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Abstract

Data decoders and decoding processes in modern communication systems are of
significant importance for data reliability. The key challenge for a designer is to en-
sure data reliability. With development of different channel coding schemes, variety
of decoding algorithms are devised. The role of a hardware designer is to provide
an efficient implementation of those algorithms for different hardware platforms.

This thesis focuses on the hardware implementation of the BEAST (Bidirectional
Efficient Algorithm for Searching Code trees) for decoding of block codes. A com-
plete hardware is designed to implement the strategy of the BEAST[1][3]. The
design is described using VHDL language. Besides describing the implementa-
tion of the BEAST for FPGA (Field Programmable Gate Array) based platform,
ASIC (Application Specific Integrated Circuits) synthesis of the design for an ASIC
implementation is also discussed. Synthesis is a process of mapping the design com-
ponents on basic logic gates. The results of the synthesis process can be used for
implementation of the design on an ASIC platform.

The architecture of the design is synthesized by using 130nm CMOS technology,
resulting in area of 0.72469 mm2 and maximum clock frequency of 143 MHz. BER
(Bit Error Rate) simulation is performed to verify the performance of the system
for different SNR (Signal to Noise Ratio) values.





Acknowledgement

Leaving Pakistan for studying in Sweden was a major step in my carrier and life
that redefined my way of thinking in numerous ways. This decision had provided
me an opportunity to discover myself and see my potentials in new perspective. I
thank God Almighty from bottom of my heart for providing me such an opportu-
nity and guiding me to think in this direction.

I would also take the opportunity to thank the Swedish government for their gen-
erosity by providing free education. This opportunity allowed me to experience a
unique educational system along with exposure to very diverse culture and friendly
educational environment.

I am very grateful to Florian Hug for his guidance, help, warm support and sharing
his technical expertise. I am also thankful to Joachim Rodrigues for his guidance
during my study period and for the knowledge and experience which I gained while
studying VLSI design and doing IC project. I also want to thank Irina Bocharova
for her guidance. I am very grateful to all my teachers and PhD students who had
guided me during my study in Sweden.

I am thankful to my friends and colleagues, specifically Usman Farooq for his
support and time which we spend here, Asheesh Misra for being so good friend
and group mate sharing memorable experiences together, Shahid Mehmood, Yasser
Sherazi, Shoaib Shazad, Raza Hussain, Farhan Khan, Karrar Rizvi, Harsh, Kaushik,
Ajosh, Manivanan, Muhammad Azher and Adnan Arif for providing guidance and
help in the time of need.

At the end, most importantly all my gratitude and thanks goes to my parents
and my complete family. Without them I am nothing and their endless support
and care had always strengthened me in my life.

Ali Roman
Lund, Feb, 2012



vi



Contents

Abstract iii

Acknowledgments v

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory of the BEAST 3
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Basic communication model and block codes . . . . . . . . . . . . . 4

2.2.1 Block Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Modulation and transmission . . . . . . . . . . . . . . . . . . 6
2.2.3 Block Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Understanding the BEAST . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 The strategy of BEAST . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Detailed example . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Architecture 21
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Detailed explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Input Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Search/Select logic . . . . . . . . . . . . . . . . . . . . . . . . 30



viii CONTENTS

3.2.3 Compare/Output logic . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Possible improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Implementation of BEAST 49
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 ASIC Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Maximum speed . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Minimum area . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 Comparison of Maximum Speed vs. Minimum Area . . . . . 51

4.3 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Comparison of BER and SNR . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusion and Future work 55
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



List of Tables

2.1 Hard decision received sequence. . . . . . . . . . . . . . . . . . . . . 12
2.2 Comparison of methods for updating TF and TB. . . . . . . . . . . . 15
2.3 Node states comparison, TF=TB=0.1. . . . . . . . . . . . . . . . . . 17
2.4 Node states comparison, TF = TB = 0.27. . . . . . . . . . . . . . . . 18
2.5 Node states comparison, TF = TB = 0.55. . . . . . . . . . . . . . . . 19

4.1 Timing report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Area report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Comparison of Maximum Speed vs. Minimum Area. . . . . . . . . . 52
4.4 Device Utilization Summary (xc2vp30-7ff896). . . . . . . . . . . . . . 52
4.5 Advance HDL synthesis report. . . . . . . . . . . . . . . . . . . . . . 53



x LIST OF TABLES



List of Figures

2.1 Basic communication model . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Forward tree construction . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Backward tree construction . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Metric weight calculation . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Forward tree search . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Backward tree search . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Basic architecture of the BEAST . . . . . . . . . . . . . . . . . . . . 22
3.2 Input Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Computational logic design of FHdist top and BHdist top . . . . . . 26
3.4 ASL structure: forward tree (second level) . . . . . . . . . . . . . . . 27
3.5 Basic architecture of Threshold Calculation unit . . . . . . . . . . . 28
3.6 Threshold calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 Search/Select Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 SSL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9 Structure of basic Search unit . . . . . . . . . . . . . . . . . . . . . . 33
3.10 Compare logic architecture . . . . . . . . . . . . . . . . . . . . . . . 35
3.11 Comp Logic architecture . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.12 COMREG architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.13 Comparator logic in COMREG . . . . . . . . . . . . . . . . . . . . . 38
3.14 COMPCL Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.15 Output Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.16 OUTFWD architecture . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.17 CodeSymb est cell structure . . . . . . . . . . . . . . . . . . . . . . . 42
3.18 Control unit architecture . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Comparison of BER and SNR . . . . . . . . . . . . . . . . . . . . . . 54





List of Acronyms

BEAST Bidirectional Efficient Algorithm for Searching code Tree

FPGA Field Programmable Gate Array

ASIC Application-Specific Integrated Circuit

RTL Register Transfer Level

CMOS Complementary Metal Oxide Semiconductor

AWGN Additive White Gaussian Noise

BPSK Binary Phase Shift Keying

ML Maximum Likelihood

MAP Maximum a Posteriori

VHDL Very high speed integrated circuits Hardware Descriptive language

RAM Random Access Memory

FDU Frame Distribution Unit

ASL Add Select Logic

HFSU Hamming Frame Selection Unit

MC Multiplexed Comparator

SSL Search Select Logic

FSW Flag Status Word

NC Node Count



xiv LIST OF FIGURES

BER Bit Error Rate

SNR Signal to Noise Ratio

LTE Long Term Evolution



Chapter 1
Introduction

1.1 Overview

Data communication from a source to a remote destination can be done by using a
digital communication system. The performance of such a communication system
is compared in terms of efficiency and data reliability. The communication channel
affects the reliability of the transmitted data by adding distortion and noise. The
noise and distortion affects the amplitude, phase and frequency of the transmitted
signals hence corrupting the transmitted data.

To provide reliable data transmission, various error detection and correction schemes
are introduced. For example the Viterbi algorithm[6], is a general maximum likeli-
hood (ML) decoding algorithm. A ML decoder decides for a given received sequence
r in favor of the codeword v such that the probability of r conditioned on v is max-
imized. The codeword and the related terminologies will be explained later. For
larger block codes, the Viterbi algorithm is too complex and a more efficient ap-
proach to obtain a ML decision is given by the BEAST[1][3] algorithm.

Within this thesis, the BEAST decoder is implemented in hardware for deciding on
a ML codeword. The hardware implementation accepts data samples representing
a valid codeword from a Hamming code with added noise and will provide a ML
codeword decision. The current implementation is done for the (8, 4, 4) extended
Hamming code[3].



2 Introduction

1.2 Thesis Outline

The remaining chapters in this thesis are organized as follows:

Chapter 2 introduces the basic concepts of block codes. The basic communica-
tion model is described to elaborate the concepts of data encoding, transmission
and decoding process. The theoretical aspects of the BEAST are briefly discussed
with a concluding example.

In chapter 3, the proposed implementation of the BEAST is described and all parts
of the design and their functionality are discussed. The possible improvements in
different design units are also discussed.

Chapter 4 presents the detailed implementation results for FPGA based platforms
as well as the synthesis results for ASIC based structures. The comparison of BER
and SNR is also provided in this chapter.

The thesis is concluded in chapter 5 with some final remarks and provides an out-
look on future work that can be carried out on defined architecture and hardware.



Chapter 2
Theory of the BEAST

2.1 Background

The developments in modern communication technologies and systems with dif-
ferent standards and protocols used for radio, satellite and telecommunication,
demand fast and efficient data transfers. Data reliability is becoming more and
more an area of concerns for system designers and researchers. In order to meet
the requirements of an effective communication, various decoding algorithms were
developed for the purpose of error detection and correction. The BEAST[1][3] is
such an example.

The BEAST was invented at LUND University and among others, can be used
to efficiently decode block codes. This chapter covers important concepts about
the basic communication model as well as the terms and norms used in coding
theory. The strategy of the BEAST for providing ML decision is discussed with an
example.



4 Theory of the BEAST

2.2 Basic communication model and block codes

A communication is said to be effective if the data generated by a source is success-
fully delivered to the required destination without any data loss. The generated
data can be in the form of analog (voice, video or both) or in the digital form.
We want to transmit the digital information from a source to its destination us-
ing digital transmission systems. In case of an analog source, the analog data is

Figure 2.1: Basic communication model

first represented by digital bits using sampling, quantization and analog to digital
conversion. The conversion process generates the information sequence. In case
of the digital source, the information sequence is generated directly without any
conversion process. The next step is to distribute the information sequence into
messages, where, each message is applied to the block encoder. The block encoder
encodes the message by adding redundant bits, in order to provide a codeword.
The redundant bits are added for the purpose of transmission errors correction at
the receiver end. The output of the block encoder is provided to the modulator,
used for modulation. The modulation process maps the provided input into signal-
ing levels for the purpose of transmission. At the receiver end, the demodulation
process is carried out. At the end, the block decoder decodes the received sequence.
If the output of the block decoder coincides with the transmitted codeword then
the decoding process is considered successful.
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2.2.1 Block Encoder

A message u is applied to the block encoder. The block encoder encodes the pro-
vided message according to the specific coding scheme and provides the codeword.
The functionality of the block encoder is to add the redundant bits in a message in
order to protect it from transmission errors. A message is the information sequence
distributed into blocks of K information bits. K can be determined from the code
rate R=K/N of the block code and N represents the total number of encoded bits
of the block code. Consider the following information sequence and let K=4 be the
number of information bits that each message contains.

Information sequence: 1 0 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0.

The messages are denoted by u1, u2, ..., un. For the given information sequence
from above, we obtain the following six messages of four bits each.

u1 = 1 0 1 1. u2 = 1 1 0 1. u3 = 0 1 1 1.
u4 = 0 0 1 0. u5 = 1 0 1 0. u6 = 1 1 0 0.

Each message of length K can have M=2K bit patterns. The codeword generated
by the block encoder is denoted by v. The difference N-K≥0 is the redundancy
used to correct bit errors that occurred during transmission.

A binary (N, K) block code is said to be linear, if every codeword v of length
N can be represented as a linear combination of K independent basic codeword,
that is,

v =

K−1
∑

i=0

u(i)gi (2.1)

where u(i) ∈ {0, 1} is a information bit and gi represents a row of the generator
matrix. The generator matrix is a pre-defined matrix of size K×N represented by
G, which signifies the structure of the block codes.

G =













g0

g1

.

.
gK−1













The parity check matrix H of size (N-K)×N having linear independent rows orthog-
onal to the rows of generator matrix G, can also be used to specify linear block
codes[3]. Using the matrix multiplication, equation (2.1) can be equally represented
as
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v(1,N) = u(1,K) · G(K,N) (2.2)

Let G be the generator matrix of (8, 4, 4) extended Hamming code[2][3] and let u
be a message to be encoded. The G and u are given as

G =









1 1 1 1 0 0 0 0
0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1









u =
[

1 0 1 0
]

The corresponding codeword v follows from equation (2.2) as

v =
[

1 1 0 0 1 1 0 0
]

The Hamming weight of a sequence u is the number of its non zero symbols and is
defined as

wH(u) =
K−1
∑

i=0

u(i) (2.3)

where u(i) denotes the ith symbol of the sequence u.

The Hamming distance dH is defined as the number of different information bits
between two sequences. For example, using u1=1101 and u2=1011, the Hamming
distance between u1 and u2 is denoted by dH(u1, u2) and computed as

dH(u1,u2) =

K−1
∑

i=0

(u1(i) ⊕ u2(i))

=
3

∑

i=0

(u1(i) ⊕ u2(i))

= (u1(0) ⊕ u2(0)) + (u1(1) ⊕ u2(1)) + (u1(2) ⊕ u2(2)) + (u1(3) ⊕ u2(3))

= (1 ⊕ 1) + (1 ⊕ 0) + (0 ⊕ 1) + (1 ⊕ 1)

= 0 + 1 + 1 + 0 = 2 (2.4)

2.2.2 Modulation and transmission

In order to transmit the codeword v over a digital channel, modulation of the code-
word symbols is performed. We will consider Binary Phase Shift keying (BPSK)
scheme for digital modulation, where code symbols in a codeword are mapped to
bipolar modulation symbols, also known as modulation alphabets M . For BPSK
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scheme, M =
{

−
√

Es,
√

Es

}

. The Es is the average energy per symbol. The
modulation symbols in vm are defined as

vm =
√

Es (1 − 2v) (2.5)

If we assume a unit average energy per code symbol, then in case of previous
codeword v, defined as

v =
[

1 1 0 0 1 1 0 0
]

we obtain the following modulated sequence

vm =
[

−1 −1 1 1 −1 −1 1 1
]

The modulated sequence is transmitted over a Gaussian memoryless channel. Such
channel has no feedback mechanism, that is, at a time instance i, the received sym-
bol ri is only dependent upon current transmitted symbol. The received sequence
r through such channel is given by

r = vm + n (2.6)

Where, n represents the disturbance caused by the channel. The disturbance is
introduced in the form of Additive White Gaussian Noise (AWGN), added to the
transmitted modulation symbols. An AWGN channel has constant power spectrum
over the full bandwidth. An AWGN is modeled as N(µ, σ2), representing the
Gaussian distribution of the noise over channel, having mean µ=0 and variance
σ2=No/2. The variance is determined from SNR=Es/No, where No represents the
noise energy. After addition of the noise, the transmitted sequence is corrupted
and the received sequence r for the block decoder[2][3], is given as

r =
{

0.18 −0.56 0.91 0.60 −0.02 1.60 2.80 0.34
}

2.2.3 Block Decoder

The received sequence r from the channel is fed into the block decoder as an input,
which returns a ML decision on the received sequence using the BEAST.

2.3 Understanding the BEAST

The BEAST is a ML decoding algorithm, that is, it yields the minimal bit error
decoding probability assuming equiprobable information sequences. The decoding
process will be considered successful if the ML codeword decision coincides with the
transmitted codeword. BEAST uses code trees for providing ML decision, which
we will describe in the following.
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BEAST uses a forward and a backward tree, constructed from the generator matrix
G. A node in such a code tree is denoted by ξ, while the root node of the forward
tree will be represented by ξ< indicating the starting point. Similar, for the starting
node, toor of the backward tree is denoted by ξ>. The branches of the trees are
labeled by codeword symbols and every path in such a tree will represent a valid
codeword. The weight of the path from root (toor) node to ξ is denoted by w<(ξ)
(w>(ξ)).

A code tree is a graphical representation for the specific block code. This rep-
resentation is also used for organizing soft decision decoding by the block decoder,
depending on the algorithm used. Soft decision uses the real values from the channel
and takes those probabilities into account. Soft decision ML decoding[1] is equiva-
lent to finding the codeword v closest to received sequence r in terms of weighted
Hamming distance. On other hand, the hard decision compares the signs of the
data samples in received data sequence. If the data sample is positive then it will
be decoded as logic zero otherwise it will be decoded as logic one.

A code tree is defined as the collection of nodes states σi at depth i=0, 1, ...,
N, connected to the nodes states σi+1 at depth i + 1 by unidirectional branches[3].
The branches are labeled by the code symbol vi, i=0, 1, ..., N-1. There will be at
most two branches leaving from each state, and carrying opposite code symbols.
The code tree for the block code is a time-variant structure where number of nodes
and branches varies with the depth or level of the tree.

For construction of trees, the G should be in a minimal-span form. By Definition
2.1[3], let gi, i=0, 1, ..., K-1, be the ith row of the G. Let start(gi) and end(gi)denote
the first and last non zero position of gi, respectively where 0 ≤ start(gi) ≤ end(gi)
≤ N-1. The span of the row gi is defined by the interval [start(gi), end(gi)]. The
active interval for the row gi is given by [start(gi), end(gi)-1]. For example the
row [01100110] of G is active from bit position two till bit position six. The active
row determines that the corresponding input bit related to that row will decide the
transitions to the next states. The matrix G is said to be in the minimal-span form
if start(gi) 6= start(gj) and end(gi) 6= end(gj), ensuring the unique starting and
ending position of the active rows. The Gaussian elimination method is used to
convert any given generator matrix into the minimal-span form. To ensure unique
starting positions of every row, the generator matrix is reduced to row echelon form.
To ensure the unique row ending positions, the ”cancellation above” operation is
performed, starting from the last row.

Each column of G defines a depth level of the tree. Let Ai represents the set
of active rows in minimal-span generator matrix at position (column) i, i=0, 1, ...,
N-1. The node states of minimal tree are defined by
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σ0 = 0

σi+1 = σ
(0)
i+1σ

(1)
i+1 · · ·σ

(K−1)
i+1 (2.7)

where σ
(j)
i+1 is defined as

σ
(j)
i+1 =

{

u(j) if gj ∈ Ai

no change otherwise

that is, the input bit u(j) associated with that active row will be the one contribut-
ing in the node state change.

The next step in construction of the tree is to determine the code symbols la-
beled on the unidirectional branches that are used to connect the nodes with each
other. It is also known that at level i, no two simultaneous row become active at
same time due to the minimal-span form of G. We will represent such active row
with g∗ and the corresponding information bit with u∗. The code symbol vi[3] is
determined as

vi =

{

σiγi + u∗ if g∗ exists
σiγi otherwise

where γi, i=0, 1, ..., N-1, denotes the column of G. The code symbols can also be
found by bit wise multiplying the next state nodes with the considered column of
G and add the resultant bits using modulo two additions. Now for construction of
the forward tree, consider the first column [1000]T of previously defined G and let
u(0)u(1)u(2)u(3) ∈ u, represents the input bits in a message. Each input bit corre-
sponds to the one row of G. At a time instant with received input, the respected
column of the G is observed to check for an active row. If a row becomes active,
then all nodes at that depth level branch into two child nodes at next depth level.
If no row starts or end at particular depth level, then every node at that level will
be connected to exactly one child node, having same state label. For first column
of G, the first bit is one indicating that row g0 is active. u(0) associated with g0 is
the deciding bit for transition between nodes. Consider the construction of forward
tree using G as shown in Figure 2.2.

The starting point of the tree is all zero node, 0000. The next state nodes σi+1 are
determined as u(0)000. If u(0)=0 then the next state node will be 0000 otherwise
the next state node will be 1000. Observing the second column [1100]T , g0 and g1

are active and there will be transition to four nodes states, defined as u(0)u(1)00.
The u(1) will be the deciding bit because g1 is the newly active row of G along with
the first row. Meanwhile, the corresponding code symbols are also determined with
the help of G and next state nodes. Let us consider the first level of the forward
tree, the code symbol associated with branch, connecting the current state node
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0000 with the next state node 0000, will be found by multiplying the first column,
[1000]T with 0000. The result of bit wise multiplication will be 0000. Modulo
two additions of the resultant bits produces the code symbol for that branch, be
equal to 0. Similarly, the code symbol associated with node 1000 will be found as
[1000][1000]T = 1.

Figure 2.2: Forward tree construction

Consider the construction of backward tree using G as shown in Figure 2.3. The
backward tree is constructed in same manner but G will be used in the opposite
way, where, the construction is started with considering the last column of G, first.
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Let us consider the last column [0001]T of G. The row g3 is active as start(g3)=1,
means that u(3) will be the deciding bit for the node change. Starting with all
zero node, 0000, if u(3)=0 then next state node will be 0000 otherwise, the next
state node will be 0001. Same method for identification of code symbols regarding
backward tree is used as compared to the forward tree. Considering the first level
of backward tree, the code symbols for branches connecting the node 0000 with
next state nodes 0000 and 0001 will be, [0000][0001]T = 0 and [0001][0001]T = 1,
respectively.

Figure 2.3: Backward tree construction
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The next important step is to compute the weighted Hamming distance µ(v, r),
for the nodes in specific path of the tree. µ(v, r) is the additive distance measure
between the codeword v and received sequence r[1]. Consider the given received
sequence r, the µ(v, r) is computed as

µ(v, r) =

N
∑

i=1

µ(vi, ri) (2.8)

where µ(vi, ri), represents the metric weight computed by using the code symbol
vi, received symbol ri and hard decision received sequence hch, where, µ(vi, ri) is
defined as

µ(vi, ri) =

{

|ri| if hch(ri) 6= vi

0 otherwise

For the forward tree according to Figure 2.2, consider the first depth level of the
tree where parent node is 0000 and child nodes are 0000 and 1000. For previously
defined received sequence r, the hard decision received sequence hch is shown in
Table 2.1. The hch(r1)=0, at depth one of the forward tree. Let us first consider

Table 2.1: Hard decision received sequence.

r 0.18 -0.56 0.91 0.60 -0.02 1.60 2.80 0.34
hch 0 1 0 0 1 0 0 0

the branch from node 0000, to node 0000. The hch(r1) is equal to the code symbol
of the branch, hence the metric weight will be 0. Consider the branch from node
0000 to node 1000, where hch(r1) 6= v1. In this case, we will assign the absolute
value of first received sample r1=0.18 as the weight of the branch. The weighted
Hamming distance regarding forward tree is shown in Figure 2.4.

Similarly, the weighted hamming distance for backward tree is computed. In this
case, the last received sample 0.34 along with its hard decision received value will
be processed first.

2.3.1 The strategy of BEAST

Consider that our goal for using the BEAST is to find a codeword by searching
the trees, for those paths whose distance is smaller than or equal to the determined
threshold. When doing ML decoding, we search for the paths with smallest distance
(e.g. using the weighted Hamming distance) toward the given received sequence r.
However, the weight of this smallest distance is not known beforehand, and thus,
we need to determine a suitable threshold.
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Figure 2.4: Metric weight calculation

Such a smallest path goes from ξ< −→ ξ>. Clearly there exist an intermediate
node ξ. Hence it is much easier to split the search of the path with minimum Ham-
ming weight into two searches ξ< −→ ξ and ξ −→ ξ>. Due to this fact, the forward
and backward search is conducted by using forward and backward tree. Therefore,
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the BEAST performs the following steps.

1. Determine the threshold T.

2. Perform forward and backward search of paths.

3. Comparison of search results.

The detailed explanation of these steps is as follows.

Determine the threshold T

In BEAST, the threshold value is a very important value influencing the search
complexity of the design. A good threshold value can reduce the computational
time of the design as well as memory for storing search result.

If the threshold value is chosen too small, the trees grow too small, therefore,
making the system slower due to multiple search iterations. In contrast to that, if
the threshold value is chosen too large, the trees grow too large and most of the
nodes will be calculated. Therefore, arising memory issues for the design.

Threshold computation starts, once the complete received sequence r is obtained
from the channel. The first step for computing the threshold is to compute the
threshold increments. For BPSK modulation, the threshold increments are deter-
mined as the sorted absolute values δi of received symbols.

By using these sorted absolute values of received symbols, the first threshold value
T1 is computed and is given by.

T1 =
d

∑

i=1

δi (2.9)

where d = ⌈dmin/2⌉. The dmin = 4, represents the minimum Hamming distance
for (8, 4, 4) extended Hamming block code. The remaining threshold value will be
determined as,

Ti = Ti−1 + δi+1 (2.10)

where i=2, 3, ..., N. The forward threshold TF and the backward threshold TB are
computed. TF and TB will be used in search of paths, using the forward and the
backward tree. There are two possible ways for updating and incrementing TF and
TB.

The first method uses the computed threshold values and divide them in half,
that is, TF=TB=T/2. The second method[1] is a more sophisticated method, in
which, only the smaller of the two trees is extended in each iteration, using TF and
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TB. Set TF=TB=T/2 for the first iteration, observe the search results and keep a
track of the number of nodes found in search. If the number of nodes obtained in
forward search are more than of the number of nodes obtained in backward search,
TB will be incremented by δi while TF remains the same and vise versa.

Table 2.2 compares the merits and demerits of two methods used by the BEAST
for updating TF and TB.

Table 2.2: Comparison of methods for updating TF and TB.

Method 1 2
Functionality TF=TB=T/2, for all iterations Iteration 1: TF=TB=T/2, for

other iterations, δi will be added
to TF and TB, depending on the
search results.

Merits Simplified architecture for de-
signing threshold unit in hard-
ware as a divider or a shifter used
to shift the data by factor of 2 is
required to compute TF and TB.

Reduced computational time of
design since the forward and
backward trees will not be ex-
tended again every time with
new threshold value.

Demerits Increased computational time as
forward and backward trees will
be extended again and again
every time with new threshold
value.

The method will have a complex
logic for hardware implementa-
tion of threshold unit and hence,
will utilize more hardware.

Consider the previously defined received sequence r which is fed into the block
decoder for computing the threshold values, TF and TB, respectively.

r =
(

0.18 −0.56 0.91 0.60 −0.02 1.60 2.80 0.34
)

First, take the absolute value of each received symbol ri=0, 1, 2, ..., N-1, and denote
the corresponding sequence by rabs, shown as

rabs =
(

0.18 0.56 0.91 0.60 0.02 1.60 2.80 0.34
)

The rabs is sorted in ascending order and sorted values are represented by δ

δ =
(

0.02 0.18 0.34 0.56 0.60 0.91 1.60 2.80
)

Using δ, the threshold value is computed. The first threshold value T1 is computed
by using equation (2.9)
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T1 = 0.02 + 0.18 = 0.20 (2.11)

To grow the trees, TF and TB will be computed. If we are using the first method for
updating TF and TB then, TF will always be equal to TB, that is, T/2. Considering
the initial threshold T1, forward threshold TF and backward threshold TB will be
0.1.

Perform forward and backward search

After deciding TF and TB, the next step is to determine the nodes in the forward
and backward tree, satisfying the predefined search criteria.

The forward search determines all nodes in the forward tree that satisfy

F = {ξ
∣

∣w<(ξ) ≥ TF, w<(ξp) < TF} (2.12)

that is, F is a set containing all nodes ξ in forward tree whose parent node ξp

weight is less than TF and their own weight is greater than or equal to TF. The
backward search similarly provides all nodes in backward tree satisfying

B = {ξ
∣

∣w>(ξ) ≤ TB, w>(ξc) > TB} (2.13)

where ξc is any of the child node of ξ in the backward tree containing weight greater
than TB and their parent node weight is less than or equal to TB.

Comparison of search results

The nodes obtained in result of forward and backward search are compared with
each other in order to find a common node ξ whose combine weight (wcomb(ξ))
satisfies.

wcomb(ξ) ≤ TF + TB (2.14)

where wcomb(ξ) = w>(ξ)+w<(ξ). If more than one node satisfying equation (2.14)
are found, the node with smallest metric weight is chosen and its corresponding
path is the ML codeword decision. If no such node exists, the threshold has to
be incremented and the search and comparison has to be repeated with increased
values for TF and TB.

2.3.2 Detailed example

Consider the previously defined information sequence r, the threshold increments
δ and the code trees illustrated in Figure 2.2 and Figure 2.3. Consider the first
method for calculation of the threshold T, forward threshold TF and backward
threshold TB. By using the initial threshold T1, the TF will be equal to TB, that
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is, T1/2. The forward and backward trees are extended. The current state nodes
with respected Hamming weights and depth levels are identified using the criteria
defined by equation (2.12) and equation (2.13). The results of the forward search
are.

Fσ =
(

1000 0000 0100 0110
)

Fw =
(

0.18 0.56 0.91 0.60
)

Fl =
(

1 2 3 4
)

Similarly consider the backward search results as

Bσ =
(

0000 0000 0000 0000 0000 0000 0000
)

Bw =
(

0 0 0 0 0.02 0.02 0.02
)

Bl =
(

0 1 2 3 4 5 6
)

where Fl and Bl, respectively specifies the level (depth) of the nodes in the for-
ward and backward tree and Fw and Bw represents their weights in forward and
backward tree satisfying the search criteria. Fσ and Bσ are the sets containing the
node states which were found by search mechanism. Comparing the sets at each
level gives the matching or common nodes in both trees. After completing the first
iteration, the obtained results are specified in the Table 2.3, to show the compari-
son of obtained node states regarding each level of the forward and backward tree.
The common node is found at second level of the forward tree, that is, 0000. The

Table 2.3: Node states comparison, TF=TB=0.1.

Level/Depth 0 1 2 3 4 5 6 7 8
Forward
nodes

- 1000 0000 0100 0110 - - - -

Backward
nodes

- - 0000 0000 0000 0000 0000 0000 0000

next step is to compare the combined weight of the common node wcomb(ξ) accord-
ing to equation (2.14). The wcomb(ξ) is 0.56+0.02=0.58 which in fact is greater
than TF+TB=0.2. Since the equation (2.14) does not hold which means that the
threshold T2 will be computed where TF and TB will be updated accordingly. The
forward and backward search has to be re-initiated with new threshold values.

The threshold T2=0.54 is computed using equation (2.10), TF and TB will be
0.27. With the new threshold, we do not have to start extending the trees from
scratch as we can just extend the trees, reusing previous results. The backward
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search results show no difference as compared with the previous results. If we are
using method two for incrementing TF and TB then, TB will be the same as pre-
vious. The numbers of backward state nodes are greater than forward state nodes.
In that case, TF will be incremented to 0.1 + δ3. The initiated search with updated
TF and TB produces the following results.

Fσ =
(

0000 1100 0100 1000 0110 1010 1011
)

Fw =
(

0.56 0.74 0.91 1.09 0.60 1.78 3
)

Fl =
(

2 2 3 3 4 6 7
)

Bσ =
(

0000 0000 0000 0000 0000 0000 0000
)

Bw =
(

0 0 0 0 0.02 0.02 0.02
)

Bl =
(

0 1 2 3 4 5 6
)

The node state comparison for matching nodes is shown in Table 2.4. A matching
node is found at second level, that is, 0000. Comparing the new search results
yields no difference as compared with the previous results. The combined weight
wcomb(ξ)=0.56+0.02=0.58 is not less than or equal to TF+TB=0.27+0.27=0.54.
Repeating the same steps by incrementing the threshold T3=T2+0.56=1.10. TF

Table 2.4: Node states comparison, TF = TB = 0.27.

Level/Depth 0 1 2 3 4 5 6 7 8
Forward
nodes

- - 0000
1100

0100
1000

0110 - 1010 1011 -

Backward
nodes

- - 0000 0000 0000 0000 0000 0000 0000

and TB will be 0.55. The forward search results are same as obtained by TF=0.27.
The forward and backward tree expansion for TF=0.27, 0.55 and TB=0.55 is shown
in Figure 2.5 and Figure 2.6 respectively. The obtained search results are shown as
following

Fσ =
(

0000 1100 0100 1000 0110 1010 1011
)

Fw =
(

0.56 0.74 0.91 1.09 0.60 1.78 3
)

Fl =
(

2 2 3 3 4 6 7
)

Bσ =

(

0000 0000 0001 0000 0101 0000 0101 0000 0101 0000
0101 0000

)

Bw =

(

0 0 0.34 0 0.34 0 0.34 0.02 0.34 0.02
0.34 0.02

)
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Bl =

(

0 1 1 2 2 3 3 4 4 5
5 6

)

Figure 2.5: Forward tree search

Table 2.5: Node states comparison, TF = TB = 0.55.

Level/Depth 0 1 2 3 4 5 6 7 8
Forward
nodes

- - 0000
1100

0100
1000

0110 - 1010 1011 -

Backward
nodes

- - 0000 0000
0101

0000
0101

0000
0101

0000
0101

0000
0001

0000

Comparing the combined weight wcomb(ξ)=0.56+0.02=0.58, obtained from com-
mon node 0000 found at depth two as identified in Table 2.5, shows that wcomb(ξ)
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Figure 2.6: Backward tree search

is less than TF+TB=0.55+0.55=1.10, satisfying equation (2.14). The path con-
taining the common node is the required ML path. Final step is to trace out all the
forward nodes linked to the common node till root node in forward tree and all the
backward nodes linked from the common node for determination of the codeword.
The branch labels of the corresponding path determine the ML codeword decision
as 00000000.



Chapter 3
Architecture

3.1 Overview

The era of reconfigurable hardware structures gives hardware designers the liberty
to design and test a complete system in an efficient manner. FPGA is a reconfig-
urable structure, used to provide flexible and lesser time to market designs. FPGA
based platforms allow the designers to have a complete control over hardware de-
sign. This chapter mainly focuses on description of the BEAST architecture, cov-
ering from conceptual design to physical visualization of the design.

VHDL is a powerful tool used in order to provide the hardware description of
the BEAST. The first step toward implementation was to observe the functional
requirements and develop a behavioral model. For this purpose, a complete de-
sign is implemented in MATLAB, to check the functionality of the BEAST. After
verifying the functionality, the next step was to implement the design. The block
diagram describing the architecture of BEAST in hardware is shown in Figure 3.1.
The architecture is divided in four main parts.

1. Input Unit.

2. Search/Select logic.

3. Compare/Output logic.

4. Control unit.

The Input Unit of the design provides a foundation for rest of the design units to
work according to the BEAST. The main responsibility of this unit includes, input
data reception, data storage and processing, generation of forward and backward
trees and threshold calculation. The first step toward implementing the Input Unit
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was the decision of an appropriate input word length, to represent input samples
of received sequence r. A reasonable input word length is used to cover the desired
data range for representing the samples. The input word length also provides an
indication for overall data storage and manipulation capacity of the hardware. The
basic implementation is done by using the data word length of twelve bits (cov-
ering six bits each for the integer part and fractional data), in order to represent
the received data samples. The word lengths more than twelve bits may cause an
increase in hardware while considering the implementation of (8, 4, 4) extended
Hamming block code. On the other hand, if smaller data word length is considered
then precision and range of data and result is affected, which leads to the incorrect
results.

Figure 3.1: Basic architecture of the BEAST

The data sequence is received by Input Unit using the D In interface. The abso-
lute values rabs, of the received data samples is stored in predefined storage units.
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Meanwhile, the hard decision sequence hch, regarding the received sequence is also
performed and stored. Afterward, the construction of the forward and the back-
ward tree is initiated. The data sorting process is also initiated, to compute the
threshold increments δ. Data can be sorted by using any of the sorting algorithms
like Bubble sort, Binary sort and Insertion sort etc. It is observed that sorting
process consumes more time, therefore, making the system slower. It is also not
possible to perform the complete sorting operation in a single clock cycle.

The loop unrolling process for Bubble sort algorithm is used. In result to that,
the chip area is compromised to cover the synchronization problem with rest of
the hardware. The TF and TB will be computed according to the first method for
incrementing the threshold. The architecture also implements the second method
for incrementing threshold values, for the purpose of future use. Both methods will
be explained later in details.

Search/Select logic, initiates forward and backward search of the trees after re-
ception of TF and TB. The sole purpose of establishing a search mechanism is
to find out all the nodes, their depth (at level of tree where found nodes exist)
with respected weight that satisfies the defined search criteria. These results will
later be used by Compare/Output logic unit, to find a matched or a common node
fulfilling the set criteria specified in equation (2.14). The common node satisfying
the criteria will be used to select the ML path where branch labels of the path
will determine the ML codeword decision. Therefore it is required to store all the
results so that the results can later be used by other design units. In order to store
all the information, different storage RAMs (Random Access Memory) are used.

The search results are provided to Compare/Output logic unit along with TF and
TB. Compare/Output logic unit will compare all the provided nodes (obtained
from forward and backward search by using Search/Select logic unit) at their re-
spected depth levels in order to find the common point of interest. The comparison
results will lead in deciding a codeword or a way around helps in re-initiating the
Search/Select mechanism with new threshold values.

Synchronization of all the operations inside the design is the core element of the
hardware. It helps in maintaining the smooth data flow from a design unit to an-
other without any deadlocks. Synchronization also guarantees that the required
tasks which are needed to be performed by the complete design will be done in
correct and systematic way. A dedicated control unit is designed in order to fulfill
all the set operational requirements of the design. Control unit provides, synchro-
nization of operations inside each design unit and also among all other hardware
design units. All the control signals are registered in order to meet the functional
as well as timing requirements of complete hardware system.
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3.2 Detailed explanation

3.2.1 Input Unit

The Input Unit is used to implement the input logic for the purpose of data recep-
tion, construction of forward and backward trees along with Threshold Calculation
unit. The main reason of implementing Threshold Calculation unit along with input
logic is to save memory space. By observing the Figure 3.1, it is clearly seen that
the data stored in input logic storage unit can also be used for threshold calculation,
with only addition of parallel data lines, fed toward the Threshold Calculation unit.
Input Samples is the design unit that defines a storage unit for storing the absolute
values of the input data samples along with hard decision output. Consider the
detailed architecture of Input Unit as shown in Figure 3.2.

Figure 3.2: Input Unit
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The received sequence r and control signals (internally generated by Control unit of
the design) are fed through a buffer named INBUFF. INBUFF is used for the pur-
pose of synchronization of data and control signals, with internal logic and design
units of the Input Unit. Input Samples unit receives the sequence r and performs
the hard decision by simply comparing the sign bit of twelve bit received signed
data. If sign bit is high then the decision is logic one, and vise versa. At the same
time, rabs is computed and stored in storage RAM.

Storage RAM is defined with dimensions of eight by twelve bits, that is, eight
represents the number of locations used to store rabs and each location is twelve
bit wide. The widths and depths of each storage unit along with most of the archi-
tecture of the design are adjustable according to the block coding scheme, because,
every storage module is generic in implementation. This feature of the design will
be beneficial while implementing higher block codes and makes the design more
flexible.

The data lines labeled, FData and BData (representing rabs and hch) are applied
to the FHdist top and BHdist top design units, through a buffer named INBUFF1.
FHdist top and BHdist top are the pre-defined structures according to the defined
generator matrix G used in Detail example section. Pre-defined structure means
that the implementation of these design units is static and will subject to change as
we change the generator matrix. FHdist top and BHdist top implements the design
logic for construction of forward and backward tree according to the defined genera-
tor matrix. Both design units constitutes the basic computational logic along with
storage units primarily used for storing the results, such as, weighted Hamming
distance, node states and their respected levels. Consider the basic architecture
used for the computational logic design of FHdist top and BHdist top in Figure
3.3.

The basic architecture is divided into three main sections.

1. FDU (Frame Distribution Unit).

2. ASL (Add Select Logic).

3. HFSU (Hamming Frame Selection Unit).

The FDU defines a process that is responsible for distribution of the provided input
in a systematic way such that ASL unit can compute the branch metric weights for
the next state nodes. The ASL unit receives the hard decision sequence hch along
with absolute data samples (referred as FData or BData in Figure 3.2 and Figure
3.3) and the branch metric weights of the current state nodes from previous depth
level of the tree, that is, the weight of all active nodes in previous iteration. In
response to the provided inputs, ASL will compute the branch metric weights of
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Figure 3.3: Computational logic design of FHdist top and BHdist top

next state nodes at current depth of the tree. The HFSU will arrange the results
produced by ASL in a frame so that it would be easier for the design to store the
computed weights of all active nodes at same iteration. The arranged data is also
fed back to FDU via a feedback register. HFSU in technical terms is the data
selector, managed and controlled by the control unit of the design.

The main computation logic regarding the construction of trees is implemented
in ASL. The ASL contains the set of adders and multiplexers with some additional
design logic in order to compute branch metric weights according to the provided
inputs. Consider the ASL implementation, representing the second level of the for-
ward tree as shown in Figure 3.4. At any depth of the tree, the ratio of the adders
to active nodes will be half. For example, if four nodes are active at any depth level
of the tree then two adders are required. Similarly, if sixteen nodes are active then
eight adders will be required to perform the desired addition operation. HFtmp1
and HFtmp2 represent the parent nodes weight, of the current active nodes. HF1,
HF2, HF3 and HF4 represents the weight of the child nodes, calculated with the
help of hch and rabs along with parent node weights.

For illustration of the concept, let us consider rabs = 0.56, hch = 1, HFtmp1 and
HFtmp2 be, 0 and 0.18 respectively. The next state nodes are 0000, 0100, 1000
and 1100, as shown in Figure 2.4. To start with, rabs is added with HFtmp1 and
HFtmp2, such that, if hch symbol is not equal to the branch code symbol then,
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Figure 3.4: ASL structure: forward tree (second level)

the results of the additions will be used as the weighted Hamming distance for the
child node. In alternative case, assign the parent node weight to the child node.
The multiplexers are used to select the computed weights, which are then applied
to HFSU for assignment of these computed weights to their respected child nodes.

The important part of the design is the Threshold Calculation unit inside the Input
Unit. In order to initiate the Search and Compare mechanism using Search/Select
logic and Compare/Output logic, the threshold values TF and TB are required. The
first method of incrementing and updating the threshold value is implemented, but
on other hand, the second method is also implemented for future use. Consider the
basic architecture of Threshold Calculation unit in Figure 3.5.

Absolute data samples from Input Samples are applied to the Data Sort. Data
Sort unit is responsible for sorting the data samples in ascending order, by using
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Figure 3.5: Basic architecture of Threshold Calculation unit

loop unrolled bubble sort algorithm. The results of the algorithm are known as δ.
The next step is to use the sorted data for calculation of the threshold values. A
systematic controlled adder unit along with data feedback is used for computation
of the threshold.

The result of the adder is then left shifted by factor of two in order to perform
division. The reason for performing this operation is to obtain the direct values
for TF and TB so that whenever there is a requirement for updating TF and TB,
then, the data is ready so that any of the value from TF and TB can be updated
directly according to the provided control signals. MC (Multiplexed Comparator)
is used for assigning the shifted threshold value to TF and TB. MC also devise
a mechanism for updating TF and TB using the second method for updating the
threshold. TF and TB are then applied to Search/Select logic for the search of the
desired nodes.

Consider the second method, the difference in design logic for method two is il-
lustrated in Figure 3.6. The decision for incrementing TF and TB is dependent
upon NF and NB. NF and NB are the number of nodes obtained, during forward
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and backward search, using Search/Select logic. NF=NB=1 by default. A com-
parison structure is established to check the equality condition along with iteration
information. If Iteration = 1 and NF is equal to NB then, TF=TB=T1s. T1s stands
for first shifted threshold, that is, T/2. In next iteration, NF will be compared with

Figure 3.6: Threshold calculation

NB. If NF is greater than NB, TB will be incremented by δi. If NF is less than NB,
then TF will be incremented by δi. This complete process is repeated until a valid
codeword is found (the required situation after that there is no need for updating
TF and TB).
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3.2.2 Search/Select logic

The main motivation for implementing the Search/Select logic is to perform forward
and backward search according to the defined criteria by the BEAST in equation
(2.12) and equation (2.13). Consider the generic representation of Search/Select
logic unit, shown in Figure 3.7. The representation is identical for both forward
and backward search. For forward search, SSL (Search Select Logic) represents
the design logic according to the forward search criteria, given in equation (2.12).
The SSL unit accepts, TF along with FHAMM (observe Figure 3.2 for FHAMM
and BHAMM) and will select the nodes, their depth level and their corresponding
weights. Similarly, for backward search specified by equation (2.13), the SSL unit
considers TB along with BHAMM and will produce the selected nodes with specified
depth level and weights. The SSL units also produce the total count of the selected
nodes, known as NF and NB. NF and NB will be used in threshold calculation
procedure while implementing the second threshold incrementing and updating
method. Later on, the produced search results are then stored at their allocated
storage spaces.

Figure 3.7: Search/Select Logic

Consider the detailed structure definition of SSL in Figure 3.8. The numbers of
search units are dependent upon the maximum spread of the tree. The maximum
spread refers to the total number of nodes that can be accessed by using a partic-
ular coding scheme at any depth of the tree. For example, using (8, 4, 4) extended
Hamming code, the maximum spread in tree representation will be 2K=4 nodes.
Therefore, sixteen search units are required to conduct search at any depth level of
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the defined tree.

In hardware two different design units are constructed for forward and backward
search. If forward search is considered then forward search design units are sixteen
times instantiated to cover the maximum spread. Similarly, for backward search,
the design units implementing backward search logic are instantiated by sixteen
times. The point is, SSL do not mix up both logics (for forward and backward
search) together in a single design unit. There will be two structures according to
Figure 3.7 working in parallel, in which one will cover the design logic for forward
search in SSL where as other SSL unit will implement the backward search logic.

Figure 3.8: SSL Architecture
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The frame containing Hamming weight of each node at specific depth (FHAMM,
BHAMM from forward and backward tree) is applied to the FDU, so that, FDU
will distribute the input frame into sixteen equal parts labeled HF1 to HF16. HF1
represents the weight property of the first node labeled ”0000” and HF16 represents
the weight property for node ”1111”.

Each Search unit accepts the input from FDU along with threshold information.
TF will be considered while performing the forward search, using defined SSL unit.
Whereas, TB will be considered for the backward search using another defined SSL
unit. Each Search unit will also accept the control signals and Status flags (fed
back as the input to all Search units).

Status flags play a very important role, in traversing the complete tree (forward
and backward). They tells the design whether to extend the search till next state
nodes, or just halt the search at that specific node and upcoming connected nodes
with it, after the required search condition specified in equation (2.12) and equation
(2.13) is met. Consider the Figure 2.5, for demonstrating the functionality of the
Status flags.

Observe that at depth two of the forward tree, there exist the two nodes (”0000”
with weight of 0.56 and ”1100” with weight of 0.74) satisfying the desired for-
ward search criteria. Therefore, it is required that the rest of the parts of the tree
associated with these two nodes should not be traversed. Due to this reason, the
concept of status flags is introduced that are managed by FSW (Flag Status Word).

The FSW represents a flags management system that is used to enable or dis-
able any Search unit according to the Status flags. FSW keeps the track of active
nodes at any depth of tree. FSW in hardware can be realized as combination of
data selection switches, used to enable or disable any search unit.

Each search unit produces an indication for the node, that is, N1 to N16 (single
bit each) along with depth levels of tree D1 to D16 (four bits each) and respected
weights W1 to W16 (thirteen bits each). Output data containing nodes indication,
depths and weights will be arranged by the Merge unit. The output labeled ”Node”
is a sixteen bit vector, such that, the least significant bit is N1 and most significant
bit is N16. The position of the bits will be helpful in identifying the nodes as well
as in comparison of the forward and backward nodes in Compare/Output logic unit.

NC (Node Count) is used to count the total number of nodes, found during forward
or backward search. It accepts the Node output from Merge unit, as an input and
count out the bits equal to logic one in every sixteen bit Node data output until
the complete tree is traversed. Those counted bits are then added to give a total
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count as NF (Forward Nodes) and NB (Backward nodes). Consider the simplified
representation of search unit used for forward search in Figure 3.9.

Figure 3.9: Structure of basic Search unit

FDU in forward search unit accepts FHAMM as an input and distribute the data
into HF1 to HF16, by equal proportions. At the same time FSW will set the Status
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flags and map them with En inputs of the Search units. The weight input is being
compared with threshold TF and En input is also observed. If the required condi-
tions are met then Node output Ni will be set to logic one otherwise it will be set
to zero, Depth output will be assigned the iteration number coming from Control
unit and weight output will be assigned to HF.

Status flag will be cleared, to indicate that, rest of the parts of the tree associ-
ated with that node will not be compared with required criteria. On the other
hand, if any of the specified condition does not met then all the output will be
assigned to their default values whereas the En input is assigned to the Status flag.

Similar kind of implementation can be seen for the backward search logic, except
that, the comparison condition and mechanism for usage of the status flags will be
reversed. The results of the search (forward and backward) are stored in allocated
storage areas.

Observing the structure of Search/Select logic unit, it can be concluded that the
Search/Select logic unit is more area intensive, in terms of storage. The stored
results regarding found forward and backward nodes will then be provided to Com-
pare/Output logic unit, for final comparison.

3.2.3 Compare/Output logic

The Compare/Output logic unit is mainly divided into two sections.

1. Compare logic.

2. Output logic.

Compare logic

The crucial point for the codeword determination is to conduct a comprehensive
comparison mechanism to find a common node. The common node will lead us
toward determination of a valid ML path. According to the equation (2.14), it is
required to find a common node in forward and backward tree whose combined
weight is less than or equal to the sum of TF and TB. Consider the Compare logic
implementation in the Figure 3.10.

The Comp Logic unit will accept TF, TB, data from forward search logic (Fn-
ode, FDepth and FWeight) as well as data from backward search logic (Bnode,
BDepth and BWeight), generated by Search/Select logic units and find the com-
mon node. The Comp Logic unit is managed by the Control unit, and will produce
Node out, LF out, LB out, En and some important Status flags. Node out rep-
resents a common node. LF out and LB out represents the depth levels of the
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forward and backward tree where the common node is found. En will be used as an
input to COMBUFF and will be used to enable or disable COMBUFF. Status flags
are used for indicating the completion of comparison mechanism. COMBUFF is a
sequential buffer used to link the results obtained via Compare Logic to output pins
of the design unit. The Comp Logic unit is a pipelined implementation and for sim-
plicity, let us assume that at each level of the tree, only four nodes exists, whereas
in hardware, the design is implemented to cover the spread of sixteen nodes. The
Comp Logic unit implementation covering four nodes is shown in Figure 3.11.

Figure 3.10: Compare logic architecture

FDATA (representing Fnode, FDepth and FWeight) and BDATA (representing
Bnode, BDepth and BWeight) from the Search/Select unit is distributed by FDU.
COMREG design unit intelligently compares the forward nodes with backward
nodes to find a common node, and compares the combined weight of the found
nodes with the threshold, according to equation (2.14).

COMPCL are the combinational modules, used to select a common node in that
case, where multiple common nodes are satisfying equation (2.14). COMPOP is
the design unit with similar functionality as COMPCL, used for selecting a final
common node while comparing all the found common nodes in all iterations rather
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Figure 3.11: Comp Logic architecture
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than in a single iteration. Our main aim for setting the current arrangements of
the design units in Comp Logic unit is that we want to converge the comparison of
the nodes to a single common node such that all the nodes within single iteration
are compared. At the same time we also want to cover that scenario where multiple
common nodes are found at different iteration levels of the design.

The basic architecture of COMREG is shown in Figure 3.12. The number of COM-
REG instances depends upon the total spread of the tree in terms of nodes. For four
nodes, we require four COMREG instances, similarly for sixteen nodes, there will
be sixteen COMREG instances. COMREG utilizes two adders for computing sum
of TF and TB as well as WeightF (weight of the node in forward tree) and WeightB
(weight of the node in backward tree). The comparator logic in COMREG consists
on set of comparators used to check the desired conditions specified in equation
(2.14). The corresponding bits of obtained node vectors during the forward and

Figure 3.12: COMREG architecture

backward search are compared, to check for the common node. If such node is
found then the next step is to check out the combined weight named WeightIN
of the node, with sum of TF and TB according to equation (2.14). If the desired
condition is satisfied, then, we store the node and its corresponding depth levels
(DepthF, DepthB for forward and backward tree respectively) for further use by
COMPCL units. The design flow for comparator unit in COMREG is illustrated
in Figure 3.13, shown as
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Figure 3.13: Comparator logic in COMREG

The Comparator is arranged to work in such a way that same positioned node
bits of the forward and backward node vectors provided by FDU are compared by
COMREG unit. The node input bits at each COMREG instance are labeled as
Node F and Node B. In first step, if Node F=Node B=’1’ then we will proceed to
the next step otherwise we will assign the COMREG outputs to their default values.
The next step is to compare the nodes according to equation (2.14). This complete
process will help us in identifying a common node at single iteration. There is
also a possibility that instead of having a single common node, there are multiple
common nodes at single iteration level. It is also possible that on other iteration
levels, we may also have multiple common nodes.

The arrangement of COMPCL design units are used to compare all the common
nodes corresponding to single depth level, in order to find the common node, having
minimum target weight among other found common nodes at that depth level. The
number of COMPCL instances will be half after each pipelined level until it will
reduce to one instance. The first pipelined level had two COMPCL instances as
there are only four nodes at each level, compared with the help of four COMREG
instances in the scenario shown in Figure 3.11. The next pipelined level will have
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only one COMPCL instance. For the spread of sixteen nodes, there will be eight
COMPCL instances at first level, four at second level and two at third pipelined
level. Ultimately, we are left with one COMPCL instance along with one COMPOP
instance to provide the convergence to a single common node with minimum target
weight. The design flow for COMPCL is shown in Figure 3.14.

Figure 3.14: COMPCL Logic

Each COMPCL will compare the results of two COMREG units at a specific time.
This process will continue until all the nodes are compared at specific depth of
tree. Assume that, CW1 and CW2 are the weight output of resultant nodes from
COMREG instance one and two respectively. These inputs to COMPCL unit are
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compared and outputs of COMPCL unit are set according to specified conditions.
The COMPOP also implements a similar strategy for comparing the outcome of
the results of COMPCL instance 3, where the output of COMPOP is been feed
back as an input by using FB (Feedback register).

Compare out is a decisive design unit that not only maps the output of Compare
unit to COMBUFF but also sets the status flags. Status flags are required by the
control unit, in order to decide that the result is acceptable, or there is a need to
restart the whole mechanism, from search till comparison and updating threshold
values for finding a ML codeword.

Output logic

In case, where a common node is found, the final step is to decide a ML path
containing a valid codeword by using the common node along with respected tree
depth levels. The Output logic in the BEAST architecture is responsible for decid-
ing a ML codeword path and code symbols are retrieved by using that path. The
Output logic architecture implementation is specified in Figure 3.15.

Figure 3.15: Output Logic
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The OUTFWD design unit accepts the common node along with LF IN and deter-
mine the code symbols, using the forward tree. Similarly, the OUTBWD produces
the code symbols from the backward tree, based on the common node and LB IN.
To combine the obtained code symbols in order to provide a ML codeword, the
exclusive OR operation is performed. The FWDEST and BWDEST are eight bits
vectors upon which the exclusive OR operation is performed to provide a complete
codeword, labeled Result. OUTBUFF defines a process, which is used to map
the desired output to the main output interface of the design and also sets the
Finish out flag, for indicating that the decoding process is finished with provided
received sequence set.

Consider a very basic example for elaboration of the concept regarding Output
logic, where LF IN = 3, LB IN = 5 and CommonNode input is ”1000”. Assume that
FWDEST=”10100000” and BWDEST=”00011011” (FWDEST and BWDEST are
set to ”00000000” by default). The resultant codeword after an exclusive OR oper-
ation will be ”10111011”. Consider the OUTFWD architecture as shown in Figure
3.16. The Level Decoder unit is used to decode the LF IN into Nen and Enout,
where, Nen and Enout are the eight bit signals. The OUTGEN design unit accepts
both of these vectors along with provided common node input labeled CNode and
will extract code symbols using forward tree, labeled FWDEST. The OUTGEN
unit consists on series of design units named Codesymb est. The structure of a
single Codesymb est unit is shown in Figure 3.17. The number of Codesymb est
units are dependent upon the total number of code symbols that a codeword con-
tain. Each Codesymb est unit is mapped with single Nen and ENout bit. The
interconnections between two adjacent Codesymb est units are done in such a way
that the Nxtnode output of first module will be connected to Prevnode input of the
next module. The main purpose of Nen is to select a common node from Compare
logic or a node coming from previous adjacent Codesymb est unit. The high bit
in Nen vector will indicate that the Codesymb est unit connected to that pin will
pass CNode to the next unit.

The bits in En out at the same time, are used for enabling or disabling OUTCELL
design unit on the basis of LF OUT. The OutSym output of each OUTCELL unit
will be mapped with FWDEST output of OUTGEN design unit. Suppose that
LF IN = 3, then Nen(3) will be set to high so that the common node generated
by the Compare logic unit is used by Codesymb est unit connected with that pin.
The rest of the other bits of Nen vector will be zero. The En out vector will also
set to ”00001111” for enabling the design, to traverse from LF IN till starting 0000
node. OUTCELL units contains simple case statements according to the generator
matrix G. A similar logic is implemented in OUTBWD unit, but capitalizing on
backward tree rather than forward tree.
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Figure 3.16: OUTFWD architecture

Figure 3.17: CodeSymb est cell structure
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3.2.4 Control unit

The core part of hardware that enables the design units to work smoothly without
any bottlenecks and deadlocks is the Control unit. Control unit not only synchro-
nizes all the modules inside the design but also ensure that the proper operation
will be performed by each individual component of the design while working as a
single unit. For achieving this purpose, a comprehensive Control unit is designed
and implemented for the BEAST.

The state description of the control unit is shown in Figure 3.18. The complete
hardware is assured to work with eight well defined states of operations which are
triggered on occurrences of some external and internal events generated by different
hardware modules inside the BEAST implementation. The operation performed in
each state is briefly described as follows.

Idle State

The Idle state is a default state of the controller. In idle state all the designed units
are initiated at their default operation. All the control signals are hold to their
default values. The state transition depends upon a trigger of an external event
generated by Start input of the design. Start input tell the design whether to start
the decoding process or not. If Start input pin is set high then next state will be
Load IN and hardware initiates the decoding process.

Load IN State

After receiving a trigger from start input pin, the Input Unit starts receiving the
data samples, using its input interface. The Control unit’s responsibility is to
provide addresses for the storage RAMs so that these samples can be stored. In
this state EN InBUFF signal is set to high in order to ensure write operation by
Input Samples unit inside Input Unit for storing the data samples.

The En InBUFF is tied with Wen(Write enable of the storage RAM). Whenever
Wen is set to high then the hardware will store input samples into the RAM. The
addresses to the RAM are provided by FADDR and BADDR signals, linked with
address lines of RAM units used by Input Unit. Whenever the write operation is
completed then Input Unit enables a signal linked to Sample WriteIN input of the
controller. The controller observes the signal and if it is found high then the con-
troller switches to the next state labeled Hdist IN. At the same time all the other
control lines linked with hardware other than Input Unit are kept at their default
states.
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Figure 3.18: Control unit architecture

Hdist IN State

Hdist IN as the name suggests, that in this state, the architecture of the BEAST
will cover the construction of forward and backward trees and perform calculation
of the weighted Hamming distance. For that purpose, it is required by the Control
unit to provide the addresses to Input Unit, for the purpose of data reading and
set up those control signals, required by the Input Unit to perform read operation.

The En inBUFF is set to low logic level for indicating that the Input Unit has
to perform read operation, while, FADDR and BADDR are incremented to provide
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the read addresses. Addr HIN is the address line used by storage RAM so that
the results of operations performed by FHdist top and BHdist top can be stored.
Addr HIN is linked with conventional address bus used by Input Unit for providing
addresses to FHdist top and BHdist top.

At the same time, the Input Unit starts computing the threshold values. When-
ever the read operation is finished, the Input Unit sets an indicator flag, linked with
Sample ReadIN input of the controller. When the Sample ReadIN pin receives logic
one, the controller enables the Wait State to wait for the completion of threshold
calculation operation, which was started along at that time.

Wait State

The threshold calculation procedure involves data sorting process that take more
time for completion than weighted Hamming distance calculation. Without the
threshold values, the Search/Select logic design unit is unable to initiate the search
mechanism, therefore, it is required to introduce a wait state. Tup is an input signal
to the controller, which receives a high (logic 1) to indicate that the threshold values
are ready to be used by Search/Select logic. The next state will be Search State.

Search State

In Search state, the controller is responsible of coordinating mainly with Search/Select
logic unit to ensure that the search and select operation is performed in systematic
way as described by the algorithm. The Search/Select logic design unit establishes
the forward and backward search and set the status flags which are mapped with
Flag Fs and Flag Bs inputs to the controller. Whenever both inputs are found high
then controller moves to Compare State of operation.

Compare State

In Compare state, read addresses are provided to the Search/Select logic so that
the search operation results stored at respected storage places can be provided to
Compare/Output logic design unit. The Compare State plays a very crucial role in
design because this is the state that defines the criteria, for whether to go for a ML
codeword decision or restart the whole process from search of nodes till comparison
and identification of common node.

The controller defined by control unit will accept the status flags generated by
Compare/Output logic. ComSt and ComFlag are the two input signals that help
the controller to take decision. If both the inputs are set to high (the common node
exists) then the next state will be Estimate state. If ComSt is zero and ComFlag
is set to one (Key criteria for the common node is not satisfied) then the next state
will be Wait State. The new Search will be conducted with updated threshold
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values and remaining process will be repeated again and again unless ComSt and
ComFlag are set to logic one.

Estimate State

Using the Estimate state’s defined signals, the Output logic unit will decide the ML
codeword. After codeword decision, the Output logic unit will set a flag linked with
Fout input of the control unit. If Fout is high then controller switches to Finish
State otherwise it will remain in Estimate state and wait for Fout flag to get high.

Finish State

Finish signal in this state is an external event which will be triggered if all the
data samples which are required to be decoded are finished. If Finish input is high
the system will be to the default state otherwise it will jump to Load IN state for
processing of new data sample set of a block code.

3.3 Possible improvements

In any hardware design implementation, there are always the chances of improve-
ment that a designer may consider. In BEAST implementation, a different imple-
mentation strategy for some parts of the design may optimize the overall design in
terms of area utilization and speed.

The major improvement that can reduce the overall area of the design is to in-
troduce a single frame strategy instead of having different frames for storage of
Nodes, depths and their respected weights during Search/Select operation. The
current design utilizes sixteen bit Node frame for representing the status of sixteen
nodes at any iteration level, sixty four bit frame to represent depth levels at any
level of tree (one vector each for forward and backward tree) and two hundred and
eight bit frame for containing the weight information of nodes.

It means that each information frame has to be stored separately. But if a single
frame mechanism is utilized then sixteen bits are required for node representation,
four bits instead of 64 bits are required for depth level and two hundred and eight
bits are required for weight representation. Total number of bits (TOT) required
to be stored by Search/Select logic unit are computed as

TOT = 2 × [(16 × 8) + (64 × 8) + (208 × 8)] (3.1)

TOT = 4608(bits) (3.2)

By using a single frame strategy, that is, instead of assigning four bits each for
every node for depth representation which leads to the total sum of 64 bits in each
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frame(16 nodes × 4 bits each), only four bits are required for representing depth of
every node in single frame which leads to.

TOT (SingleFrame) = 2 × [(16 × 8) + (4 × 8) + (208 × 8)] (3.3)

TOT (SingleFrame) = 3648 (bits) (3.4)

Hence lesser bits are required to represent the same information which leads to chip
area improvement. This improvement will be more effective while implementing
higher block codes. Second alternative for saving chip area will be to implement
time multiplexed architectures rather than parallel logic architectures utilized at
different levels of the design.
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Chapter 4
Implementation of BEAST

4.1 Overview

The major decision that a hardware designer would have to take after verifying the
functional and timing requirements of the design is to implement the design on a
specific platform. There are the two distinct options that a designer may consider
for its hardware implementation. The first option is to implement the design using
ASIC design flow and the other option is to use the reconfigurable hardware plat-
forms (like FPGA’s) for implementation of the design. The BEAST is primarily
implemented on FPGA but also, the design has been synthesized by using ASIC
design flow.

This chapter mainly covers both the implementation strategies regarding the BEAST.
The detailed area and timing analysis has been performed for showing the trends
regarding area utilization and timing limitations of the design. After verifying the
design functionality, some of the performance parameters are observed like analysis
of BER (Bit Error Rate) and SNR (Signal to Noise Ratio).
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4.2 ASIC Synthesis

In order to synthesize the design using ASIC synthesis techniques, Design Vision
tool is used. The design can be synthesized by using different synthesis constraints.
To check the maximum speed under which the design can operate properly, the
timing constraints can be utilized. To observe the area on silicon that can be cov-
ered by the design, the area constraints can be utilized.

ASIC synthesis will provide the detail description of design in the form of a Gate
netlist along with timing information which is used to perform timing simulations
for post synthesis analysis. BEAST decoder is synthesized by using two synthesis
constraints in order to provide the maximum speed as well as the minimum area of
the design.

4.2.1 Maximum speed

The maximum speed of the design in terms of frequency is 142.8572 MHZ while hav-
ing clock speed of 7 nano seconds. The design is been synthesized by setting clock
constraints so that no negative slack exists. The design had a critical path which
exists in Input Unit instance UUT2 of the design in sorting mechanism. The critical
path is UUT2/UUT3T/L1inst/out1 Reg[0] to UUT2/UUT3T/Tout7 Reg[12]. The
timing analysis of the design is specified in Table 4.1.

Table 4.1: Timing report.

Point Incr
(nS)

Paths
(nS)

Clock clk (rise edge) 7.00 7.00
Clock network delay (ideal) 0.00 7.00
Clock uncertainty -1.00 6.00
UUT2/UUT3/Tout7 reg[12]/ck(QDFFRBELD) -1.00 6.00 r
Library setup time -0.13 5.87
data required time 5.87
data arrival time -5.87
Slack (MET) 0

4.2.2 Minimum area

Using the minimum area constraint in order to constrain the design for achieving
the area near to zero, the design was constrained to get minimum area that can
be used to implement the hardware. Since the area on chip is directly related
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to the overall cost of the design hence reducing the area means the reduction in
cost of implementation of the design. The chip area of the design is reduced from
744085.752750 um2 to 724609.273184 um2. Consider the area report shown as Table
4.2. The design is utilizing more sequential logic area as compared to combinational
logic because of the fact that majority of the structure is purely sequential and also
for synchronization of different design units, register units are used.

Table 4.2: Area report.

Number of Ports 24
Number of Nets 1113
Number of Cells 8
Number of References 8
Combinational Area 243409.918968 um2

Non Combinational Area 481199.354216 um2

Net Interconnect Area Undefined (Wire load has zero net area)
Total Cell Area 724609.273184 um2

Total Area Undefined

4.2.3 Comparison of Maximum Speed vs. Minimum Area

The cell report produced by the tool is used to extract area information of each in-
dividual design units inside the complete hardware. The respective area consumed
by each module is shown in Table 4.3. It can be observed from the statistics that
Input Unit of the design is consuming approximately forty seven percent of the total
design area. This is because of the fact that the trees (forward and backward) are
also constructed and maintained in this design unit along with threshold calculation.

The maximum area is utilized by the Input Unit for storing input samples along
with weighted Hamming distance for respected forward and backward trees. Sim-
ilar is the case with Fsearch top and BSearch top inside Search/Select logic unit.
Search/Select unit also consumes more storage spaces for storing search results.

4.3 FPGA Implementation

The final step after verifying the functional as well as post synthesis simulation was
to implement the design on reconfigurable hardware structure like FPGA based
platforms. The design was implemented by using XUP Virtex II Pro Development
System. This system is an advanced hardware platform that contains a high per-
formance Xilinx Virtex II Pro Platform FPGA.
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Table 4.3: Comparison of Maximum Speed vs. Minimum Area.

Cell Name Maximum
Speed
(um2)

Percentage
(%)

Minimum
Area (um2)

Percentage
(%)

EstimateCW top 6882.56003 0.9241 6850.56103 0.9454
QDFFRBELD 28.1600 0.0038 28.1600 0.0039
INVDLD 7.6802 0.0002 3.8400 0.0006
Control unit 1661.4399 0.2238 1651.9999 0.2278
Input unit 343210.2354 46.1250 336385.2755 46.4229
FSearch top 160305.9184 21.5440 154812.1585 21.3649
BSearch top 159635.1985 21.4538 154085.1186 21.2645
Compare top 72354.5605 9.7239 70792.9605 9.7698

744085.7527 100 724609.2731 100

The complete development system consists of numerous categories of peripheral
components which can be used together in order to implement a complex system.
The first step toward the implementation of the design was to synthesize the design
for FPGA platforms which was done by using Xilinx ISE tool. For this purpose a
user constraints file was constructed to map the design inputs and outputs to the
provided interfaces on development system.

The device utilization summary obtained from FPGA implementation is shown
in Table 4.4. It can be seen that majority of the device resources are fully used due
to huge design size. This can be seen by observing the number of slices that the
design occupied on FPGA platform. The Advance HDL synthesis report generated

Table 4.4: Device Utilization Summary (xc2vp30-7ff896).

Logic Utilization Used Available Utilization
Number of Slices 12485 13696 91%
Number of Slice Flip Flops 14438 27392 52%
Number of 4 input LUTs 13617 27392 49%
Number of bonded IOBs 12 556 2%
Number of GCLKs 1 16 6%

by Xilinx ISE tool categorizes the number of generated design components during
implementation process. The Advance HDL synthesis report is specified in Table
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4.5. Registers and flip flops are the main components that are the cause of excessive
area usage on FPGA. For implementing higher Block codes the focus should be on
the amount of registers which will be used in order to save some area.

Table 4.5: Advance HDL synthesis report.

Components Amount
Adders/Subtractors 121
Counters 9
Registers 14840
Comparators 150
Multiplexers 17
Xors 1

4.4 Comparison of BER and SNR

After implementing the design, Bit Error Rate (BER) analysis is performed for
different values of Signal to Noise Ratio (SNR). For that purpose, the first step was
to generate the 1250000 Blocks representing a same codeword for analysis. The
reference codeword of 00000000 is used. The AWGN noise under the contribution
of different SNR values are added to the reference codeword and 1250000 vectors
are generated with the help of Matlab.

After generation of the random vectors which serves as an input to the BEAST
implementation, the vectors are stored in set of files which are applied to the RTL
design using Modelsim. The output is also stored in output files generated through
Modelsim. The final step was to import the Modelsim generated output files in
Matlab and compare the result with Matlab generated reference files containing
1250000 reference vectors without any bit error. The error bits are added together
and are divided by total number of bits to give the BER values.

The detailed results of the analysis are shown in Figure 4.1. By observing the
obtained results, it is concluded that the response of the system for (8, 4, 4) ex-
tended Hamming codes is within the desired theoretical bounds. With increase in
SNR values, the BER is getting smaller. In start with low SNR, there is more noise
corrupting the data signals and the probability of errors is higher. The design will
estimate a different codeword in some cases. By increasing the SNR values, the
results are becoming more and more accurate. At higher values of SNR, BER is so
small and ultimately lesser error bits are found which can be observed at SNR=7
and onwards.
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Figure 4.1: Comparison of BER and SNR



Chapter 5
Conclusion and Future work

5.1 Conclusion

The main focus of this work was to implement a well defined structure that can
be used to decide a codeword using the BEAST. The functionality and concepts
regarding BEAST are verified by the implementation. The first step toward the
implementation was to visualize a structure from algorithm and develop a concep-
tual design.

The next step was to implement the behavioral model using Matlab. After test-
ing the functionality by using a behavioral model, the next step was to develop a
synthesizable model using VHDL. The implementation was coded in VHDL and
simulated by modelsim, to provide functional and timing simulations of the design.

Afterwards the design was implemented on FPGA as well as synthesized by us-
ing an ASIC design flow. It can be concluded from the implementation that the
BEAST is an efficient approach to obtain a ML decision using block codes. Ma-
jority of the design structure is generic with exception to some of the design units,
which can also be improved.

The verification work was done by the use of Xilinx Virtex II FPGA while ASIC
synthesis was done by using UMC130 high speed standard cell library. The design
covers 91 percent of the slices on FPGA. By performing ASIC synthesis it was ob-
served that the design can work with maximum clock frequency of 143 MHz while
having a chip area of 0.72469 mm2.
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5.2 Future Work

There are some design optimizations and suggestions that can be considered while
implementing the hardware for higher block codes and these are.

• Fully generic structure
The contribution of the generator matrix G in the design implementation can
be made generic to cover different block codes. For that purpose, the tree
generation mechanism and calculation of the weighted Hamming distance
within the Input Unit along with decision of the codeword mechanism in
Compare/Output logic can be changed while keeping the remaining design as
same.

• Storage space reduction
Introduction of the single frame strategy for storage of nodes with their depths
and weights in Search/Select logic unit can be implemented in order to save
the storage space. The current design is storing the depth levels separately
for each node but by using single frame strategy only one entry is required to
store the depth level for entire frame rather than every single node.

The throughput of the hardware can be observed and compared under different com-
munication standards like LTE (Long Term Evolution) and others. These analysis
can be helpful for future research and use.

The power analysis can also be performed to check the power requirements while
implementing the design by using ASIC system design flow.
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