 2033 
number of occupied slices 785 
number of LUT flip flop pairs used 2306 
DSP48E1s 32 
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Processing units (PUs) are used to calculate Rij and the projection of AugHj 

on Qi. A PU is developed for multiplication of two 16-bit complex-valued 
numbers. In each PU, there are four 16-bit real-valued multipliers and two 32-bits 
real-valued adders/ subtracters. 

Table 4.7 lists the hardware consumption of this component. It can be clear 
seen that the hardware consumption of this component is about 9 times less than 
that of Qi_Rii Component. To reduce hardware cost, the number of the Qi_Rii 
Components adopted in system architecture should be as small as possible. 

Table 4.7 Device utilization comparison of Rij_HjUp Component 

 
 
 

 

4.2 The first pipeline scheme 

4.2.1 Architecture description 
The first pipeline architecture is shown in Fig. 4.3, stage one is a matrix extending 
module (matr_exd) which is designed to build augmented matrix AugH from input 
channel matrix H. 

slice logic utilization Rij_HjUpd Component 
number of slice registers 116 
number of slice LUTs 196 
number of occupied slices 52 
number of LUT flip flop pairs used 196 
DSP48E1s 32 

Fig. 4.2 Block diagram of Rij HjUpd Component
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The following four stages are used to implement QR decomposition with 

each stage processing one column. First, in stage two, one Qi_Rii Component is 
employed to calculate Q1 and three Rij_HjUpd Components are used to calculate 
R1j and update AugHj for the first time (j=2,3,4). Similarly, stage three consists of 
one Qi_Rii Component and two Rij_HjUpd Components. Qi_Rii C2 receives 
AugH2_upd_1st

 and computes Q2; AugH3 and AugH4 are updated for the second 
time in Rij_HjUpd C4 and Rij_HjUpd C5. Finally, in stage 5, only one Rij_HjUpd C 
is used for Q4’s calculation. 

It is worth noting that the input AugHj / AugHj_upd of every Rij_HjUpd 
Component has to be delayed 33cc due to the latency of calculating the 
corresponding Qi. Thus, delay elements (DEs) are inserted by connecting 33 DFFs 
in series. Besides, DEs are also used as pipeline registers, denoted as PDs in Fig. 
4.3. 

The last stage, stage 6, is used to calculate GMMSE matrix when Q4 is 
produced. Since it costs 33cc to produce each Qi, there are three PDEs for Q1, two 
for Q2, and one for Q3. 

4.2.2 Implementation and simulation 

1. Behavioral simulation 
The processor is designed to compute three matrices in parallel: R, Q, and GMMSE.  
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Fig. 4.3 Architecture of the first pipeline version
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The total bit number is 1792 including 256 bits for matrix R, 1024 bits for matrix 
Q and 512 bits for matrix GMMSE. The behavioral simulation result is given in Fig. 
4.4.  

 

 
Fig. 4.4 Beheviour simulation of the first pipeline version 

Form Fig. 4.4, it can be seen that this pipeline version is able to produce one 
R matrix, one Q matrix, and one GMMSE matrix in each clock cycle.  

2. Synthesis and PNR 

During synthesis and PNR, because three parallel output matrices and the input 
matrix H have 2304 bits in total, these matrices are not directly connected to IOs. 
Instead, some ROMs are designed to store input matrices and the corresponding 
reference model. On the output, a “diff” signal is used to indicate if the results are 
correct by comparing with the reference output. If they are the same, diff is set ‘0’. 
This signal is generated at the same clock cycle as matrix GMMSE and is registered 
before output.  

The synthesis report shows that the minimum clock period of the design is 
63.556ns (maximum frequency: 15.734MHz). Device utilizations after PNR are 
provided in Table 4.9 in section 4.5. Fig. 4.5 shows the post PNR simulation using 
minimum period. 

 
Fig. 4.5 Post PNR simulation for the first pipeline scheme 

In this figure, “diff” signal becomes zero when the 139rd clock cycle arrives 
after reset. This is because it spends 1cc to obtain AugH matrix from channel 
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matrix H, then 33cc to produce each Qi (i=1,2,3,4) and 1cc to store each Qi in 
DFF, 1cc to store GMMSE in DFF after Q4, and 1cc to store diff in DFF for 
registered output.  

4.3 Time-multiplexed scheme 
It is well-known that time-multiplexed architecture is efficient in term of hardware 
resource but has long computation time because several algorithm operations share 
the same hardware. In this part, a time-multiplexed scheme is developed to 
implement QRD-based square-root MMSE MIMO detection. In order to save 
hardware area, this scheme adopts only one Qi_Rii Component and one Rij_HjUpd 
Component. 

4.3.1 Architecture description 
For every column vector AugHj, QR decomposition steps are similar, i.e., they all 
employ one Qi_Rii Component and (N-j) Rij_HjUpd Components as designed using 
the pipeline architecture. As a result, one Qi_Rii Component and one Rij_HjUpd 
Component can be shared over time in time-multiplexed scheme. In addition, as 
described before, some signals need to wait for 33cc due to the latency of divider, 
therefore, holding element (HE) is introduced to keep signals for some time. As 
Fig. 4.6 shows, a HE uses a control signal to select data from either input or 
output’s feedback. Different from the pipeline-based delay element in the first 
pipeline scheme, the HE saves hardware resources especially when the holding 
period is long. 

 
The block diagram of time-multiplexed architecture is shown in Fig. 4.7: 

Qi_Rii Component and Rij_HjUpd Component are indicated in light grey, and HEs 
are specified in darker grey. A control module shown in the upper part manages all 
other modules by using select signals.  
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Fig. 4.6 Block diagram of holding element
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1. Matrix extending module 

Once the system is reset and a start signal arrives, control module gives out a 
MatrExd_ctr signal to activate this module. Four column vectors of augmented H 
matrix are sent out in the following clock cycle. AugH1 is connected to MUX1 
preparing to calculate Q1, while AugH2, AugH3 and AugH4 are sent into three 33cc 
hold elements waiting for Q1 to calculate Rij and update themselves for the first 
time. Since the Rij_HjUpd Component is time-multiplexed, the AugH2 is the first 
one to enter Rij_HjUpd Component. After 1cc, its output, the updated AugH2, is 
sent into Qi_Rii Component for Q2’s calculation. In the meanwhile, AugH3 
occupies Rij_HjUpd Component, therefore AugH3 needs to wait for 34cc since it is 
given out by the matrix extending module. Similarly, AugH4 needs to wait for 35cc 
before Rij_HjUpd Component processes it.  

2. Qi_Rii Component  

Iits input Hi has three sources selected by QiRii C_ctr signal. The first one is 
AugH1 when computing Q1. If the clock cycle is denoted as 1cc when AugH is 
output from matrix extending module, then the MUX1 selects AugH1 at 1cc with 
Q1 given out at 34cc. Its second potential input comes from one of Rij_HjUpd 
Component outputs when computing Q2, Q3 and Q4. Specifically, MUX1 selects 
AugH2_ upd_ 1

st to compute Q2 at 34cc after Q1 is sent out. This is because AugH2 

has to subtract its orthogonal projection on Q1 to obtain AugH2_ upd_ 1
st. Similarly, 

the updated AugH3 is allowed to enter Qi_Rii Component at 67cc when Q2 is 
computed, since AugH3_upd_2nd is computed by subtracting orthogonal projection 
of AugH3_upd_1st on Q2.  AugH4_upd_3rd is selected at 100cc once Q3 is obtained. 
Finally, the third input source “1…1” is effective for 128 cc out of the 132cc 
before next channel matrix comes into system. 

The output of this module Qi has two destinations. One is to calculate GMMSE. 
As seen in upper right part of Fig. 4.7, Q1, Q2, Q3 and Q4 need to be held for 
different time since they are produced at different clock cycles. Another is going 
to Rij_HjUpd Component for orthogonal operation. Since this component is time-
multiplexed, Q1 should be held for at least 3cc.The 1st cc is used to calculate R12 
and update AugH2, the 2nd cc to calculate R13 and update AugH3, and the 3rd cc for 
R14 and AugH4. Similarly, Q2 is held for at least 2cc and Q3 for 1cc. 

3. Rij_HjUpd Component 

As described above, input Qi (j=1, 2, and 3) need to be held for 3cc, 2cc and 1cc 
respectively. “1…1” is connected for the rest of the time within a processing 
iteration for each channel matrix, since it has no work until the divider gives out a 
new Qi. This input selection is achieved by combining the HE and MUX2 with 
Qi_sel_ctr control signal. Another input of this component is Hj. It could be one of 
AugH2, AugH3, and AugH4 when orthogonalized with Q1, which is selected by 
MUX3 and MUX4. It could also come from outputs of this component itself, i.e., 
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updated AugH3 and AugH4. For example, when computing AugH3_upd_2nd, Hj 
comes from AugH3_Upd_1st. For the rest of the time, it is connected to “1…1”.  

Next, the output which is updated Hj will go to three directions. Three 
computation results go to Qi_Rii Component immediately for Qi calculation, which 
are AugH2_Upd_1st, AugH3_Upd_2nd and AugH4_Upd_3rd. Then, AugH3_Upd_1st, 
AugH4_Upd_1st and AugH4_Upd_2nd should go back to this component for further 
updating AugHj (j=3 and 4). Because they need to wait for 33cc for the 
corresponding Qi for orthogonalization, some HEs should be inserted. Among 
them, AugH3_Upd_1st and AugH4_Upd_2nd share one HE while AugH4_Upd_1st 
will go through another HE, since AugH4_Upd_1st is calculated 1cc later than 
AugH3_Upd_1st and both need to be kept for 33cc. Therefore, three feedback 
results are assigned to two signals and enter two HEs, see Fig. 4.7. 

4.3.2 FSM design 
Based on the description of hardware architecture and time sequence, a finite-state 
machine (FSM) of this scheme is designed, see Fig. 4.8.  

 

 
Fig. 4.8 FSM of time-multiplexed scheme 

 
 S0: A ready-for-work state once reset signal is effective. When start 

signal is high, the system begins to work. After an iteration finishes and 
system re-enters this state, a control signal is given out to trigger the 
G_cal module for GMMSE calculation of last channel matrix.  

 S1: The control module gives matrix extending module an enable signal, 
and matrix extending module immediately starts to extend an H matrix to 
an augmented one. Meanwhile, G_cal module outputs GMMSE result for 
the last channel matrix. 

 S2: Qi_Rii Component receives AugH1 and works for 33cc to calculate 
Q1. 

 S3: Rij_HjUpd Component calculates R1j and updated AugHj ( j=2, 3, 4) 
in the first three continuous clock cycles. Qi_Rii Component takes 33cc 
to compute Q2. 

 S4: Similar to S3, Rij_HjUpd Component works for 2 clock cycles for R2j 
and updated AugHj ( j=3 and 4). Q3 is calculated after 33cc by Qi_Rii 

Component. 
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 S5: Rij_HjUpd Component produces R34 and AugH4_Upd_3rd in the first 
clock cycle. Once Q4 is computed by Qi_Rii Component after 33cc, the 
next state will be S0 to process a new channel matrix. 

4.3.3 Implementation and simulation 
The synthesis report shows that the minimum period of the time-multiplexed 
scheme is 96.030ns, i.e. the maximum frequency is 10.413MHz. After PNR, the 
hardware utilization is reported and is listed in Table 4.9 in section 4.5.  

Similar to the pipeline version, a “diff” signal is introduced to indicate 
computational correctness. Fig. 4.9(a) shows the behavioral simulation result in 
order to demonstrate time sequence and Fig. 4.9(b) is the post-PNR simulation 
result. 

 

 
Fig. 4.9(a) Behaviral simulation of time-multiplexed scheme 

Fig. 4.9(a) illustrates the process procedure of the first two channel matrices 
after start signal. It can be seen that the time-multiplexed system outputs a GMMSE 
matrix every 134cc and diff is kept ‘0’ for 1cc. 

 

 
Fig. 4.9(b) Post-PNR simulation of time-multiplexed scheme 

Post_PNR simulation result is shown in Fig. 4.9(b) when using the maximum 
frequency. That “diff” signal becomes zero every 134cc demonstrates that the 
post-PNR system works correctly. 

4.4 The second pipeline scheme 
To improve the previous pipeline and the time-multiplexed architectures, a second 
pipeline scheme is designed. Because the processing procedure for every column 
is similar, hardware resources for column processing can be shared over time.  
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Meanwhile, this shared hardware is fully pipeline in order to process one column 
in each clock cycle. 

4.4.1 Architecture description 
The idea is to use one Qi_Rii Component and three Rij_HjUpd Components in this 
pipeline scheme. The block diagram is shown in Fig. 4.10. In this figure, Qi_Rii 

Component and Rij_HjUpd Components are indicated with light grey blocks. 
 

 
 

Fig. 4.10 Architecture of the second pipeline scheme 
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1. Qi_Rii Component 

Its input Hi can come either from AugH1 when processing the first column or from 
the output of Rij_HjUpd C1 which is the updated Hj vector when processing the 
2nd, 3rd and 4th columns. This is achieved by MUX1 with the selecting signal “QiRii 

C_ctr” managed by a control module. This component is the same as Qi_Rii 

Component in the 1st pipeline scheme.  

2. Three Rij_HjUpd Components 

After Q1 is calculated, all the three Rij_HjUpd Components have to work since 
AugH2, AugH3 and AugH4 need to get updated. When Q2 is calculated, AugH3 is 
updated for the second time in Rij_HjUpd C1 and AugH4 is updated in Rij_HjUpd 
C2. When Q3 is obtained, only Rij_HjUpd C1 is used to update AugH3 for the 3rd 
time. 

It can be seen that Rij_HjUpd C3 works the least time during one MIMO 
detection process. Its input Hj is set to “1…1” when the module is idle. This is 
managed by a multiplexer with a select signal “HjUp_ctr_3”. Similarly, the input 
of Rij_HjUpd C2 comes either from AugH3 or from AugH4_Upd_1st that is the 
output of Rij_HjUpd C3, and for the rest of the time, the input is connected to 
“1…1”. Rij_HjUpd C1 receive its Hj from “1…1”, AugH1, or the output of 
Rij_HjUpd C2 which could be AugH2_Upd_1st, AugH3_Upd_2nd and 
AugH4_Upd_3rd.  

Because Q1 takes 33cc to compute, AugH2, AugH3 and AugH4 need to wait 
for 33cc to compute the correct R1j and updated Hj. This is implemented by 
pipeline-based delay elements (PDs) in order to process one column in each clock 
cycle. Once the output of Rij_HjUpd C1 is calculated, it should enter Qi_Rii 

Component immediately without any delay, whereas the outputs of both Rij_HjUpd 
C2 and Rij_HjUpd C3 have to pass through PDEs since they are supposed to wait 
for the corresponding Qi. 

Like Hj, another input signal Qi needs to be selected from “1…1” when the 
component is idle or from the output of Qi_Rii Component when it is active. Given 
that these three Rij_HjUpd components work at different time, three multiplexers 
are assigned to each of them with control signals Qi_ctr_1, Qi_ctr_2, and 
Qi_ctr_3. 

3. GMMSE calculator 

Qi+1 is generated 33cc after Qi, and it won’t get the correct GMMSE until Q4 is 
obtained. Therefore, 33cc PDEs are needed to meet the timing requirement, as 
shown in dark grey at upper right corner of Fig. 4.10. 

4. Delay elements 

In this scheme,   the delay element is designed in the same way as the first pipeline  
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scheme, i.e., composed of 33 concatenated DFFs, denoted as PD in the 
architecture diagram. 

4.4.2 Timing discussion 
The most complicated task of this scheme is to design its timing. Here, the 
hardware is supposed to be able to output GMMSE in a pipeline manner.  

1. Direct design method 

The direct design idea is to input a channel matrix H every clock cycle. But this 
will lead to input conflict for Qi_Rii Component. Fig. 4.11 explains this problem, in 
which only some related modules and some intermediate variables’ timing are 
shown. 

 
For example, assume the first channel matrix is input to Qi_Rii Component at 

k=0 cc. Note that the arriving time of all signals related to this input are indicated 
in blue. For this channel matrix, Q1 will be produced at 33cc and sent to Rij_HjUpd 
Component immediately. Because it is a combinational logic circuit, 
AugH2_Upd_1st is output and delivered to Qi_Rii Component at the same clock 
cycle, i.e., 33cc. However, we input one channel matrix every clock cycle, which 
means a new AugH1 needs to occupy Qi_Rii Component at 33cc too, and this is 
indicated in red in Fig. 4.11. Thus, input confliction happens in Qi_Rii Component 
from 33cc. As a result, this design fails to realize the required function. 

2. Two alternative solutions 

To solve the confliction problem, another Qi_Rii Component could be added into 
system. However, as pointed out in section 4.1, this component costs a large 
amount of device resources, so that system hardware area will increase.  

Q1: 33, 34, 35, …, 64, 65, 66 cc… 

AugH2_Upd_1st:33,34, 35cc… 

AugH2_Upd_1st: 33, 34, 35cc… 

Q1: 33, 34, 35, …, 64, 65, 66 cc… 

Qi  
MUX2 

Hi 

AugH1: 0, 1, 2…31, 32, 33cc, … 
 
MUX1

 
 

RijHjUp C1 
(combinational)

 
QiRii C 
(33cc) 

“1…1” 

Fig. 4.11 Input confliction using original direct design idea 
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Another solution is to delay the input of the 34th channel matrix till 132cc 
when the first 33 channel matrices have been completely processed. That is, every 
33 channel matrices are regarded as a group. This group of matrices enters into the 
system continuously from k=0cc to 32cc with one matrix input per clock cycle. 
After that, matrix input stops for 99cc. The input of the next group starts from 
132cc. 

 
In Fig. 4.12, processing of the first group of channel matrices is illustrated in 

blue color, and the second group is shown in red color. It can be seen that this 
solution eliminates input confliction in the Qi_Rii Component. Notice that this kind 
of input scheduling results in interruptions on data output. As Fig. 4.12 shows, 
there is a time interval of 100cc in between two consecutive groups. We consider 
this as a burst input scheduling. To obtain a smooth output, a new input scheduling 
is introduced as follows. 

3. Final design implementation 

From the analysis in the previous section, it can be seen that an input group of 33 
channel matrices can be processed in a period of 132cc. This means that the 
architecture can deal with one channel matrix every 4cc. Thus, we can employ a 
new input scheduling: for each successive 4 clock cycles, input a channel matrix in 
the first clock cycle and then stop input for the next 3cc. By doing this, matrix 
output is also generated on every 4cc. The work principle is shown in Fig. 4.13. 
 

Qi: time interval 
ti

Q1: 33, 34…64, 65; 165, 166 cc…（from AugH1） 

Q2: 66, 67… 97, 98; 198, 199cc… 

Q3: 99, 100…130,131; 231, 232cc…    (from updated Hj) 

Q4: 132, 133 …163, 164; 264, 265cc…

AugH2_upd_1st: 33, 34, 35…63, 64, 65;165,166cc… 

AugH3_upd_2nd: 66, 67,68,…96, 97, 98;198,199cc… 

AugH4_upd_3rd: 99, 100…129,130,131;231,232cc… 

Qi  
MUX2 

Hi AugH1: 0, 1, 2…31, 32; 132,133cc… 
 
MUX1

 
 

RijHjUp C1 
(combinational)

 
QiRii C 
(33cc) 

“1…1” 

Fig. 4.12 Solution of input rescheduling 

Qi 
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HjUp_ctr_1

Fig. 4.13 Work principle when adopting new input 
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First, for Qi_Rii Component, MUX1 with the select signal QiRii C_Ctr is used 
to select Hi for this component to calculate Qi. In the upper left corner of this 
figure, AugH j (j=1, 2, 3, 4) shown in bold font are sent into the system on every 
4cc, i.e. 0, 4, 8, 12…. Orange arrows indicate MUX1’s settings in the first 32cc 
period (from 0 to 31cc). During the second period of 32cc, since AugH2_Upd_1st is 
computed, the input selection of MUX1 changes as shown in black arrows. In the 
third period of 32cc (red arrows), MUX1 selects its IN3 port twice on every 4cc 
for inputing AugH3_Upd_2nd and AugH2_Upd_1st. Explained using green arrows, 
AugH4_Upd_3rd begin to enter Qi_Rii C to compute Q4 during the 4th period of 
33cc. From this period, Qi_Rii Component begins to operate with full load and is 
able to output one Qi in each clock cycle. The corresponding setting of MUX1 is 
summarized in Table 4.8(a). 

Second, for each of three Rij_HjUpd Components, there are 2 multiplexers to 
control its two inputs respectively. Rij_HjUpd C3 only receives AugH4 to do 
orthogonalization with Q1. Thus, it does not work in the first 32cc because no Q1 
is produced yet. Starting from the second period of 32cc, MUX6 selects the output 
of Qi_Rii Component and MUX7 selects AugH4 at the second clock cycle of every 
4cc. The time sequence is shown in blue arrows at the lower left corner of Fig. 
4.13. Rij_HjUpd C2 works in the same way as Rij_HjUpd C3 during the first 64cc. 
After that, AugH 4_Upd_2nd is computed based on MUX4 and MUX5 at the third 
clock cycle of every 4cc. Similarly, since 96cc, Rij_HjUpd C1 works for three 
clock cycles on every 4cc. The scheduling of select signals for MUX2~ 7 is listed 
in Table 4.8. 

Third, in the upper right corner of Fig. 4.13, there is a hardware unit to 
calculate GMMSE. Several PDEs are inserted after the DEMUX, because Qi (i=1, 2, 
3, 4) are sent out at different time instances. When to calculate GMMSE is controlled 
by Calc_ctr signal which is synchronous with Q4. It is effective for 1cc on every 
4cc from state S5 in Table 4.8 (b). 

Table 4.8(a) Scheduling of select signals for MUX 1 ~ 3 

 
MUX1: Hi 

 (QiRiiC_Ctr) 
MUX2: Qi 
(Qi_ctr_1) 

MUX3: Hj 
(HjUp_ctr_1) 

S1：
0~31cc  
(i=0~7) 

4i IN2: AugH1 

IN2: “1…1” IN1: “1…1” 
4i+1 

IN1: “1…1” 4i+2 
4i+3 

S2：
32~63cc 
(i=8~15) 

4i IN2: AugH1 IN2: “1…1” IN1: “1…1” 

4i+1 IN3: AugH2_Upd_1st IN1: Q1 IN2: Aug H2 

4i+2 IN1: “1…1” IN2: “1…1” IN1: “1…1” 

4i+3 IN1: “1…1” IN2: “1…1” IN1: “1…1” 

name: output 

(control signal) 

input No.:  
meaning 
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S3：
64~95cc 

(i=16~23) 

4i IN2: AugH1 IN2: “1…1” IN1: “1…1” 

4i+1 IN3: AugH2_Upd_1st IN1: Q1 IN2: Aug H2 

4i+2 IN3: AugH3_Upd_2nd IN1: Q2 IN3: AugH3_Upd_2nd 

4i+3 IN1: “1…1” IN2: “1…1” IN1: “1…1” 

S4：
96~127cc 
(i=24~31) 

4i IN2: AugH1 IN2: “1…1” IN1: “1…1” 

4i+1 IN3: AugH2_Upd_1st IN1: Q1 IN2: Aug H2 

4i+2 IN3: AugH3_Upd_2nd IN1: Q2 IN3: AugH3_Upd_2nd 

4i+3 IN3: AugH4_Upd_3rd IN1: Q 3 IN3: AugH4_Upd_3rd 

S5：every 32cc after 
127cc 

same as S4 

 

Table 4.8 (b) Scheduling of select signals for MUX 4~7 and G_calc 

* “no” means no GMMSE calculation. 

From the analysis above, we can see that every 32cc period could be 
considered as a processing state of FSM. The detailed description of the FSM is 
shown in Fig. 4.14. 
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(Calc_ctr) MUX4: Qi 

(Qi_ctr_2) 
MUX5: Hj  

(HjUp_ctr_2) 
MUX6: Qi 
(Qi_ctr_3) 

MUX7: Hj 
(HjUp_ctr_3) 

S1: 
 0~31cc  
(i=0~7) 

4i 

IN2: “1…1” IN1: “1…1” IN2: “1…1” IN1: “1…1” no 
4i+1 
4i+2 
4i+3 

S2: 
 32~63cc 
 (i=8~15) 

4i IN2: “1…1” IN1: “1…1” IN2: “1…1” IN1: “1…1” 

no 
4i+1 IN1: Q1 IN2: AugH3 IN1: Q1 IN2: AugH4 
4i+2 

IN2: “1…1” IN1: “1…1” IN2: “1…1” IN1: “1…1” 
4i+3 

S3:  
64~95cc  

(i=16~23) 

4i IN2: “1…1” IN1: “1…1” 

Same as S2 Same as S2 no 
4i+1 IN1: Q1 IN2: AugH3 
4i+2 IN1: Q2 IN3: AugH4_Upd_2nd

4i+3 IN2: “1…1”  IN1: “1…1” 

S4:  
96~127cc  
(i=24~31) 

4i 

Same as S3 Same as S3 Same as S2 Same as S2 no 
4i+1 
4i+2 
4i+3 

S5:  
every 32cc 
after 127cc 

4i 

all same as S4 

yes 
4i+1 no 
4i+2 no 
4i+3 no 

name: output 

(control signal) 

input/output 

  FSM state 
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Fig. 4.14 FSM of the second pipeline architecture using new input scheduling 

 

 ini: initial state when reset is low and wait for high start signal. 
 S0: set control signal of MUX1 so that it will be effective in the next 

clock cycle. By doing this, Qi_Rii Component is able to receive the first 
AugH1 vector at the beginning of S1 state. 

 S1 (0~31cc as described above): this is the first period of 32cc in which 
Qi_Rii Component receives an AugH1 every 4cc to calculate Q1. Two 
counters are designed: cnt1 is from 0 to 3 and cnt2 is from 0 to 7, thus 
4cc timing could be controlled by cnt1 and the period of 32cc can be 
obtained by combining cnt1 and cnt2.  

 S2 (32~63cc): this is the second period of 33cc. Qi_Rii Component 
receives an AugH1 or an AugH2_Upd_1st every 4cc to calculate Q1 and 
Q2 respectively. Three Rij_HjUpd Components work for R1j and 
AugHj_Upd_1st (j=2, 3, 4). 

 S3 (64~95cc): the third period of 32cc. Qi_Rii Component receives an 
AugH1, an AugH2_Upd_1st or AugH3_Upd_2nd every 4cc to calculate Q1 , 
Q2 and Q3. Besides R1j and AugHj_Upd_1st (j=2, 3, 4), three Rij_HjUpd 
Components also work for R2j/ AugHj_Upd_2nd ( j=3 and 4).  

 S4 (96~127cc): the fourth period of 32cc, Qi_Rii Component receives an 
AugH1, an AugH2_Upd_1st, an AugH3_Upd_2nd, or AugH4_Upd_3rd 
every 4cc to calculate Qi (i=1, 2, 3, 4). Rij_HjUpd C1 is responsible for 
the calculation of R34/ AugH4_Upd_3rd.  

 S5 (every 32cc since 128cc): Qi_Rii Component and three Rij_HjUpd 
Components work in the same way as S4. The difference is that a GMMSE 
matrix is calculated every 4cc in this state. 

4.4.3 Implementation and Simulation 
Same as the previous two schemes, a “diff” signal is used to indicate whether the 
result is correct or not. The behavioral simulation is given first in Fig. 4.15(a) for 
time sequence demonstration. It can be seen that the system begins to produce 
GMMSE matrices on every 4cc since state S5. 
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Fig. 4.15(a) Behaviral simultion of the second pipeline scheme 

The minimum period is 95.941ns (Maximum Frequency: 10.423MHz) is reported 
from hardware synthesis. The post PNR simulation with this minimum period is 
shown in Fig. 4.15(b). The fact that “diff” turns to zero every 4cc demonstrates the 
expected results after PNR. 

 
Fig. 4.15(b) Post PNR simultion of the second pipeline scheme 

4.5 Comparisons of three architectures 
In this section, three implementation schemes are compared. 

First, Table 4.9 summarizes device utilizations of three architectures 
implemented using the same FPGA. 

It can be seen that the time-multiplexed scheme requires the least hardware 
resources. The second pipeline architecture consumes about twice of the hardware 
resources of the time-multiplexed version. The first pipeline version is the most 
hardware demanding one, i.e., its device utilization is almost doubled in 
comparison to that of the second pipeline design. 

 
 
 
 
 
 
 

state S2 state S3 state S4 state S5 
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Table 4.9 Device utilization comparison of the three schemes  

slice logic utilization 
the 1st 

pipeline 
time-

multiplexed
the 2nd 

pipeline 
number of slice registers 15,680 3,363 6,901 

number used as Flip Flops 14,536 2,799 6,105 
number used as AND/OR logics 1,144 564 796 

number of slice LUTs 17,105 4,504 9,958 
number used as logic 13,730 4,409 8,010 
number used as Memory 3,045 3 1,926 
number used exclusively as route-thrus  92  

number of occupied slices 5,575 1,750 3,652 
number of LUT flip flop pairs used 19,565 5,359 10,783 
number with an unused Flip Flop 4,893 2,343 4,033 
number with an unused LUT 2,460 855 825 
number of fully used LUT-FF pairs 12,212 2,161 5,925 
number of unique control sets 17 18 19 
number of slice register sites lost to 
control set restrictions 

75 38 57 

DSP48E1s 636 240 368 

Second, the throughputs are summarized in Table 4.10. It can be seen that the 
throughput using the first pipeline architecture is 3 times higher than the second 
pipeline architecture and 135 times higher than that of the time-multiplexed 
scheme. 

Table 4.10 Throughput comparison of the three schemes 

 the 1st pipeline time-multiplexed the 2nd pipeline 
throughput 1 GMMSE per cc 1 GMMSE per 136cc 1 GMMSE per 4cc 

Finally, regarding maximum frequency, time-multiplexed and the second 
pipeline architecture are almost the same. See Table 4.11. The frequency 
limitation of the square-root module is the main bottleneck of all three schemes.  

Table 4.11 Maximum frequency comparison of three schemes 

 the 1st pipeline time-multiplexed the 2nd pipeline 
maximum frequency 15.734MHz 10.413MHz 10.423MHz 

Given the throughput and frequency, pipeline version 1 has the highest 
processing speed which is 5 times faster than the pipeline version 2 and more than 
200 times faster than the time-multiplexed scheme. If a system does not require 
high throughput, the second pipeline architecture is a good choice for its 
reasonable performance and area consumption. Due to its low throughput in 
comparison to the other two architectures, time-multiplexed scheme should be 
considered only when device resource is limited. 
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CHAPTER 5 
 

5 Conclusion and Future Work 

5.1 Conclusion 
Motivated by implementation of MIMO detection algorithms on RCA and ASIC 
platforms, this thesis mainly studies two linear MMSE MIMO detection 
algorithms: squared MMSE algorithm and QRD-based square-root MMSE 
algorithm. Besides, three matrix inversion approaches required by squared MMSE 
are studied, including DMI, analytic/block-wise, and QRD-based inversion. 

First, considering computational complexity, regardless of the antenna size, 
squared MMSE using analytic or block-wise inversion has the least operation 
numbers when only considering matrix inversion. When including steps required 
by calculating both R and GMMSE, square-root MMSE scheme with QRD is the 
least compute-intensive one. In terms of architecture, implementation on ASICs 
generally requires fewer operations than that on RCAs. However, their difference 
reduces as antenna number increases. 

Second, accuracy is investigated in both floating-point and fixed-point 
formats. Comparisons show that QRD-based square-root MMSE scheme with 
dynamic scaling provides the highest accuracy among four schemes with respect 
of floating-point. Moreover, it shows a better performance than QRD-based 
squared MMSE considering fixed-point format.  

Finally, to implement QRD-based square-root MMSE that has highest 
accuracy and lowest complexity, three architectures are designed and evaluated, 
including two pipeline versions and a time-multiplexed version. The first pipeline 
version is able to produce one result every clock cycle. However, it consumes the 
most hardware resources among the three schemes. The time-multiplexed version 
is the least expensive one in terms of hardware size, but its throughput is less than 
1 percent of the first pipeline version due to data dependency of the MGS 
algorithm and 33cc latency of the divider. The second pipeline architecture shows 
a good performance trade-off among the three. Its processing throughput is 33 
times higher than that of the time-multiplexed version, and its hardware 
consumption is about half of that of the first pipeline version.  

5.2 Future work 
This thesis compares the computational complexity of different schemes 
implemented on ASIC and RCA platforms respectively. Hardware 
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implementations need to be further studied, so that a comprehensive comparison 
can be made between two platforms.  

At the implementation level, the performance of square-root module can be 
improved. This function unit can be re-designed by adopting algorithms such as 
Newton-Raphson method. 
 



 
 

56

References 
 
[1] N. Morinaga, R. Kohno, S. Sampei, Wireless Communication Technologies: 
New Multimedia Systems, Kluwer Academic Publishers, 0-7923-7900-4, 2000 
 
[2] C. Zhang, L. Liu, and V. Öwall, “Mapping Channel Estimation and MIMO 
Detection in LTE-Advanced on a Reconfigurable Cell Array”, in the proceedings 
of IEEE International Symposium on Circuits and Systems (ISCAS), pp 1799–
1802, 978-1-4673-0218-0, May 2012 
 
[3] L. Bai, and J. Choi, Low Complexity MIMO Detection, New York, Springer 
Science + Business Media, 978-1-4419-8583-5, 2012 
 
[4] H. S. Kim, W. Zhu, J. Bhatia, K. Mohammed, A. Shah, and B. Daneshrad, “A 
Practical, Hardware Friendly MMSE Detector for MIMO-OFDM-Based Systems”, 
EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 94, pp 1-14, 
1867-6180, March 2008 
 
[5] C. Zhang, T. Lenart, H. Svensson and V.Öwall, “Dynamically Reconfigurable 
Architectures for Real-time Baseband Processing”, in the proceedings of 2009 
International Conference on Reconfigurable Computing and FPGAs, pp338-343, 
978-1-4244-5293-4 , December 2009 
 
[6] K. Kuttler, Linear Algebra: Theory and Applications, The Saylor Foundation: 
Wave I of the Open Textbook Challenge, CC-BY3.0, 2012  
 
[7] D. Wu, J. Eilert, D. Liu, D. Wang, N. Al-Dhahir, and H. Minn, “Fast Complex 
Valued Matrix Inversion for Multi-User STBC-MIMO Decoding”, in the 
proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI'07, 
pp 325–330, 0-7695-2896-1, March 2007 
 
[8] L. Fahrmeir, T. Kneib, S. Lang, B. Marx, Regression: Models, Methods and 
Applications, Springer Heidelberg, New York, 978-3-642-34333-9, 2013 
 
[9] N. J. Higham, Accuracy and Stability of Numerical Algorithms: Second 
Edition, Philadelphia, the Society for Industrial and Applied Mathematics, 0-
89871-521-0, 2002 
 
[10] W. Cheney, and D. Kincaid, Linear Algebra: Theory and Applications, Jones 
and Bartlett Learning, Mississauga, 978-1-4496-1352-5, 2012 
 



 
 

57

[11] A. El-Amawy and K.R. Dharmarajan, “Parallel VLSI algorithm for stable 
inversion of dense matrices” in the proceedings of IEE Computers and Digital 
Techniques, Vol. 136, No. 6, pp 575–580, 0143-7062, NOVEMBER 1989 
 
[12] A. Burg, S. Haene, D. Perels, P. Luethi, N. Felber and W. Fichtner, 
“Algorithm and VLSI Architecture for Linear MMSE Detection in MIMO-OFDM 
Systems”, in the proceedings of 2006 IEEE International Symposium on Circuits 
and Systems, 0-7803-9389-9, pp 4102-4106, Island of Kos, Greece, May 2006 
 
[13] J. Moon, H. Jin, T. Jeon, and S. Lee, “Channel estimation for MIMO-OFDM 
systems employing spatial multiplexing”, in the proceedings of IEEE Vehicular 
Technology Conference, Vol. 5, pp 3649-3654, 0-7803-8521-7, September 2004  
 

 



A
n

alysis an
d

 Im
p

lem
en

tatio
n

 o
f Lin

ear M
IM

O
 Sig

n
al D

etectio
n

 A
lg

o
rith

m
s 

Department of Electrical and Information Technology, 
Faculty of Engineering, LTH, Lund University, February 2015.

Analysis and Implementation 
of Linear MIMO Signal 
Detection Algorithms 

Dan Liu

D
an

 Liu

Master’s Thesis

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-426

http://www.eit.lth.se




