
A
n

alysis an
d

 Im
p

lem
en

tatio
n

 o
f Lin

ear M
IM

O
 Sig

n
al D

etectio
n

 A
lg

o
rith

m
s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, February 2015.

Analysis and Implementation
of Linear MIMO Signal
Detection Algorithms

Dan Liu

D
an

 Liu

Master’s Thesis

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-426

http://www.eit.lth.se

Master’s Thesis

Analysis and Implementation of Linear
MIMO Signal Detection Algorithms

By

Dan Liu

Department of Electrical and Information Technology
Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

1

Abstract

Nowadays the demanding for wireless communication increases dramatically
across the world. Multiple-input multiple-output (MIMO) is a wireless
communication technology with great prospect. For baseband receivers, various
sophisticated MIMO detection algorithms have been proposed in literature to
exploit the gains provided by MIMO. However, it is challenging to implement
algorithms on hardware platforms under different system operating scenarios.

In this thesis, two kinds of linear minimum mean square error (MMSE)
MIMO detection algorithms are studied for MIMO systems with the same
transmitting and receiving antenna numbers: squared MMSE and square-root
MMSE. Specifically, three matrix inversion approaches are introduced to the
former algorithm, including analytic or block-wise inversion, direct matrix
inversion, and QR-decomposition (QRD) based inversion. As to the latter
algorithm, QRD method is adopted.

First of all, computational complexity of the four schemes mentioned above
are considered on two platforms which are application-specific integrated circuit
(ASIC) and reconfigurable cell array (RCA) architecture. Comparisons show that
QRD-based square-root MMSE requires the least operation amount on both
platforms. Note that no matter which scheme is used, the operation amount on
RCAs is higher than that on ASICs. However, the difference of complexity
between two platforms decreases when antenna number increases.

Next, computation accuracy of the four aforementioned schemes is evaluated.
Because of lower computational complexity, two QRD-based schemes are
compared in 16-bit fixed-point format. Results show that square-root MMSE
algorithm has a better performance.

Finally, due to the high computational accuracy and low complexity, QRD-
based square-root MMSE is implemented using standard digital cell libraries
and demonstrated on FPGA using 16-bit fixed-point format for a 4×4 MIMO
system. Three different architectures are designed, including two pipeline versions
and a time-multiplexed scheme. The throughput of the first pipeline version is 3
times faster than the second one, while its device utilization is twice as much as
the latter. Time-multiplexed design has the lowest resource utilization; however, it
reveals a lowest throughput because of the high data dependency in the QRD
algorithm.

2

Acknowledgments

This Master’s thesis would not exist without the support and guidance of my
supervisor, Chenxin Zhang. I would like to express my sincere thanks to him.
Also, I always appreciate his continuous encouragement and faith on me during
this thesis work. In addition, I gratefully acknowledge my examiner, Joachim
Rodrigues, for his instructions and advices on my thesis.

A special thank goes to my husband, Xin. He provides tireless help physically
and mentally from the very beginning to the end of my study; he also gave me
unlimited support and patience when I have difficulties moving forward. Besides, I
need to say thank you to my son, Owen, for the infinite happiness he brings to me
since he was born.

Finally, I would like to thank my friends, Zhonghua Wang, Ziyang Li and
Hongwan Qin, for the stimulating discussions and great collaboration we had.

Dan Liu

3

Table of Contents
Abstract 1
Acknowledgments 2
Table of Contents 3
1 Introduction 5

1.1 MIMO system .. 5
1.2 MIMO detection technology and algorithms ... 6
1.3 Reconfigurable architecture ... 7
1.4 Thesis Structure ... 8

2 Complexity Analysis of Linear MMSE MIMO Detection Algorithms 9
2.1 Complex numbers and complex arithmetic ... 9
2.2 Complexity of matrix inversion approaches in squared MMSE algorithm 10

2.2.1 Complexity of a pre-process procedure ... 10
2.2.2 Complexity of analytic and block-wise matrix inversion approach 11
2.2.3 Complexity of QRD-based matrix inversion approach 14
2.2.4 Complexity of direct matrix inversion approach 16
2.2.5 Complexity evaluation on different matrix inversion approaches 18

2.3 Square-root MMSE MIMO detection based on QR Decomposition 19
2.4 Complexity of different linear MMSE MIMO detection schemes 21

2.4.1 System requirement for matrix R ... 21
2.4.2 Complexity evaluation on linear MMSE MIMO detection schemes 21

3 Accuracy Comparisons of Linear MMSE MIMO Detection Algorithms 25
3.1 Environment setup ... 25
3.2 Algorithm enhancement by dynamic scaling ... 25

3.2.1 QRD with dynamic scaling technique ... 26
3.2.2 Impact of dynamic scaling on algorithm accuracy 26

3.3 Fixed-point word length for QRD-based schemes ... 27
3.4 Fixed-point word length for QRD-based schemes ... 29
3.5 Simulation of MIMO system performance .. 31

4 Hardware Implementations for Fixed-point Square-root MMSE Algorithm 32
4.1 Description of main building blocks .. 32

4.1.1 Qi_Rii Component .. 32
4.1.2 Rij_HjUpd Component ... 35

4.2 The first pipeline scheme ... 36
4.2.1 Architecture description ... 36
4.2.2 Implementation and simulation .. 37

4.3 Time-multiplexed scheme .. 39
4.3.1 Architecture description ... 39
4.3.2 FSM design .. 42
4.3.3 Implementation and simulation .. 43

4.4 The second pipeline scheme .. 43
4.4.1 Architecture description ... 44
4.4.2 Timing discussion .. 46
4.4.3 Implementation and Simulation ... 51

4.5 Comparisons of three architectures .. 52
5 Conclusion and Future Work 54

4

5.1 Conclusion ... 54
5.2 Future work .. 54

References 56

5

CHAPTER 1

1 Introduction

Multiple-input multiple-output (MIMO) is one of the main technologies in 3GPP
Long Term Evolution Advanced (LTE-A). By exploiting spatial resources, MIMO
improves channel capacity and link reliability without additional bandwidth.
 However, comparing to single antenna systems, the computational
complexity is significantly increased in MIMO systems, because of the
sophisticated signal processing required to combat with inter-antenna interference.
Therefore, implementation of MIMO signal processing has gained increasing
attention in both academia and industry.

Application-specific integrated circuit (ASIC) is widely used in wireless
communication system. However, it is designed to perform specific tasks [1]. By
contrast, reconfigurable cell array (RCA) architecture is able to offer high
flexibility by dynamic reconfigurations [2]. Hence, it is a promising platform to
operate in diverse wireless communication scenarios.

This thesis focuses on two linear MIMO detection algorithms squared MMSE
and square-root MMSE, and aims to implement one of them in a specific platform.
Three matrix inversion approaches are introduced to solve the most
computationally demanding part of the squared MMSE algorithm, that is, matrix
inversion. For square-root MMSE, QR Decomposition (QRD) method is
employed to simplify computation.

The contributions of the thesis are mainly in two aspects. First, computational
complexity and accuracy of different MIMO detection schemes are analyzed.
Computational complexity is evaluated based on ASIC and RCA platform
respectively. For accuracy, both floating-point accuracy and fixed-point accuracy
are taken into consideration. Second, on the basis of the comparison results, QRD-
based square-root MMSE is chosen for hardware implementation due to its low
complexity and high accuracy. Three fixed-point architectures are proposed with
different performance in throughput and area consumption, including two pipeline
versions and a time-multiplexed scheme.
1.1 MIMO system
Fig. 1.1 shows the block diagram of a typical MIMO system with N transmit and
M receive antennas.

6

Fig. 1.1 MIMO system model with N transmit and M receive antennas

In such MIMO system, wireless channel model can be expressed by a M×N

matrix H as (1.1) shows,























NMMM

N

N

HHH

HHH

HHH

H

,2,1,

,22,21,2

,12,11,1

...

............

...

...

. (1.1)

For each subcarrier, the M×1 received symbol vector y is given by (1.2)

nHxy  , (1.2)

where x is the N×1 transmitted symbol vector, and n is the M×1 additive white
Gaussian noise vector.

An N×N channel matrix means the MIMO system has the same number of
transmit and receive antennas, for example, 2×2, 4×4 and 8×8 MIMO are
commonly used configurations.

1.2 MIMO detection technology and algorithms
MIMO detector is used to estimate the transmitted symbol vector x from the
received signal vector y, which is the main study subject of this thesis. There are
various MIMO detection methods. Maximum likelihood (ML) detector provides
the optimal performance, however its complexity dramatically increases when
antenna number grows; by contract, linear detectors have low computational
complexity but provide suboptimal performance [3], such as zero forcing (ZF) and
minimum mean square error (MMSE) detectors. This thesis focuses on the linear
MMSE detector which has the reasonable complexity and performance.

encoder
and

 modulator
xN yM

y1

demodulator
and

 decoder

1



x

Nx


channel
and SNR
estimator

…

. …

.

…

.

h11

hMN

x1 hM1

h1N

detector

7

Varieties of algorithms exist to realize the linear MMSE MIMO detection
strategy. Two linear MMSE MIMO detection algorithms are considered in the
thesis, which are squared MMSE and square-root MMSE algorithm.

For squared MMSE, the estimation of transmitted signal is given by (1.3)

yGyHIHHx MMSE
H

N
H  


12)( , (1.3)

where 2 is additive white Gaussian noise power, and IN is the identity matrix of
size N. For this function, matrix inversion is the main problem to solve. There are
various approaches used to deal with matrix inversion, for example, QR
decomposition (QRD) based inversion, analytic or block-wise inversion, and direct
matrix inversion (DMI).

Since matrix inversion is a computational demanding operation, a square-root
MMSE algorithm [4] was proposed which avoids matrix inversion by introducing
a compound matrix. The disadvantage of this method is the increase of matrix
dimension.

1.3 Reconfigurable architecture
Since ASICs have poor hardware reusability, reconfigurable architectures have
been proposed, capable of implementing different algorithms onto the same
platform. Fine-grained reconfigurable architectures, such as Field-programmable
Gate Arrays (FPGAs), are able to provide “full” flexibility because of their bit-
level manipulations. Compared with coarse-grained reconfigurable architectures,
however, their performances are lower in terms of hardware utilization, power
consumption, and configuration time [5]. As a result, although they have reduced
flexibility due to word-level processing, coarse-grained reconfigurable
architectures are increasingly considered in overhead-sensitive wireless
communication systems.

This thesis is based on a kind of coarse-grained architecture, RCA, which
consists of memory cells (MC) for data storage and processing cells (PC) to
execute instruction, and their communication is via local connection and global
network (GN) [2], as illustrated in Fig. 1.2.

Fig. 1.2 An overview of a RCA

PC MC MCPC

PC MC MCPC

PC MC MCPC

PC MC MCPC

GN

8

Specifically, Fig. 1.3 describes the structure of processing cell: several
functional units (FU) are used to perform basic arithmetic operations, such as
addition and multiplication of two complex-valued numbers, and by this way,
several functional units can be used to process complex-valued matrix.

Fig. 1.3 PC composed of a FU array

1.4 Thesis Structure
The rest of the thesis is organized as follows. Chapter 2 analyzes computational
complexity of different linear MMSE MIMO detection algorithms with the
consideration of two different hardware platforms. Chapter 3 discusses the
accuracy of algorithms in floating-point and fixed-point format respectively. How
to realize QRD-based square-root MMSE algorithm on hardware platforms is
given in Chapter 4. In detail, three fixed-point architectures are implemented,
which are two pipeline versions and a time-multiplexed version. Comparisons
among them are summarized in terms of throughput, device usage and processing
speed. Finally, the conclusion of this research and suggestion of future work are
presented in Chapter 5.

9

CHAPTER 2

2 Complexity Analysis of Linear MMSE MIMO
Detection Algorithms

Matrices discussed in this thesis are composed of complex-valued numbers which
require more computation resources than real numbers. Besides, matrix processing
usually has high complexity. Therefore, it is necessary to compute the operation
numbers of various algorithms in order to choose relatively simpler ones. In
addition, hardware platforms also have some significant influence on algorithmic
complexity. Thus, complexity analysis in this chapter will be based on two
potential platforms: ASICs and RCAs.

For squared MMSE algorithm, the complexity analysis is mainly focused on
different possible matrix inversion approaches involved in this algorithm. Three
matrix inversion approaches are evaluated in terms of computational complexity.
The operation amounts of square-root MMSE algorithm are exploited on the basis
of a QRD method. Also, the comparison among the four linear MMSE MIMO
detection schemes is presented on both platforms. This provides a reference for
choosing algorithm and the corresponding hardware platform.

2.1 Complex numbers and complex arithmetic
Complex arithmetic has wide applications in the field of communications, signal
processing, statistics, industry control, etc. Each complex number contains two
real numbers. Hence, a complex-valued operation requires several steps of real-
valued operations. Some examples are shown in (2.1)~(2.3). If z1 = a1 + b1 i and z2

= a2 + b2 i, then

ibbaaibaibazz)()()()(2121221121  , (2.1)

ibababbaaibaibazz)()()()(12212121221121  , (2.2)

2
1

2
111111

*
1))((baibaibazz  . (2.3)

In the following discussion, the complexity of algorithms involving complex-
valued arithmetic is evaluated based on the corresponding real-valued operations,
since it is clear to compare the operation numbers of real-valued arithmetic.

10

2.2 Complexity of matrix inversion approaches in
squared MMSE algorithm

As described in Chapter 1, for squared MMSE MIMO detection, the difficulty is to
solve the inversion of matrix V which is defined in (2.4)

.)(112 yGyHVyHIHHx MMSE
HH

N
H  


 (2.4)

Therefore, in the following discussion, three matrix inversion approaches are
evaluated in terms of complexity on ASICs and RCAs, including analytic or
block-wise inversion, direct matrix inversion (DMI), and QRD-based inversion.

2.2.1 Complexity of a pre-process procedure
In addition to investigating matrix inversion approaches, it is necessary to
calculate the operation numbers of computing matrix V before inverting it. This is
because some matrix inversion methods require the computation of V, while DMI
does not. To fairly compare with DMI, the other two inversion methods have to
count this part of operations into their total complexity.

Define channel matrix H as (2.5)





















NNNN

N

N

hhh

hhh

hhh

H

...

.........

...

...

21

22221

11211

, (2.5)

where N is the antenna number (this thesis focuses on commonly used antenna
setups, which are N=2, 3, 4, 8), and hij is a complex number. Then,




























NNNNNNNNNNNNNNN

NNNNNNNN

NNNNNNNN

H

hhhhhhhhhhhhhh

hhhhhhhhhhhhhh

hhhhhhhhhhhhhh

HH

*
1

*
12

*
12

*
11

*
21

*
211

*
1

*
21

*
122

*
212

*
121

*
221

*
2211

*
12

*
11

*
112

*
112

*
111

*
121

*
2111

*
11

............

......

.........

............











































NNNN

N

N

NNNN

N

N

define

mmm

mmm

mmm

mmm

mmm

mmm

M

...

.........

...

...

...

.........

...

...

21

*
22221

*
1

*
2111

21

22221

11211

 , (2.6)

where M is a Hermitian matrix.
Firstly, consider the complexity of calculating V on ASIC platforms. To attain

every diagonal element mii, there are N multiplications of a complex number and
its conjugate. This leads to a real-valued mii. By contrast, N complex-valued

11

multiplications are involved to compute non-diagonal element mij. Taking
advantage of dedicated hardware design, ASIC approach is able to deal with
computations of diagonal element and non-diagonal element in a different way.
Therefore, the amount of real operations for mii is less than that of mij, derived
from (2.1) ~ (2.3). Since M is a Hermitian matrix, mji can be obtained from a
simple conjugate operation of mij. This property is used to reduce processing
complexity by almost half. The total operation numbers for the calculation of V
using ASIC platforms are listed in Table 2.1.

Table 2.1 Computational complexity of calculating V on ASIC and RCA platforms

 real multiplication real addition conjugate

ASICs

HH 2N

HHM H
diagonal 22N NN 22

non-diagonal 23 22 NN  NNN  23 32
2

2 NN 

IMV 2 N

total 32N NNN  232
2

3 2 NN 

RCAs

HH 2N

HHM H 23 22 NN  NNN  232
2

2 NN 

IMV 2 N

total 23 22 NN  232 NN 
2

3 2 NN 

Secondly, map the calculation of matrix V on RCA platforms. In RCAs, every
element of matrix M is treated in the same way, because FUs are designed for
general purpose usage. The required operation for each element is the same as that
mij in ASICs. Similar to ASICs, only N(N+1)/2 elements needs to be calculated,
given the conjugate property of the Hermitian matrix. The computational
complexity for calculating V on RCA platforms is shown in Table 2.1.

2.2.2 Complexity of analytic and block-wise matrix
inversion approach

The analytic inversion method [6] for an N×N matrix V is described in (2.7)

V

C

V

Vadj
V

T

)(1 , (2.7)

where V is the determinant of matrix V, and adj(V) is the transpose of the matrix

12

of cofactors, known as the adjugate matrix. The element Cij of adjugate matrix can
be obtained by deleting the ith row and jth column of V and then taking the
determinant of the (N-1)×(N-1) matrix times by (-1)(i+j).

Analytic inversion is an efficient method for low-dimension matrices,
because it is easy to compute the determinant and the adjugate matrix for small
matrices. However, for large matrices, this recursive analytic method requires a
huge amount of calculation and an alternative method, block-wise inversion [7], is
better to be adopted.

Block-wise inversion solves matrix inversion by inverting some small sub-
matrices and then doing some multiplications and additions. The matrix inversion
lemma is as follows




























11111

111111111

1

)()(

)()(

BCADCABCAD

BCADBACABCADBAA

DC

BA
V , (2.8)

where A, B, C and D are sub-blocks of arbitrary size, and A and D must be square
matrices [8]. Because it can reduce the amount of operations by partitioning a
large matrix into smaller ones, block-wise inversion can be used to process large
matrices [7].

1. Analytic inversion for small matrices

In this thesis, analytic inversion is used in 2×2 and 3×3 MIMO systems. If V is a
2×2 matrix, then

 









dc

ba
V 













 

ac

bd

bcad
V

11 . (2.9)

Because V is a Hermitian matrix, the denominator is a real number and the
inversion of V is a Hermitian matrix too. The complexity counting is very simple
and the results based on real numbers are listed in Table 2.2.

Table 2.2 Complexity comparison of 2×2 analytic matrix inversion on two platforms

 real multiplication real addition real division conjugate
ASICs 7 3 1 1
RCAs 14 7 1 1

For the 3×3 matrix case, the inversion of V can be obtained using (2.10)









































ifc

heb

gda

egdhcfgidbfheia
ihg

fed

cba

V
)()()(

1

1

1 . (2.10)

Consider the Hermitian property of matrix V,

13




















ifc

feb

cba

bfceccibbaffaei
V *

**

1

)Re(2

1
. (2.11)

Table 2.3 compares the computational complexity of 3×3 matrix analytic
inversion on the two platforms.

Table 2.3 Complexity comparison of 3×3 analytic matrix inversion on two platforms

 real multiplication real addition
double of a real

number
real division conjugate

ASICs 46 30 1 1 3
RCAs 84 64 0 1 3

2. Block-wise inversion for large matrices

For MIMO system with more than 3 receiving/ transmitting antennas, block-wise
inversion is used.

When N is 4, V can be divided into four 2×2 matrices,
























































2222

2222

44434241

*
43333231

*
42

*
322221

*
41

*
31

*
2111

44434241

34333231

24232221

14131211

DC

BA

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

V . (2.12)

According to (2.8), only two 2×2 matrix inversions need to be solved; both
inversions can be easily solved by using the simple 2×2 analytic inversion method
as shown in (2.9). In addition, the conjugate property of the Hermitian matrix
should be considered for simplifying computations on the two platforms. The
operation numbers when using RCA and ASIC platforms are listed in Table 2.4.

Table 2.4 Complexity comparison of 4×4 block-wise matrix inversion on two platforms

 real multiplication real addition real negated real division conjugate
ASICs 134 96 10 2 10
RCAs 172 132 10 2 10

 For N=8, matrix V is divided into four 4×4 matrices

V = 












4444

4444

DC

BA
. (2.13)

The inversion of A and)(1BCAD  can be solved iteratively by using 2×2

14

block-wise inversion method, since they are 4×4 matrices. The operation numbers
for RCA and ASIC platforms are summarized in Table 2.5.

Table 2.5 Complexity comparison of 8×8 block-wise matrix inversion on two platforms

 real multiplication real addition real negated real division conjugate
ASICs 1060 1080 52 4 60
RCAs 1432 1256 52 4 60

2.2.3 Complexity of QRD-based matrix inversion approach
QR decomposition is a special factorization method and plays an important role in
linear equations, least squares and eigenvalue problems [9]. By QR
decomposition, matrix A is factorized by the multiplication of an orthogonal
matrix Q and an upper triangular matrix R, expressed as

RQA  . (2.14)

Hence, the inversion of matrix A can be solved by (2.15),
HQRA   11 . (2.15)

In this section, the QRD-based squared MIMO detection formulation is
derived after explaining a QRD algorithm. Then the complexity of this QRD-
based inversion method is calculated.

1. Introduction of QRD

There are several algorithms to realize QR decomposition, and this thesis adopted
Gram-Schmidt orthogonalization. Its main procedure is to sequentially
orthogonalize the columns of A. However, the classic Gram-Schmidt (CGS)
process may lead to numerical instability due to round off errors [10]. As a result,
the modified Gram-Schmidt method was proposed as Algorithm 1 describes [10],

Algorithm 1: Modified Gram-Schmidt algorithm

where <Qi, Aj> is the inner-product of column vectors Aj and Qi, iA is the norm

for i=1 to N
 iii AR 

 iiii RAQ 

 for j=i+1 to N
  jiij AQR ,

iijij QRP 

 ijjj PAA 

 end for
 end for

15

of Ai, and A is an N×N matrix; Rij denotes the ith row and jth column element of
matrix R.

This algorithm involves a nested loop: the outer loop is to obtain normalized
vectors Q1, Q2... Qi; and the inner loop is to project Aj orthogonally onto the line
spanned by Qi and then update Aj by subtracting the projection from Aj.

2. QRD-based matrix inversion for squared MMSE MIMO detection

For squared MMSE MIMO detection formula given by (2.4), define A as V. Based
on the aforementioned QR decomposition scheme, the estimated value of
transmitted signal can be solved by the following QR decomposition steps

,)()(111211 H
N

H QRQRIHHVA   

,)(1112 HHHH
N

H
MMSE HQRHAHIHHG    (2.16)

.1 yHQRyGx HH
MMSE






The inversion of the upper triangular matrix R can be computed by the algorithm
shown in Algorithm 2 [11].

Algorithm 2: Inversion of an upper triangular matrix R

3. Complexity of QRD-based matrix inversion

This QDR-based inversion method can be divided into three parts: QR
decomposition, inversion of an upper triangular matrix R, and matrix
multiplication between R’s inversion and QH.

The main computational complexity of this scheme comes from QR
decomposition. As shown in Algorithm 1, MGS is an iterative algorithm. The
outer loop is repeated for N times. The iteration number of inner loop depends on
the outer loop. Specifically,

(1) for j=1 to N
(2) for i=N downto 1

(3) if i>j
 (4) wij=0

(5) elseif i=j
(6) wij=1/Rij
(7) else

(8)
jj

j

m
mjimij RRww 






1

1

 (9) end if
(10) end for
(11) end for

16

(1) After Q1 is calculated, Aj (j=2,3...N) are processed to get corresponding
R1j, orthogonal projection P1j and then update themselves. The updated sequence
is denoted as Aj_upd_1st throughout the following discussion.

(2) Similarly, when Q2 is computed, Aj_upd_1st (j=3,4...N) need to be dealt
with for obtaining R2j , P2j and to be updated. The updated sequence in this step is
denoted as Aj_upd_2nd.

(3) The same principle is applicable to Qi (i=3, 4…N-1).
Thus, the inner loop need to be executed N(N-1)/2 times. To invert an N×N

matrix involved in squared MMSE algorithm, the complexity of QR
decomposition on RCAs and ASICs are summarized in Table 2.6.

Considering the other two parts of this inversion scheme. Because R is an
upper triangular matrix, its inversion matrix W is an upper triangular matrix too.
This characteristic simplifies the inversion of R, and it is also utilized when
analyzing the complexity of matrix multiplication WQH. Besides, the inversion of
A is a Hermitian matrix, therefore, its conjugate property can further simplify the
computation process on the two platforms.

The total complexity of QRD-based matrix inversion scheme is summarized
in Table 2.6.

Table 2.6 Computational complexity of QRD-based matrix inversion on two platforms

 real multiplication real addition
square

root
real

reciprocal

ASICs

QRA  464 3  NN 684 23  NNN N N

1 RW
3

22 3 NN 
3

3762 23  NNN

HWQA 1
3

32 23 NNN 
6

34 23 NNN 

total
3

1219316 23  NNN

6

30351532 23  NNN
N N

RCAs

QRA  34N NNN  234 N N

1 RW
3

532 23 NNN 
3

3432 23  NNN

HWQA 1
3

462 23 NNN 
6

594 23 NNN 

total
3

916 23 NNN 
6

67332 23  NNN N N

2.2.4 Complexity of direct matrix inversion approach

DMI is developed from the updating procedure of the gain in Kalman filters [12].
Starting from (2.17)

I
N

P
2

)0(1


 , (2.17)

17

the next N iterative operations are processed as

)
1

(
)1(

)1(
)1()(

H
j

j
j

j
j

H
jjj

HPH

PHH
IPP 





 , (2.18)

where j is the iteration number, and the result P(N) is the inversion of matrix V.
This procedure can be divided into eight steps with the operation numbers

listed in Table 2.7 for RCA and ASIC platforms.

Table 2.7 Computational complexity of DMI for an NN  matrix on two platforms

 real multiplication real addition real division

ASICs

)1()1( j
j PHx NN 24 2  NN 24 2 

H
jHxy )2(N2 13 N

yz 1)3(1
Hxu )4(N

xxxuv H)5(22N 2N

zq 1)6( 1

vqw )7(2N

wPP jj )()()8(
2

3 2 NN 

subtotal
(each iteration)

27N
2

313 2 NN  1

total
(N iterations)

37N
2

313 23 NN  N

RCAs

)1()1( j
j PHx 24N NN 24 2 

H
jHxy )2(N2 13 N

yz 1)3(1
Hxu )4(N

xxxuv H)5(NN 22 2  NN 2

zq 1)6( 1

vqw )7(NN 2

wPP jj )()()8(
2

3 2 NN 

subtotal
 (each iteration) NN 57 2 

2

713 2 NN  1

total
(N iterations)

23 57 NN 
2

713 23 NN  N

18

2.2.5 Complexity evaluation on different matrix inversion
approaches

Table 2.8 summarizes the computational complexity of three matrix inversion
approaches when antenna number N is 2, 3, 4, and 8 on both RCA and ASIC
platforms. Note that conjugate operation and real-valued negation are all counted
as real-valued addition. Operation numbers for computing matrix V are counted
for analytic/block-wise inversion and QRD-based inversion, since the DMI
scheme is able to obtain it inversion without computing V (see (2.17) and (2.18) in
section 2.2.4).

Table 2.8 Computational complexity comparison of different matrix inversion approaches

approach
platform RCA ASIC

antenna number N=2 N=3 N=4 N=8 N=2 N=3 N=4 N=8

analytic/
 block-wise

real
multiplication

38 156 332 2584 23 101 262 2084

real addition 33 142 318 2548 23 93 254 2252

division (1/real) 1 1 2 4 1 1 2 4

DMI

real
multiplication

76 234 528 3904 56 189 448 3584

real addition 66 207 472 3552 50 171 408 3296

division (1/real) 2 3 4 8 2 3 4 8

QRD-based

real
multiplication

78 242 548 4072 54 192 464 3772

real addition 67 217 503 3887 43 167 419 3587

division (1/real) 2 3 4 8 2 3 4 8

square root 2 3 4 8 2 3 4 8

From Table 2.8, two points can be observed.
Firstly, consider the complexity in terms of different inversion approaches.

Fig. 2.1 shows the amount of additions and multiplications required in each
inversion approach. Note that division numbers are ignored, since they are too
small to be presented in the same figures.

For RCA platforms as Fig. 2.1(a) illustrates, the analytic or block-wise
scheme is the least computational demanding way of calculating the inversion of V
regardless of the number of antennas. Its operation numbers of multiplication,
addition and division are all around half of the QRD-based inversion and about
65% of the DMI method. Although DMI and QRD-based inversion require almost
the same amount of operations, the latter involves square root operation and is thus
more complicated to compute. This conclusion also applies to ASIC platforms as
seen from Fig 2.1(b).

19

Secondly, let's think about the impact of hardware platform on computational
complexity. For a given antenna number, division operations are the same for
every inversion approach regardless of the hardware platform. Besides, the
number of square root operations required in the QRD-based inversion is the same
for both platforms. The multiplication and addition numbers of each approach are
less when using ASICs than those using RCAs. Although the operation amounts
on both platforms increase when antenna number grows, the gap between different
platforms decreases. For example, for each approach, multiplication and addition
numbers on ASICs are between about 60% and 76% of those on RCAs when N =
2, while this ratio increases to up to 92% when N = 8.

2.3 Square-root MMSE MIMO detection based on QR
Decomposition

For MMSE MIMO detection formula in (2.4), define transmitted signal x and
received signal y by extending x and y with a null vector respectively, and an
augmented channel matrix H by extending H with a noise covariance matrix, i.e.,

NNNI

H
H


 










2


 ,
1210
 










NN

x
x ,

1210












NN

y
y . (2.19)

Correspondingly, the MIMO detection formula can be rewritten as

,2


 HHIHHA HH 

Fig. 2.1 Complexity comparison of matrix inversion approaches on RCAs and ASICs
(multiplication: solid lines, addition: dashed lines)

20

MMSE
HH

MMSE xyHyHHHx













 1

'

)(, (2.20)

where H+ is a pseudo inversion of matrix H. Because pseudo inversion is
computationally demanding, QR decomposition can be used to achieve a relatively
simple method as (2.21)~(2.23) describe [5].






































NI

H
RQ

RQ
R

Q

Q
RQH

2

1

2

1




  2
1

2

1

QRIRQ

HRQ

N 









 (2.21)

yQQ
y

Q
Q

yQRyRQyHx H

NN
MMSE 12

121

21
' 1

0
)(




































 (2.22)

 H
MMSE QQG 12
' 1


 (2.23)

Here Q1 and Q2 are N×N matrices, and Q2 is an upper triangular matrix with real-
valued diagonal elements. It can be seen from (2.21) that the inversion of matrix R
can be directly given by the result of QR decomposition. By doing this,
computationally demanding matrix inversion is avoided. Hence, square-root
MMSE scheme can be achieved by a QRD procedure for 2N×N matrix H followed
by multiplication of two N×N matrices and a real reciprocal.

Except different matrix size, this complexity analysis process is the same as
that of QRD-based squared MMSE method (see section 2.2.3). The complexity
results are given in Table 2.9 where N is the antenna number.

Table 2.9 Computational complexity of QRD based square-root MMSE on two platforms

real

multiplication
real addition

square
root

real
reciprocal

ASICs


 RQH

3

5316 23 NNN 
3

341525 23  NNN N N

H
MMSE QQG 12
' 1


 232 NN  23 22 NN  1

total
3

522 3 NN 
3

342131 23  NNN N N+1

RCAs


 RQH

38N NNN 28 23  N N

H
MMSE QQG 12
' 1


 NNN  23 32 NN 32 1

total NNN  23 310 NNN  2310 N N+1

21

2.4 Complexity of different linear MMSE MIMO
detection schemes

To choose suitable algorithms for hardware implementation, the complexity of
different MIMO detection schemes needs to be compared for RCA and ASIC
platforms, respectively. The comparison is performed between QRD-based square-
root MMSE scheme and three squared MMSE MIMO detection schemes using
different matrix inversion approaches.

2.4.1 System requirement for matrix R
Linear MMSE MIMO detectors aim to obtain matrix GMMSE so that the transmitted
symbols can be estimated by multiplying the received symbols with GMMSE.
However, numerous processing procedures following MIMO detection require
matrix R given by QR decomposition. For example, it can be used to calculate
squared Euclidean distance (ED) during symbol detection. The complexity
involved by ED calculation can be reduced by half because of the property of the
upper triangular matrix R [13]. Therefore, the complexity of solving both GMMSE
and R should be counted in order to figure out suitable solutions for hardware
implementation. Considering that squared MMSE algorithm based on block-wise
or DMI inversion method can not provide R, additional QR decomposition is
needed for these two squared MMSE schemes after computing GMMSE. In addition,
for three squared MMSE schemes, the operation amounts for computing V-1HH

need to be counted.

2.4.2 Complexity evaluation on linear MMSE MIMO
detection schemes

Table 2.10 gives the total operation numbers of the four schemes on RCA and
ASIC platforms, including three squared MMSE schemes with DMI, block-wise
and QRD-based matrix inversion method, and one square-root MMSE scheme on
the basis of QRD.

22

Table 2.10 Complexity comparison of MIMO detection schemes on two platforms

scheme
platform RCA ASIC

antenna number N=2 N=3 N=4 N=8 N=2 N=3 N=4 N=8

squared
MMSE

with analytic/
block-wise
inversion

real
multiplication

102 372 844 6680 71 285 726 6008

real addition 83 328 778 6444 55 244 658 5968

division (1/real) 3 4 6 12 3 4 6 12

square root 2 3 4 8 2 3 4 8

with DMI
inversion

real
multiplication

132 414 944 7104 96 337 812 6612

real addition 117 378 874 6708 85 310 758 6280

division (1/real) 4 6 8 16 4 6 8 16

square root 2 3 4 8 2 3 4 8

with QRD-
based

inversion

real
multiplication

110 350 804 6120 86 300 720 5820

real addition 91 307 727 5807 67 257 643 5507

division (1/real) 2 3 4 8 2 3 4 8

square root 2 3 4 8 2 3 4 8

square-root MMSE
(QRD-based)

real
multiplication

94 300 692 5320 62 203 476 3768

real addition 74 258 620 5048 41 159 401 3489

division (1/real) 3 4 5 9 3 4 5 9

square root 2 3 4 8 2 3 4 8

 First, an important observation comes from the comparison among different
schemes. In terms of addition and multiplication, QRD-based square-root MMSE
is the least expensive scheme in terms of computational complexity for given
antenna numbers. This is followed by QRD-based squared MMSE and then block-
wise squared MMSE. See Fig. 2.2. DMI is the most computationally intensive
method, because QR decomposition for solving R contributes a large amount of
additional workload.

23

Second, Fig. 2.3 shows the operation ratio of the two platforms in terms of
multiplication and addition.

It can be seen that all the ratios are less than 1. This means mapping on

ASICs still leads to lower complexity than that on RCAs, since FUs in RCA
platforms are developed to map several operations while ASICs are designed to
process each specific operation. Similar to the analysis of matrix inversion
approaches, the computational complexity of all MIMO detection schemes

Fig. 2.2 Complexity comparison of MMSE MIMO detection schemes on two platforms
(multiplication: solid lines, addition: dashed lines)

Fig. 2.3 Complexity ratio of MMSE MIMO detection schemes on two platforms

24

increases with antenna numbers for both platforms. However, the differences in
complex between two platforms reduce when antenna number increases. It is
worth mentioning that the operation ratios dramatically increase by about 0.2 for
three squared MMSE schemes when antenna number changes from 2 to 8, while
only increase by 0.05 for multiplication and less than 0.15 for addition considering
square-root MMSE. This means the advantage of ASICs is more obvious than
RCAs to map QRD-base square-root MMSE scheme that is the least
computationally demanding scheme. Nevertheless, RCAs have some strength over
ASICs. For example, when it is required to deal with different antenna numbers,
RCA platform can be configured dynamically to fulfill system requirement. Also,
RCAs can be used to map various functions in a time-multiplexing manner. For
example, a MMSE estimation algorithm is first mapped on a RCA platform for
channel estimation, and after that, its hardware resources are reallocated to
perform linear MMSE MIMO detection [2].

To summarize, two QRD-based schemes are the least computationally
demanding linear MMSE MIMO detection solutions for the two hardware
platforms. Furthermore, the influence of hardware platform on algorithmic
complexity decreases as antenna number increases. In addition, ASICs are more
suitable to map QRD-base square-root MMSE scheme than RCAs.

25

CHAPTER 3

3 Accuracy Comparisons of Linear MMSE MIMO
Detection Algorithms

Algorithmic accuracy is another significant factor to be considered in additional to
the computational complexity discussed in the previous chapter.

In this chapter, the mean squared error (MSE) of GMMSE is used to measure
algorithmic accuracy, as defined in (3.1)

2

1

)(
1

ii

N

i

GG
N

MSE 



 , (3.1)

where iG


 is the result of matrix GMMSE calculated using different MIMO detection
schemes, Gi is the result of GMMSE obtained from floating-point computations using
Matlab inversion function, and N is the total number of GMMSE computations,
which is equal to the multiplication of frequency subcarriers number and
simulation iteration number. To clearly compare MSEs of various schemes in one
figure, only the magnitude of the result is used.

By comparing the mean squared errors (MSEs) of different schemes
introduced in Chapter 2, the scheme with the minimum MSE will be considered
for hardware implementation. Note that both floating-point and fixed-point
accuracy are considered in this chapter.

3.1 Environment setup
This chapter employs an N×N MIMO system (N= 4 or 8) and simulates using an
802.11n setup. Assume that channel model is 3GPP_EVA_70, frequency
subcarrier number is 512 and carrier frequency spacing is 15kHz. Channel coding
rate is 1/2 and BCJR algorithm with 6 internal iterations is used for decoding;
modulation adopts 64-QAM. The number of simulation iteration is set to be 3000.

3.2 Algorithm enhancement by dynamic scaling
According to the comparison result in Chapter 2, two QRD-based MMSE schemes
require the least operation amounts, which are the potential solutions for
implementation. However, division and square root are two computationally
complex operations involved in QR decomposition, thus how to simplify them is
an important problem during hardware design. One solution is to limit input data
range by employing dynamic scaling technique.

26

3.2.1 QRD with dynamic scaling technique
QRD with dynamic scaling technique is shown in Algorithm 3 in which line
(2)~(8) are the corresponding dynamic scaling steps [4].

Algorithm 3: QRD with dynamic scaling

Scaling factor for column norm’s square is computed in line (3). In
hardware, this factor means a multiple of 2 for shifting operations. Line (4) is used
to scale input value of square root operation into the range from 0.25 to 1.
Consequently, the square-root result in line (5) is limited to the range of 0.5 and 1.
Correspondingly, the divisor in line (6) does not exceed the desired range that is
from 0.5 to 1. Diagonal R elements and column Q are restored by exploiting line
(7) and (8), that is to say, the scaling impact on QRD result is eliminated.

3.2.2 Impact of dynamic scaling on algorithm accuracy
Table 3.1 summarizes MSEs of four scenarios for QRD-based squared MMSE and
square-root MMSE with / without using dynamic scaling technique for a 4×4
MIMO system. All results are obtained by using floating-point computations.

Table 3.1 MSE comparison in terms of dynamic scaling

 squared MMSE
based on QRD

square-root MMSE
based on QRD

without dynamic scaling 1.333459e-025 1.130604e-029
with dynamic scaling 1.608063e-025 1.126297e-029

(1) for i=1 to N

(2) 2
)(iAix 

(3))2/))(((log2 ixceil % Scaling factor

(4))2(2)(_  ixinu

(5))_(inusqrtu  %)(2))(()_( ixsqrtinusqrtu

(6) ud /1 %))(2))((/(1/1  ixsqrtud

(7)  2uRii % iii AixsqrtuR  ))((2 

(8) ii AdQ  )(2  % iiii AAAdQ /)(2   

(9) for j=i+1 to N
(10)  jiij AQR ,

(11) iijij QRP 

(12) ijjj PAA 

(13) end for

(14) end for

27

From Table 3.1, it can be seen that dynamic scaling does not bring obvious
effects on MSE for the two QRD-based linear MMSE MIMO detection schemes.
Hence, dynamic scaling technique can be adopted to save hardware resources.

3.3 Fixed-point word length for QRD-based schemes
This thesis aims to implement a MIMO detection algorithm in 16 bits fixed-point
platform. Therefore, besides floating-point accuracy, it has to include the accuracy
comparison of two QRD-based schemes with fixed-point format.

To evaluate fixed-point accuracy of the two algorithms, the first step is to
find the maximum and minimum value of every intermediate variable and final
result so that their fixed-point representation can be determined.

Table 3.2 list recorded data distributions and representation formats of some
key variables for the two schemes with dynamic scaling. Q and R are the QRD
results given by Algorithm 3 (QRD algorithm with dynamic scaling). Squared
norm, scaling factor, u_in, and u are variables related to dynamic scaling in line
(2) ~ (6) of Algorithm 3, projection means the orthogonal projection Pij in line
(11), and internal Q is the updated vector Aj in line (12). x is an intermediate
variable in line (8) of Algorithm 2 (inversion algorithm for upper triangular
matrix) required in squared MMSE method only.

For columns of fixed-point format in the tables: totally 16 bits are used to
represent every variable; the part before decimal point indicates bit number
allocated to both sign bit and integer part, while part after decimal point indicates
bit number for fraction part. The corresponding MSEs based on these fixed-point
format computations will be presented in section 3.4.

It can be seen from Table 3.2 that, the representation format of most variables
are the same for both schemes when comparing a 4×4 MIMO system with an 8×8
system. For squared MMSE scheme, only four variables have different formats,
for example x and  . Their bit numbers for fraction parts or bit number for
integer are less when N=4. This may lead to a lower accuracy for a 4×4 MIMO
system compared with an 8×8 system, because some numbers are too small to be
represented with limited fraction bits. For square-root MMSE, majority of
variables have the same fixed-point representation format except .

On the other hand, two schemes can be compared considering the same
antenna number. For those variables that both schemes employ, the majority of
them have smaller value range when using square-root MMSE so that more bits
are allocated for their fraction part. For example, for variable projection, 12 bits
are assigned to fraction part using squared MMSE when N=4 or 8, whereas 2 more
bits are assigned to its fraction part (signed 2.14 format) when using square-root
MMSE. This may result in higher accuracy for square-root MMSE than for
squared MMSE.

28

Table 3.2 Key data ranges and fix-point formats of two QRD-based schemes

scheme variable N=4 N=8
data range format data range format

Squared
MMSE

Q
min -0.979572

signed 1.15
min -0.904264

signed 1.15
max 0.998216 max 0.984754

R
min -5.68403

signed 4.12
min -6.47751

signed 4.12
max 5.90923 max 7.84291

internal Q
min -2.79354

signed 4.12
min -3.48027

signed 4.12
max 4.57374 max 6.56899

projection
min -3.51224

signed 4.12
min -4.06102

signed 4.12
max 4.23233 max 4.73996

2
iA min 1.22e-05

unsigned 6.10
min 5.3145e-05

unsigned 6.10
max 34.919 max 61.5113

 min -8 signed integer
5 bits

min -7 signed integer
4 bits max 3 max 3

u_in
min 0.25

unsigned 1.15
min 0.25

unsigned 1.15
max 1 max 1

u
min 0.5

unsigned 1.15
min 0.5

unsigned 1.15
max 1 max 1

x
min -561.826

signed 11.05
min -265.576

signed 10.06
max 528.77 max 195.114

GMMSE
min -7.60842

signed 4.12
min -3.97635

signed 4.12
max 7.41672 max 4.65013

square
root

MMSE

Q
min -0.987303

signed 1.15
min -0.931782

signed 1.15
max 0.99083 max 0.916176

R
min -1.69019

signed 3.13
min -1.69498

signed 3.13
max 2.20791 max 2.48328

internal Q
min -1.4064

signed 2.14
min -1.31563

signed 2.14
max 1.33951 max 1.35066

projection
min -1.26241

signed 2.14
min -1.06896

signed 2.14
max 1.26895 max 1.05804

2
iA min 3.65e-03

unsigned 3.13
min 8.708e-03

unsigned 3.13
max 4.87486 max 6.16668

 min -4 signed integer
4 bits

min -3 signed integer
3 bits max 2 max 2

u_in
min 0.25

unsigned 1.15
min 0.25

unsigned 1.15
max 1 max 1

u
min 0.5

unsigned 1.15
min 0.5

unsigned 1.15
max 1 max 1

GMMSE
min -7.60842

signed 4.12
min -4.18985

signed 4.12
max 7.41672 max 4.18585

29

However, it is worth noting that when validating fixed-point representation
format, some variables of squared MMSE scheme overflow. By contrast, this does
not happen with square-root MMSE method. In the following, reasons of the
overflow problem and the proposed solution are discussed.

First, the bits assigned to fraction parts of squared norm are not enough and
its accuracy can not be guaranteed. This leads to some errors in the following
computation steps. In some cases, its value is too small to be represented correctly
using assigned bit numbers, which consequently results in wrong scaling factor .
After shifting wrong bits, the inputs of square root and division will have wrong
results. Hence, subsequent variables may not be represented by the assigned bits
and overflow happens.

Second, the process used to invert upper triangular matrix R introduces errors
when using fix-point format. Data ranges are quite large for some intermediate
variables in this algorithm, such as x in Table 3.2. This is also true for the matrix
inversion result. This means that some small values will be represented with errors
due to the limited precision. Moreover, this is an iterative algorithm and errors will
be accumulated. In addition, if R cannot be denoted with high accuracy, errors will
be propagated to the following computations. To sum up, overflow may happen
for intermediate variables involved in this matrix inversion approach, and this may
result in overflow in squared MMSE scheme.

Third, overflow occurs most frequently for the last column of matrix Q. This
reveals that error is accumulated as QRD proceeds. Thus, some intermediate
variables such as projection and internal Q need to use more bits.

To avoid overflow for squared MMSE scheme, bit numbers for fraction part
of some variables should be increased, such as squared norm, elements of matrix
R, and some intermediate variables used for upper triangular matrix inversion and
QR decomposition. Table 3.3 lists representation formats which eliminates
overflows for 4×4 systems. y and q are two intermediate variables used in
Algorithm 2.

Table 3.3 Adjusted representation formats and MSE for squared MMSE method

 2
iA R internal Q projection x y q

total bits 27 22 22 22 22 22 22

format
unsigned

6.21
signed
4.18

signed
4.18

signed
4.18

signed
11.11

signed
11.11

signed
12.10

3.4 Fixed-point word length for QRD-based schemes
In this part, MSEs of all four schemes are calculated in floating-point format.
Additionally, two QRD-based schemes with the dynamic scaling technique are
studied in fixed-point format. Table 3.4 shows all the results considering 4×4 and
8×8 MIMO systems.

30

Table 3.4 MSEs of different schemes in floating-point/ fixed-point format

scheme representation format N=4 N=8

squared
MMSE

block-wise
inversion

floating point 2.041885e-29 4.22965e-30

DMI floating point 3.220027e-28 3.22176e-29

QRD-based
inversion

floating point
(without dynamic scaling)

1.333459e-25 1.1204e-26

floating point
(with dynamic scaling)

1.608063e-25 1.29745e-26

16-bit fixed point without overflow
(with dynamic scaling)

1.271787e-02 2.83619e-03

square-root MMSE
(QRD-based)

floating point
(without dynamic scaling)

1.130604e-29 2.5093e-30

floating point
(with dynamic scaling)

1.126297e-29 2.56651e-30

16-bit fixed point
(with dynamic scaling)

1.216228e-05 5.82651e-06

For floating-point computations, two facts are observed. First, no matter how

many antennas a communication system has, QRD-based square-root MMSE
provides the highest computation accuracy for MIMO detection. Block-wise
squared MMSE is the second best solution with doubled MSE. The MSE of DMI
squared MMSE is about ten times higher than that of the block-wise based
approach. The worst situation occurs when using QRD-based squared MMSE
scheme given that the MSE is 4 orders of magnitude bigger than that of the best
solution. Second, based on the comparison between different antenna numbers, the
MSE for the scenario of N=4 is about nine times bigger than that of N=8 for each
scheme. One possible reason for this experimental result may come from the
reference value of GMMSE given by MATLAB function, since the MSEs in this
thesis are the mean square error between the result of each scheme and the
reference calculated by MATLAB.

Considering the fixed-point format of two QRD-based MMSE schemes, the
following conclusion is drawn. For N×N systems, the squared MMSE approach
needs more bits than the square-root MMSE scheme, while still showing a lower
computational accuracy. Additionally, the squared MMSE method requires more
computation steps than the square-root MMSE approach, including the
computation of matrix V and R’s inversion. This may result in more computation
errors and thus the lower MSE value.

31

3.5 Simulation of MIMO system performance
Combining the complexity discussion in chapter 2 and the accuracy comparison in
this chapter, QRD-based square-root MMSE scheme shows the least computation
complexity among four different schemes and higher accuracy in comparison to
QRD-based squared MMSE scheme in fixed-point computation. Therefore, QRD-
based square-root MMSE scheme is adopted in this work for hardware
implementation.

Before implementation, system simulation is performed to assess the
performance of the whole MIMO system when employing the adopted detection
scheme. In this work, frame error rate (FER) is adopted. Simulation results are
shown in Fig. 3.1.

Fig. 3.1 Simulation of system performance

From Fig. 3.1, it can be seen that system performance when using 16-bit
fixed-point format is almost the same as those using 18-bit fixed point format.
Moreover, floating-point format does not show apparent advantage over two fixed-
point formats until SNR goes above 22dB. Therefore, 16-bit fixed-point format is
used to implement the adopted QRD-based square-root MMSE scheme.

32

CHAPTER 4

4 Hardware Implementations for Fixed-point
Square-root MMSE Algorithm
In this chapter, three architectures of QRD-based square-root MMSE MIMO
detection algorithm are developed for 4×4 MIMO systems using standard digital
cell libraries and are verified using an FPGA platform. The three architectures
include two pipeline versions and a time-multiplexed scheme. Performance of
these three implementations with respect to throughput, speed and resource
utilization, are summarized.

4.1 Description of main building blocks
According to the QRD-based square-root MMSE scheme described in Chapter 2,
an augmented channel matrix H is constructed to calculate GMMSE by extending
matrix H. In this chapter AugH is used to denote the matrix of augmented H.
Recall that the modified Gram-Schmidt QRD (Algorithm 1) is an iterative
algorithm and consists of two processes: a) the outer loop is used to obtain norm
(Rii) and normalization vector (Qi) of AugHi; b) the inner loop is to update columns
AugH j (j=i+1 to N) by first calculating inner-product (Rij) of vector AugHj and Qi,
and then updating AugH j. Thus, two components are designed. One is used to
receive column vector AugHi and produce the corresponding Rii and Qi, called
Qi_Rii Component (Qi_Rii C). The other is to calculate Rij and update augmented
AugHj, called Rij_HjUpd Component (Rij_HjUpd C). In the following, the two
blocks are described in details and their device utilization after place and route
(PNR) are shown.

4.1.1 Qi_Rii Component
The block diagram of Qi_Rii Component is shown in Fig. 4.1 with five sub-blocks
and two delay elements.

1. Norm_alfa module

This module is developed to calculate scaling factor and the scaled norm-square
for vector AugHi using dynamic scaling technique.

The non-scaled norm-square is calculated by multiplications of vector
elements and additions of multiplication results. Note that fixed-point
implementation requires adjustments of operation’s results according to the word
length given in Table 3.2, and the word length adjustments are performed
throughout the entire hardware design.

33

Next, the norm-square for vector AugHi is scaled to the range between 0.25

and 1, denoted as u_in. Scaling factor  is found based on squared norm. It is the
bit location where the first ‘1’ appears in binary squared norm. Then, scaling can
be done by shifting the squared norm to the right 2 bits according to line (4) in
Algorithm 3. After that, result adjustment has to be done because u_in has
different fixed-point format with the scaled norm-square. The latter is represented
by unsigned 3.13 format, whereas u_in is by unsigned 1.15. This means, the result
should be further shifted two bits to the left to get the correct representation of
u_in. The relationship between and shift operation is shown in Table 4.1.

Table 4.1 Shift operation to scale norm-square

2. Square-root module

This module receives scaled norm-square named u_in in Fig. 4.1 and send out the
vector norm u. Xilinx IP Core Generator is used to implement this module. Since
square root is a compute-intensive operation and this module is part of critical path
of the entire system, its performance is a bottleneck of system’s frequency. As

 shift direction shifting bit

-4 left 10
-3 left 8
-2 left 6
-1 left 4
0 left 2
1 No shift 0
2 right 2

Fig. 4.1 Block diagram of Qi Rii Component

rst

clk

ce

Qi(-33)

d(-33)
u(0)

divider
(33cc)

Qi_calculator

Rii_calculator
Rii(0)

delay element
(33cc)

delay element
(33cc)

alfa(-33)

AugHi(-33)

alfa(0)

u_in(0)
AugHi

norm_alfa
module

square-root
module

34

synthesis report shows, the minimum period of square-root module is
28.913ns including 33.3% logic and 66.7% route; and the device usage of this
block after PNR is shown in Table 4.2.

Table 4.2 Resource utilization of square-root module

3. Rii_calcultor

It is designed to eliminate the impact of the dynamic scaling on Rii. According to
line (7) in Algorithm 3, R can be restored by shifting u to the right  positions.
However, similar to the scaling of norm-square, u should be shifted to the right 2
more bits due to different fixed-point formats of R and u. The shifting operation is
concluded in Table 4.3.

Table 4.3 Shift operation to restore Rii

4. Divider

The divider is used to compute the reciprocal of a vector norm and is implemented
by Xilinx IP Core Generator. Unsigned operation is selected, since norm is a
positive real number. Regarding the word-length, the fractional is set to be 29 bits
according to Table 3.2. The adopted divider is fully pipelined, resulting in a
throughput of 1 division per clock cycle. Note that the latency of the generated
divider is decided by

Latency= quotient’s word length + fractional’s word length +2. (4.1)

In this work, quotient and dividend have the same wordlength and the latency
is 33 clock cycles (cc). Divider’s maximum frequency is 515.464MHz as synthesis
report shows. Table 4.4 summarizes PNR results of the adopted divider.

slice logic utilization used
number of slice registers 0
number of slice LUTs 248
number of occupied slices 78
number of LUT flip flop pairs used 248
number of OLOGICE1/OSERDESE1s 14

 shifting direction shifting bit

-4 right 6
-3 right 5
-2 right 4
-1 right 3
0 right 2
1 right 1
2 No shift 0

35

Table 4.4 Divider’s device utilization

5. Qi_calculator

In this module, AugHi is multiplied with the reciprocal of its norm. 16-bit Qi is
obtained by truncating the 32-bit multiplication result in accordance to  , see
Table 4.5.

Table 4.5 Truncating operation to restore Qi

 MSB LSB

-4 24 9
-3 25 10
-2 26 11
-1 27 12
0 28 13
1 29 14
2 30 15

6. Two 33cc delay elements
Because the divisor has a 33 cc latency, the corresponding AugHi and need to be
delayed for 33cc to produce correct Qi. Thus, one delay element is inserted on the
AugHi to Qi_calculator path and the other on the  to Qi_calculator path.

Because of the involved divider and multipliers, Qi_Rii Component consumes
a large amount of hardware resources, see Table 4.6.

 Table 4.6 Device utilization comparison of Qi_Rii Component

4.1.2 Rij_HjUpd Component
Fig. 4.2 shows the block diagram of Rij_HjUpd Component.

slice logic utilization used
number of slice registers 1145

number of slice LUTs 620
number of occupied slices 290

number of LUT flip flop pairs used 895

slice logic utilization Qi_Rii Component
number of slice registers 1695
number of slice LUTs 2033
number of occupied slices 785
number of LUT flip flop pairs used 2306
DSP48E1s 32

36

Processing units (PUs) are used to calculate Rij and the projection of AugHj

on Qi. A PU is developed for multiplication of two 16-bit complex-valued
numbers. In each PU, there are four 16-bit real-valued multipliers and two 32-bits
real-valued adders/ subtracters.

Table 4.7 lists the hardware consumption of this component. It can be clear
seen that the hardware consumption of this component is about 9 times less than
that of Qi_Rii Component. To reduce hardware cost, the number of the Qi_Rii
Components adopted in system architecture should be as small as possible.

Table 4.7 Device utilization comparison of Rij_HjUp Component

4.2 The first pipeline scheme

4.2.1 Architecture description
The first pipeline architecture is shown in Fig. 4.3, stage one is a matrix extending
module (matr_exd) which is designed to build augmented matrix AugH from input
channel matrix H.

slice logic utilization Rij_HjUpd Component
number of slice registers 116
number of slice LUTs 196
number of occupied slices 52
number of LUT flip flop pairs used 196
DSP48E1s 32

Fig. 4.2 Block diagram of Rij HjUpd Component

+

PU

Qi’[1] Hj[1]

PU

Qi’[6] Hj[6]

PU

Qi’[7] Hj[7]

PU

Qi’[0] Hj[0]

Rij

…

Rij calculator

AugHj[0] AugHj[1] AugHj[6] AugHj[7]

PU

Qi[1]

Proj[1]Hj[1]

—

AugHj_upd[1]

Hj updater

… Proj[0] Hj[0]

—

AugHj_upd[0] …

PU

Qi[0]

PU

Qi[6]

PU

Qi[7]

Proj[7] Hj[7]

—

Proj[6]Hj[6]

—

AugHj_upd[6] AugHj_upd [7]

37

The following four stages are used to implement QR decomposition with

each stage processing one column. First, in stage two, one Qi_Rii Component is
employed to calculate Q1 and three Rij_HjUpd Components are used to calculate
R1j and update AugHj for the first time (j=2,3,4). Similarly, stage three consists of
one Qi_Rii Component and two Rij_HjUpd Components. Qi_Rii C2 receives
AugH2_upd_1st

 and computes Q2; AugH3 and AugH4 are updated for the second
time in Rij_HjUpd C4 and Rij_HjUpd C5. Finally, in stage 5, only one Rij_HjUpd C
is used for Q4’s calculation.

It is worth noting that the input AugHj / AugHj_upd of every Rij_HjUpd
Component has to be delayed 33cc due to the latency of calculating the
corresponding Qi. Thus, delay elements (DEs) are inserted by connecting 33 DFFs
in series. Besides, DEs are also used as pipeline registers, denoted as PDs in Fig.
4.3.

The last stage, stage 6, is used to calculate GMMSE matrix when Q4 is
produced. Since it costs 33cc to produce each Qi, there are three PDEs for Q1, two
for Q2, and one for Q3.

4.2.2 Implementation and simulation

1. Behavioral simulation
The processor is designed to compute three matrices in parallel: R, Q, and GMMSE.

AugH3_upd_2

PD

AugH4_upd_1

R33
Qi_Rii

C3

AugH4_upd_3

Q3

R34
Rij_HjUp

C6PD

PD

PDPD

Q2

R22
Qi_Rii

C2

AugH3_upd_1

AugH2_upd_1
t

R14

R13

R12

R11

Q1

Qi_Rii
C1

Rij_HjUp
C1

Rij_HjUp
C2

Rij_HjUp
C3 PD

PD

PD

R23
Rij_HjUp

C4PD

AugH4_upd _2

R24
Rij_HjUp

C5PD

GMMSE

G_
cal

Q4

R44

PD

Qi_Rii
C4

PD

AugH3

AugH4

AugH1

AugH2

H

matr_
exd

clk

rst

Fig. 4.3 Architecture of the first pipeline version

38

The total bit number is 1792 including 256 bits for matrix R, 1024 bits for matrix
Q and 512 bits for matrix GMMSE. The behavioral simulation result is given in Fig.
4.4.

Fig. 4.4 Beheviour simulation of the first pipeline version

Form Fig. 4.4, it can be seen that this pipeline version is able to produce one
R matrix, one Q matrix, and one GMMSE matrix in each clock cycle.

2. Synthesis and PNR

During synthesis and PNR, because three parallel output matrices and the input
matrix H have 2304 bits in total, these matrices are not directly connected to IOs.
Instead, some ROMs are designed to store input matrices and the corresponding
reference model. On the output, a “diff” signal is used to indicate if the results are
correct by comparing with the reference output. If they are the same, diff is set ‘0’.
This signal is generated at the same clock cycle as matrix GMMSE and is registered
before output.

The synthesis report shows that the minimum clock period of the design is
63.556ns (maximum frequency: 15.734MHz). Device utilizations after PNR are
provided in Table 4.9 in section 4.5. Fig. 4.5 shows the post PNR simulation using
minimum period.

Fig. 4.5 Post PNR simulation for the first pipeline scheme

In this figure, “diff” signal becomes zero when the 139rd clock cycle arrives
after reset. This is because it spends 1cc to obtain AugH matrix from channel

39

matrix H, then 33cc to produce each Qi (i=1,2,3,4) and 1cc to store each Qi in
DFF, 1cc to store GMMSE in DFF after Q4, and 1cc to store diff in DFF for
registered output.

4.3 Time-multiplexed scheme
It is well-known that time-multiplexed architecture is efficient in term of hardware
resource but has long computation time because several algorithm operations share
the same hardware. In this part, a time-multiplexed scheme is developed to
implement QRD-based square-root MMSE MIMO detection. In order to save
hardware area, this scheme adopts only one Qi_Rii Component and one Rij_HjUpd
Component.

4.3.1 Architecture description
For every column vector AugHj, QR decomposition steps are similar, i.e., they all
employ one Qi_Rii Component and (N-j) Rij_HjUpd Components as designed using
the pipeline architecture. As a result, one Qi_Rii Component and one Rij_HjUpd
Component can be shared over time in time-multiplexed scheme. In addition, as
described before, some signals need to wait for 33cc due to the latency of divider,
therefore, holding element (HE) is introduced to keep signals for some time. As
Fig. 4.6 shows, a HE uses a control signal to select data from either input or
output’s feedback. Different from the pipeline-based delay element in the first
pipeline scheme, the HE saves hardware resources especially when the holding
period is long.

The block diagram of time-multiplexed architecture is shown in Fig. 4.7:

Qi_Rii Component and Rij_HjUpd Component are indicated in light grey, and HEs
are specified in darker grey. A control module shown in the upper part manages all
other modules by using select signals.

holding element

input

control signal

output
IN1

IN2

clk

Fig. 4.6 Block diagram of holding element

40

Hj_sel_ctr AugHj_sel_ctr

AugH3_hold_ctr

AugH4_hold_ctr

UpdHj_2hold_ctr

Q1_hold_ctr

UpdHj_3hold_ctr

Qi_sel_ctr

Qi_sel_ctr

GMMSE

IN1

IN2

IN3

clk

G_cal_ctr

Q3

Q1

QiRiiC_ctr

AugHj

Hj

“1…1”

Qi MUX2

HjUp_out_ctr

IN1

IN2

IN3

IN4

AugH1 Hi

QiRii C
(33cc)

MUX1

QiRiiC_ctr

“1…1”

AugH2_hold_ctr

Qi_hold_ctr

AugH2

Upd Hj_1

IN1

IN2

IN3

MUX4

“1…1”

held AugH4

held AugH3

held AugH2

IN1

IN2

IN3

IN4

Hj

MUX3

OUT1

OUT2

OUT3

DEMUX

G_calc

Rij_HjUpd C
(combinational) Upd Hj

Upd Hj_2

Upd Hj_3

“1…1”

Q2

G_cal_ctr
HE(100cc)

HE(67cc)

HE(34cc)

Q4

Q2_hold_ctr

Q3_hold_ctr

HE(1cc)

Q4_hold_ctr

HE

HE(33cc)

HE(33cc)

HE(33cc)

AugH3
HE(34cc)

AugH4

HE(35cc)

Qi_hold_ctr

……

matrix

extending
module

rst

H

start

sigma

MatrExd_ctr

AugH

Fig. 4.7 Architecture of time-multiplexed scheme

control module

41

1. Matrix extending module

Once the system is reset and a start signal arrives, control module gives out a
MatrExd_ctr signal to activate this module. Four column vectors of augmented H
matrix are sent out in the following clock cycle. AugH1 is connected to MUX1
preparing to calculate Q1, while AugH2, AugH3 and AugH4 are sent into three 33cc
hold elements waiting for Q1 to calculate Rij and update themselves for the first
time. Since the Rij_HjUpd Component is time-multiplexed, the AugH2 is the first
one to enter Rij_HjUpd Component. After 1cc, its output, the updated AugH2, is
sent into Qi_Rii Component for Q2’s calculation. In the meanwhile, AugH3
occupies Rij_HjUpd Component, therefore AugH3 needs to wait for 34cc since it is
given out by the matrix extending module. Similarly, AugH4 needs to wait for 35cc
before Rij_HjUpd Component processes it.

2. Qi_Rii Component

Iits input Hi has three sources selected by QiRii C_ctr signal. The first one is
AugH1 when computing Q1. If the clock cycle is denoted as 1cc when AugH is
output from matrix extending module, then the MUX1 selects AugH1 at 1cc with
Q1 given out at 34cc. Its second potential input comes from one of Rij_HjUpd
Component outputs when computing Q2, Q3 and Q4. Specifically, MUX1 selects
AugH2_ upd_ 1

st to compute Q2 at 34cc after Q1 is sent out. This is because AugH2

has to subtract its orthogonal projection on Q1 to obtain AugH2_ upd_ 1
st. Similarly,

the updated AugH3 is allowed to enter Qi_Rii Component at 67cc when Q2 is
computed, since AugH3_upd_2nd is computed by subtracting orthogonal projection
of AugH3_upd_1st on Q2. AugH4_upd_3rd is selected at 100cc once Q3 is obtained.
Finally, the third input source “1…1” is effective for 128 cc out of the 132cc
before next channel matrix comes into system.

The output of this module Qi has two destinations. One is to calculate GMMSE.
As seen in upper right part of Fig. 4.7, Q1, Q2, Q3 and Q4 need to be held for
different time since they are produced at different clock cycles. Another is going
to Rij_HjUpd Component for orthogonal operation. Since this component is time-
multiplexed, Q1 should be held for at least 3cc.The 1st cc is used to calculate R12
and update AugH2, the 2nd cc to calculate R13 and update AugH3, and the 3rd cc for
R14 and AugH4. Similarly, Q2 is held for at least 2cc and Q3 for 1cc.

3. Rij_HjUpd Component

As described above, input Qi (j=1, 2, and 3) need to be held for 3cc, 2cc and 1cc
respectively. “1…1” is connected for the rest of the time within a processing
iteration for each channel matrix, since it has no work until the divider gives out a
new Qi. This input selection is achieved by combining the HE and MUX2 with
Qi_sel_ctr control signal. Another input of this component is Hj. It could be one of
AugH2, AugH3, and AugH4 when orthogonalized with Q1, which is selected by
MUX3 and MUX4. It could also come from outputs of this component itself, i.e.,

42

updated AugH3 and AugH4. For example, when computing AugH3_upd_2nd, Hj
comes from AugH3_Upd_1st. For the rest of the time, it is connected to “1…1”.

Next, the output which is updated Hj will go to three directions. Three
computation results go to Qi_Rii Component immediately for Qi calculation, which
are AugH2_Upd_1st, AugH3_Upd_2nd and AugH4_Upd_3rd. Then, AugH3_Upd_1st,
AugH4_Upd_1st and AugH4_Upd_2nd should go back to this component for further
updating AugHj (j=3 and 4). Because they need to wait for 33cc for the
corresponding Qi for orthogonalization, some HEs should be inserted. Among
them, AugH3_Upd_1st and AugH4_Upd_2nd share one HE while AugH4_Upd_1st
will go through another HE, since AugH4_Upd_1st is calculated 1cc later than
AugH3_Upd_1st and both need to be kept for 33cc. Therefore, three feedback
results are assigned to two signals and enter two HEs, see Fig. 4.7.

4.3.2 FSM design
Based on the description of hardware architecture and time sequence, a finite-state
machine (FSM) of this scheme is designed, see Fig. 4.8.

Fig. 4.8 FSM of time-multiplexed scheme

 S0: A ready-for-work state once reset signal is effective. When start

signal is high, the system begins to work. After an iteration finishes and
system re-enters this state, a control signal is given out to trigger the
G_cal module for GMMSE calculation of last channel matrix.

 S1: The control module gives matrix extending module an enable signal,
and matrix extending module immediately starts to extend an H matrix to
an augmented one. Meanwhile, G_cal module outputs GMMSE result for
the last channel matrix.

 S2: Qi_Rii Component receives AugH1 and works for 33cc to calculate
Q1.

 S3: Rij_HjUpd Component calculates R1j and updated AugHj (j=2, 3, 4)
in the first three continuous clock cycles. Qi_Rii Component takes 33cc
to compute Q2.

 S4: Similar to S3, Rij_HjUpd Component works for 2 clock cycles for R2j
and updated AugHj (j=3 and 4). Q3 is calculated after 33cc by Qi_Rii

Component.

43

 S5: Rij_HjUpd Component produces R34 and AugH4_Upd_3rd in the first
clock cycle. Once Q4 is computed by Qi_Rii Component after 33cc, the
next state will be S0 to process a new channel matrix.

4.3.3 Implementation and simulation
The synthesis report shows that the minimum period of the time-multiplexed
scheme is 96.030ns, i.e. the maximum frequency is 10.413MHz. After PNR, the
hardware utilization is reported and is listed in Table 4.9 in section 4.5.

Similar to the pipeline version, a “diff” signal is introduced to indicate
computational correctness. Fig. 4.9(a) shows the behavioral simulation result in
order to demonstrate time sequence and Fig. 4.9(b) is the post-PNR simulation
result.

Fig. 4.9(a) Behaviral simulation of time-multiplexed scheme

Fig. 4.9(a) illustrates the process procedure of the first two channel matrices
after start signal. It can be seen that the time-multiplexed system outputs a GMMSE
matrix every 134cc and diff is kept ‘0’ for 1cc.

Fig. 4.9(b) Post-PNR simulation of time-multiplexed scheme

Post_PNR simulation result is shown in Fig. 4.9(b) when using the maximum
frequency. That “diff” signal becomes zero every 134cc demonstrates that the
post-PNR system works correctly.

4.4 The second pipeline scheme
To improve the previous pipeline and the time-multiplexed architectures, a second
pipeline scheme is designed. Because the processing procedure for every column
is similar, hardware resources for column processing can be shared over time.

44

Meanwhile, this shared hardware is fully pipeline in order to process one column
in each clock cycle.

4.4.1 Architecture description
The idea is to use one Qi_Rii Component and three Rij_HjUpd Components in this
pipeline scheme. The block diagram is shown in Fig. 4.10. In this figure, Qi_Rii

Component and Rij_HjUpd Components are indicated with light grey blocks.

Fig. 4.10 Architecture of the second pipeline scheme

Q3

Q1

Q2

Q4

QiOut_ctr

DEMUX

PD(33cc) PD(33cc) PD(33cc)
PD(33cc) PD(33cc)

PD(33cc)

GMMSE

G_
Calc

calc_ctr

Qi_1

Qi_ctr_1

“1…1”

HjUpd_1

Rij_Hj
Upd C1

start

G_cal_ctr

HjUp_ctr_2

QiRiiC_ctr

HjUp_ctr_1

HjUp_ctr_3

QiOut_ctr

Qi_ctr_1

Qi_ctr_2

Qi_ctr_3

ctr
mod

Hj_2

HjUp_ctr_2

PD(33cc)

“1…1”

MUX3

clk

rst

“1…1”

Qi_ctr_2

Qi_ctr_3

“1…1”

Hj_3

HjUp_ctr_3

“1…1”

H

sigma AugH3

AugH1

AugH2

AugH4

matr
_exd

Hi

QiRiiC_ctr

“1…1”

MUX1
Qi

Qi_Rii

C
(33cc)

HjUpd_3_D

HjUpd_2

Qi_2

Rij_Hj
Upd C2

Qi_3

Rij_Hj
Upd C3

HjUpd_3
PD(33cc)

PD(33cc)

Hj_1

HjUp_ctr_1

“1…1”

MUX2
PD(33cc)

HjUpd_2_D
PD(33cc)

45

1. Qi_Rii Component

Its input Hi can come either from AugH1 when processing the first column or from
the output of Rij_HjUpd C1 which is the updated Hj vector when processing the
2nd, 3rd and 4th columns. This is achieved by MUX1 with the selecting signal “QiRii

C_ctr” managed by a control module. This component is the same as Qi_Rii

Component in the 1st pipeline scheme.

2. Three Rij_HjUpd Components

After Q1 is calculated, all the three Rij_HjUpd Components have to work since
AugH2, AugH3 and AugH4 need to get updated. When Q2 is calculated, AugH3 is
updated for the second time in Rij_HjUpd C1 and AugH4 is updated in Rij_HjUpd
C2. When Q3 is obtained, only Rij_HjUpd C1 is used to update AugH3 for the 3rd
time.

It can be seen that Rij_HjUpd C3 works the least time during one MIMO
detection process. Its input Hj is set to “1…1” when the module is idle. This is
managed by a multiplexer with a select signal “HjUp_ctr_3”. Similarly, the input
of Rij_HjUpd C2 comes either from AugH3 or from AugH4_Upd_1st that is the
output of Rij_HjUpd C3, and for the rest of the time, the input is connected to
“1…1”. Rij_HjUpd C1 receive its Hj from “1…1”, AugH1, or the output of
Rij_HjUpd C2 which could be AugH2_Upd_1st, AugH3_Upd_2nd and
AugH4_Upd_3rd.

Because Q1 takes 33cc to compute, AugH2, AugH3 and AugH4 need to wait
for 33cc to compute the correct R1j and updated Hj. This is implemented by
pipeline-based delay elements (PDs) in order to process one column in each clock
cycle. Once the output of Rij_HjUpd C1 is calculated, it should enter Qi_Rii

Component immediately without any delay, whereas the outputs of both Rij_HjUpd
C2 and Rij_HjUpd C3 have to pass through PDEs since they are supposed to wait
for the corresponding Qi.

Like Hj, another input signal Qi needs to be selected from “1…1” when the
component is idle or from the output of Qi_Rii Component when it is active. Given
that these three Rij_HjUpd components work at different time, three multiplexers
are assigned to each of them with control signals Qi_ctr_1, Qi_ctr_2, and
Qi_ctr_3.

3. GMMSE calculator

Qi+1 is generated 33cc after Qi, and it won’t get the correct GMMSE until Q4 is
obtained. Therefore, 33cc PDEs are needed to meet the timing requirement, as
shown in dark grey at upper right corner of Fig. 4.10.

4. Delay elements

In this scheme, the delay element is designed in the same way as the first pipeline

46

scheme, i.e., composed of 33 concatenated DFFs, denoted as PD in the
architecture diagram.

4.4.2 Timing discussion
The most complicated task of this scheme is to design its timing. Here, the
hardware is supposed to be able to output GMMSE in a pipeline manner.

1. Direct design method

The direct design idea is to input a channel matrix H every clock cycle. But this
will lead to input conflict for Qi_Rii Component. Fig. 4.11 explains this problem, in
which only some related modules and some intermediate variables’ timing are
shown.

For example, assume the first channel matrix is input to Qi_Rii Component at

k=0 cc. Note that the arriving time of all signals related to this input are indicated
in blue. For this channel matrix, Q1 will be produced at 33cc and sent to Rij_HjUpd
Component immediately. Because it is a combinational logic circuit,
AugH2_Upd_1st is output and delivered to Qi_Rii Component at the same clock
cycle, i.e., 33cc. However, we input one channel matrix every clock cycle, which
means a new AugH1 needs to occupy Qi_Rii Component at 33cc too, and this is
indicated in red in Fig. 4.11. Thus, input confliction happens in Qi_Rii Component
from 33cc. As a result, this design fails to realize the required function.

2. Two alternative solutions

To solve the confliction problem, another Qi_Rii Component could be added into
system. However, as pointed out in section 4.1, this component costs a large
amount of device resources, so that system hardware area will increase.

Q1: 33, 34, 35, …, 64, 65, 66 cc…

AugH2_Upd_1st:33,34, 35cc…

AugH2_Upd_1st: 33, 34, 35cc…

Q1: 33, 34, 35, …, 64, 65, 66 cc…

Qi
MUX2

Hi

AugH1: 0, 1, 2…31, 32, 33cc, …

MUX1

RijHjUp C1
(combinational)

QiRii C
(33cc)

“1…1”

Fig. 4.11 Input confliction using original direct design idea

47

Another solution is to delay the input of the 34th channel matrix till 132cc
when the first 33 channel matrices have been completely processed. That is, every
33 channel matrices are regarded as a group. This group of matrices enters into the
system continuously from k=0cc to 32cc with one matrix input per clock cycle.
After that, matrix input stops for 99cc. The input of the next group starts from
132cc.

In Fig. 4.12, processing of the first group of channel matrices is illustrated in

blue color, and the second group is shown in red color. It can be seen that this
solution eliminates input confliction in the Qi_Rii Component. Notice that this kind
of input scheduling results in interruptions on data output. As Fig. 4.12 shows,
there is a time interval of 100cc in between two consecutive groups. We consider
this as a burst input scheduling. To obtain a smooth output, a new input scheduling
is introduced as follows.

3. Final design implementation

From the analysis in the previous section, it can be seen that an input group of 33
channel matrices can be processed in a period of 132cc. This means that the
architecture can deal with one channel matrix every 4cc. Thus, we can employ a
new input scheduling: for each successive 4 clock cycles, input a channel matrix in
the first clock cycle and then stop input for the next 3cc. By doing this, matrix
output is also generated on every 4cc. The work principle is shown in Fig. 4.13.

Qi: time interval
ti

Q1: 33, 34…64, 65; 165, 166 cc…（from AugH1）

Q2: 66, 67… 97, 98; 198, 199cc…

Q3: 99, 100…130,131; 231, 232cc… (from updated Hj)

Q4: 132, 133 …163, 164; 264, 265cc…

AugH2_upd_1st: 33, 34, 35…63, 64, 65;165,166cc…

AugH3_upd_2nd: 66, 67,68,…96, 97, 98;198,199cc…

AugH4_upd_3rd: 99, 100…129,130,131;231,232cc…

Qi
MUX2

Hi AugH1: 0, 1, 2…31, 32; 132,133cc…

MUX1

RijHjUp C1
(combinational)

QiRii C
(33cc)

“1…1”

Fig. 4.12 Solution of input rescheduling

Qi

48

HjUp_ctr_1

Fig. 4.13 Work principle when adopting new input

G

Calc_ctr

Q3

Q2

Q1

Qi

AugH3_upd_1st: 66, 70, 74… 166cc…

AugH4_upd_2nd: 99, 103…127,131,135…159,163,167…191,195,198cc…

HjUp_ctr_3

QiRiiC_ctr

HjUp_ctr_2

Qi_ctr_3

“1…1”: 0~31;32,34,35,36,38,39…60,62,63;64,67,68,71…92,95;96,99…124,127cc…

Delayed AugH2: 33, 37, 41…133cc…

AugH4

“1…1”:0-31; 32, 34, 35, 36, 38, 39, 40 42, 43 …132, 134,135cc…

“1…1”:0~31;32,34,35,36,38,39…60,62,63;64,67,68,70…92,95;96, 100cc…

Hj

Hj

Hj

AugH2

 AugH1: 0, 4….. 28, 32, 36...... 60, 64, 68..... . 92, 96, 100cc…

AugH2_up_1st: 33, 37 … 61, 65, 69… 93, 97, 101…125, 129, 133cc…

AugH3_up_2nd: 66, 70… 94, 98,102… 126,130,134… 158, 162,166cc...

AugH4_up_3rd: 99, 103…127,131,135…159,163,167…191,195,198cc…

“1…1”: 1,2,3;…29,30,31; 34,35;38,39… 62,63; 67,71… 95cc

Qi

Q1:33, 37…61, 65, 69…93,97,101…125,129,133 cc…

Q2: 66, 70… 94, 98,102… 126,130,134… 158, 162,166cc...

Q3: 99, 103…127,131,135…159,163,167…191,195,198cc…

Q4: 132, 136 …160,164,168…192,196,200…224,228,232cc…

Hi

QiRii C
(33cc)

PD(33cc)

RijHjUp C1
(combinational)

Q1:33, 37…61, 65, 69…93,97,101…125,129,133 cc…

Q2: 66, 70… 94, 98,102… 126,130,134… 158, 162,166cc...

Q3: 99, 103…127,131,135…159,163,167…191,195,198cc…

AugH3
Delayed AugH3: 33, 37, 41…133 cc…

Qi

PD(33cc)

RijHjUp C2
(combinational)

Q1:33, 37…61, 65, 69…93,97,101…125,129,133 cc…

Q2: 66, 70… 94, 98,102… 126,130,134… 158, 162,166cc...

Qi

RijHjUp C3
(combinational)

Q1: 33, 37, 41.... 133 cc…

Delayed AugH4: 33, 37, 41…133cc…

PD(33cc)

PD(33cc)

AugH4_upd_1st: 66, 70, 74… 166cc…

PD(33cc)

Qi_ctr_2

Qi_ctr_1

QiOut_ctr

DEMUX

PD(33cc) PD(33cc) PD(33cc)

PD(33cc) PD(33cc)

PD(33cc)

G_
calc

IN1

IN2 MUX1

IN3

IN1

IN2 MUX3

IN3

IN1

IN2MUX5

IN3

IN1

MUX2

IN2

IN1

MUX7

IN2

IN1

MUX4

IN2

IN1

MUX6

IN2

49

First, for Qi_Rii Component, MUX1 with the select signal QiRii C_Ctr is used
to select Hi for this component to calculate Qi. In the upper left corner of this
figure, AugH j (j=1, 2, 3, 4) shown in bold font are sent into the system on every
4cc, i.e. 0, 4, 8, 12…. Orange arrows indicate MUX1’s settings in the first 32cc
period (from 0 to 31cc). During the second period of 32cc, since AugH2_Upd_1st is
computed, the input selection of MUX1 changes as shown in black arrows. In the
third period of 32cc (red arrows), MUX1 selects its IN3 port twice on every 4cc
for inputing AugH3_Upd_2nd and AugH2_Upd_1st. Explained using green arrows,
AugH4_Upd_3rd begin to enter Qi_Rii C to compute Q4 during the 4th period of
33cc. From this period, Qi_Rii Component begins to operate with full load and is
able to output one Qi in each clock cycle. The corresponding setting of MUX1 is
summarized in Table 4.8(a).

Second, for each of three Rij_HjUpd Components, there are 2 multiplexers to
control its two inputs respectively. Rij_HjUpd C3 only receives AugH4 to do
orthogonalization with Q1. Thus, it does not work in the first 32cc because no Q1
is produced yet. Starting from the second period of 32cc, MUX6 selects the output
of Qi_Rii Component and MUX7 selects AugH4 at the second clock cycle of every
4cc. The time sequence is shown in blue arrows at the lower left corner of Fig.
4.13. Rij_HjUpd C2 works in the same way as Rij_HjUpd C3 during the first 64cc.
After that, AugH 4_Upd_2nd is computed based on MUX4 and MUX5 at the third
clock cycle of every 4cc. Similarly, since 96cc, Rij_HjUpd C1 works for three
clock cycles on every 4cc. The scheduling of select signals for MUX2~ 7 is listed
in Table 4.8.

Third, in the upper right corner of Fig. 4.13, there is a hardware unit to
calculate GMMSE. Several PDEs are inserted after the DEMUX, because Qi (i=1, 2,
3, 4) are sent out at different time instances. When to calculate GMMSE is controlled
by Calc_ctr signal which is synchronous with Q4. It is effective for 1cc on every
4cc from state S5 in Table 4.8 (b).

Table 4.8(a) Scheduling of select signals for MUX 1 ~ 3

MUX1: Hi

 (QiRiiC_Ctr)
MUX2: Qi
(Qi_ctr_1)

MUX3: Hj
(HjUp_ctr_1)

S1：
0~31cc
(i=0~7)

4i IN2: AugH1

IN2: “1…1” IN1: “1…1”
4i+1

IN1: “1…1” 4i+2
4i+3

S2：
32~63cc
(i=8~15)

4i IN2: AugH1 IN2: “1…1” IN1: “1…1”

4i+1 IN3: AugH2_Upd_1st IN1: Q1 IN2: Aug H2

4i+2 IN1: “1…1” IN2: “1…1” IN1: “1…1”

4i+3 IN1: “1…1” IN2: “1…1” IN1: “1…1”

name: output

(control signal)

input No.:
meaning

50

S3：
64~95cc

(i=16~23)

4i IN2: AugH1 IN2: “1…1” IN1: “1…1”

4i+1 IN3: AugH2_Upd_1st IN1: Q1 IN2: Aug H2

4i+2 IN3: AugH3_Upd_2nd IN1: Q2 IN3: AugH3_Upd_2nd

4i+3 IN1: “1…1” IN2: “1…1” IN1: “1…1”

S4：
96~127cc
(i=24~31)

4i IN2: AugH1 IN2: “1…1” IN1: “1…1”

4i+1 IN3: AugH2_Upd_1st IN1: Q1 IN2: Aug H2

4i+2 IN3: AugH3_Upd_2nd IN1: Q2 IN3: AugH3_Upd_2nd

4i+3 IN3: AugH4_Upd_3rd IN1: Q 3 IN3: AugH4_Upd_3rd

S5：every 32cc after
127cc

same as S4

Table 4.8 (b) Scheduling of select signals for MUX 4~7 and G_calc

* “no” means no GMMSE calculation.

From the analysis above, we can see that every 32cc period could be
considered as a processing state of FSM. The detailed description of the FSM is
shown in Fig. 4.14.

RijHjUp C2 RijHjUp C3

G_calc *:
(Calc_ctr) MUX4: Qi

(Qi_ctr_2)
MUX5: Hj

(HjUp_ctr_2)
MUX6: Qi
(Qi_ctr_3)

MUX7: Hj
(HjUp_ctr_3)

S1:
 0~31cc
(i=0~7)

4i

IN2: “1…1” IN1: “1…1” IN2: “1…1” IN1: “1…1” no
4i+1
4i+2
4i+3

S2:
 32~63cc
 (i=8~15)

4i IN2: “1…1” IN1: “1…1” IN2: “1…1” IN1: “1…1”

no
4i+1 IN1: Q1 IN2: AugH3 IN1: Q1 IN2: AugH4
4i+2

IN2: “1…1” IN1: “1…1” IN2: “1…1” IN1: “1…1”
4i+3

S3:
64~95cc

(i=16~23)

4i IN2: “1…1” IN1: “1…1”

Same as S2 Same as S2 no
4i+1 IN1: Q1 IN2: AugH3
4i+2 IN1: Q2 IN3: AugH4_Upd_2nd

4i+3 IN2: “1…1” IN1: “1…1”

S4:
96~127cc
(i=24~31)

4i

Same as S3 Same as S3 Same as S2 Same as S2 no
4i+1
4i+2
4i+3

S5:
every 32cc
after 127cc

4i

all same as S4

yes
4i+1 no
4i+2 no
4i+3 no

name: output

(control signal)

input/output

 FSM state

51

Fig. 4.14 FSM of the second pipeline architecture using new input scheduling

 ini: initial state when reset is low and wait for high start signal.
 S0: set control signal of MUX1 so that it will be effective in the next

clock cycle. By doing this, Qi_Rii Component is able to receive the first
AugH1 vector at the beginning of S1 state.

 S1 (0~31cc as described above): this is the first period of 32cc in which
Qi_Rii Component receives an AugH1 every 4cc to calculate Q1. Two
counters are designed: cnt1 is from 0 to 3 and cnt2 is from 0 to 7, thus
4cc timing could be controlled by cnt1 and the period of 32cc can be
obtained by combining cnt1 and cnt2.

 S2 (32~63cc): this is the second period of 33cc. Qi_Rii Component
receives an AugH1 or an AugH2_Upd_1st every 4cc to calculate Q1 and
Q2 respectively. Three Rij_HjUpd Components work for R1j and
AugHj_Upd_1st (j=2, 3, 4).

 S3 (64~95cc): the third period of 32cc. Qi_Rii Component receives an
AugH1, an AugH2_Upd_1st or AugH3_Upd_2nd every 4cc to calculate Q1 ,
Q2 and Q3. Besides R1j and AugHj_Upd_1st (j=2, 3, 4), three Rij_HjUpd
Components also work for R2j/ AugHj_Upd_2nd (j=3 and 4).

 S4 (96~127cc): the fourth period of 32cc, Qi_Rii Component receives an
AugH1, an AugH2_Upd_1st, an AugH3_Upd_2nd, or AugH4_Upd_3rd
every 4cc to calculate Qi (i=1, 2, 3, 4). Rij_HjUpd C1 is responsible for
the calculation of R34/ AugH4_Upd_3rd.

 S5 (every 32cc since 128cc): Qi_Rii Component and three Rij_HjUpd
Components work in the same way as S4. The difference is that a GMMSE
matrix is calculated every 4cc in this state.

4.4.3 Implementation and Simulation
Same as the previous two schemes, a “diff” signal is used to indicate whether the
result is correct or not. The behavioral simulation is given first in Fig. 4.15(a) for
time sequence demonstration. It can be seen that the system begins to produce
GMMSE matrices on every 4cc since state S5.

52

Fig. 4.15(a) Behaviral simultion of the second pipeline scheme

The minimum period is 95.941ns (Maximum Frequency: 10.423MHz) is reported
from hardware synthesis. The post PNR simulation with this minimum period is
shown in Fig. 4.15(b). The fact that “diff” turns to zero every 4cc demonstrates the
expected results after PNR.

Fig. 4.15(b) Post PNR simultion of the second pipeline scheme

4.5 Comparisons of three architectures
In this section, three implementation schemes are compared.

First, Table 4.9 summarizes device utilizations of three architectures
implemented using the same FPGA.

It can be seen that the time-multiplexed scheme requires the least hardware
resources. The second pipeline architecture consumes about twice of the hardware
resources of the time-multiplexed version. The first pipeline version is the most
hardware demanding one, i.e., its device utilization is almost doubled in
comparison to that of the second pipeline design.

state S2 state S3 state S4 state S5

53

Table 4.9 Device utilization comparison of the three schemes

slice logic utilization
the 1st

pipeline
time-

multiplexed
the 2nd

pipeline
number of slice registers 15,680 3,363 6,901

number used as Flip Flops 14,536 2,799 6,105
number used as AND/OR logics 1,144 564 796

number of slice LUTs 17,105 4,504 9,958
number used as logic 13,730 4,409 8,010
number used as Memory 3,045 3 1,926
number used exclusively as route-thrus 92

number of occupied slices 5,575 1,750 3,652
number of LUT flip flop pairs used 19,565 5,359 10,783
number with an unused Flip Flop 4,893 2,343 4,033
number with an unused LUT 2,460 855 825
number of fully used LUT-FF pairs 12,212 2,161 5,925
number of unique control sets 17 18 19
number of slice register sites lost to
control set restrictions

75 38 57

DSP48E1s 636 240 368

Second, the throughputs are summarized in Table 4.10. It can be seen that the
throughput using the first pipeline architecture is 3 times higher than the second
pipeline architecture and 135 times higher than that of the time-multiplexed
scheme.

Table 4.10 Throughput comparison of the three schemes

 the 1st pipeline time-multiplexed the 2nd pipeline
throughput 1 GMMSE per cc 1 GMMSE per 136cc 1 GMMSE per 4cc

Finally, regarding maximum frequency, time-multiplexed and the second
pipeline architecture are almost the same. See Table 4.11. The frequency
limitation of the square-root module is the main bottleneck of all three schemes.

Table 4.11 Maximum frequency comparison of three schemes

 the 1st pipeline time-multiplexed the 2nd pipeline
maximum frequency 15.734MHz 10.413MHz 10.423MHz

Given the throughput and frequency, pipeline version 1 has the highest
processing speed which is 5 times faster than the pipeline version 2 and more than
200 times faster than the time-multiplexed scheme. If a system does not require
high throughput, the second pipeline architecture is a good choice for its
reasonable performance and area consumption. Due to its low throughput in
comparison to the other two architectures, time-multiplexed scheme should be
considered only when device resource is limited.

54

CHAPTER 5

5 Conclusion and Future Work

5.1 Conclusion
Motivated by implementation of MIMO detection algorithms on RCA and ASIC
platforms, this thesis mainly studies two linear MMSE MIMO detection
algorithms: squared MMSE algorithm and QRD-based square-root MMSE
algorithm. Besides, three matrix inversion approaches required by squared MMSE
are studied, including DMI, analytic/block-wise, and QRD-based inversion.

First, considering computational complexity, regardless of the antenna size,
squared MMSE using analytic or block-wise inversion has the least operation
numbers when only considering matrix inversion. When including steps required
by calculating both R and GMMSE, square-root MMSE scheme with QRD is the
least compute-intensive one. In terms of architecture, implementation on ASICs
generally requires fewer operations than that on RCAs. However, their difference
reduces as antenna number increases.

Second, accuracy is investigated in both floating-point and fixed-point
formats. Comparisons show that QRD-based square-root MMSE scheme with
dynamic scaling provides the highest accuracy among four schemes with respect
of floating-point. Moreover, it shows a better performance than QRD-based
squared MMSE considering fixed-point format.

Finally, to implement QRD-based square-root MMSE that has highest
accuracy and lowest complexity, three architectures are designed and evaluated,
including two pipeline versions and a time-multiplexed version. The first pipeline
version is able to produce one result every clock cycle. However, it consumes the
most hardware resources among the three schemes. The time-multiplexed version
is the least expensive one in terms of hardware size, but its throughput is less than
1 percent of the first pipeline version due to data dependency of the MGS
algorithm and 33cc latency of the divider. The second pipeline architecture shows
a good performance trade-off among the three. Its processing throughput is 33
times higher than that of the time-multiplexed version, and its hardware
consumption is about half of that of the first pipeline version.

5.2 Future work
This thesis compares the computational complexity of different schemes
implemented on ASIC and RCA platforms respectively. Hardware

55

implementations need to be further studied, so that a comprehensive comparison
can be made between two platforms.

At the implementation level, the performance of square-root module can be
improved. This function unit can be re-designed by adopting algorithms such as
Newton-Raphson method.

56

References

[1] N. Morinaga, R. Kohno, S. Sampei, Wireless Communication Technologies:
New Multimedia Systems, Kluwer Academic Publishers, 0-7923-7900-4, 2000

[2] C. Zhang, L. Liu, and V. Öwall, “Mapping Channel Estimation and MIMO
Detection in LTE-Advanced on a Reconfigurable Cell Array”, in the proceedings
of IEEE International Symposium on Circuits and Systems (ISCAS), pp 1799–
1802, 978-1-4673-0218-0, May 2012

[3] L. Bai, and J. Choi, Low Complexity MIMO Detection, New York, Springer
Science + Business Media, 978-1-4419-8583-5, 2012

[4] H. S. Kim, W. Zhu, J. Bhatia, K. Mohammed, A. Shah, and B. Daneshrad, “A
Practical, Hardware Friendly MMSE Detector for MIMO-OFDM-Based Systems”,
EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 94, pp 1-14,
1867-6180, March 2008

[5] C. Zhang, T. Lenart, H. Svensson and V.Öwall, “Dynamically Reconfigurable
Architectures for Real-time Baseband Processing”, in the proceedings of 2009
International Conference on Reconfigurable Computing and FPGAs, pp338-343,
978-1-4244-5293-4 , December 2009

[6] K. Kuttler, Linear Algebra: Theory and Applications, The Saylor Foundation:
Wave I of the Open Textbook Challenge, CC-BY3.0, 2012

[7] D. Wu, J. Eilert, D. Liu, D. Wang, N. Al-Dhahir, and H. Minn, “Fast Complex
Valued Matrix Inversion for Multi-User STBC-MIMO Decoding”, in the
proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI'07,
pp 325–330, 0-7695-2896-1, March 2007

[8] L. Fahrmeir, T. Kneib, S. Lang, B. Marx, Regression: Models, Methods and
Applications, Springer Heidelberg, New York, 978-3-642-34333-9, 2013

[9] N. J. Higham, Accuracy and Stability of Numerical Algorithms: Second
Edition, Philadelphia, the Society for Industrial and Applied Mathematics, 0-
89871-521-0, 2002

[10] W. Cheney, and D. Kincaid, Linear Algebra: Theory and Applications, Jones
and Bartlett Learning, Mississauga, 978-1-4496-1352-5, 2012

57

[11] A. El-Amawy and K.R. Dharmarajan, “Parallel VLSI algorithm for stable
inversion of dense matrices” in the proceedings of IEE Computers and Digital
Techniques, Vol. 136, No. 6, pp 575–580, 0143-7062, NOVEMBER 1989

[12] A. Burg, S. Haene, D. Perels, P. Luethi, N. Felber and W. Fichtner,
“Algorithm and VLSI Architecture for Linear MMSE Detection in MIMO-OFDM
Systems”, in the proceedings of 2006 IEEE International Symposium on Circuits
and Systems, 0-7803-9389-9, pp 4102-4106, Island of Kos, Greece, May 2006

[13] J. Moon, H. Jin, T. Jeon, and S. Lee, “Channel estimation for MIMO-OFDM
systems employing spatial multiplexing”, in the proceedings of IEEE Vehicular
Technology Conference, Vol. 5, pp 3649-3654, 0-7803-8521-7, September 2004

A
n

alysis an
d

 Im
p

lem
en

tatio
n

 o
f Lin

ear M
IM

O
 Sig

n
al D

etectio
n

 A
lg

o
rith

m
s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, February 2015.

Analysis and Implementation
of Linear MIMO Signal
Detection Algorithms

Dan Liu

D
an

 Liu

Master’s Thesis

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2015-426

http://www.eit.lth.se

