
Optimizing Network Performance

Rajanarayana Priyanka Marigi
Andreas Irest̊al

Department of Electrical and Information Technology
Lund University

and
Axis Communications AB

Advisor: Mats Cedervall, Lund University
Co-Advisor: Mikael Starvik, Axis Communications AB

January 13, 2012



Printed in Sweden
E-huset, Lund, 2012



Abstract

This thesis investigates and improves hardware and software architectural as-
pects that directly influence the TCP network transmission in order to reduce
CPU utilization. The main areas of investigation have been Linux kernel network
implementation handling video data before handing over to device driver, cache
hierarchy, DMA transmit rings, and specialized network offloading hardware. The
final results of the thesis yielded an overall improvement of 10% in throughput
while the CPU usage is reduced by approximately 60%.



Acknowledgement

We would like to take this opportunity to thank our supervisor, Mikael Starvik for
his guidance and valuable comments. We would also like to thank Axis Commu-
nications AB for giving us the opportunity to work with this master’s thesis at
their office.

We would also thank Dr. Mats Cedervall, our supervisor at the Department of
Electrical and Information Technology of Lund University, for providing us with
valuable suggestions, guidance and constant supervision.

Finally, we would like to specially thank our families and friends for their sup-
port and encouragement.

Lund, Sweden Rajanarayana Priyanka Marigi
January 20, 2012 and Andreas Irest̊al

ii



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 The OSI Model and the networking protocols . . . . . . . . . . . . . 5
2.2 Common Network Protocols . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Linux TCP/IP protocol handling of video streaming . . . . . . . . . 12
2.4 Commercial TOE solutions . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 ARTPEC-4 architecture . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Tools 21
3.1 P7214 Video Encoder and Test Setup . . . . . . . . . . . . . . . . . 21
3.2 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 NETPROC debugging . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Implementation 25
4.1 Data transmission mechanisms over network . . . . . . . . . . . . . 25
4.2 Cache architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Ethernet driver queues . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 TOE in network processor . . . . . . . . . . . . . . . . . . . . . . . 35

5 Conclusions 41
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 49

iii



iv



List of Figures

2.1 The OSI model illustrated . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 An Ethernet frame with different fields and their sizes in bytes . . . . 7
2.3 The IP header for protocol version 4 . . . . . . . . . . . . . . . . . . 8
2.4 The TCP header and it’s fields . . . . . . . . . . . . . . . . . . . . . 9
2.5 The typical procedure of a TCP connection setup . . . . . . . . . . . 10
2.6 The typical procedure of a TCP connection teardown . . . . . . . . . 11
2.7 The UDP header and it’s fields . . . . . . . . . . . . . . . . . . . . 11
2.8 ARTPEC-4 architecture with blocks of interest . . . . . . . . . . . . 14
2.9 Effective memory address split to access cache line of interest . . . . 14
2.10 Example of two packets in DMA transmit ring . . . . . . . . . . . . 15
2.11 Network Processor’s architectural position . . . . . . . . . . . . . . . 16
2.12 Overview of transmit path of the NETPROC . . . . . . . . . . . . . 18
2.13 Overview of receive path of the NETPROC . . . . . . . . . . . . . . 18

3.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Data path using read() and write() . . . . . . . . . . . . . . . . 26
4.2 Data path using mmap() and write() . . . . . . . . . . . . . . . . 26
4.3 Class map of the pipe structure used in the splice() call . . . . . . 28
4.4 An illustration of Splice mechanism. . . . . . . . . . . . . . . . . . . 29
4.5 An illustration of non-standard MTU packets generated. . . . . . . . 30
4.6 An illustration of the segmentation observed in sendfile() . . . . . 30
4.7 Calculated header (in Bytes) before correction applied . . . . . . . . 32
4.8 Illustration of the TCP ACK filtering algorithm in action. . . . . . . 38

v



vi



List of Tables

4.1 Throughput figures with Network Processor disabled . . . . . . . . . 31
4.2 Throughput figures with Network Processor enabled . . . . . . . . . 31
4.3 Throughput figures with Network Processor enabled and driver MTU

correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Performance results from modifications to splice implementation. . . 33
4.5 Results from timer measurements in the network transmit path. . . . 35
4.6 Results from offloading TCP ACK processing . . . . . . . . . . . . . 39

5.1 Results from all changes . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



viii



Chapter1
Introduction

This master’s thesis investigates computer architecture aspects influencing perfor-
mance of Central Processing Unit (CPU), structure of network protocol processing
offload hardware engine to decrease CPU usage, and transmit data handling for
optimal performance of TCP/IP network stack in Linux kernel. The optimizations
are evaluated for the Axis ARTPEC-4 architecture which is specialized for video
transmission over network. This work can be beneficial to those with an interest
in architectural impacts on CPU performance and transmission efficiency.

The thesis was carried out at the Department of Electrical and Information
Technology at the Faculty of Engineering of Lund University in cooperation with
Axis Communications AB, a company located in Lund.

1.1 Background

The TCP/IP protocol suite is the most widely used technology for networking.
Such a technology where per-byte and per-packet overhead dominates consumes
significant amount of CPU processing time. Transmission Control Protocol, TCP
is one of the important connection oriented protocols used to achieve a reliable
transmission. In an Axis System on Chip (SoC) video surveillance system data is
input from a video camera, encoded to digital data using special hardware, and
transmitted to a remote destination over network without data being modified by
CPU. In such a system having a hardware accelerator to perform network process-
ing improves performance and reduces CPU usage. Also, it is Axis software’s goal
to keep the CPU relatively free by identifying bottlenecks in each chip generation
and solve them through hardware accelerators. This allows the CPU to handle
future workloads that is necessary in the event of enhancing features. The Axis
ARTPEC-4 system offloads stateless processing of network stack to a Network Pro-
cessor (NETPROC) accelerator. However, at times such optimizations to solve a
particular issue shifts the area of problem to other aspects, and the full expected
improvement won’t be achieved. In the ARTPEC-4 SoC system, tests have shown
that though performance is good for a single client scenario it drops rapidly for
multiple connected clients. Thus, this master’s project was proposed to investi-
gate into these issues, provide architectural suggestions and/or improvements to
optimize network performance by decreasing CPU usage.

1



2 Introduction

1.2 Problem description

The purpose of the ARTPEC-4 SoC is to transmit video surveillance images to
several connected clients. With several clients, processing of TCP/IP packets in
software consumes a high amount of the CPU resources. This means that other
useful system or application processing like audio compression algorithms don’t
get enough resources. Such applications also reduce network throughput because
the CPU has to perform the same tasks in a repeated orderly manner on data
(like copying, segmentation, checksumming) to generate packets to be sent over
the network.

In most cases the ARTPEC-4 SoC acts as a server system with traffic mainly
flowing in egress direction, and without the packet data being touched by the
CPU for any kind of processing. In such scenario CPU consuming tasks can
be offloaded to a network processing hardware block so the system instead can
use the CPU cycles for computation intensive applications, and meanwhile also
achieve better performance. The ARTPEC-4 SoC implements a Network Processor
towards this end which offloads the TCP segmentation and protocol checksumming
tasks from the main CPU on the transmit path. AXIS software also utilizes the
zero-copy concept supported by the Linux kernel in version 2.6 to avoid all copying
of data, with the entire image data being handled using pointers. These pointers
are given to the Network Processor to be transmitted over the Ethernet interface
by the Direct Memory Access (DMA) without the data going through the CPU.
Performance tests have shown that this system architecture works well for a single
client, but with multiple clients the performance drops significantly.

1.3 Problem analysis

One suspected cause for the surprisingly low performance of Axis’s offloaded sys-
tem with several clients connected is the computer architecture of the system. As
the ARTPEC-4 SoC is transmitting video data most of the time, and spends little
time on the receiving path which only contains connection requests and acknowl-
edgement traffic, the first logical assumption is to look into architectural aspects
on the transmission path. Since the Linux kernel does not support a complete
offload of TCP/IP processing, and probably never will since there is strong oppo-
sition against implementing it due to maintainability concerns [5] [13], the kernel
only supports segmentation and checksum offloading. Even with the zero-copy
implemented in the kernel, the network stack can be modified in a way such that
the CPU processing of TCP/IP data would be reduced.

1.4 Thesis scope

The main goal of this thesis is to improve the performance in the multiple con-
nected clients scenario of the ARTPEC-4 SoC. In other words this means decreas-
ing the CPU usage. Since many aspects can contribute to the factor of CPU usage,
the scope of interest has been limited to investigation and/or improvement in three
areas:



Introduction 3

• Investigation of possible additions or changes to the hardware architecture
and/or the firmware functionality in the Network Processor to decrease CPU
usage.

• Investigation of possible computer architectural changes in the ARTPEC-4
SoC that would influence the CPU usage. The main components influencing
the data in memory on transmit path are the CPU architecture, the cache
hierarchy and related policies, the DMA unit, the NETPROC, and the Eth-
ernet interface. The custom hardware accelerator, called video subsystem
in ARTPEC-4 reads the data from the video inputs, compresses the data,
and then writes the compressed image data back to memory. As such the
investigation is for the data path from memory to Ethernet interface.

• Investigation of different approaches to transmit video surveillance data
more efficiently from the memory to the NETPROC by minimizing the
amount of CPU support being required in the process.

The main protocol of investigation is TCP as this is the main protocol used
by the clients to receive surveillance video data.

1.5 Thesis outline

The remaining chapters in this thesis are organised as follows:

Chapter 2 presents basic theory for the thesis. This includes TCP/IP protocol
suite and basic computer architecture of ARTPEC-4.

Chapter 3 describes the tools used throughout the thesis work.

Chapter 4 presents main investigations and implementations carried out in order
to achieve the goal of the thesis. It also gives the account of all measurements
made and results obtained.

Chapter 5 presents the final results, discusses several considerations, and options
for future implementation.



4 Introduction



Chapter2
Theory

This chapter describes the background theory required for basic understanding of
the thesis, decisions made, and work carried out. It describes the basic TCP/IP
network stack protocols and ARTPEC-4 architecture. It is recommended to read
the referenced articles in the bibliography section on the topic if the reader finds
the topic interesting and wants to learn more about it.

2.1 The OSI Model and the networking protocols

The Open Systems Interconnection model, or OSI model, is a standardization of
communication systems. It defines 7 different layers as shown in Figure 2.1, but
does not specify any specific standard protocols for those layers to use. This model
is widely accepted, as the protocols tends to vary over time with different vendors
demanding different features and short-comings being discovered over time. It
exists, however, a de facto standard in the Internet infrastructure of using Ethernet
in the data link layer, IPv4 (and lately IPv6) in the network layer, and TCP or
UDP in the transport layer. By simplifying, it could be said that each layer only
contains necessary information for processing on it’s own level. The data output of
one layer is used as data input for the immediate adjacent layer. For instance, an IP
packet (level 3) contains IP relevant information (source and destination addresses,
Time-To-Live, etc) and carries a layer 4 packet (TCP, for example) in it’s payload.
This hierarchy creates a lot of traffic overhead in terms of header data, but does
also provide durability of communitations infrastructure. The three lower layers
are the media layers, and defines ways of transmitting data between hosts. The
upper 4 layers are the host layers used in the hosts upon data arrival. Therefore,
large networks could be created by using routers or switches only implementing
the bottom three layers. But for useful host-to-host communication it is required
that both end nodes implements layers 4-7.

2.1.1 Ethernet standard

Ethernet is a family of hardware standards for network communication where the
standards differ in speeds, actual hardware used, and other features. The very
first standardized version of Ethernet was released by the Institute of Electrical
and Electronics Engineers (IEEE) in 1983 with the IEEE 802.3 standard. It’s

5



6 Theory

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data link Layer

Physical Layer

Network

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data link Layer

Physical Layer

Host Layers

Media Layers

Figure 2.1: The OSI model illustrated

specifications were to use the speed of 10 Mbit/s using thick coax cables. Later
standards have specified speeds up to 100 Gbit/s, and several different hardware
links like optical fibre and RJ-45 connectors over copper. The most commonly
used speed for consumer wire connected devices today is the Gigabit Ethernet
running at 1000 Mbit/s or 1 Gbit/s superseeding the somewhat older but still
quite popular Fast Ethernet Standard running at 100 Mbit/s.

One Ethernet standard was made in 2003 which added the ability to power de-
vices using only an Ethernet cable. This standard, known as Power over Ethernet
(PoE), has become very popular in Axis products since it can save customers the
trouble of installing additional power cords for the cameras. The first version of
this standard specifies a maximum power supply of 15.4W using a 44-57V power
source which is enough for most of the Axis products.

Even with a lot of different Ethernet standards and additional features being
evolved in the last 30 years the structure of the Ethernet frame1 has seen very
small or no modifications up to date, and is fully described in Section 2.2.

2.2 Common Network Protocols

To achieve any form of usable communication between two connected devices a
protocol has to be agreed upon. A protocol defines how information should be
encoded and interpreted. Hence, a poorly developed implementation of a protocol
could render a device useless. The best way to describe a protocol is to describe it
as a language in electronic form. In order for two devices to understand each other

1A data packet consisting of protocol header and payload sent over the Ethernet Line.



Theory 7

Preamble

Start
Of

Frame

Source
MAC

Dest.
MAC

Ethertype Payload

Frame
Check

Sequence

Interframe
Gap

(7) (1) (6) (6) (2) (46-1500) (4) (12)

Figure 2.2: An Ethernet frame with different fields and their sizes
in bytes

they have to speak the same language. The following sections will discover the most
widespread network protocols used currently in almost all network infrastructure
and server systems today.

Ethernet Frames

The 802.3 Ethernet frame, shown in Figure 2.2, defines the way data is sent over
the Ethernet interface. The MAC addresses used for source and destination fields
are unique for each Ethernet device. These addresses are used to make sure the
transmitted data will be delivered to the device with the corresponding address.
The Ethertype field tells the receiving Ethernet interface which protocol it can
find embedded in the payload. Since the Ethernet frame standard is at the second
level of the OSI model it is used for carrying data and forwarding it to the upper
layers. The Ethernet frame also contains a checksum field to confirm data integrity.
Preambles are used to detect new incoming packets and locate the start of packets.
Interframe gaps also have a somewhat similar purpose by leaving room for the
receiving hardware to process it’s data. Since the preamble, interframe gap, and
Ethernet header use some of the available capacity of the Ethernet channel the
amount of useful available data traffic on a Fast Ethernet channel is at best

1500 B

1538 B
· 100 Mbit/s = 97.529 Mbit/s

when only MTU2 packets are sent. At the worst possible case, the utilization can
be at most

46 B

84 B
· 100 Mbit/s = 54.762 Mbit/s

Internet Protocol

Internet Protocol (IP) [21] exists in several different versions, with version 4 being
widely used. It has gained a lot of attention lately in various computer magazines
and other media due to it’s limited 32-bit address space which could cause troubles

2Maximum Transmission Unit. Largest data unit possible in payload. 1500 Bytes (B)
for Ethernet.



8 Theory

bit
offset

0-3 4-7 8-13 14-15 16-18 19-31

0 Version
Header
Length

Differentiated
Services
Code Point

Explicit
Congestion
Notification

Total Length

32 Identification Flags Fragment Offset

64 Time To Live Protocol Header Checksum

96 Source IP Address

128 Destination IP Address

160 Options ( if Header Length > 5 )

160
or
192+

Data

Figure 2.3: The IP header for protocol version 4

in a near future. A lot of effort is being put into encouraging Internet Service
Providers to upgrade their infrastructure to support IPv6.

The IP protocol header for version 4 is shown in Figure 2.3 and contains many
different fields, but the interesting ones are the source and destination addresses as
well as the protocol field. The addresses are, as mentioned earlier, 32-bit values and
are used to define unique host numbers. The IP packets are used for inter-network
communication, and carries protocol data as specified by the protocol field. The
payload consist of a packet from/for the transport layer protocol usually TCP or
UDP.

Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) [20] is a protocol used for diag-
nostic and routing purposes. One of the most common utilizations of the ICMP
protocol is the ability to determine whether a system is online or not by sending
an ICMP ‘Echo Request’, also known as a ‘Ping’ message. The receiver of this
message replies by sending an ICMP ‘Echo Reply’ message with the identical pay-
load of the received ‘Echo Request’ message. The ability to add a certain amount
of payload data could be very useful for determining transmission errors, and also
as seen in Section 3.3 for debugging purposes.

Transmission Control Protocol

Operating at the transport layer, the Transmission Control Protocol (TCP) [22]
is used for end-to-end communication of applications. TCP is a connection based
protocol, and uses several different states to set up and tear down connections,
and reliably communicate data. The structure of the TCP header is illustrated in
Figure 2.4 and important fields are discussed below.

The flags are used for TCP state handling and will be described below. The
ones used in all basic TCP implementations and the ones accounted for in Fig-



Theory 9

Source Port(16 bits) Destination Port(16)

Sequence Number(32)

Acknowledgement Number(32)

Data
Offset (4)

Reserved
(6)

Flags
(6)

Window size(16)

Checksum(16) Urgent(16)

Options and Padding

Data

Figure 2.4: The TCP header and it’s fields

ure 2.4 are Acknowledge(ACK) flag, Synchronize(SYN), Finish(FIN), Reset(RST),
Push(PSH), and Urgent(URG).

The source and destination ports are used to determine which application
running on the host or client system the packet originates or should be delivered
to. For server applications there exists some standard port numbers like web-
servers running on port 80 and FTP servers running at port 21.

The sequence and acknowledgement numbers are used to ensure ordered de-
livery. TCP data is seen as a stream of bytes where every byte is numbered. The
sequence number field tells the number of the first byte in the payload. By using
this approach packets received out of order could be re-organized at the receiver
side, and hence ordered delivery can be achieved. The acknowledgement number
is used to acknowledge data up to but not including the acknowledgement number.
To enable this the ACK flag in the flags field has to be set, and this is usually the
case since it doesn’t cost anything extra in terms of traffic overhead. The mecha-
nism of sequence and acknowledgement numbers therefore helps the detection of
corrupted or lost packets at the sender end. By reading the acknowledgement num-
bers and comparing them to what has been sent the lost and corrupted segments
could be retransmitted after a timeout has occurred. This timeout is basically a
timer waiting for acknowledgement of the last sent data segment.

The window size field is used to tell a sender how much data it can send unac-
knowledged. Furthermore checksumming is implemented to ensure data integrity.

Connection setup and tear down

The flags are used for maintaining TCP state data and for connection setup and
tear down. TCP uses what is called a ‘3-way handshake’ as illustrated in Figure 2.5.
To establish a TCP connection a SYN flag is first sent along with a randomly
generated sequence number. The node at the other end replies by sending a SYN
message along with another randomly generated sequence number. The ACK flag
is also set and the acknowledgement number is set to that of the initial received
SYN packet incremented by one. Finally an ACK with the response sequence
number incremented by one is sent by the initiator and the connection is considered
established. It could now be used for streaming data in any direction.



10 Theory

T
im

elin
e

Client
(initiating)

Server
(listening)

Connection Established

SYN, SEQ=27

SYN + ACK=28, SEQ=42

ACK=43, SEQ=28

Figure 2.5: The typical procedure of a TCP connection setup

The tear down of a TCP connection is very similar to the procedure of a TCP
connection setup since it also involves the three way handshake. See Figure 2.6.
A TCP packet with the FIN flag is initially sent by the host requesting tear down.
The other end sends a packet with the ACK flag set, acnowledging the tear down
request. It then sends a packet with FIN and waits for the acknowledgement of the
initiating node. After this procedure the connection is closed and all used system
resources by the connection are freed.

User Datagram Protocol

User Datagram Protocol (UDP) [19] is the other common transport layer protocol
that has seen a widespread use. It is much simpler than the TCP protocol, and
neither support in order data delivery nor retransmission of lost data. It has an
advantage though when it comes to response times and processing overhead. This
makes UDP ideal for cases where fast response times and low server processing
overheads are required. Video streaming and online gaming are two examples
where UDP makes a strong case, and in such scenarios a lost segment is more
tolerable than delayed packets.

Even some of the upper layer protocols requiring ordered delivery sometimes
uses UDP. The network file system, NFS, is one such example and the responsi-
bility of implementing features of reliable connection are instead moved up to the
application layer as speed is prioritized. The header is shown in Figure 2.7 and
as can be seen is simpler than that of TCP. As can be seen the port numbers are
used as well, with a 16-bit port range.



Theory 11

T
im

elin
e

Client Server

Connection Closed

FIN, SEQ=72

FIN + ACK=73, SEQ=96

ACK=97

Figure 2.6: The typical procedure of a TCP connection teardown

offset(bits) 0 — 15 16 — 31

0 Source Port Number
Destination Port Num-
ber

32 Length Checksum

64+ Data

Figure 2.7: The UDP header and it’s fields



12 Theory

Real Time Streaming Protocol

The Real Time Streaming Protocol (RTSP) [23] is an application-level protocol
that is widely used for media streaming. This protocol can use UDP or TCP for
transport layer. The video server software run on Axis cameras use this protocol
to stream the video data to a client.

Hyper Text Transfer Protocol

The Hyper Text Transfer Protocol (HTTP) [10] was invented 1990 by Tim Berners-
Lee and started the WWW revolution. It does not specify a specific header with
fixed length fields, but rather specifies a series of different commands to be sent
over a TCP stream for interacting with an HTTP server. The typical use case is
a user asking for a specific resource on the server. The server then replies, if the
user is authorized to get the information, by acquiring the requested resource on
the system, and then transferring it to the client.

2.3 Linux TCP/IP protocol handling of video stream-
ing

AXIS software uses the TCP/IP network stack with the TCP transport layer
protocol to transmit video data. The TCP header is extended with a 10 Bytes
timestamp option to calculate better Round Trip Times (RTT) for transmitted
packets. This results in a total size of 32 Bytes for the TCP header and 20 Bytes
for the IPv4 header adding up to a total of 52 Bytes of header overhead.

When the media server has data to send it makes a system call to the kernel.
Depending on the system call and available hardware support the kernel performs
necessary processing, and makes the data available to the Ethernet device driver to
be sent over network. A high level account of the data processing from the socket
later to device processing in Linux kernel is given in [9]. [17] and [18] also give a
good explanation on socket buffers and TCP handling of socket data respectively.

2.4 Commercial TOE solutions

There exists several different solutions on the market today for network offloading.
The most commonly used and widespread is the Transport Segmentation Offload-
ing (TSO) solution where dedicated hardware is used for checksum calculation and
segmentation. The solutions that involves hardware handling of TCP parameters
are called TCP Offload Engines (TOE) and are used in high-end server cards.

Through the years various TOE solutions have existed. Recently, such so-
lutions have been popular in 10 Gbit Ethernet interfaces where the high traffic
requires lots of CPU power. One major contributor in this market is Chelsio Com-
munications which has implemented TOE in their high-end network cards targeted
for server users.



Theory 13

Major server operating systems supporting TOE devices are Windows server
2003 and onwards, as well as FreeBSD. As mentioned earlier, there is strong op-
position against complete TOE solution amongst Linux Kernel developers, and
such a feature would not see implementation in a foreseeable future. Chelsio has,
however, published a kernel interface for TOE as well as a few patches. These
patches were rejected, so instead their customers have to build their own patched
kernel with support from Chelsio in order to enable TOE. Similar solutions exists
from other vendors as well, with all requiring third party patches of some kind.

TOE is extremely rare amongst consumer network interfaces since modern
computers could handle the traffic generated from Fast Ethernet or Gigabit Eth-
ernet interfaces without any problems. As a rule of thumb, 1 bit/s of TCP traffic
require 1 Hz of CPU frequency, and amongst consumer Ethernet cards the bene-
fit of TSO reduces enough system resource usage for a Gigabit or Fast Ethernet
interface so TOE is considered unnecessary.

2.5 ARTPEC-4 architecture

ARTPEC-4 is the latest generation SoC in Axis ARTPEC SoC series. It is a
system optimized for high performance image processing required for a network
camera or video server on a single chip. The SoC supports four video input ports,
one video output port, a powerful 400 MHz little endian MIPS 34Kc CPU, 128 KB
of internal RAM, 16 KB of internal ROM, DDR2 DRAM and NAND flash PROM,
DMA unit, two level cache hierarchy, and 10/100/1000 Mbps full duplex Ethernet
MAC with support for TCP/IP stack offloading using a hardware accelerator called
Network Processor. Figure 2.8 shows a simplified block diagram of the ARTPEC-4
architecture where only the hardware blocks of interest for this master’s thesis are
shown.

2.5.1 Cache Hierarchy

ARTPEC-4 implements a two level hierarchy consisting of the caches L1 and L2.
An internal RAM memory block of 128 KB can be configured as plain memory,
L2 cache or both. A cache is a fast memory used to hold frequently accessed data.
This reduces the effective access time to data in main memory, and reduces stalls
caused by waiting for data to become available.

L1 cache is an immediate fast memory next to the registers in the main CPU,
called CPU cache sometimes. CPU first checks whether a copy of data intended
to be written or read is in the L1 cache. If so, the CPU performs the operation on
the cached data which is much faster than accessing the L2 cache or main memory.
There is a 32 KB of instruction cache and 32 KB of data cache between CPU and
L2 cache.

The L2 cache is a system level cache that caches data from main memory for
the CPU and the DMA clients. The internal RAM stores both cached data and
tag data (124 KB for data and 4 KB for tag data). Presently, the internal RAM
is completely configured as L2 cache and does not act as on-chip RAM. The L2
cache is 8-way set associative, uses 128 Bytes cache lines, and write-back write



14 Theory

Video
Subsystem

Memory
Arbiter

DDR2
Memory

L2 Cache

CPU

L1 Cache DMA

Network
Processor

Ethernet

Video
Encoder

Figure 2.8: ARTPEC-4 architecture with blocks of interest

tag index displacement

32 14 13 7 6 0

Figure 2.9: Effective memory address split to access cache line of
interest

strategy. This means a cache line consists of 128 Bytes of continuous block of
data, a set consists of 8 such cache lines. A cache way is all the cache lines at
the same position within each set. Write-back strategy means that only the cache
line is modified and not written to main memory. Modified cache lines are written
to main memory only when they get replaced. The L2 cache uses only physical
addresses which means indexes and tags both uses physical addresses, and not
virtual addresses. The effective physical address can be divided into three fields
as shown in Figure 2.9.

The displacement field selects a byte or word that is requested. The index field
selects a set that the data has been put in. The tag field is compared with the tag
field of the tag data to verify for a particular physical address.

The L2 cache is non coherent with the L1 cache and other subsystems accessing
main memory directly. For instance the video subsystem writes uncompressed
video data directly to the main memory without going through L2 cache. This data
then goes to an encoder without passing L2. The encoder stores the compressed
image data to main memory via L2 using DMA. After processing, compressed



Theory 15

Context
Descriptor

Data
descriptor

md =
header eop

Data
descriptor

md =
payload wait

Data
descriptor

md =
payload eop

Data
descriptor

md =
header eop

Data
descriptor

md = pay-
load eop,eol

header
buffer

data
buffer

data
buffer

header
buffer

payload
buffer

Figure 2.10: Example of two packets in DMA transmit ring

data is sent out on the Ethernet interface using DMA. Because of the absence of
automatic cache coherency, relevant parts of the L1 cache needs to be manually
flushed to maintain coherency with the L2. The interface between the L2 cache
and memory is 256 Bytes wide with a capacity of 1.6 GB/s.

2.5.2 Direct Memory Access

Direct Memory Access (DMA) unit is used to transfer data between a given mem-
ory location and any peripheral attached to DMA as client, or between any two
memory locations without involving CPU except for initiation of the transfer in
some cases. This unit offloads CPU of routine and inefficient task of copying data,
and precious CPU cycles can be used to do more computation intensive tasks in-
creasing its efficiency. DMA interface to L2 cache is 32 Bytes wide. Ethernet client
attached to DMA via Network Processor is of particular interest in this thesis.

All the control data required to complete transactions is stored in data struc-
tures called descriptors. Each descriptor pointing to a buffer in memory is called
a data descriptor. A linked list of these data descriptors is managed by a context
descriptor data structure. All descriptors have a meta data field for communica-
tion between the DMA client and the software. The software interface uses a set
of C structs to represent the DMA list descriptors as shown in Figure 2.10.

If several data descriptors are used to describe one packet, the wait flag is set
in all but the last data descriptor. The last data descriptor should flag an end
of packet bit (EOP) indicating the end of a logical block of data. A list of data
descriptors may contain several packets and the last data descriptor of the list is
always marked with end of list flag (EOL).

2.5.3 Main MIPS CPU

The main CPU is multi-threaded which behaves as two virtual processors. What
this means is that it looks like two CPUs from the view point of software, but
these virtual CPUs share the same execution hardware with two different sets of



16 Theory

DMA OUT

DMA IN

Network
Processor

Ethernet

Figure 2.11: Network Processor’s architectural position

program registers. The effective performance is about 120% that of single threaded
CPU. In the events of stalls from memory reads or pipeline dependencies the other
thread runs instead of the first thread waiting. The interrupts, for instance the
receive packet interrupt, goes to the primary virtual CPU termed CPU0.

2.5.4 Ethernet Interface

The Ethernet interface is connected to two DMA channels, one in transmit direc-
tion and the other in receive direction. When receiving and transmitting packets
the Ethernet MAC layer keeps track that packets are communicated correctly. Be-
fore the Ethernet interface is ready to transmit or receive data over a network it
should be configured with a MAC address, half or full duplex, etc. It should also
setup and activate a context descriptor with linked DMA data descriptors for each
of the DMA channels.

When transmitting, the interface generates a preamble and start of frame
delimiter (SOF) and sends it over the wire. After that it reads data from the
memory via the DMA out channel until the end of packet (EOP) flag is reached.
The data is read starting at the destination and source MAC addresses followed
by the type field, and continuing with the payload part. When EOP is reached
the interface automatically appends the frame’s Cyclic Redundancy Check (CRC)
resulting in the Ethernet frame as seen in Figure 2.2.

On the receive path, the interface starts by sensing the preamble and SOF
which are used to lock on an incoming bit stream. Frames passing initial checks
on the header field are accepted reading the payload part. In parallel to receiving
a frame the interface calculates the CRC and compares with the CRC field in the
frame. In the case of a match (should always be the case except for transmission
errors and faulty hardware), the frame along with CRC is written to memory via
DMA. If not, DMA is commanded to discard the packet and clean up.

2.5.5 Network Processor

Network Processor (NETPROC) is a hardware accelerator that offloads the main
CPU from network processing tasks. This increases the network bandwidth and
decreases the CPU usage. NETPROC is placed between Ethernet interface and
DMA IN and OUT channels as shown in Figure 2.11.

NETPROC uses DMA lists in automatic mode where there is no need to issue
DMA commands for every packet DMA handles. NETPROC has three main parts:



Theory 17

• Transmit path: reads packet data from memory via DMA OUT channel and
sends the processed packet frame to Ethernet interface.

• Receive path: reads packet from Ethernet interface and stores the processed
data in memory via DMA IN channel.

• Network CPU: handles the necessary processing of the packet like segmen-
tation for TCP protocol.

The transmit path acts as a network interface that can receive large chunks of
data, segment it into packet frames of underlying network MTU, generate header
and checksum for each frame, and send the resulting frame to the destination with
very little or no assistance from the network stack of the kernel. The transmit
path is also capable of sending same data to multiple destinations and optionally,
at a specific rate.

The NETPROC transmit path has two meta data memories each of 256 Bytes
and two payload memories of 1.5 KB each. Packet buffers on the transmit path
could contain either header or payload data. The meta data field of the DMA data
descriptor is used to distinguish between the two. Typically, header data is received
from the DMA OUT channel and stored in one of the free meta data memories.
The NETPROC CPU process this header information and generates the header
for the first frame of the large segment to be sent. In parallel NETPROC continues
to read payload data and store it in the corresponding payload memory. While
the payload is being stored checksum is generated by the checksumming hardware
unit. When one MTU sized frame or end of segment is reached, the header and
payload data is transferred from the meta data and payload memory respectively
to Ethernet interface. While this packet frame is being transmitted NETPROC
receives another packet data via DMA OUT to the second meta data and payload
memory. Thus, the transmit path handles two packets simultaneously. A simple
block diagram of the transmit path in the NETPROC can be seen in Figure 2.12.
The copy unit copies header data for packet n+1 to the other meta data memory
while NETPROC CPU generates header for packet n, if the next packet ready for
transmission belongs to the same segment. This is valid as major part of the header
remains constant for all packets of a segment and changing fields are generated by
NETPROC CPU. The control packets like ARP, ICMP, TCP SYN, etc are, on the
contrary, transparent to the NETPROC. All these operations are automatically
carried out by NETPROC. If required, the NETPROC CPU can also be operated
in manual mode.

The receive path has a 512 Bytes memory to act as FIFO buffer for the data
received from Ethernet interface before being stored into memory via the DMA IN
channel. A block diagram of the receive path is shown in Figure 2.13. The pattern
matching unit can be programmed to accept or discard a packet by comparing the
header fields to desired values, but presently this unit is not used in the current
system configuration. The checksum unit calculates the folded 16-bit checksum
in little endian while the data is being sent to memory by DMA. The checksum
is written to the meta data field of the data descriptor to be used by the kernel.
Again the receive path is operated in automatic mode but can be set to manual
control.



18 Theory

Checksum
NETPROC

CPU
Copy Unit

Metadata
Memory

TX input
unit

Payload
memory

TX output
unit

Figure 2.12: Overview of transmit path of the NETPROC

RX input
unit

RX
Memory

Pattern
Matching

Unit

RX output
unit

Checksum

Figure 2.13: Overview of receive path of the NETPROC



Theory 19

The NETPROC CPU is a CRIS3v10 CPU with no user mode and multi-
plication. It has an instruction and data memory of 4 KB. NETPROC has a
programmable timer that can be used to schedule events for NETPROC CPU,
measure performance etc.

3A Computer architecture developed by Axis.



20 Theory



Chapter3
Tools

Multiple tools, both hardware and software, have been used in order to accomplish
the goals of the thesis. The most important ones required to understand the
workflow will be described in this chapter.

3.1 P7214 Video Encoder and Test Setup

The test setup used throughout the master’s project consisted of:

• P7214 Video Encoder

• DVD Player

• Network switch with PoE

• PCs for connecting to P7214 Video Encoder

The P7214 Video encoder is a convenient board for owners of analogue surveil-
lance equipment to enhance their current system with the Axis network function-
ality. It can manage up to 4 independent video sources, and has the full network
functionality of Axis products by using the ARTPEC-4 SoC platform.

To reduce the amount of cables needed to connect the P7124 Video Encoder,
the system is powered by the Ethernet interface itself. Furthermore a DVD player
generating a 25 Frames Per Second (FPS) PAL1 video signal is used as the video
input source. A video showing a train arriving at a train station following a large
crowd leaving the train is used as the test motion picture. This is ideal due to it’s
richness of colour and motion, since it will put heavy load on hardware resources
inside the ARTPEC-4 SoC. The test setup is shown in Figure 3.1.

3.2 Profiling

In order to know where the software bottlenecks are located, profiling software
needs to be used. A profiling software samples the program counter of the CPU
and looks up the address in a symbol table to get the symbol currently running.
Every symbol has a counter for how many hits it had so far in the profiling. When

1European video signal standard

21



22 Tools

DVD
Player

P7214
Video

Encoder

Network
Switch

PC

Figure 3.1: Test Setup

the profiling is done a table of results is printed. This table shows how many
hits each label had (usually it shows only the 20 most used or so) in both actual
numbers and as percentage out of total samples.

3.2.1 AXIS profiling software

The preferred way of profiling an Axis system is to do it over network. To achieve
this Mikael Starvik2 at Axis has developed a software for profiling over network in
an automagic manner. To ensure proper execution Telnet has to be enabled on the
profiled system. The profiled system will profile itself and send the results back
to the system requested the profiling data over FTP. This reduces the network
overhead involved as the program counter requests are made internally from the
profiled system.

The user could at any time after setup press enter on his keyboard to print
the profiling results collected until that time. This method of profiling has been
the most commonly used method of profiling throughout the course of the thesis.

3.2.2 FS2 probing hardware

For some measurements the absense of interrupt-disabled execution paths could
lead to inaccurate results. If the user wants to include all possible code paths,
and also achieve zero overhead profiling another way of measuring has to be used.
This is possible by using the FS2 hardware probing system.

By connecting to the target’s system with a Joint Test Action Group (JTAG)
cable and reading the Program Counter, the profiled system gets no overhead or
interrupts, and do not know about the profiling at all. The results achieved this
way are accurate, but since this way of profiling involves lot of extra work in terms
of buggy software, extra cables, and sensitive hardware, it has been of limited use.

2Also, one of the supervisors of this thesis



Tools 23

3.3 NETPROC debugging

Since the NETPROC used in ARTPEC-4 is very limited, a set of tools had to be
used separately for debugging the software run on the NETPROC CPU. There is
a possibility of adding printing libraries to the NETPROC firmware itself. But
this would add an extra 1.5 KB to the firmware size which is unacceptable when
the memory is 4 KB, and advanced functionality requiring memory area for code
are implemented.

To still be able to read parameters from the NETPROC itself a custom solution
was designed. By using the Wireshark software for packet analysis and modifying
the payload of ICMP replies, any variable or parameter could be printed and read
from Wireshark. This way, debugging code was reduced to a few 100 Bytes, but
the modification also introduced a lot of extra work.



24 Tools



Chapter4
Implementation

Efficient data transmission from the source (video input) to the destination (net-
work output) is affected by many factors such as address space of data, actual
communication of data between different abstraction layers of the kernel and the
network protocol layers, DMA support, special hardware engines like video en-
coder, cache policies, receive path offload, and so on. This chapter will explore
different but not limited to, architectural (both software and hardware) factors
impacting the data flow. It also discusses how this affects the kernel load and the
resulting network throughput.

As the design space of a SoC architecture is huge the investigation is limited
to the set of hardware components involved in the network transmit path. For
ARTPEC-4 these components are the cache, the DMA transmit ring, and the
network processor. The Linux kernel itself supports transmission of large data
segments with minimal overhead. The implementation and working of this soft-
ware functionality are explored as well. The resultant potential improvements are
discussed in each track of investigation.

4.1 Data transmission mechanisms over network

Linux kernel has several I/O-functions which could be used over a network, over a
file system or between any file descriptors since anything could be a file in a Unix
system. A natural consequence of these I/O-functions are that the implementation
is done in a very generic manner to increase maintainability. By not considering
requirement specific aspects performance may not reach its full potential.

Initial investigations were to examine how different system calls moved data
in different ways between the user space application and the device driver for
network transmissions. This section discusses two such system calls which affect
the throughput and CPU utilization significantly. The reader is to note that these
are not the only system calls that support network transmission, but rather show
the extreme cases considering version 2.6 of the Linux kernel.

4.1.1 write()

One classic way to do network transmissions is to use the write() system call.
This function copies the data from a user space buffer to a kernel space buffer

25



26 Implementation

User Space

Kernel Space
Kernel
Buffer

read()

User
Buffer

Socket
Buffer

Network
Interface

DMA

CPU Copy

read()

CPU Copy

write()

DMA

Figure 4.1: Data path using read() and write()

User Space

Kernel Space
Kernel
Buffer

mmap()

. . .

Socket
Buffer

Network
Interface

DMA

virtual address
(shared buffer)

mmap() write()

DMA

CPU Copy

Figure 4.2: Data path using mmap() and write()

associated specifically with the currently used socket, which is then DMA’ed by
the device driver to the network interface. If the requested data is not currently
available in user space it has to be read first. One way is to use read() which
reads data from the kernel space buffer to the user space buffer. This results in
four context switches and two data duplications. Another way which avoids the
data duplication involved in the read() mechanism is to memory map the kernel
data to a virtual address of the user space application using mmap(), thus sharing
the kernel buffer with user space. If the data is always read from the same source,
a video file for instance, the overhead of context switches involved in reading data
could be avoided as well. It is important to note that if the data is not found
in the kernel space it will be DMA’ed to kernel space first. The data copies and
system calls involved in both these cases are shown in Figure 4.1 and 4.2 [24]. The
data is also checksummed while copied in these cases since the overhead added by
checksumming is negligible when all the data is processed anyway.



Implementation 27

4.1.2 sendfile()

Another system call that has been used more recently to improve network perfor-
mance significantly is sendfile(). Its functionality is to copy data from a source
file descriptor to a destination file descriptor without the need of going through
user space. This eliminates the need of extra work for setting up and tearing
down virtual mappings associated with the data. In Linux versions more recent
than and including 2.6.17, this system call internally calls another function named
do_splice_direct() to achieve this functionality. The ‘Splice’ mechanism is used
to achieve what is called a ‘Zero copy transfer’ during network transmissions and
other file copy operations. When this mechanism is used data is not even copied
between the kernel buffer and the socket.

The basic data unit used in the Linux for memory management is a page (or
part of a page). The Linux kernel maintains a page cache which is a cache of the
page-sized data blocks of files. This is mainly useful in systems where data can be
stored in an external memory like a hard drive where data access time often can
be very long. If the page containing the requested data is not already in the cache
a new entry is added to the cache and filled with the data read from the external
memory. Same principle applies for the data being written out [7].

At the heart, the splice mechanism uses pipes to move the data around. Here
a pipe is an in-kernel buffer which is implemented as a set of reference-counted
pipe buffers as shown in Figure 4.3. This means that there are no physical copies
involved but still the data can be copied around many times. A pipe buffer is a
descriptor to a single page of data, and the number of pipe buffers are hard coded
to 16 in current Linux kernel versions. This allows for a maximum of 64 KB data
to be piped at a time. Internally these pipe buffers are implemented as circular
buffers. [3] [4] A pipe is created and cached in the kernel when transferring data
between two file descriptors when neither of them is a pipe. [27]

When using the splice() call to transfer data from one file descriptor to
another the following happens:

1. Splice data from the source file to a pipe, splice_to_pipe(). This means
the page buffers pointing to the memory pages containing the file data are
added to the pipe. It is to be noted that data is not copied but the reference
count of the pages used are incremented.

2. Splice data from pipe to destination file, splice_from_pipe(). This is
similar to the above except data is moved from a pipe to the file.

For network transmissions the destination file descriptor is a socket. Pages
from the pipe buffers are moved to the socket as shown in Figure 4.4. In the socket,
socket buffers (sk_buff) are created by taking the available hardware support
into consideration. These buffers are then added to the output queue or sent
out immediately. As shown in Figure 4.3, sk_buff is capable of storing chunked
pages of data which are organized in an array in the shared socket buffer area.
Since the data and the header can be scattered in memory instead of existing in a
contiguous memory area, data gathering (scatter/gather(SG)) support is required
if copying needs to be avoided. The Linux API has support for this functionality.
As the DMA controller in the ARTPEC-4 platform supports SG functionality a



28 Implementation

struct pipe_inode_info

unsigned int nrbufs

struct pipe_buffer *bufr struct page *page

unsigned int offset

unsigned int len

struct pipe_buffer

unsigned short nr_frags

skb_frag_r frags[MAX_SKB_FRAGS]

struct skb_shared_info

struct page *page

_u32 page_offset

_u32 size

struct skb_frag_struct

splice_from_pipe()

Figure 4.3: Class map of the pipe structure used in the splice()

call



Implementation 29

User Space

Kernel Space

Kernel
Buffer

sendfile()

Socket

Network
Interface

DMA

sendfile()

move
reference
to data

transmit

DMA

Figure 4.4: An illustration of Splice mechanism.

true zero copy is achieved. This splice mechanism is very useful in Axis cameras
as they mainly behave as server systems just moving data without looking at it.
Presently software used in the cameras utilizes this call to deliver video data to
the clients.[15][14][26]

4.1.3 Network traffic analysis

In order to measure the performance of these system calls for Axis camera a
generic client-server suite of programs was written [1]. These programs supported
configuration parameters for connection setup; protocol, data block size, number
of clients, transfer mechanism, and number of data transmissions. A test file of
size 100858 Bytes was used to generate an arbitrary amount of network traffic.
The setup included an Axis camera, a computer, and a Fast Ethernet switch. The
server program was run on the camera and all clients were run on the PC. This
program was only used in the initial stages of the project, and was later discarded
since real-life scenarios were used instead.

Initial analysis of the network packets revealed some interesting aspects that
affected throughput and CPU utilization. Only TCP is discussed as it was the
main focus for improvement. Some early observations were that:

• With the Network Processor enabled the outgoing Ethernet full frames were
only 1498 Bytes long, 16 Bytes short of MTU (1514 Bytes) for standard Eth-
ernet frames. These 16 Bytes of data appeared as separate small frames on
the line. The small frames carried a payload with the length that was an
integral multiple, ‘n’, of 16, where ‘n’ is consecutive frames of 1498 Bytes
length. This behavior was common to both write() and sendfile() sys-
tem calls. The same applied to UDP traffic as well. Figure 4.5 illustrates the
problems experienced. Since the network line had lots of these small pack-
ets, the resulting overhead for the network affected the network throughput
significantly. It did also utilize the DMA channels, the network processor,



30 Implementation

. . .(MSS - 16)B(MSS - 16)B (n · 16B)

Figure 4.5: An illustration of non-standard MTU packets generated.

Single Page (4096B)

MSSMSS 1200B

Several Pages

. . .MSSMSS (m · 4096) mod 1448 B

Figure 4.6: An illustration of the segmentation observed in send-

file()

and the Linux kernel itself in a very inefficient way.

• With the Network Processor disabled standard full frames of 1514 Bytes
were transferred. The two behaviors in this case that was found interesting
are:

– sendfile() always transmitted data in a way such that small sized
frames appeared after a number of full frames. The frames between
two small packets and including the latter small packet formed an in-
tegral multiple, ‘m’, of pages of 4 KB. What this means is that the
outgoing traffic consisted of bm·4096

1448 c of full frames followed by a small
frame of size (m · 4096) mod 1448. Analysis of the Linux implemen-
tation of this call stack revealed that this function’s basic operational
data unit is a memory page. It sends one memory page at a time to
the socket using tcp_sendpage(). The non-MTU packet is generated
when switching to a non-adjacent page in memory and that page is
not ready. Thus, data that occupies multiple non-contiguous pages
results in a non-MTU packet for every hole, increasing overhead, and
lowering throughput. See Figure 4.6.

– Using the write() system call resulted almost always in full frames.
Since the investigated protocol is TCP, this function would subse-
quently call tcp_sendmsg(). As DMA supports SG, the implemen-
tation of this function utilizes this feature, and uses pages as basic
unit of data handling.

It should also be noted that both functions, tcp_sendpage() and tcp_sendmsg(),
handle the segmentation process of TCP protocol.

The client server suite of programs were mainly used to measure performance
initially and for debugging throughout. Other methods as discussed in Chapter 3.



Implementation 31

Method Connections Throughput(MB/s)

TCP write 1 11.78
TCP write 4 11.79
TCP write 16 11.77
TCP write 32 11.75

TCP sendfile 1 11.64
TCP sendfile 4 11.77
TCP sendfile 16 11.76
TCP sendfile 32 11.76

Table 4.1: Throughput figures with Network Processor disabled

Method Connections Throughput(MB/s)

TCP write 1 11.77
TCP write 4 11.75
TCP write 16 11.73
TCP write 32 11.74

TCP sendfile 1 11.07
TCP sendfile 4 11.13
TCP sendfile 16 11.55
TCP sendfile 32 11.56

Table 4.2: Throughput figures with Network Processor enabled

4.1.4 Measurements

The measured TCP throughput for different test cases are tabulated in Table 4.1
and 4.2.

It can be observed that the throughput is close to the 100 Mbit/s line speed
used, and both write() and sendfile() perform almost the same. In the test
case with one client, write() is a few hundred KB/s faster than sendfile().
This is possible because, to have a fair measurement the data is read into the user
buffer for write() before initializing socket in the server application, and hence
the data pages are already in the page cache whereas for sendfile() pages are
fetched continuously during the transmission. This is also the reason why write()

has slightly better performance measures than sendfile() for other cases as well.
Over time and with many clients, data is distributed all over the available memory
areas. This was also evident when packets on the line were analysed for pages being
sent more non-contiguous.



32 Implementation

ETH ETH IPv4 TCP Payload

(14) (16) (20) (32) (1432)

Figure 4.7: Calculated header (in Bytes) before correction applied

Method Connections Throughput(MB/s)

TCP write 1 11.79
TCP write 4 11.79
TCP write 16 11.79
TCP write 32 11.80

TCP sendfile 1 11.78
TCP sendfile 4 11.79
TCP sendfile 16 11.79
TCP sendfile 32 11.80

Table 4.3: Throughput figures with Network Processor enabled and
driver MTU correction

4.1.5 Small packet problem

In order to understand the problem with non-MTU sized frames for the scenarios
where the Network Processor was enabled, the network device driver and Network
Processor were investigated further with focus on packet handling and MTU calcu-
lation. Very soon a bug was discovered in the network driver when calculating the
current MTU size. When the Linux kernel calculates the size of header it consid-
ers TCP, IPv4, and Ethernet protocols. The network driver, after having received
header size information from kernel, treated this calculated header size as if the
size of the Ethernet protocol header was excluded, and accounted for this header
explicitly in MTU calculation. This resulted in a miscalculation since the Ethernet
protocol header size was being considered twice. After masking to achieve proper
alignment, the payload MTU became 16 Bytes lesser which was delivered to the
network processor for packet handling. The header size calculated in the network
driver is shown in Figure 4.7. After this bug was corrected in the driver by adding
in an extra header throughput improved tens to hundreds of KB/s as can be seen
in Table 4.3.

4.1.6 Splice Modification

Linux kernel implements a function, do_tcp_sendpages() which was designed to
send an array of pages to the socket instead of going through the entire network
stack for each page sent. In the kernel implementation tcp_sendpage() actually
calls do_tcp_sendpages(), but with a single page array. It is not clear why it was



Implementation 33

Streams Throughput (KB/s) CPU
TCP UDP Audio Changes TCP UDP FPS Load

10 0 2 None 951.34 — — 66.15%
5 5 2 None 912.76 867.68 21.4 58.36%
10 0 2 Splice 1038.17 — — 52.56%
5 5 2 Splice 984.77 915.06 23.4 54.69%

Table 4.4: Performance results from modifications to splice imple-
mentation.

decided to only send one page at a time instead of sending all the pages in the pipe
using do_tcp_sendpages() with a page array as argument. In order to observe
how kernel utilization improved by using do_tcp_sendpages() to send all pages
in the pipe at once to the socket, changes to the kernel sendfile() call stack was
made.

splice_from_pipe() calls splice_from_pipe_feed() which eventually in-
voked the function tcp_sendpage(). To make changes to the Linux kernel, the
function implementation of splice_from_pipe_feed() was modified to call di-
rectly do_tcp_sendpages() with an array of pages built with the pipe buffer
pages in the pipe. In order to keep the implementation simple this modification
assumed that the destination file was a socket.

4.1.7 Validation

To verify for the improvements in reducing CPU utilization, the kernel run on
the Axis camera was profiled, and results for different test cases are tabulated
in Table 4.4. All different test cases have added computation demanding audio
traffic to put some extra load on the CPU, since the network interface itself would
become the bottleneck when measuring only with video clients. In a TCP traffic
only scenario CPU utilization decreased by 20.54% and throughput increased by
9.13%. For the mixed traffic scenario CPU utilization decreased by 6.29%, TCP
throughput increased by 7.89%, and UDP throughput increased by 5.46%. The
difference in CPU utilization is because UDP is a datagram protocol and the
data is handled by the application layer. The mixed traffic case used in these
measurements was mainly to measure the average FPS rate improvement, and
it can be observed that FPS increased by roughly 2 frames. Since all the pages
are confirmed before being sent to do_tcp_sendpages(), no small packets were
observed on the wire, hence increasing efficiency further. An overall observation
is that the modifications made to the network call stack improved both the CPU
efficiency and network throughput.



34 Implementation

4.2 Cache architecture

As already described in Section 2.5, ARTPEC-4 supports a two level cache hier-
archy with L1 and L2 caches. The L2 cache is a system level cache that caches
data from main memory for the CPU and the DMA channels. Each DMA access
has a width of 32 Bytes, whereas the L2-DDR2 interface width is 128 Bytes. The
L1 cache lies between the L2 cache and the CPU, and is not coherent with L2.
Hence, everytime a DMA transaction is initiated by software manual blasting of
relevant pages in the L1 data cache.

Since the camera acts as a server moving video data from memory to the
network interface without requiring the CPU having to look at the data, blasting
of the L1 data cache can significantly affect CPU performance. Another potential
problem related to caches is the video subsystem that moves data to memory in
a way that it bypasses the L2 cache. As a result of these data transactions, L2 is
non-coherent with memory, and every DMA transaction invalidates L2 cache lines
so that they are fetched from memory before being read by DMA. Hence, for the
given hierarchy of memory with cache and the 2 threaded MIPS architecture it is
of interest to measure their effect on CPU utilization.

Profiling using JTAG showed approximately 4% of the total execution time
under load (4 TCP video streams, 4 UDP video streams, and 2 UDP audio streams)
was being spent in cache flushing functionality. This is much less than the earlier
predicted value of about 20% that comes from earlier chip generations. If the L1
cache is made coherent with the L2 cache this would potentially increase CPU
hit rates, hence its efficiency. After these discoveries this investigation track was
considered a dead end, and no further analysis was carried out.

4.3 Ethernet driver queues

In a multi-core, multi-threaded system, locks are used to serialize access to shared
resources avoiding race conditions. As the number of threads and cores increase,
these locks can easily become bottleneck of the system since every thread and core
wanting to use the shared resource must wait for it to be free. One such lock that
would affect the network performance is located in the network driver, where the
DMA transmit queue used for queueing network data uses a lock, as it is a system
wide shared resource.

Before proceeding to make any changes to the transmit queue the utilization
of the lock was measured using timers to find out how much of the time the lock is
held between two cores. The percentage of time for which the lock is held during
queueing, and rescheduling when egress is busy is shown in Table 4.5. As can
be observed the lock is not held for more than 2% of total execution time, and
rescheduling happens less than 0.1%. This accounted for CPU waiting for the lock
approximately 8 times per second.

To make sure this track was not of potential interest the total percentage of
time spent in transmitting, (until packet is output if transmit queue is available or
rescheduled for later transmission if egress is busy, and returned) do_sendfile(),
was measured and found to be no more than 5% under high loads. Thus, this track
for potential improvements did not prove promising. Since the workload required



Implementation 35

Measured part Utilization

Ethernet queue lock 1.269%
Egress queue rescheduling 0.046%

Entire TX Path 4.269%

Table 4.5: Results from timer measurements in the network transmit
path.

to change this architecture did go beyond the scope of the project compared to the
potential improvement, it was decided that this track was not a target for further
investigation.

4.4 TOE in network processor

In a server system dense network traffic would consume almost all of the CPU re-
sources leaving little or no room for other tasks. A lot of these CPU resources are
spent on checksum calculations and segmentation of transmit data. With General
Segmentation offload (GSO) [11] implemented in ARTPEC-4, the Network Pro-
cessor is used to offload the main CPU from this kind of network stack processing.
As a result total overhead for the transmit path takes less than 5% of the CPU
resources (see Figure 4.5). The main idea here is to offload the most demanding
parts of the network stack processing. The most demanding parts are the most
commonly executed code as well called the common path. For TCP protocol the
common path occurs when the connection has reached the ESTABLISHED state.
The current implementation of the network processor partially offloads the trans-
mit part of the common path. This includes TCP segmentation, TCP header
processing, and checksum calculation for TCP/UDP/IP protocols. Flow control
and TCP timers management are still handled by the kernel software.

With this fast processing of egress traffic handling of the acknowledgements
on the receive path becomes a bottleneck. This is a little unexpected, since
the throughput on the transmit path is several orders of magnitude higher. In
ARTPEC-4, the receive path of the Network Processor engine is transparent to
received packets. All the received packets are, therefore, handled by the main CPU
with the only exception being checksum calculation since dedicated hardware ex-
ists. Profiling results, both while profiling with the FS2 hardware probe and over
network, have shown a high CPU usage for the receive path in the Linux kernel.
Traffic analysis have shown that TCP packets are received continuously in the RX
path to update TCP parameters. Since TCP is a stateful protocol the Linux ker-
nel must update and keep track of several connection parameters for flow control,
congestion control, and retransmission timers based on the received packets.

Every time a network packet is received, the CPU is interrupted to process the
packet. In a high-speed network this can create thousands of interrupts per sec-
ond. Each of these interrupts involve wasting CPU cycles due to context switching
overhead, repeated execution of the interrupt handling code, and replacing cache



36 Implementation

contents. The network driver for ARTPEC-4 is NAPI-compliant [12], which mit-
igates interrupts and packet trottling by disbaling interrupts and switching to
polling for high traffic scenarios. Linux 2.6 also implements a Large Receive Of-
fload (LRO) [6] and [16] feature in software for TCP traffic. LRO combines the
received TCP packets to a single larger packet and then pass the packet up the
network stack, reducing per-packet overhead at higher levels. With both NAPI
and LRO features assisting, receive path profiling results still showed ≈ 13% of
kernel utilization for TCP traffic.

Considering the traffic scenario for Axis cameras where traffic is one-way and
the only received packets are just TCP ACK’s carrying no data, this was considered
being a very high utilization number. If the CPU gets interrupted for every other
incoming TCP ACK packet as is the typical case for TCP traffic, a 100 Mbit/s
data bandwidth produces

100.0 Mbit/s

2 · 8 ·MTU
=

100.0 Mbit/s

24224
= 4128

interrupts just for TCP ACK traffic control at the worst case, which could explain
the somewhat high utilization.

Packet analysis revealed that the TCP video streams were mainly used in one
direction as suspected. The receive path for the camera had almost no utilization,
and all incoming traffic were just TCP overhead with no data except for TCP
state data along with acknowledgement number. Since measurements have shown,
compared to the amount of traffic, a very high CPU utilization (≈ 13%) it was
considered critical to reduce the amount of traffic reaching the Linux kernel itself.
Thus, because of the high receive path utilization, a proof of concept for TCP ac-
knowledgement offloading was developed for the ARTPEC-4 Network Processor.
This could be achieved by only developing a new firmware, so hardware changes
could be avoided. To achieve a highly significant improvement in CPU utiliza-
tion reduction small hardware changes in the Network Processor would have been
preferable.

4.4.1 TOE Algorithm

Even though the Network Processor is capable of handling any protocol, it was de-
cided only to implement TCP acknowledgements handling with a simple algorithm
due to the limited instruction and data memory inside the Network Processor (4
KB total). Retransmission timers handling, flow control, and congestion control
algorithm were decided to still be handled by the kernel on main CPU as for the
transmit path. The algorithm mitigates the number of interrupts generated for
the main CPU on the receive path.

The receive path for the Network Processor is configured to manual mode so
the ingress packets could be processed in the Network Processor. Upon reception
of every packet the Network Processor is interrupted, and the control is passed to
an interrupt handler to process the received packet. Only TCP traffic is processed
in the interrupt handler and all other protocol packets are transparently passed
up the network stack.

Contexts about established connections are registered in a small connection
table inside the memory of the Network Processor. SYN in an outbound packet



Implementation 37

adds an entry to the established connections table, while FIN and RESET flags
are used to remove a connection from table. Due to the memory limitation only
16 simultaneous TCP connections are allowed in the table. It should be noted,
however, that this is a configurable parameter that is set to 16 due to the memory
constraints. Also, the networking hardware running at 100 Mbit/s speed is lim-
ited in capability to support roughly 12 TCP video connections at full speed (25
FPS in our measurements corresponded to approximately 1 MB/s throughput).
Connections that are not registered are treated transparently on the receive path.

Whenever data is sent on a registered connection, the last sent data byte of
the TCP segment is remembered as ‘unacked’ by saving its last sequence number.
The ‘unacked’ state variable is initialised with the sequence number received in
the initial TCP SYN packet. Another state variable called ‘checkpoint’, initial-
ized to ‘unacked’ during connection registration, is used to act as point at which
acknowledgement has to be sent to the network stack. The ‘checkpoint’ param-
eter is updated to ‘unacked’ to form a new checkpoint when ever the received
acknowledgement passes the ‘checkpoint’, or a new ‘unacked’ value is calculated
and ‘checkpoint’ is lagging behind the received ACK window.

Incoming acknowledgements with an ACK number smaller than the ‘check-
point’ or greater than the lagging ‘checkpoint’ are discarded if not being a dupli-
cate ACK or carrying TCP data. This allows the kernel to still manage the TCP
connections. This is because the kernel offloads large TCP segments to the Net-
work Processor, and hence has large retransmission timers. As a result, all ACK
packets of a segment can be processed in the network processor without passing
on to the network stack. The exception is the last ACK of a certain segment
(the kernel must get a final acknowledgement). Received packets containing data
would pass through, and the implementation of the duplicate ACK feature [2]
could co-exist with the network processor by doing a simple equality check with
the highest received ACK number so far and the incoming packet’s ACK number.
An illustration of how the algorithm works is shown in Figure 4.8.

Because of the small receive memory (512 Bytes) received ACK packets cannot
be stored inside the Network Processor’s memory. In the case of duplicate ACKs,
the first ACK is discarded (but the number is remembered) while the second ACK
is forwarded to kernel. The Linux kernel treats this as a normal TCP ACK, and
as such the sender of duplicate ACKs would only be able to reach the server with
3 out of its total 4 duplicate ACKs. It is not until the third ACK packet arrives
the kernel would notice a duplicate ACK.

The case of sequence numbers wrapping around their 32 bit value range com-
plicates the comparison of TCP sequence numbers. This problem was solved by
using modular arithmetic macros for sequence number arithmetic as explained in
[28, p. 810]. Also, TCP acknowledgements received out of order would be no
problem with this algorithm either because it would just discard the acknowledge-
ment with earlier number since it’s already acknowledged by the the later sequence
number.

One area the algorithm affects, however, is the TCP window updates. Since
the discarding of packets also meant discarding of TCP parameter updates, this
leads to the client’s TCP receive window not being updated in the Linux kernel
between checkpoints. In the project setup, the window sizes of the client and server



38 Implementation

Acknowledged data in kernel Data in transit Unsent data

Current
checkpoint

Next
checkpoint

Ack 1
(discarded)

Ack 2
(kept.
New

check-
point)

After Checkpoint Update:

Acknowledged data in kernel Data in transit Unsent data

New
checkpoint

Ack 1

Ack 2

Ack 3
(discarded)

Ack 4
(kept. New
checkpoint

if more
data sent)

Figure 4.8: Illustration of the TCP ACK filtering algorithm in action.



Implementation 39

Streams Throughput (KB/s) CPU
TCP UDP Audio Changes TCP UDP FPS Load

10 0 2 None 951.34 — — 66.15%
5 5 2 None 912.76 867.68 21.4 58.36%
10 0 2 NP 1025.58 — — 58.21%
5 5 2 NP 951.98 889.85 22.3 57.22%

Table 4.6: Results from offloading TCP ACK processing

was large enough to not suffer any performance penalties from the discarding of
in-between checkpoint window updates. At the worst case, the receive window size
at the client side dropped from ≈130 KB to ≈90 KB.

4.4.2 Validation

By offloading TCP ACK processing to Network Processor the ACK packets passed
up the network stack are reduced by up to 97.8% with a measured typical case
of about 85-90% for a larger data segment offloads. The results of profiling are
tabulated in Table 4.6 where it can be observed that the kernel load is reduced
by 12% for TCP only video traffic, meanwhile throughput is increased by 7.8%.
Improvements in CPU utilization reduction and throughput increase are 2% and
4% respectively for mixed traffic. This number is quite small because UDP is a
connectionless protocol.



40 Implementation



Chapter5
Conclusions

The measurement results in Chapter 4 showed that CPU utilization decreased
significantly for the ARTPEC-4 SoC when system optimizations were made for
network traffic. It also concluded that these optimizations improved the through-
put for TCP traffic as well.

One approach that is used to efficiently transmit data from the file system
memory to the network interface is by optimizing the transmit path. The data is
not copied around in software before being sent over DMA to Network Processor
memory, but instead references to the pages of data are used throughout the call
stack. Instead of handling a page at a time all the pages of the data in a pipe are
handled at once to be transmitted over DMA. This way the network call stack is
executed once instead of one time for every page of data. Also, the network driver
does not have to program every page of data, but instead program it once for
the entire data for the transmit interface. It is important to note that the actual
amount of data programmed is dependent of the receiver window size to allow flow
control. For TCP traffic CPU utilization is lowered by 20%. Also, the throughput
increased by 9%.

As initially suspected the transmit path did not prove to be using up a signif-
icant amount of CPU resource, but instead the receive path turned out to be the
bottleneck. Another major optimization was done by offloading acknowledgements
on the receive path to be handled by Network Processor instead of the kernel. As
the NETPROC supports segmentation offloading, the kernel need to receive an
ACK only for the segment itself and not for all the constituting frames sent over
the network. By handling all the ‘unnecessary’ ACKs in the NETPROC and not
interrupting CPU for every ACK packet, the CPU utilization is decreased by 12%
for TCP traffic. By having more free CPU resources available the transmit path
throughput increased by 7%.

Having both the optimizations act together for TCP traffic CPU utilization
decreased by approximately 60% and throughput improved by 10%. The video
stream reached it’s maximum of 25 FPS. Table 5.1 shows the profiling results for
various test scenarios with different optimizations. Thus, by evaluation, optimizing
kernel for Axis application and improving the NETPROC hardware, an even highly
significant improvement can be achieved in lowering the CPU utilization.

Even though cache hierarchy and transmit rings tracks did not prove candi-
dates for potential improvements they can be improved to decrease CPU utilization

41



42 Conclusions

Streams Through (KB/s) CPU
TCP UDP Audio Changes TCP UDP FPS Load

10 0 2 None 951.34 — — 66.15%
5 5 2 None 912.76 867.68 21.4 58.36%
10 0 2 Splice 1038.17 — — 52.56%
5 5 2 Splice 984.77 915.06 23.4 54.69%
10 0 2 NP 1025.58 — — 58.21%
5 5 2 NP 951.98 889.85 22.3 57.22%
10 0 2 All 1047.65 — — 23.56%
5 5 2 All 1044.70 953.15 24.8 41.36%

Table 5.1: Results from all changes

further as discussed in the Section 5.1.

As shown, the stated goal to optimize transmission by improving network
processor and transmit call stack has been met.

5.1 Discussion

Several ideas had appeared throughout the project. Many of them disappeared as
more knowledge about the ARTPEC-4 platform and the Linux Kernel were ob-
tained. However, there still exists several suggestions for improvements in several
fields of the ARTPEC-4 SoC and the software running.

Pipe buffers in the Linux kernel

In Linux kernel 2.6 the number of pipe buffers are hard coded to 16, and hence
a maximum of 64 KB of data can be piped out to the driver at a time. Also,
the number of page fragments the socket buffer supports is 16. For data amounts
larger than 64 KB movement of data through the pipe happens in chunks of 64
KB. By increasing the number of pipe buffers the performance could be further
increased, but this will also increase kernel memory usage. Great care has to be
taken when deciding the number of pipe buffers in the Linux kernel, since it does
not only affect network performance. Also, without the modifications made to the
splice mechanism in this project, the number of pipe buffers is irrelevant since the
entire call stack is executed for each buffer. It should also be noted that, in theory,
the performance gain of changing from 16 buffers to 32 would reduce the number
of system calls in the same magnitude as changing from 8 to 16 would do. Hence,
the performance gain from incrementing the number of buffers decreases as the
number of buffers increase.



Conclusions 43

Cache coherency

Cache hierarchy and the L2 controller can be optimized for the AXIS application
by making the L1 cache coherent with the L2 cache. This would prevent the
unnecessary blasting of data in the L1 cache and put less load on the CPU, since
it saves the overhead involved with manual blasting. Also, the CPU could use the
cached data more frequently and efficiently. To avoid this full cache coherency
could be implemented so this inefficient use of L1 would no longer be a problem.

L2 cache controller

As DMA fetches the data from memory through the L2 cache, and a compressed
video frame is large enough to fill significant number of cache lines in L2 and
replace some of the data necessary for CPU, fair share of L2 to CPU is necessary
for its efficient utilization. This is important so that CPU doesn’t spend hundreds
of cycle waiting for data to be fetched from memory. L2 controller can be designed
such that it is possible to configure L2 to be divided between the DMA and the
CPU. This is useful, as video data read by DMA is never seen by CPU and the data
necessary for CPU is never replaced by cache lines involved in DMA transactions.
One possible way to do this is by assigning a few ways in a set to DMA and the rest
of the ways to CPU. The hardware changes required to make these modification
would be minimal. The decision on number of ways to be assigned should be made
based on profiling results.

L2 controller in ARTPEC-4 doesn’t implement any performance registers.
These registers which keep track of number of hits and misses can help tune L2 to
achieve a high performance for both the DMA and the CPU.

MIPS cache prefetching

MIPS specification supports prefetching of data to cache. By implementing basic
prefetching support in cache controller the performance can be improved signif-
icantly. DMA can initiate prefetch of next line of data (cache line size) to L2
in parallel to delivering video data from L2 to Network Processor memory. This
improves the effective bandwidth, and will significantly improve the throughput
and efficiency of DMA and Network Processor.

Multiple locks for the Network DMA TX Ring

ARTPEC-4 implements a hyperthreaded architecture, where 2 threads execute
in parallel and a single transmit queue is shared between threads. One possible
improvement here is, as investigated, to introduce multiple DMA transmit queues
and design an algorithm to control access to these queues (array of context descrip-
tors) to further minimize waiting on the resource. This option is viable, as each
DMA physical channel is able to handle an unlimited number of virtual channels,
theoretically. Also, DMA supports multiple context descriptor with a list of data
descriptors each. Multiple queues increase the probability of getting a free lock.
Another possible solution is to design the transmit ring to mimic a single reader
and multiple writer queue without using spinlocks. This requires using MIPS



44 Conclusions

instructions like load linked (LL) and store conditional (SC). As already investi-
gated in the project, this lock currently does not cause any significant performance
penalty. But, since the number of cores in CPUs are expected to increase in the
future this could pose future problems. When increasing the number of cores this
should be taken into consideration again, since it may be a major contributor to
performance penalties.

Utilizing multiple destination feature in NETPROC

The Network Processor supports sending the same payload to multiple destina-
tions. For the Axis cameras this can be very useful, since it is the four same video
images that are sent to the connected clients. As discussed before, the kernel only
passes references to the data down to the device driver. By making changes to
the driver to generate one context descriptor with a list of data descriptors for
data and one context descriptor each for a TCP segmentation offload header, the
Network Processor can be utilized to its full potential. Also, the DMA and bus
utilization is greatly reduced as the number of times the data is read from memory
to the network processor memory by DMA is reduced significantly.

RX interrupt handling in NETPROC

Every received packet generates an interrupt for the NETPROC CPU, transferring
the control to the interrupt handler which processes the received packet. The
NETPRO CPU operates at a clock frequency of 100 MHz, and with 100 Mbit/s line
speed the network CPU has to wait about 400-500 clock cycles before processing
of the received packet header could begin. The interrupt system can, therefore, be
improved so that it generates an interrupt to the network CPU after a configurable
number of Bytes. This way the interrupt handler can ensure it’s looking at the most
recent header without having to stall the transmitting path, like a 500 cycle would
do. It will also, further, improve the transmission capability and programmability
of the Network Processor.

Receive memory in NETPROC

Another interesting topic throughout the thesis has been the single receive memory
of 512 Bytes in the Network Processor. The decision, whether to keep or discard
an incoming packet has to be made before these 512 Bytes are filled up, or the next
packet arrives overwriting the previous one. With a Gigabit Ethernet interface, this
memory can fill up very fast and the network processor CPU may not have enough
time to make decisions based on header data. To achieve the same performance
of incoming packet processing in a Gigabit Ethernet interface as a Fast Ethernet
interface, the clock frequency of the Network Processor needs to be increased
tenfold! This is not a viable option for power reasons, and some other way of
maintaining decision times for the NETPROC CPU has to be created.

One way of doing this could be to divide the receive memory into two parts.
This way, one memory could be processed when the other is being written to. Since
most of the incoming traffic in an Axis system, transferring video data over TCP,
is TCP state data packets would fit even within these small 256 Bytes memories.



Conclusions 45

Packets that exceed the RX memory size would have to be accepted, but since
they usually carry data this wouldn’t make any difference with the algorithm
implemented in this project. Just increasing the RX memory size wouldn’t be
beneficial from a TCP offloading perspective, since a high packet frequency would
be equally bad with one RX memory regardless of memory size.

One area that, however, could benefit from increasing the RX memory size
though is hardware checksumming. Since the hardware checksum unit in the
receive path calculates the checksum, the packet is transferred to memory and
processed up the network stack, and then if checksum verification fails the packet
is discarded. By increasing the size of the receive memory to fit at least one full
packet the checksum comparison can be done in the network processor instead,
and discard corrupted packets there without the kernel seeing them. This also
increases the DMA utilization as the corrupt packet is not written to memory just
to be discarded later by network stack. Since CRC errors are rare in wired Ethernet
devices today, this may show little or no benefit, but for WLAN connected cameras
this could be beneficial.

Memory constraints in NETPROC

The offloading functionality on the receive path is kept to minimal in the NET-
PROC CPU because of the low instruction and data memory (4 KB). Also, the
Network Processor was mainly designed to offload the transmit path in the net-
work stack. Since the TCP Offloading must share memory area with the already
existing Axis processing code, the available 4 KB quickly drains. Work is being
carried out in order to optimize the existing Axis code and remove unneccessary
processing. When this is fixed more functionality can be offloaded to the network
processor, as memory areas used by code will be freed up. Even if it is decided to
implement more functionality in the Network Processor, a memory of 4 KB would
still be too small and in this case the memory size should be considered before
doing such decisions.

TCP offloading in NETPROC

Implementing a full TCP offload engine in the NETPROC block would require ma-
jor hardware changes and also increase the software complexity in the NETPROC
firmware, since the NETPROC initially was not designed for such a complex task.
However, as have been proven, some parts of the TCP processing could be im-
plemented in the NETPROC block. One thing to keep in mind is that the Linux
kernel must be more aware of this offloading than it is at present, because the im-
plementation in the project could affect TCP performance of the kernel since ACKs
are used for congestion control, retransmission timers, and flow control. Missing
a few of those ACKs could potentially affect the connection in some cases if the
kernel is unaware of packets being discarded due to performance optimizations.

One way to implement TOE would be to implement a Common Path offload
as discussed by an earlier thesis [9]. This way the kernel would initiate connections
and hand them over to the NETPROC, but it will still require the NETPROC to
implement TCP congestion control algorithms and retransmission timers.



46 Conclusions

Another suggestion is to keep the filtering algorithm and tune the Linux kernel
to be adjusted for the filter. It was seen in the project that some manual changes of
Linux kernel TCP parameters were required (mainly buffer sizes) in certain cases.
These cases involved transmission of uncompressed video data (roughly 5.0 MB/s)
where the filter actually decreased performance, but after some tuning increased
it again as expected. This option would reduce the NETPROC complexity, but
instead needs more hacks and workarounds to be implemented.

Regardless, any of these two above mentioned options would require changes
in the Linux kernel, where the driver needs to be altered and the network stack
also would need modifications. The main difference is the possible performance
gain and the required workload to achieve such a gain. It should be investigated
further as to what option is the most suitable, as it is unclear today which of the
options would be the better one in terms of price/performance.

UDP performance

In this thesis TCP has been the protocol of interest. It should be noted that
UDP seems to be more resource hungry compared to TCP. This shouldn’t be the
case and there are several potential improvements in UDP performance available.
Segmentation and checksumming could be done in the Network Processor, where
UDP then could be fully offloaded with the current available infrastructure since
it is a stateless protocol. One way to do it is to implement a network driver
implementing a file system and also change the NETPROC firmware. The small
firmware memory would be the bottleneck here, since it is unclear how much mem-
ory is needed for this code. For TCP this is much harder since TCP implements
congestion control and is a stateful protocol.

Current status

The work carried out in this project is still at an experimental stage. However,
it could be used as is but with no guarantee that it would benefit all scenarios.
As already mentioned earlier, the problem with using the implemented code as is
would be the TCP congestion control algorithms.

For the splice modifications very minor changes would be required to imple-
ment it in a more proper way. In the current implementation some function point-
ers are bypassed and some shortcuts have been taken in the call stack, but by
adding a few multiple-page functions to the kernel these shortcuts could be imple-
mented in a clean manner.

The Network Processor firmware is also usable as is, but to work proper in all
conditions it would require major kernel changes that would never be accepted by
the Linux developers. A small patch set for the Axis platforms could be maintained
provided it’s considered worth the performance gain.

5.2 Summary

The report covers the thesis work done in order to reduce CPU utilization in
network transmission of Axis camera video images. It also shows the throughput



Conclusions 47

enhancements achieved along the way. Main focus of optimization is directed to the
TCP protocol where various architectural changes impacting CPU utilization are
investigated and discussed. Of these, two investigation tracks proved efficient for
potential CPU improvements. First, by reducing repetitive processing of data by
network stack a 20% improvement is achieved in CPU utilization reduction under
high network traffic. Second, offloading of receive ACK processing to Network
Processor yields an improvement of about 12%. A combined optimization results in
an approximately 60% improvement in CPU utilization. The resultant throughput
improvement is 10%. With some architectural improvements and network driver
modifications, a much significantly higher optimization in CPU utilization can be
achieved as well.



48 Conclusions



Bibliography

[1] Sockets tutorial. http://www.linuxhowtos.org/C_C++/socket.htm.

[2] M. Allman, V. Paxson, and W. Richard Stevens. TCP congestion control.
RFC 2581, Internet Engineering Task Force, April 1999.

[3] Jonathan Corbet. Circular pipes. http://lwn.net/Articles/118750/, Jan-
uary 2005.

[4] Jonathan Corbet. The evolution of pipe buffers. http://lwn.net/Articles/
119682/, January 2005.

[5] Jonathan Corbet. Linux and TCP offload engines. http://lwn.net/

Articles/148697/, August 2005.

[6] Jonathan Corbet. Large receive offload. http://lwn.net/Articles/

243949/, August 2007.

[7] Gustavo Duarte. Page cache, the affair between mem-
ory and files. http://duartes.org/gustavo/blog/post/

page-cache-the-affair-between-memory-and-files, February 2009.

[8] Jon Eibertzon and Sebastian Hultqvist. Acceleration of network protocol
processing for system-on-chip. Master’s thesis, Department of Electrical and
Information Technology, Lund University, January 2006.

[9] Gustaf Engquist and Magnus Nilsson. TCP/IP offload engine for an em-
bedded system. Master’s thesis, Department of Electrical and Information
Technology, Lund University, May 2004.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFCs 2817, 5785, 6266.

[11] The Linux Foundation. GSO. http://www.linuxfoundation.org/

collaborate/workgroups/networking/gso, November 2009.

[12] The Linux Foundation. NAPI. http://www.linuxfoundation.org/

collaborate/workgroups/networking/napi, November 2009.

[13] The Linux Foundation. TOE. http://www.linuxfoundation.org/

collaborate/workgroups/networking/toe, November 2009.

49



50 Bibliography

[14] Grzegorz Kulewski et al. Linus Torvalds, Diego Calleja. Linux: Explaining
splice() and tee(). http://kerneltrap.org/node/6505, April 2006.

[15] Larry McVoy. Splice. http://lwn.net/2001/0125/a/splice.php3, January
2001.

[16] Aravind Menon and Willy Zwaenepoel. Optimizing TCP Receive Per-
formance. http://www.usenix.org/event/usenix08/tech/full_papers/

menon/menon_html/paper.html#lrp, April 2008.

[17] David S. Miller. How SKBs work. http://vger.kernel.org/~davem/skb_

data.html, July 2005.

[18] David S. Miller. How the linux TCP output engine works. http://vger.

kernel.org/~davem/tcp_output.html, August 2005.

[19] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[20] J. Postel. Internet Control Message Protocol. RFC 792 (Standard), September
1981. Updated by RFCs 950, 4884.

[21] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated
by RFC 1349.

[22] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. Updated by RFCs 1122, 3168, 6093.

[23] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol
(RTSP). RFC 2326 (Proposed Standard), April 1998.

[24] Dragan Stancevic. Zero copy i: User-mode prespective. http://www.

linuxjournal.com/article/6345, January 2003.

[25] W. Richard Stevens. TCP/IP Illustrated, Volume I: The Protocols. Addison-
Wesley, Reading, MA, 1994.

[26] Linus Torvalds. Splice(). http://yarchive.net/comp/linux/splice.html.

[27] Linus Torvalds. Making pipe data structure be a circular list of pages, rather
than. http://lwn.net/Articles/118760/, January 2005.

[28] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated, Volume 2: The
Implementation. Addison-Wesley Publishing Company, Reading, MA, 1995.


