
“rapport” — 2011/11/22 — 23:34 — page 1 — #1

Comparative study of metrics for IPTV
transport in the access network

Patrik Björkqvist

Department of Electrical and Information Technology
Lund University

Advisors:
Jens A Andersson at EIT

Stefan Höst at EIT
Daniel Cederholm at Ericsson AB

November 22, 2011

“rapport” — 2011/11/22 — 23:34 — page 2 — #2

Printed in Sweden
E-huset, Lund, 2011

“rapport” — 2011/11/22 — 23:34 — page i — #3

Abstract

Last few years, services such as Internet Protocol Television (IPTV) and
Voice over Internet Protocol (VoIP) have been in focus. Network operators
see a huge potential in streaming real-time media over IP-networks and this
lays the ground for so called paid services such as Video on Demand (VOD)
as well as free services like YouTube and SVT Play. IPTV delivers content
over a closed infrastructure that receives media from a particular provider
using a set-top-box, or STB for short, in the home of customers. Services
such as Internet TV (SVT Play, TV3 Play and YouTube for example), have
the same look and feel as IPTV but are delivered over the open infrastruc-
ture of the internet, relying on the best-effort channel. The latter is called
over-the-top or OTT , referring to the media going around the STB rather
than through it. The benefit of such a service can be put into one word,
flexibility, watch what you want, when you want and where you want. But
these type of services have some drawbacks. Problems such as packet loss,
delay and jitter in the network greatly affects the quality for the end-user.

A significant problem for OTT-traffic in the access network, when deal-
ing with DSL copper transmission, are the old telephone cables used for the
last mile to customers, this part of the network was not built for this kind of
traffic and suffers from external disturbances in form of 50Hz power lines,
crosstalk and radio frequency interferences. This paper aims to evaluate and
compare different methods for classifying network traffic and how Quality-
of-Service (QoS) parameters (packet loss, delay, jitter, out-of-sequence) on
the IP level affect Quality-of-Experience (QoE) from a head-end to a re-
ceiver in a home network connected to an access network. A simulated
IPTV transmission is done in a simulated network with and without an
external disturbance signal injected to a pair in the same cable.

i

“rapport” — 2011/11/22 — 23:34 — page ii — #4

ii

“rapport” — 2011/11/22 — 23:34 — page iii — #5

Acknowledgements

First of all, I want to show my respect and gratitude to my supervisor
Jens A. Andersson and my examiner Stefan Höst, both working in the
department of Electrical and Information Technology at Lund University
of Technology. It has been a privilege to work with you during this time,
thanks for your support and knowledge. I also want to show my respect and
gratitude to Ericsson Research in Kista and especially Daniel Cederholm
who, despite his regular work, had the time to give comments and feedback
throughout the process. It has been a fantastic experience to see and get
this close to your work at Ericsson AB, and it has really inspired me to
continue on the same path in my professional career. Last but not least,
I thank my family, without your support and help I would not have made
this journey, a special thanks to my daughter Emely who put up with my
long days at school and late evenings at home.

iii

“rapport” — 2011/11/22 — 23:34 — page iv — #6

iv

“rapport” — 2011/11/22 — 23:34 — page v — #7

Terminology

Throughout this paper a set of terminology is used. An explanation of the
most common terms are given below:

• Internet Protocol TeleVision (IPTV) - IPTV delivers video content
over a closed secure infrastructure that can only receive content from
the IPTV provider’ s channels. IPTV focuses primarily on the TV in
the living room with high image quality.

• Internet TV - Internet TV, which has the same look and feel as IPTV,
is delivered over the open best-effort channel as OTT-traffic. Internet-
TV is usually delivered to the PC or some other device using peer-
to-peer technology.

• Over-The-Top (OTT) - Is referring to traffic in an IP-network not
going through an end customers set-top box.

• Quality of Experience (QoE) - Quality of Experience is a subjective
measure of a customer’s experience with a service (web browsing,
phone call, TV).

• Quality of Service (QoS) - Quality of Service is a set of parameters
(jitter, delay, latency and packet-loss) indicating the status of a traffic
flow handled by a network.

• ADSL - Asymmetric Digital Subscriber Line, part of the xDSL family
and is a technique for transmitting information over copper cables.

• DSLAM - Digital Subscriber Line Access Multiplexer is a network
device and connects multiple customer DSL interfaces to a high-speed
communication channel.

• DMT - Discrete Multi Tone is a method of separating a DSL signal
into 256 (in ADSL) sub-channels or so called tones.

v

“rapport” — 2011/11/22 — 23:34 — page vi — #8

• QAM - Quadrature Amplitude Modulation - a method of combining
two amplitude modulated signals into one signal.

• PAM - Pulse Amplitude Modulation is a form of signal modulation
where the information is placed in the amplitude.

• FDM - Frequency Division Multiplexing, is a form of signal multi-
plexing and involves assigning non-overlapping frequencies to differ-
ent users.

• RTP - Real time Transport Protocol, used for data transmissions in
realtime such as audio and video.

• RTCP - Real time Transport Control Protocol provides control infor-
mation for an RTP flow.

• RTSP - Real Time Streaming Protocol, used for establish and syn-
chronize media transmissions using UDP or RTP.

• IP - Internet Protocol is the communication protocol used for relaying
data packets over an network such as Internet.

• UDP - User Datagram Packet, is a connectionless protocol used for
sending datagram over an IP-network.

• TCP - Transport Control Protocol, a connection oriented protocol
used for reliable delivery of data streams.

vi

“rapport” — 2011/11/22 — 23:34 — page vii — #9

Table of Contents

1 Chapter Overview 1

2 Introduction and Motivation 3

3 Background 5
3.1 Related Work . 5

3.1.1 Network Architecture 5
3.1.2 Cable Theory 5
3.1.3 Digital Subscriber Line 6
3.1.4 Radio Transmission 8
3.1.5 RTP Protocol 9

4 Theory 13
4.1 Probing Methods . 13

4.1.1 Passive Probing 14
4.1.2 Active Probing 19
4.1.3 Combination of Passive/Active Probing 24

4.2 Traffic Classification . 26
4.2.1 Content Based Methods 27
4.2.2 Statistical Methods 30

4.3 Classification Methods for Real Time Traffic 33
4.3.1 RTP Traffic 34
4.3.2 Audio Traffic 36
4.3.3 Video Traffic 40

4.4 QoS/QoE Correlation . 43

5 Controlled Disturbance 47
5.1 Signal Theory . 48
5.2 Methodology . 51

vii

“rapport” — 2011/11/22 — 23:34 — page viii — #10

5.3 Results . 55

6 Conclusion and Future Work 63

References 67

A Program Code 71

B Wiring Diagram 85

viii

“rapport” — 2011/11/22 — 23:34 — page ix — #11

List of Figures

3.1 Effects on un-twisted pair cable. 7
3.2 Effects on twisted pair cable. 7
3.3 ADSL frequencies. 8
3.4 Structure of DMT. 8
3.5 RTP, RTCP and RTSP in real-time streaming. 12

4.1 Process of Active Experience and Service assurance 14
4.2 Concept of Port Mirroring. 17
4.3 Concept of Network Tapping. 17
4.4 Example of Service Provider network. 19
4.5 Example of an active probing system 21
4.6 Example of a dependency matrix 22
4.7 Chain pattern. 24
4.8 Quantification pattern. 25
4.9 Mirror pattern. 26
4.10 Conceptual picture of Classification Methods 27
4.11 IP/TCP Header field used in traffic classification 30
4.12 Trends in Classification . 31
4.13 Workflow for Supervised Learning 32
4.14 Workflow for Unsupervised Learning 33
4.15 RTP Header . 36
4.16 RTCP Header . 36
4.17 Architecture of PL-HMM classifier 42

5.1 Frequency content in x(t) 47
5.2 Rectangular pulse G(f) in frequency domain 49
5.3 Power spectrum density of s(t) 50
5.4 Generalized view over lab set-up. 51
5.5 Bitloading without any disturbance. 53

ix

“rapport” — 2011/11/22 — 23:34 — page x — #12

5.6 Quiet line noise without any disturbance. 53
5.7 SNR without any disturbance. 54
5.8 Bit-loading in time interval 10 to 20 minutes 56
5.9 Bit-loading in time interval 30 to 40 minutes 56
5.10 Bit-loading in time interval 40 to 50 minutes 57
5.11 Number of packets lost . 57
5.12 Inter Packet Gap in emulated IPTV 58
5.13 Bitloading with disturbance at 10kHz at cfq 1MHz 58
5.14 Bitloading with disturbance at 100kHz at cfq 1MHz 59
5.15 Quiet line noise with disturbance at 10kHz at cfq 1MHz . . 59
5.16 Quiet line noise with disturbance at 100kHz at cfq 1MHz . 60
5.17 SNR with disturbance at 10kHz at cfq 1MHz 60
5.18 SNR with disturbance at 100kHz at cfq 1MHz 61

B.1 Circuit diagram over UM232R and Maxim 233EEP 85

x

“rapport” — 2011/11/22 — 23:34 — page xi — #13

List of Tables

3.1 Radio Spectrum . 10

4.1 Pros and Cons for Port Mirroring and Network TAP 16

5.1 Time intervals of controlled disturbance 54

xi

“rapport” — 2011/11/22 — 23:34 — page xii — #14

xii

“rapport” — 2011/11/22 — 23:34 — page 1 — #15

Chapter1
Chapter Overview

Chapter 1 describes the structure of this thesis and briefly explains the
content in each chapter. Chapter 2 gives an introduction for this paper
and explains the motivation of this research. In Chapter 3, a theoretical
background of the PSTN and cable theory is given, this Chapter also briefly
explains some of the disturbances that appear in the network and especially
in cables used for xDSL transmissions. This is followed by classification
methods, probing techniques and the subject of mapping QoS parameters
to expected QoE for end-users in Chapter 4. In Chapter 5, a walkthrough
is done regarding the work of the signal generator made in C# used to
simulate a disturbance signal in the frequency range of ADSL. Finally in
Chapter 6 the thesis ends with conclusions and some ideas for future work.

1

“rapport” — 2011/11/22 — 23:34 — page 2 — #16

2 Chapter Overview

“rapport” — 2011/11/22 — 23:34 — page 3 — #17

Chapter2
Introduction and Motivation

Time sensitive media, such as video and audio, is steadily increasing on
the internet. What was once divided into separate telephone-, television-
and computer-networks are today more or less combined and run on the IP-
network we call the internet. One huge problem for both end-customers and
operators for different services is that the IP-network was not built for time
sensitive media. When it comes to audio/video traffic it can be divided into
two categories, the traffic going through a set-top-box in the home of end-
users, and the traffic going around the end-users set-top-box. The traffic to
the set-top-box is most often a service paid for by end-customers and it has
its own logical channel and is not the focus of this report. But the traffic
running over-the-top in the so called best-effort channel is trickier.

The QoS parameters (e.g. delay, jitter, packet-loss) are connected to the
quality of the traffic and in the end QoE for customers. In an attempt to
investigate and understand how external disturbances affect QoS parame-
ters in xDSL lines and how to classify network traffic, this thesis is made in
collaboration between the department of Electrical and Information Tech-
nology in Lund and Ericsson Research in Stockholm. Studies in recent years
have been made on different types of disturbances affecting the IP-traffic
in the access network, one effect discovered is the impact of radio inter-
ference from distant radio stations transmitting in the medium frequency
range, also called medium wave. The old telephone cables used for xDSL
traffic are sensitive for external disturbances and can therefore have a great
impact on QoE. In the attempt of maintaining or even improve QoE for
customers the QoS parameters for that particular network traffic must be
analyzed, traffic classification is a way of respond to this challenge. This
thesis aims to theoretically analyze how to probe and classify networks and
the traffic flowing within it, in the future with an enormous amount of time
sensitive media the classification and control of that flow will be of great
importance. The network operators must be able to provide benefits for the
traffic of paying customers as well as limit the traffic that is free of charge.

3

“rapport” — 2011/11/22 — 23:34 — page 4 — #18

4 Introduction and Motivation

To be able to evaluate both QoS and QoE correlation and probing a simu-
lated ADSL network is set-up in the lab in Lund, a controlled disturbance
signal is generated to affect the ADSL line in a controlled way.

“rapport” — 2011/11/22 — 23:34 — page 5 — #19

Chapter3
Background

3.1 Related Work

3.1.1 Network Architecture
The Public Switched Telephone Network (PSTN) is a world wide circuit
switched network delivering telephone services to the public and is the part
most think of when talking in terms of telephone systems. Private networks
such as Private Branch Exchange (PBX) are not a part of the PSTN al-
though they most often are connected to PSTN. The network can be divided
into two major parts:

• Core Network - This is the central part of the PSTN and provides
various services to all who are connected to the core by the access
network, the core network is also referred to as the Backbone network.
The main function is to route traffic across the PSTN and to provide
a path from different sub-networks.

• Access Network - The access network is the part which connects
subscribers to their service provider, that is the cable between a cus-
tomer and the telephone exchange server. This part is most often old
copper wires and is known as The last mile. This is also the part of
interest in this thesis since it is here a lot of the problems on hand
arises.

3.1.2 Cable Theory
Unshielded twisted-pair cable is the most common type of cable used to-
day in telecommunication. It is mostly associated with voice transmissions
but handles frequencies well in the range of 100kHz and 200MHz and is
well suited for data traffic as well. The telephone line consists of two con-
ductors, usually copper, each with its own insulation. In the early days of

5

“rapport” — 2011/11/22 — 23:34 — page 6 — #20

6 Background

telecommunications, two parallel flat wires were used but suffered a lot from
electromagnetic interference. This is because the wire closest to the source
of noise receives more interference than the one further away, this results in
an uneven load on the cable and distorts the signal as depicted in Figure
3.1. In the twisted cable, the distance to the noise is alternated between
the two wires making the total effect to zero, this can be seen in Figure 3.2.
This solution does not eliminate the impact of noise, but reduces it. There
are five major disturbances where inductive noise and wave interference are
of special importance in this thesis:

1. Galvanic disruption - When two circuits use a common cable, the
influence of galvanic shocks can occur. This is often a common refer-
ence or power supply wires. By current or voltage fluctuations in the
first circuit, the second one is affected.

2. Capacitive interference - Is caused by a system’s electrical field, which
acts as a source of interference. A typical example of a capacitive
disturbance are two, over a longer distance, parallel buried cables.
These acts as two opposing horizontal capacitor plates and creates a
short circuit for high frequency signals.

3. Inductive noise - The reason for an inductive interference is the mag-
netic field formed around a current, which also penetrates the adja-
cent conductors. A power change leads to a change in the magnetic
field, after which a voltage is induced in the conductor between neigh-
boring cables.

4. Wave interference - Means the transfer of conducted waves or impulses
to the adjacent lines, with the right frequency of the wavelength com-
pared to the cable. The whole cable can start to act as a receiving
antenna if no countermeasures are taken.

3.1.3 Digital Subscriber Line
The Digital Subscriber Line or DSL for short, is a family of technologies that
provides high-speed transmissions of data over the existing PSTN cables.
Commonly used techniques in Sweden are ADSL2, ADSL2+ and VDSL2 is
in progress, other techniques are ADSL, SDSL and VDSL. They are most
often referred to as xDSL as a whole. In this thesis we refer to the first two
techniques of ADSL which stands for Asymmetric Digital Subscriber Line.
It provides higher bit rate in the downstream than the upstream, from the
customers point of view. ADSL divides the bandwidth of a twisted-pair
cable into three bands as seen in Figure 3.3. The first band, normally

“rapport” — 2011/11/22 — 23:34 — page 7 — #21

Background 7

Source of noise

Total noise effect is
10 - 8 = 2

Noise effect = 10 units

Noise effect = 8 units

Figure 3.1: Effects on un-twisted pair cable.

Source of noise

Noise effect =

Total noise effect is
36 - 36 = 0

8 8

10 1010 10

88

Figure 3.2: Effects on twisted pair cable.

between 0 and 25 kHz, is used for regular telephone service and only uses
around 4 kHz, the rest is used as guard band. The second band is between
25 kHz to 200 kHz and is used for the upstream, the third and last band
is used for the downstream and is between 250 kHz and 1.1 MHz.

The modulation used in ADSL is called Discrete Multi Tone (DMT)
and combines QAM and FDM. ADSL and ADSL2 each have 256 sub chan-
nels while ADSL2+ has 512 sub channels and extends the down band to
2.2 MHz. The bandwidth is divided into bins of 4.3125 kHz and each sub
channel within a specific frequency range will be responsible for either up-
or down-stream data as seen in Figure 3.4. In DMT a technique called bit-
swapping is used, changes in the channel gain or noise spectrum are tracked
by a DMT-based DSL modem and moves bits between sub-channels in order
to maintain the target bit error rate (BER). Typically bit-swapping retains
the same data rate but redistributes energy so that best (and lowest neces-

“rapport” — 2011/11/22 — 23:34 — page 8 — #22

8 Background

sary power) bit distribution is maintained. Bit swapping allow up to at least
a 14 dB range of noise variation and is used when single tones are affected,
however, some noises may exceed this range and then re-initialization is
necessary.

KHz30
Hz

4
KHz

25
KHz

138
KHz

142
KHz

1104
KHz

DownstreamUpstreamPSTN

Figure 3.3: ADSL frequencies.

FDM
(256

channel,
4,312KHz

QAM
15 bits/baud

QAM
15 bits/baud

QAM
15 bits/baud

QAM
15 bits/baud

Serial to
Parallel

Parallel
to serial

Channel 31

Channel 255

Channel 6

Channel 30

Upstream

Downstream

Channel 0

1,104 MHz

Figure 3.4: Structure of DMT.

3.1.4 Radio Transmission
Radio technology is out of the scope of this thesis but to understand how
electromagnetic waves can disturb cables such as the ones used for ADSL

“rapport” — 2011/11/22 — 23:34 — page 9 — #23

Background 9

traffic, a short introduction is made. Electromagnetic radiation is a form of
energy with wave-like behavior when it travels through space and consists
of both an electric and magnetic field component, which oscillate in phase
perpendicular to each other and perpendicular to the direction of energy
propagation. Radio waves are in the range of 3 kHz to 300 GHz as seen in
table 3.1. Problem arise when radio waves start to interfere with electronic
equipment and cables both far away and near the transmitter. Due to
atmospheric changes radio waves can sometimes travel far distances so both
nearby transmitters as well as distant transmitters can interfere.

3.1.5 RTP Protocol
RTP stands for Real time Transport Protocol and is widely used for real
time multimedia data streams such as audio and video and provide end-
to-end delivery services. RTP is used in conjunction with RTP Control
Protocol (RTCP), while RTP is used to carry the actual media stream
(e.g. audio/video), RTCP is used to monitor transmission statistics and
QoS. When these protocols are used in conjunction, RTP is originated and
received on even port numbers and RTCP on the next higher odd port num-
ber. RTP is also used in conjunction with other protocols such as RTSP.
RTSP, or Real Time Streaming Protocol, is a network control protocol used
for controlling streaming media servers for entertainment and communica-
tions systems. The transmission of streaming data itself is not a task of the
RTSP protocol, thats the job of RTP. The following differentiates between
these protocols:

• Real Time Streaming Protocol(RTSP) - Is the control protocol
for the delivery of multimedia data over any IP-network, it typically
uses TCP and has very similar operations as HTTP. RTSP is used
by the client to communicate information, such as the media file re-
quested, type of application on client side, if unicast or multicast,
TCP or UDP, to the server. Also control commands such as SETUP
and PLAY are sent by this protocol.

• Real-time Transport Protocol (RTP) - RTP is the protocol used
for the actual transport and delivery of real time data, such as au-
dio/video. UDP is used as the layer 4 mechanism for delivery, TCP
however, can also be used in situations where packet loss is higher.
The RTP flow is unidirectional when delivering data, that is from the
server to the client. As mentioned before, the source port is always
even when sending the UDP data and the port number is dynam-
ically allocated. The destination port is chosen by the client and
communicated over the RTSP connection.

“rapport” — 2011/11/22 — 23:34 — page 10 — #24

10 Background

Frequency Wavelength Designation Abbreviation
3 - 30 Hz 105 km - 104 km Extremely

Low Fre-
quency

ELF

30 - 300 Hz 104 km - 103 km Super Low
Frequency

SLF

300 - 3000 Hz 103 km - 100 km Ultra Low
Frequency

ULF

3 - 30 kHz 100 km - 10 km Very Low Fre-
quency

VLF

30 kHz - 300 kHz 10 km - 1km Low Fre-
quency

LF

300 kHz - 3 MHz 1 km - 100 m Medium Fre-
quency

MF

3 MHz - 30 MHz 100 m - 10 m High Fre-
quency

HF

30 MHz - 300 MHz 10 m - 1 m Very High
Frequency

VHF

300 MHz - 3 GHz 1 m - 10 cm Ultra High
Frequency

UHF

3 GHz - 30 GHz 10 cm - 1 cm Super High
Frequency

SHF

30 GHz - 300 GHz 1 cm - 1 mm Extremely
High Fre-
quency

EHF

Table 3.1: Radio Spectrum

“rapport” — 2011/11/22 — 23:34 — page 11 — #25

Background 11

• Real-time Control Protocol (RTCP) - RTCP is a complimentary
protocol for RTP and is a bidirectional UDP mechanism to communi-
cate QoS back to the server. The RTCP UDP communication always
uses the next source port up from the one used by the RTP stream,
and thereby always odd.

A picture of the basics in the process of RTP, RTCP and RTSP can be seen
in 3.5 and are explained in the following steps:

1. Client establishes a TCP connection to the server, usually on port
554 which is a well known port for RTSP

2. Client then commences a series of RTSP header commands describing
to the server details of the session requirements, such as supported
RTSP versions, transport for the data and port information. This is
passed using the DESCRIBE and SETUP headers.

3. When the previous step is done the client will issue a PLAY command
to tell the server to commence delivery of the RTP data.

4. When the client decides to close the stream of data, a TEARDOWN
command is issued making the server to cease the RTP stream with
that particular session.

“rapport” — 2011/11/22 — 23:34 — page 12 — #26

12 Background

Server

RTSP Control Connection

RTP Data Delivery Stream

RTCP (RTP Control Connection)

The TCP-based RTSP
connection is used to
communicate control

information

The UDP-based RTP
stream is used to carry the

encoded media data. Server
port is always even.

The UDP-based RTCP stream
carries information on quality of
the RTP stream back to server.

RTCP always uses the next
incremental UDP port on

server side

Client

Figure 3.5: RTP, RTCP and RTSP in real-time streaming.

“rapport” — 2011/11/22 — 23:34 — page 13 — #27

Chapter4
Theory

The main goal here is not to investigate how operators can, shall or will
handle the process of quality, but for simplicity a flowchart called Process
of Active Experience and Service assurance (PAXSa) is shown in Figure
4.1. This is only done to give a survey over this broad topic. As seen in
previous chapter, multimedia traffic on the internet can use the old PSTN
network and suffers from disturbances. Because of this it is important for
operators to be able to perform measurements on the network and based on
the outcome take action. Probing can be done in many ways and depends
on the reason for doing it. Active probing can give QoS parameters for
an end-to-end link while passive probing typically gives QoS parameters
at a point in the network. One reason for probing can be that operators
wish to prevent problems by continuously probing the desired network and
take countermeasures based on the result, a second reason can be customers
complaining of poor quality for different services.

4.1 Probing Methods

Many proposals have been made for service providers to measure a particu-
lar path in the network and determine the quality of that path. Active and
passive measurements are two fundamental techniques of measuring QoS
parameters such as jitter, delay and packet loss in an IP-network. These
techniques differ quite considerably in the procedure. Active probing in-
jects traffic on the network which is then observed, while passive probing
passively examines the traffic that is already flowing on the net. It is impor-
tant to highlight that in active probing it is the injected traffic that actually
carries the QoS parameters, while in passive probing, the QoS parameters
are taken from the network traffic.

13

“rapport” — 2011/11/22 — 23:34 — page 14 — #28

14 Theory

Prevention/
Complaints

Probe

Select/Restrict

Inject

Data Data

Mapping

Classify

Select/Restrict

ProblemAction

Prevention

Yes No

PassiveActive

Stop

No Yes

Figure 4.1: Process of Active Experience and Service assurance

4.1.1 Passive Probing

The very first step in the passive approach in PAXSa is Select/Restrict and
is a pre-step to passive probing. In order to monitor the network in a passive
way it is prone to determine which traffic to actually observe, if a particular
application or protocol is to be monitored or maybe its enough to monitor
some part of the traffic as a whole. The work of actually separating the
desirable traffic from the undesirable is called classification and is explained
in detail in Chapter 4.2. Passive measurement is a means of tracking per-
formance and behavior of traffic streams in the network by monitoring the
traffic without modifying it. The level of detail of the information collected
depends on the traffic volume, how the metrics are being processed and of
course what metrics are of interest. The passive approach has the bene-

“rapport” — 2011/11/22 — 23:34 — page 15 — #29

Theory 15

fit of not affecting network traffic in any way and can be of importance if
implemented in an already highly loaded network, the passive approach is
also used for measurements in a point rather then end-to-end. This can of
course be a problem if one does not have access to network devices and/or
links. Typical QoS parameters in passive probing can be:

• Packet/Bit rates

• Inter-arrival time

• Queue levels in buffers (Used as an indicator of packet loss and delay)

There exists two common passive probing techniques, port mirroring and
network tapping.

Port mirroring, or Switched Port Analyzer (SPAN), is the more ac-
tive approach in the sense that the network device physically has a duty
to copy packets from a certain port or ports and forward them not only
to the destination port, but also to a mirror port. Since traffic in both
directions is copied, problems like buffer overflow and dropped packets may
occur when multiple ports are mirrored to one port, making time-sensitive
measurements difficult to perform. This process takes some resources from
the switch, such as CPU, making the workload lead to reduced switching
performance. A basic model of this technique can be seen in Figure 4.2.

Network Tapping is fully passive and is directly inserted onto a link.
A network-tap split or copy the signals from both channels and retransmit
the data to a monitoring device. Unless an aggregation tap is used, a tap
has one tap-port per direction. This means that the network device needs
dual interfaces in order to capture a full-duplex line. A basic model of
this technique can be seen in Figure 4.3. Since taps split/copy the traffic
without interfering, all anomalies are also copied, making it a preferable
solution when it comes to troubleshooting. The copper tap does not split
the signal, it regenerates it. Regenerating the signal means the signal gets
amplified to a level where it can be received by the monitor device, this also
means that copper-taps need power. When it comes to fibre taps, there
are two things to consider, first the split ratio of the tap and second the
light source of the tap. A fibre tap´s split ratio is mainly determined by
the sensitivity of the receiver, transmitter strength and cabling. When a
fibre is tapped, the link suffers from insertion loss due to the split light
beam. The tap however is non-powered. Which technique to use, Mirror
or Tap, depends on the reason for executing a passive probe in the first
place. The network tap will most likely be more expensive since it requires
hardware to be installed, but this solution however give full access of a full
duplex link with the ability to investigate physical errors. The port mirror

“rapport” — 2011/11/22 — 23:34 — page 16 — #30

16 Theory

has the benefit of copying intra-switch traffic but is not the best choice if
time sensitive parameters are to be measured. A summery of the techniques
pros. and cons. are displayed in Table 4.1

Network TAP Port Mirror
Pros Eliminates the risk of

dropped packets
Low Cost

Monitoring device receives
all packets, including physi-
cal errors

Remotely configurable from
any system connected to the
switch

Provides full visibility into
full-duplex networks

Able to copy intra-switch
traffic

Cons Analysis device may need
dual receive capture in-
terface if using full-duplex
TAP

Can not handle utilized full-
duplex links without drop-
ping packets.

Additional cost with pur-
chase of TAP hardware

Filters out physical layer er-
rors

Can not monitor intra-
switch traffic

Burden placed on a switch´s
CPU to copy all data

Table 4.1: Pros and Cons for Port Mirroring and Network TAP

“rapport” — 2011/11/22 — 23:34 — page 17 — #31

Theory 17

Client A Client BSwitch

Monitor

Rx (B -> A) Tx (A -> B)

(B -> A) + (A -> B)

Figure 4.2: Concept of Port Mirroring.

Client A Client B

Monitor

Rx (B -> A) Tx (A -> B)

(B -> A)) (A -> B

Figure 4.3: Concept of Network Tapping.

“rapport” — 2011/11/22 — 23:34 — page 18 — #32

18 Theory

In [9] a passive technique of detecting and diagnosing link-level anoma-
lies is suggested to cover as many IP flows as possible in a network. A di-
rected graph G = (V,E), where V is the set of nodes (e.g. routers, switches
etc.), and E is the set of bidirectional edges (e.g communication links) is
used to model the network. The infrastructure consists of passive mon-
itoring devices, placed at different points in the network, and a Network
Operations Center (NOC). A variety of passive technologies are available
to observe network traffic, both on the link and on the link interface, such
as Network Taps and Port mirroring.

• Detecting anomalies - As mentioned above, a tap on a path p can
be used to detect packet loss and/or delays for links on this partic-
ular path. Let s and t be two taps at either end of the path p, at
predefined time intervals both s and t send the number of packets
passed to NOC. If the difference exceeds some specified threshold,
we can conclude that packets are being lost somewhere on the path.
One other alternative is to let s and t send samples of the observed
traffic to the NOC and then inference of packet loss can be made if
the discrepancy is large. By associating timestamps with packets it
is possible to, in a similar way as above, detect delays for the path
p. As long as every link belongs to at least one monitored path, it is
possible to detect link-level anomalies. In order to reduce communi-
cation overhead between probes (e.g passive monitoring devices), it
is beneficial to monitor as few paths as possible while every link is
covered by at least one monitored path. In Figure 4.4, an example
of a Service Provider network is depicted, nodes a, b, c and d are so
called edge nodes which are connected to some customer networks.
Now suppose that there are two bidirectional communication paths,
p1 = 〈a, v1, v2, b〉 and p2 = 〈c, v1, v2, d〉. Monitoring taps are placed
at nodes a, b, c and d, so the network traffic on the above two paths
can be monitored.

• Diagnosing anomalies - While paths p1 and p2 are enough for de-
tecting anomalies on the links, they are not enough to determine
which link is having problem. Say for example that path p1 reports
an anomaly but not path p2, then either of the links 〈v2, b〉 or 〈a, v1〉
could be the cause of the anomaly. 〈v1, v2〉 is not among the suspects
since p2 is not reporting any anomalies. Passive probes at the edge
nodes are required to ensure all paths are monitored and all anomalies
are detected. For diagnosing however, this may not be enough and
additional probes may have to be placed within the core network. In
a simplified way we assume that a path only reports an anomaly if and
only if there is an anomalous link in this path, second we also assume

“rapport” — 2011/11/22 — 23:34 — page 19 — #33

Theory 19

V1

V2

Tap 1

Tap 2Tap 3

Tap 4a

c
b

d

Figure 4.4: Example of Service Provider network.

that a network anomaly is caused by a single link. These assumptions
can be relaxed according to the authors of [9]. By introducing path
p3 = 〈a, v1, v2, d〉 the path set Q = {p1, p2, p3} now can distinguish
between all link pairs. If however no communication is in progress
over p3, we are back to the same problem, another way to solve the
problem is as mentioned above to place an additional tap/probe in
the path segment between the undistinguished link pairs and break
each path into two new ones. By placing a tap on link {v1, v2} the
path p1 splits into path p3 = 〈a, v1, v2〉 and p4 = 〈v2, b〉, and p2 splits
into p5 = 〈c, v1, v2〉 and p6 = 〈v2, d〉. The new paths p3 and p5 contain
just one of the links in the pairs {〈a, v1〉 , 〈v2, b〉} and {〈c, v1〉 , 〈v2, d〉}.
By selecting the subset Q = {p1, p2, p3, p5} or Q = {p3, p4, p5, p6}
anomaly diagnosis can once again be made.

4.1.2 Active Probing

Active probing is another way of measuring the performance of the network
and involves inserting traffic into the network path to be measured. In active
probing, the probes actually carry the information regarding jitter, delay
and packet loss. The sole purpose of probe packets is to provide insight into
how the real network traffic is treated within the network. Active probing
has the disadvantage of burdening the network with more traffic, on the
other hand it has the benefit of being able to monitor the link from end-to-
end without the need of access to network stations in between. According
to the model of PAXSa, Select/Restrict is the first step in the active option
and refers to select and restrict what probes to use. Probes may be generic
(specific only to the protocol, not the application), or customized to an ex-
pected application. Other choices that have to be made are probe-structure

“rapport” — 2011/11/22 — 23:34 — page 20 — #34

20 Theory

(e.g. packet-pair, packet-trains), departure distribution (e.g. Poisson) and
if probes are to be pre-planned or actively chosen during the process. How
to make these selections differs from situation to situation and will not be
completely explained in this thesis. However, it is the opinion of the author
of this report that there exist three major probe-structures and are mainly
used for gathering data such as delay, loss and jitter:

• Packet Trains - One of the first models of a traffic flow was created
by [4] and is called packet train model. It is here defined as a burst
of packets arriving from the same source. If the spacing between
two packets exceeds some pre-defined inter-train gap, they are said
to belong to different trains.

• Packet-Pair - The packet-pair is defined as two packets of the same
size traveling from the same source to the same destination with a
predefined inter packet time.

• Back-to-Back - Is defined as a packet-pair but back to back, no time
space between packets.

An interesting approach is taken in [5], it is shown that the approach
explained can reduce the time and number of probes needed to localize a
problem compared with pre-planned probing. The pre-planned approach is
rather straight forward technique but suffers from some limitations. Probes
are computed offline and need to be able to diagnose all possible anomalies,
making the probe-set very large in some cases. Another disadvantage is that
the probes run periodically at scheduled intervals, there will be delays in
detecting a problem if it happens in between two probes. In this approach,
an initial set of probes is selected offline and is run periodically, this is to
detect any anomalies in the network. If a problem is accounted additional
probes are selected online for the purpose of gathering more information,
this step is repeated until the problem is determined. This allows fewer
probes to be used than in the case when the set must be determined in
advance, an outline of the system is seen in Figure 4.5. The process explains
how to select initial probes, analyze probe data and select additional probes.

“rapport” — 2011/11/22 — 23:34 — page 21 — #35

Theory 21

Database
Analyze Probe

Results

Additional
information

needed

Problem
DIagnosed

Select Additional
Probes

Instruct Probe
Stations

Select Initial
Probe SetProbe Station

Probe Station

Figure 4.5: Example of an active probing system

• Selecting Initial Probes - A dependency matrix can be used in the
relationship between available probes and the nodes with a problem
needed to be detected. The probes are the rows and the nodes are
the columns and a nonzero entry in the matrix where a probe tests
the occurrence of a problem in that node. For example, consider the
network in Figure 4.6. Now suppose one probe is being sent along the
path of N1, N2 and N5 and one probe is sent along the path of N1,
N3 and N6. A dependency matrix is shown next to the graph where
probes are indexed by start and end nodes. If N2 is down, then the
probe of the first path fails but not the second one, if instead N5 is
down once again the first path fails but not the second one. These
two failures result in the same signal because their columns in the
matrix are the same. Any problem whose column is unique generates
a unique signal making not only problem detecting possible, but also
problem diagnosing. The task of problem detection however, is to
find the smallest set of probes that no matter what problem occurs,
there will be a probe failing. This can also be stated as finding the
smallest set of probes (e.g rows) such that each column has a nonzero
entry.

• Analyzing Probe Results - When a problem occurs, the probe re-
sults must be analyzed. Diagnosis can be seen as the task of finding
themost likely state to all network components given by probe results.
If we assume a prior probability of fault equal to pi = P (Xi = 0) for
all nodes, we then wish to find a vector x∗ = arg maxx1,...,xn

∏n
j=1 pj

“rapport” — 2011/11/22 — 23:34 — page 22 — #36

22 Theory

matching to those constraints imposed by observed probes. The prob-
lem can also be seen as a constraint satisfaction rather then optimiza-
tion, if there is a unique solution satisfying the constraints.

• Selecting Additional Probes - At every stage, additional probes
must be selected according to the previous probe results. For each
probe the following can be computed:

1. Likelihood of the probe succeeding or failing, which depends
on inferences drawn about the probability of different network
states.

2. Additional information about the network as a result of sending
that probe and receiving a successful or failed result.

By using this strategy one can compute the expected information
gain of each node and which node to send to next, to maximize the
expected information gain. Once the next to send -probe is selected, it
is sent and once again inferences are made about the network state,if
necessary additional probes are sent again.

N1

N2

N5

N3

N6

N4
P15

P16

N1 N2 N3 N4 N5 N6
1

1

1 1

1 1

0 0 0

0 0 0

Figure 4.6: Example of a dependency matrix

Both [6] and [7] show that longer probes (packet trains) result in better
estimates regarding bandwidth (data rate) in the measured network. In
[6], the authors come to the conclusion that shorter probe trains introduce
bias errors, while the work of [7] points out a problem regarding bandwidth
estimation with probe trains in the length of three to seven packets. The
problem occurs when switching from looking at the order of sent packets

“rapport” — 2011/11/22 — 23:34 — page 23 — #37

Theory 23

to the order of arrived packets, a possible reason for this can depend on
reordering of packets. In active probing, there are several parameters to
consider such as packet length, departure time and inter-packet gap, even
how the network treats the train is important. If the purpose is to estimate
bandwidth, a train in the range of seven to fifteen packets with a Poisson
departure is often suggested, but if the purpose is to investigate how the
network treats a certain application or a certain class of traffic, the train
should have similar properties as that particular application or traffic. Most
importantly, the packet trains will interfere with the rest of the traffic,
so called cross-traffic. It is important to understand how the interaction
between cross-traffic and packet-trains works and will be discussed in the
next section.

Cross Traffic Effects

When the packet train traverses the network path, the dispersion between
successive probe packets will change. This is due to limited link capacity,
interactions with other packets traversing the same path (so called cross-
traffic packets) and disturbances. In [8], a model is used to describe and
analyze how packet trains are affected by cross-traffic when traversing a
network. Three major effects are identified as Chain patterns, Quantification
patterns and Mirror patterns. The definition of a hop here is the router, its
in-queue and the outgoing link. It is assumed all queues are FIFO-queues
and there is no isolation of flows, for example fair queuing. The dispersion
of adjacent packets in a packet train is equal, when leaving the probing
generator. This dispersion is varied to achieve different probe rates and the
packet size is fixed. The authors also define what they call I and B packets,
an I packet is never queued behind another probe packet in the outgoing
queue, while B packets are.

• Chain Pattern - is the effect of cross traffic slow a probe packet (i)
in such way that at least (i + 1) and (i + 2) are transformed from I
packets to B packets and are shown in Figure 4.7. The shaded packet
is a cross-packet arriving just before probe packet (i− 1), they arrive
on different links but are assumed to leave on the same. Packet (i−1)
must wait for the router to process the cross traffic before it can leave.
This also make packet (i) and (i+ 1) delayed, when leaving the last
two packets have become B packets since they queue behind packet
(i) on the outgoing link.

• Quantification patterns - When a cross traffic packet arrives at
the incoming queue between two back-to-back probe packets, they
will be separated by the service time of the cross packet as seen in

“rapport” — 2011/11/22 — 23:34 — page 24 — #38

24 Theory

Figure 4.8. The second one entering between probe packet (i−1) and
(i) create a time gap and the quantification pattern is a fact.

• Mirror patterns - The mirror pattern arises when a packet train
consists of at least three I packets (i− 1), (i) and (i+ 1). The delay
for an I packet is described by following equation:

δi = (xi − xi−1) + (wi − wi−1)

Where x is service time and w is waiting time in queue. The mirror
pattern arises when probe packet (i) is affected by a cross traffic
packet but not probe packet (i− 1) and (i+ 1) as seen in Figure 4.9.
While not going into details, the mirror effects appear in the delay
for packet (i+ 1) and (i) and are δi+1 = −δi.

i-1 i i+1

w
i-1

w
i w

i+1

i-1 i i+1

Incoming packets

Outgoing packets

T

Figure 4.7: Chain pattern.

4.1.3 Combination of Passive/Active Probing
Both the passive approach and the active approach have some advantages
and disadvantages. In an attempt to benefit from both techniques, a com-
bination of passive/active is suggested in [11] and a model called Change-
of-Measure Based Passive/Active Monitoring (CoMPACT Monitor) is ex-
plained. The system has a set of active probes and a NOC. The monitoring
operations are controlled by the NOC, initiating measurements task done
between active probing agents. The results in form of jitter, delay and loss

“rapport” — 2011/11/22 — 23:34 — page 25 — #39

Theory 25

i-1 i i+1

Incoming packets

Outgoing packets

w
i-1

w i w
i+1

T

i-1 i i+1

wct

Figure 4.8: Quantification pattern.

are then sent to the NOC which keep track of the service quality in the
network. Although this model is tested in a VoIP environment, the concept
can be used for other real time media such as IPTV. The probes use the
Network Time Protocol (NTP) to synchronize their clocks, a timestamp is
then put in the RTP payload and sent. The average one-way delay includes
a packetization delay, which is the delay of filling a payload with encod-
ed/compressed data. This delay depends on the codec being used. The
one-way delay also consists of a jitter buffer delay, which depends on the
size of the jitter buffer.

When a packet is received, the timestamp of the sender is subtracted
from the current time at the receiver to get the propagation delay. The
packetization delay value for different codecs is predefined and is added in
order to get the total delay. If the jitter buffer size is greater then zero, this
will also be added to the total delay. Yet another delay is added at the end,
the so called playback delay, Dpb, how this delay is handled depends on the
media and is left out in this report. For the passive part of the system, a
number of passive probes are set up on the links and dissect the protocol
field in packets, if it turns out to belong to a protocol of interest, statistics
of the session are collected and stored (e.g recorded). This information is
then sent to the NOC which correlates the measurements to the quality at
that point in the network. Each record contains three fields: protocol, key
and statistics. The key corresponds to a unique identity for a record of a
specific connection and the measurements from the probes are stored in the
statistics field. For each packet received, a check is done to establish if a
record already exists for that key, then an update is made. For Session
Initiation Protocol (SIP), the type of header and local time of arrival is

“rapport” — 2011/11/22 — 23:34 — page 26 — #40

26 Theory

i-1 i i+1

Incoming packets

Outgoing packets

w i
T

i-1 i+1i-1

t i t i+1

Figure 4.9: Mirror pattern.

stored. For RTP, the number of packets observed are incremented , com-
puting average timestamp, updating the minimum and maximum observed
sequence numbers, and update the reception time of the last packet. The
passive/active approach may have some benefits. A combination of both
can, if combined correct, lower cost, time and network space. An interest-
ing solution can be to have passive probes at key points in the network,
tentatively at the border between the core network and the access network.
These probes can be set to detect anomalies within traffic of interest and
when a problem occurs, it can trigger alarms to the operators, who can take
actions accordingly.

4.2 Traffic Classification

The part of traffic classification in the passive branch of probing is of great
importance for an Internet Service Provider (ISP) and is used for network
planning, security and QoS. In an attempt to provide QoS for OTT-traffic,
one step is to be able to identify the traffic of interest in the network. This
is not as easy as it sounds due to encrypted traffic, dynamic port selecting
applications, and on top of that both content providers and internet service
providers may have to respect the privacy of their customers. A lot of
research has been made in the area of network traffic classification and a
majority of the methods are based on:

• Transport port numbers, this approach however lacks efficiency due
to dynamic port selection and port-tunneling.

“rapport” — 2011/11/22 — 23:34 — page 27 — #41

Theory 27

• Signature-based, which fails when it comes to encrypted payloads.

• Heuristics and/or behavioral based, which is not especially efficient
for real-time or online classification.

There are several different techniques today and many of them are based
on older versions, two major directions can be distinguished as Content
Based and Statistical Methods as seen in Figure 4.10. The Content based
part of the classification-tree is a Deep-Packet-Inspection (DPI) approach,
and uses information such as IP/TCP headers, port numbers and payload
information. The right part of the tree however, sees classification as a
statistical problem and decisions are based on statistical features of packet
flows, such as number of packets, inter arrival time and packet size. The
trend in classification techniques are changing, along with applications and
time, and can be seen in Figure 4.12

Traffic
Classification

Content
based

Statistical
Methods

Port Based Payload
based Host/Social Traffic

Statistics

Packet Based

Figure 4.10: Conceptual picture of Classification Methods

4.2.1 Content Based Methods

Port-based Classification

Port-based classification is the most straight forward method of classify-
ing network traffic. The early network applications such as FTP, SSH and
HTTP are designated a pre-defined port number. These applications use

“rapport” — 2011/11/22 — 23:34 — page 28 — #42

28 Theory

TCP or UDP, both of these protocols provide the port number of the connec-
tion in the header making classification rather straightforward. Port-based
classification can still be used for classification of applications using static
port numbers, but fails when it comes to applications using dynamic ports,
such as passive FTP, Skype and P2P according to [13]. This is a very
fast and very accurate technique, but an increasing number of applications
today do not use static ports.

Payload Classification

One way of getting around the problem of dynamic ports is to inspect the
payload, so called payload classification or Deep Packet Inspection (DPI).
DPI is the process of any network equipment using non-header information,
typically the actual payload. For each application, a signature has to be
identified in that particular applications traffic. It is important to keep
these signatures as simple as possible to allow operation in high bandwidth
links. This approach is very accurate once signatures are determined, the
down side is that signatures have to be updated when an application is
updated or when a new application is developed and uses the same signa-
ture as an existing one. Other problems to deal with are storage capacity,
computationally power and privacy.

Deep Packet Inspection (DPI)

Most DPI methods use signature analysis when trying to understand and
verify applications. Signatures are unique patterns associated with every
application. This can be a particular bit pattern or a unique field in the
application protocol. Each application of interest must be pre studied,
the collected signatures are then stored in a reference database which the
classification engine can compare to later on. There are different signature
analysis methods and the most common ones are:

• Pattern Analysis - Many applications embed patterns like bytes,
characters and strings in the payload, which can be used by the clas-
sification engine to identify a protocol. Not all protocols have this
type of pattern, then this method will not work at all.

• Numerical Analysis - This method looks at the numerical charac-
teristics of packets, such as payload size, number of response packets
and offsets. Older versions of Skype are good examples of where this
approach works well. In this case the client request is 18 bytes long
and the response is usually 11 bytes. The analysis may spread over
multiple packets and therefore the decision can take some time.

“rapport” — 2011/11/22 — 23:34 — page 29 — #43

Theory 29

• Behavior and Heuristic Analysis - Analyzing the behavior of the
traffic can produce greater insight into the applications running. This
behavior is then used to classify such applications. The statistical,
or heuristic, analysis of the inspected packets, makes the underlying
protocol possibly to classify.

• Protocol/State Analysis - For some applications, the protocol used
follows a certain sequence of actions, such as FTP GET request fol-
lowed by a valid server response. Such protocol conformance can be
used to classify such applications.

Packet-based Classification

To solve the problem of encrypted payload, other methods have to be used
for defining signatures. Packet-based classification uses packets of single
uni- or bi-directional flows and are then used in the decision of what appli-
cation the flow belongs to. It is possible to inspect each and every packet
in a flow, but due to the enormous load on the classification engine in a
high-speed link, some methods use only the first packets in a flow. Payload
packet-based algorithms can use different features to define signatures and
are as follows:

• Header fields

• Packet size

• Inter-packet gaps

• Numbers of transmitted packets

• Sequence of packets between hosts

The packet-based classification uses a subset of the previously mentioned
features. Figure 4.11 shows which header fields are most likely to be used.
Header fields from both IP and TCP are used to extract information, such
as the IP-address of sender/receiver, port number of sender/receiver and
finally which protocol used. More recent algorithms also use the flags of the
TCP header, but besides that the remaining fields are rarely used in traffic
classification. Packet size and inter-packet gaps can also be used, but the
latter strongly depends on the delay between sender/receiver and effective
algorithms are rare. The number of packets transmitted are mainly used
for short flows with rather small numbers of packets, the last signature with
a sequence of packets. Information from the first packet from receiver to
sender is used and then information from the second and third one sent by
sender to receiver and so on.

“rapport” — 2011/11/22 — 23:34 — page 30 — #44

30 Theory

V=2 P X Sequence number
Timestamp

Time to live Protocol Header checksum
Source address

Destination address
Options Padding

Source port Destination port
Sequence number

Acknowledgement number
Offset Reserved Flags Window

Checksum Urgent pointer
Options

CC M PT

0 31

Figure 4.11: IP/TCP Header field used in traffic classification

4.2.2 Statistical Methods
This approach treats the problem as a statistical problem and is based on
the fact that traffic at the network layer has statistical properties (such as
the distribution of flow duration, flow idle time, packet inter-arrival time
and packet lengths). These properties are unique for certain classes of appli-
cations, enabling different applications to be distinguished from each other.
One area in focus regarding the statistical approach is machine learning,
this is suitable when dealing with a large number of rules and/or when an
adaptable program is preferred and will be discussed below. The basic con-
cept of supervised learning is shown in Figure 4.13 while unsupervised is
shown in Figure 4.14.

Machine Learning Classification

Machine Learning is a branch of artificial intelligence focusing on develop-
ment of algorithms allowing computers to evolve their behavior based on
empirical data. The main idea is to automatically learn to recognize more or
less complex patterns and make decisions based on already known data. A
problem lies in that the set of all possible behaviors given all possible inputs
is of such magnitude, it is impossible to cover by the set of observed data
(e.g. training data). Hence the learner must generalize from the examples
given and make a useful output in new cases. Machine learning generally
consists of two steps, model building and classification. A model is first
built using training data and then the model is used with a classifier. Each
traffic flow is then classified using features such as packet arrival interval,
packet size, flow size, and flow duration. The technique can be divided into

“rapport” — 2011/11/22 — 23:34 — page 31 — #45

Theory 31

Time

Application type
TCP UDP

Unecrypted Decrypted

Open Protocol Propriteary Protocol

Fixed Ports Random PortsMixed Ports

Port Payload Statistics SocialTecnique
used for classification

Figure 4.12: Trends in Classification

supervised and unsupervised learning. Supervised learning involves a ma-
chine learning from a set of pre-classified examples from which it builds a set
of classification rules used to classify unseen examples. There exists a num-
ber of supervised learning classification algorithms, each differing mainly in
the way the classification model is constructed and what optimization algo-
rithm is used to search for a good model. The unsupervised learning does
not use pre-classified data, instead it discovers natural clusters in the data
using internalized heuristics. It clusters instances with similar properties,
defined by a specific distance measuring approach such as Euclidian space,
into groups. Regardless of what approach is used, machine-learning and
statistical methods have the benefit of handling encrypted traffic and the
lack of need for observing payload and heavy computational signatures.

Supervised learning requires a training phase, to link classes and ap-
plications, and the training phase requires a-priori classification, for this
reason supervised learning may be attractive for the identification of a spe-
cial application (or group of applications) of interest. Supervised learning
works best when trained on examples of all classes expected to encounter
in practice, otherwise performance can become degraded. The benefit of
unsupervised learning is the lack of pre-labeled data. However, resulting
clusters still need to be labeled by human expert.

“rapport” — 2011/11/22 — 23:34 — page 32 — #46

32 Theory

Raw Data Scaled Data

Build Model

Validate

Profit

Analyze and
Tune

Apply model

Training Set

Validation Set

New Data

Figure 4.13: Workflow for Supervised Learning

Machine learning algorithms

• Naive Bayes (NB) - Bayesian classification is based on probabil-
ity distribution of random events. NB determines the a posteriori
probability for the event by the a priori probability in the dataset,
assuming all features are equally valuable and independent. One ad-
vantage with the NB method over other machine learning methods is
the simplicity to deal with complex situations, the assumption that
all features are independent however, is not that realistic making NB
to likely have less accuracy.

• Bayesian Network - Bayesian Network does not have the strict
assumption of independence as NB, this method assumes conditional
independency on the subset rather then the whole feature set. A
Bayesian Network is a Directed Acyclic Graph (DAG) that encodes
a joint probability distribution over a set of discrete random feature
variables.

• Naive Bayes Tree (NBTree) - Is a hybrid of Naive Bayes and
decision tree classifier and is best described as a decision tree of nodes
and branches with Bayes classifier on the leaf-nodes.

• C4.5 Decision Tree (C4.5) - Is a greedy divide and conquer algo-
rithm used for building of decision trees. C4.5 builds the tree from
a set of training data using the concept of information entropy. The
training data is a set of already classified samples. At each node of
the tree, one attribute is chosen of the data in a way that it most

“rapport” — 2011/11/22 — 23:34 — page 33 — #47

Theory 33

Raw Data Scaled Data Build Model

Validate

Profit

Analyze and
Tune

Apply model
to either input data

or new data

Figure 4.14: Workflow for Unsupervised Learning

effectively splits the sample set into subsets enriched in one class or
the other. Its criterion is the normalized information gain that results
from choosing an attribute for splitting the data. The attribute with
the highest normalized information gain is then chosen to make the
decision. The C4.5 algorithm then recurs on the smaller sublists.

• Random Forests (RF) - Random Forest is a classifier consisting of
a collection of tree-structured classifiers and is a combination of tree
predictors, in a way that each tree depends on the value a random
vector. The algorithm has shown to have desirable properties such as
convergence of generalization errors.

4.3 Classification Methods for Real Time Traffic
As seen above, a variety of methods exist in the field of classification and the
classification tree can be expanded. The content-based approach is rather
straight forward with good performance and accuracy. On the downside
of this approach is the problem with dynamic ports, decrypted data and
privacy concerns. The other approach - Statistics - is a method on the
rise and can most often go around the problem mentioned above but often
demands more initial work. Multimedia traffic like VoIP and on-demand-
video often uses RTP and being able to classify this type of protocol is
essential for classifying OTT traffic. However, some applications use their
own protocol but still fall under the real-time media category. Skype is
an example of delay sensitive application running over-the-top, not using
RTP. Applications like that must also be detected in some way and different
methods for detecting/classifying RTP, VoIP/Skype and will be explained

“rapport” — 2011/11/22 — 23:34 — page 34 — #48

34 Theory

in the next section. Every application has their own special signature and
it is almost impossible to have one solution for them all, however, if it
is enough to classify the traffic as a whole, such as video or audio, some
common features can be shown to exist.

4.3.1 RTP Traffic
RTP is, as mentioned before, an IP-based protocol used for transporting real
time media such as video and audio. RTP is mainly designed for multicast
real time data but is also used as unicast transport of video-on-demand and
interactive services such as internet telephony.

Classification Methods of RTP Traffic

The authors of [18] suggests four methods of detecting RTP flows over an
IP-network. In this thesis only three are explained since the the method
developed by the authors did not show greater performance. The imple-
mentation of the classifiers is not explained, but some attributes that can
be used to classify RTP traffic is described below. A detailed view of the
RTP header can be seen in Figure 4.15.

1. Method one - The first classification method uses the following at-
tributes for classifying RTP streams:

• Packet Length: The length of the UDP packet must be more
than 20 bytes, the size of the UDP header is 8 bytes and the
size of the RTP header is at least 12 bytes. Consequently, it is
impossible to be an RTP packet if the size of the UDP packet
is not more then 20 bytes.

• Version number : First two bits are the version number of RTP,
current version is number two, hence, if the first two bits are
not equal to two it is not a RTP packet.

• Payload Type: Default payload types are defined by RFC 1890.
So if the lower seven bits of the UDP payload second byte is not
a valid RTP payload type, it cannot be a RTP packet.

• Sequence Number : The third and fourth bytes of the RTP header
are the sequence number. The initial sequence number is ran-
dom so the validation of RTP sequence numbers of the current
packet depends on the value of the previous one.

The criteria for classifying a stream as a RTP stream, is at least n
consecutive qualified packets from that stream.

“rapport” — 2011/11/22 — 23:34 — page 35 — #49

Theory 35

2. Method two - The second classification method uses the same four
attributes as method one and adds three more attributes:

• RTP P bit : The P bit is the third bit of the RTP header, if this
bit is set, the RTP packet contains one or more padding bytes
at the end. The last byte of the padding contains the number
of padding bytes and is not a part of the RTP payload and shall
be ignored.

• RTP X bit : TheX bit is the fourth bit in the RTP header, if it is
set, the fixed RTP header is extended by one header extension.

• RTP CC : CC or CSRC Count is the lower four bits of the
first byte of the RTP header and indicates the number of CSRC
identifiers that follow the fixed header.

In method one, we had a rather loose bound for packet length check-
ing. In method two with the help of bit P, bit X and CC, a more
precise bound is suggested.

3. Method three - The last method uses both RTP and RTCP packets
at the same time. Every pair of streams shares a common flow ID and
the sum of identified packets consists of both identified RTP packets
and identified RTCP packets, compared to methods only using RTP
packets. This method accelerates the process of RTP stream classi-
fication. To classify RTP packets, the same four attributes are used
as in method one, to identify RTCP (as seen in Figure 4.16) packets
are inspected by the following three attributes:

• UDP packet Length: For the RTCP packet, the length of the
UDP packet must be greater than 12 bytes, which is the sum of
UDP header and RTCP header.

• RTCP Version Number : The first two bits of a RTCP packet is
the version number and the value of these must be two.

• RTCP Type: The second byte of the RTCP header is the type of
RTCP and must be one of the valid numbers defined for RTCP.

The criteria for classifying a RTP/RTCP stream pair is when at least
n qualified packets from that stream pair are captured, and m of the
n packets are qualified RTP packets. The feature of qualified RTP
packets is the same as in method one, for RTCP it is UDP packets
with packet length greater then twelve, version number equal to two,
and packet type is one of the valid pre-defined numbers.

“rapport” — 2011/11/22 — 23:34 — page 36 — #50

36 Theory

V=2 X Sequence number

Timestamp
CC M PT

Contribution source identifier
(0 ~ 15)

........

0

P
7 15 31

Synchronization source identifier

Figure 4.15: RTP Header

V=2 P Count Length

Data

Type
0 7 23 31

Figure 4.16: RTCP Header

4.3.2 Audio Traffic
VoIP is the family name for applications sending and receiving voice over an
IP-network, two common applications are Google Talk, and Skype. However,
these applications use different architectural and protocol layouts making
analysis and comparison necessary to understand their behavior in an at-
tempt to define the QoS for these applications. Other applications that
uses audio but is not in the VoIP family are applications that stream music,
Spotify is one example of such a service and is also of interest when in this
research.

• Skype - One major success factor for Skype is its ability to operate
behind firewalls and NATs. It also provides security in voice commu-
nication by encrypting the data and uses randomly selected ports in
an attempt of disguising itself. The network of Skype nodes consist
of so called ordinary nodes and super nodes and form a P2P network.
The ordinary node is a client which is used to place a call, an ordi-

“rapport” — 2011/11/22 — 23:34 — page 37 — #51

Theory 37

nary node becomes a super node if it has a public IP address and
enough bandwidth. The ordinary node must connect to a super node
and the Skype login-server to be part of the Skype network, the server
performs user authentication and maintains password and certificates
for the members. Online and offline user information is stored and
propagated in a decentralized manner, this also includes user search
queries. To search after users, Skype implements a third generation
P2P technology called Global Index Technique. This is a multi tier
network where each super node can obtain knowledge of all available
users and resources with minimum latency. To solve the problem of
working behind NATs and firewalls Skype also uses a variant STUN
protocol to determine the NAT and firewall type. Usually in NAT
scenario, Skype uses a relay node which communicates between two
end systems. Each node of Skype contains a host cache, which is a
list of reachable nodes and contains IP addresses and port numbers of
super nodes, during a Skype operation the client uses this list to find
a super node to connect to. Skype uses a non public protocol, where
both signaling and media traffic are encrypted for any kind of Skype
connection, making both port based and payload based classifica-
tion of Skype traffic hard, if at all possible. Instead more statistical
approaches have been suggested, by gathering information such as
packet arrival rate and packet length.

• GTalk - GTalk is based on an open standard, XMPP-Jabber/Jingle,
which enables a client of GTalk to communicate with other XMPP
enabled VoIP applications. The XMPP standard GTalk is based on
is an XML streaming technology and is a robust way of transport-
ing data, in real time, between users and applications. The VoIP
extension of XMPP is known as Jingle and its purpose is to provide
peer-to-peer media sessions between XMPP entities. The negation
is made over the channel of XMPP but the media is sent outside
this channel using techniques such as RTP. GTalk solves the NAT
problem by using Jingle ICE, a variation of STUN protocol. GTalk
was released in 2006 and not much research has been made in the
field of classification of GTalk traffic. The traffic between the GTalk
client and the GTalk server is encrypted but end-to-end encryption
is however not yet supported.Future releases will most likely support
end-to-end encryption as standard. GTalk traffic is easier to detect
since the application uses an open standard protocol and fixed ports.

• Spotify - Spotify is a streaming music service using peer-to-peer

“rapport” — 2011/11/22 — 23:34 — page 38 — #52

38 Theory

technology. One distinguishing feature is the low playback latency
(median 265 ms). Spotify uses a proprietary client and protocol and
works on most platforms as well as on smart phones. The latter is not
part of the peer-to-peer network and only streams music from servers.
The audio is encoded with Ogg and the bit-rate is either, 96kbps, 160
kbps or 320 kbps, depending on if it’s a free or premium user. In the
Spotify network, there are no super-nodes as in the Skype network,
a client will only connect to new peer when it wishes to download a
track it believes that peer has. TCP is the used transport protocol
and the explicit connection signaling helps stateful firewalls. Spotify
lacks the ability of NAT traversal, this is however mitigated by two
factors. First, when a client wishes to connect to another peer, a
request is sent through the server asking the peer to attempt a TCP
connection back to the connector, secondly, clients use the Universal
Plug and Play (UPnP) protocol to ask home routers for a port to use
for incoming connections. For a more detailed description of Spotify,
see [22]. Spotify is, as mentioned, a P2P application able to use differ-
ent port numbers making classification difficult, a suggestion is that
more advanced DPI techniques or some host/behavioral techniques
can be used.

Classification Methods of VoIP Traffic

Authors of [16] explain a solution for detecting encrypted VoIP traffic in
IPSec tunnels and also try to increase the QoS parameters. VoIP traffic
packet length usually is in the range of 60 to 150 bytes, and not a lot of
other network traffic is in this range of size. A very simple algorithm is
proposed, if data packets are within this range of size, they will be passed
right through the proxy server used in the testbed, otherwise they will be
delayed to cause non VoIP traffic to slow down. When a packet arrives to
the first network interface of a proxy device it runs through a so called pre-
routing phase, here it is decided whether the packet is going to be modified
or any NAT decisions to be made. The packet is then sent to queue and
there the VoIP identifier is invoked, the identifier looks at the packet and
its own record history of packets to decide if it is most likely a VoIP packet
or not. A VoIP packet is passed right through, and all none VoIP packets
are queued 100 ms, giving priority to VoIP-traffic. Three scenarios are
tested, the first one uses two host machines connected trough IPSec, the
second one uses the same scenario but adds 2.5 megabits of random cross
traffic and finally the third scenario the detection of VoIP/no-VoIP traffic
is turned on. Three different codecs were used in the test, G711, G723 and
G729. The authors use three sub-fields of Machine Learning algorithms,

“rapport” — 2011/11/22 — 23:34 — page 39 — #53

Theory 39

Supervised Learning methods, Unsupervised Learning methods and Hybrid
Learning approaches. Their conclusion show that it is possible to detect
decrypted VoIP traffic with good results with help of Machine Learning
approaches. Their results shows increasing performance for network layer
tunneled VoIP traffic, but also state that more research has to be done in
the area of network layer encrypted tunnels.

In [19], it can be read that in spite of the fact that Skype conceals its
application-layer protocol, it is still possible to monitor the network and
transport layer and analyze used IP addresses and ports. The method is
split into two parts, the first one is detecting Skype activity and the second
part is detection of Skype voice calls. The first possible way of identifying
Skype hosts is to look for Skype-specific connections such as connections to
the login server, buddy-list server or supernodes. Occurrence of any of these
infers the presence of Skype. Two other characteristic features of Skype is
the connection to the update server and a TCP connection on port 33033.
The latter is the default port for super node connections. If a host is al-
ready logged in it will not be possible to detect the above actions, instead
the permanent connection to the super node can be supervised. The client
communicates not only with super nodes and servers but also maintains di-
rect relations with several other Skype clients. The UDP relation has well
defined characteristics when it conducts voice calls or is in idle state, the
two states can be separated by the size of packets and can be detected by
a simple detection method in three steps:

• Select UDP flows of more then 10 packets and the source/destination
port does not belong to a well known application.

• For the remaining flows with packets smaller than 60 bytes, calculate
the main mode of inter arrival-time. The inter-arrival time is generally
20 seconds but to avoid errors from deviation in the arrival-time the
main mode (center of) the histogram is calculated.

• The flow is likely an UDP relation if the main mode equals 20 seconds.

The first rule is applied in order to get rid of the flows that can be unambigu-
ously identified as not being a signaling flow and reduces the time needed
to verify rule two. All flows are, according to rule one, discarded if they
do not contain enough packets to be a UDP relation or have a source/des-
tination port of a well known application. The identified UDP relations
then result in a list of IP-addresses and port number pairs that can be used
for identification. This is a heuristic approach based on flow-dynamics and

“rapport” — 2011/11/22 — 23:34 — page 40 — #54

40 Theory

characteristics on packet-level and flow-level to identify Skype traffic. One
benefit is that there is no need for payload information. The method expects
pre-captured data as input but can be built into an online identification tool
according to the authors.

4.3.3 Video Traffic
The following is stated by International Telecommunication Union focus
group on IPTV (ITU-T FG IPTV). "IPTV is defined as multimedia services
such as television/video/audio/text/graphics/data delivered over IP based
networks managed to provide the required level of quality of service and
experience, security, interactivity and reliability."
IPTV services can be divided into three major groups:

• Live TV - Sending live and can be with or without interactivity.

• Time-Shifted TV - Replays a video sequence broadcasted in the past.

• Video-on-Demand (VOD) - Watched video on end user demand.

Depending on the network architecture of the service providers the server
architecture can be of mainly two kinds, centralized or decentralized. The
centralized solution does not require a comprehensive content distribution
system, the decentralized or distributed system has however bandwidth ad-
vantages but requires an intelligent and sophisticated content distribution.

• YouTube - YouTube is a video sharing website making it possible
for users to upload, share and view videos. In 2010 an experimental
version of the site was launched and is based on HTML5 and the
need of Adobe Flash Player is then not required. You Tube originally
offered only one quality level (320x240) using the Sorenson Spark
codec which is a variant of H.263 and audio in mono MP3. Today
You Tube supports 3GP, 720p HD and 1080p HD. One key feature
of You Tube is the ability for users to view the content on webpages
outside the site, each video is accompanied by a piece of HTML that
can be used to embed the content on an outside webpage. You Tube
Mobile was launched in 2007 and uses RTSP for the streaming video,
not all videos are accessibly this way.
Classifying HTTP video applications by port number can be difficult
since many applications use port 80. DPI can be used, but one must
have privacy of the users in mind. Some machine learning approaches
have been suggested, using features such as flow duration or average
packet size.

“rapport” — 2011/11/22 — 23:34 — page 41 — #55

Theory 41

• PPLive - is a peer-to-peer streaming video mesh-network and is a
part of a new generation P2P applications that combines P2P and
Internet TV, so called P2PTV. The main component of PPLive is
the TV engine which downloads video blocks from the PPLive net-
work and then streams it to the media player. The data is streamed
through two buffers, one in the engine and one in the media player.
This is done to reduce the impact of network jitter and keeping a more
efficient distribution of data between peers. A client downloads the
media content from several peers and uploads the data in the cache
at the same time. The video bit rate ranges mainly from 250 kbps to
400 kbps, but some few channels have a bit rate at 800 kbps. PPLive
is a proprietary system, neither source code nor protocol available.
The platform of PPLive consists of multiple overlays, a single overlay
corresponds to a PPLive channel and each peer in an overlay is iden-
tified by its IP-address and port number pair. For a more detailed
description of PPLive see [23], the authors also test an active/passive
approach of investigating the PPLive traffic.

Classification Methods of Video Traffic

In [20], a method of classifying the P2P-TV application is suggested, only
relying on the count of packets exchanged with other peers during a small
time window. The aim is to classify P2P-TV end-points identified by their
port number and IP address and focus on UDP traffic since it is often pre-
ferred by P2P-TV applications. Also only the downlink is used for gathering
information. Furthermore, these types of applications exchange the video
stream data in chunks, since each application independently selects the size
of the chunks. Differences in this choice will be reflected by the raw packet
count. Now consider the traffic received by an end-point Px = (IPx, Portx)
during a time interval ∆T . Under this interval peer Px will be contacted by
K(x) other peers and receives a different number of packets from each and
one of them. The number of peers that sent a number of packets in a time
interval I = [a, b] to peer Px is then derived. B+1 intervals are used with
exponential width {I0...Ii...IB} such that I0 = (0, 1], Ii = (2i−1, 2i] and
IB = (2B,∞]. This means that N i

x = N I
x counts the number of peers send-

ing to Px in the interval
(
2i−1, 2i

)
, and NB

x = N IB
x counts all peers sending

at least 2B packet to Px. A behavioral signature nx = (nx0 , ..., n
x
B) ∈ RB+1

is then built for each time interval ∆T by normalizing Nx
i over the total

number of peers contacted Px during that interval. The classification frame-
work uses Support Vector Machines (SVM) which belong to the Learning
Machines methods. Although the authors see their method as a first step
towards fine-grained behavioral classification it shows some good results.

“rapport” — 2011/11/22 — 23:34 — page 42 — #56

42 Theory

In [12], a packet-level traffic classification is suggested based on Hidden
Markov Model (HMM). Specifically the Packet-Level Hidden Markov Model
is proposed. The classification is done by using real network traffic and then
estimated with the characteristics of packet size (PS) and inter packet time
(IPT), making it well suited for encrypted traffic as well. In Figure 4.17,
the general architecture is shown and consists of a bank of parallel PL-
HMMs. In order to capture the characteristics of N different typologies
of network traffic it is assumed that N different PL-HMMs are obtained
via Baum-Welch training. The Baum-Welch algorithm is an iterative pro-
cedure looking for model parameters and maximizing the probability that
the model itself generates the sequence used as the training set. Each of
the PL-HMMs in the bank is then used to compute the probability that
the test sequence belongs to the traffic typology associated to a particular
PL-HMM. Finally the maximum likelihood selects the best estimate for the
traffic typology. Specially peer-to-peer video streaming, also called PPTV
or PPLive is tested and evaluated. PPTV/PPLive is a peer-to-peer stream-
ing video network and is a part of P2P applications that combine P2P and
Internet TV. The conclusion of PL-HMM shows it is a promising technique
and can be well suited for encrypted traffic and used in a multi-classifier
system in the attempt of trying to classify OTT-traffic.

PL-HMM

PL-HMM

PL-HMM

IPT-PS
Sequence

argmax()

1

N

Class of tra ffic

Figure 4.17: Architecture of PL-HMM classifier

In [17] a statistical approach is taken based on the intuition that video

“rapport” — 2011/11/22 — 23:34 — page 43 — #57

Theory 43

and voice streams have strong regularities when it comes to packet inter-
arrival time and packet size. The authors propose a system called VOV-
Classifier that not only identifies voice and video traffic, but also labels
the flows with corresponding application. The VOVClassifier works in two
steps, offline training phase and online detection phase. In the offline mode
a sample set of flows from applications of interest is fed to the classifier and
extracts correlations between packet size and inter arrival time. The result
is a fingerprint that can be used in the classification. The classifier is an
automated learning system and uses packet headers from raw packets from
the link. Three major modules operates in cascade and are:

• Flow Summary Generator (FSG) - All packets are processed by
the FSG module and organize packets according to their 5-tuple (e.g
source/destination IP address, source/destination port number and
protocol type). The processed flow is then characterized in terms of
packet sizes and and inter-arrival times.

• Feature Extractor (FE) and Voice/Video Subspace Genera-
tor (VSG) - The output of the FSG is forwarded to the FE which
computes a feature vector for every flow by analyzing the power spec-
tral density, this is done in order to exploit regularities residing in
voice and video traffic. The VSG then processes the feature vectors
by partitioning the vector space into non overlapping clusters and
extracts the characteristic of each cluster.

• Voice/Video Classifier (CL) - In the detection phase data are
processed by the CL which calculate the distance from the feature
vector from the current flow to the subspace generated during the
training phase in order to classify it as either voice or video.

As a summary of this approach the authors conclude that by using a stochas-
tic process, that combines packet size and inter arrival time, that extracts
regularities and highlights their major differences, the VOVClassifier could
achieve very good results.

4.4 QoS/QoE Correlation
The last major step in the process of PAXSa is mapping. When all probing
and classification is done the gathered data from QoS parameters must be
mapped, if the desire is to estimate QoE for end customer. Mapping is
mostly a pre-step, once a suitable map is configured it is more a question
of simply looking up what QoE value corresponding to QoS value on hand.
This part may appear to be easy, but QoE is a very subjective assessment

“rapport” — 2011/11/22 — 23:34 — page 44 — #58

44 Theory

and can be hard to determine, some research has been done to categorize
different levels of expected QoE for end-customers such as in the work of
[2]. It is shown that different types of content are affected differently by
network performance. Three maps are created in an attempt to map net-
work performance (e.g. packet loss, jitter, delay) to a prediction of how
the media-traffic is effected, and in the end effecting QoE for end-users.
This means that information regarding the type of media that shall be ob-
served must be well known and predetermined, there are also levels within
each media type. Rapidly changing video content, such as an action movie,
is more likely to suffer from bad QoS then slow video such as news and
weather.

According to [3], end-users are more likely to notice performance degra-
dation when the connection is in one of following explained states. The
Route Change State is usually caused by failures in routers/links or when
a failed component recovers from an outage, the author distinguishes be-
tween layer 2 and layer 3 route changes and without going in on details,
layer 3 changes can be detected at the end node from IP time to live (TTL)
and trace-route changes. Layer 2 changes are more difficult to detect but a
method of observing patterns in the Round-Trip-Time is suggested. Route
changes typically cause long burst of lost packets and most certainly will
have impact on both QoS and QoE. The second state is Burst Loss State
and occurs when a large number of consecutive packet are lost over several
seconds, coding and interleaving techniques usually solve these issues but
not in this state. The network is said to be in High Random Loss State when
loss probability is greater than some threshold value, above this threshold
packet losses introduce audio/video-impairments that cause QoS parame-
ters to decrease to an unacceptable level. In many cases high random losses
can be the worst, most often a large receiver buffer can handle jitter but
this also make the total sum of delay larger. The last state is maybe not so
much a state but more lack of a state, it can be hard to easily fix and will
cause the worst QoE for end-customers, the Disconnected State is when all
transmitted consecutive packets are lost for a long period of time and are
due to fiber cut in core network, loss of power or other hardware/software
failures.

The work of gathering data about how QoS parameters effects the QoE
for end-users can be both time-consuming and expensive and some tech-
niques used are human interaction (e.g. people watching video). Mean
Opinion Score (MOS) is a widely used metric and gives a numerical indica-
tion of the perceived quality of the media received after being transmitted
and eventually compressed using codecs. The MOS value is the arithmetic
mean of all individual scores set by the test panel and ranges from 0 to 5,

“rapport” — 2011/11/22 — 23:34 — page 45 — #59

Theory 45

with 5 being the best possible and 0 the worst. It is also shown that if the
mouth-to-ear delay is greater then 400 ms most end-users will be dissatis-
fied. For multiplayer games online an end-to-end delay of 200 ms will be
noticeable and annoying for the end-users, each and every multimedia type
has its own limit regarding delays. This makes it a huge task to set up a
well suitable map. One parameter often missed, according to the author of
this thesis is the parameter of expectation, it is of my opinion that QoE is
connected to expectation. If allowed to generalize, people expect more from
SVT Play than YouTube, these expectations of course change over time
and most certainly differs between gender and age. Many other factors
such as size of buffer on receiver side and codec used affects the correlation
between QoS and QoE. In this field, much more research has to be done in
an attempt of making a correct mapping.

Although many problems occur on the upper levels of the OSI model
such as, transport layer and application layer, it is of interest to find out
how layer one (Physical layer) affect the QoE for end customers. The phys-
ical layer is responsibly for the ultimate transmission of data over a network
in form of electric voltage, radio frequencies and optics. It is also here dis-
turbances from other electro magnetic equipment have their impact. At the
application layer one can observe the Peak Signal-to-noise Ratio (PSNR),
a well known metric to measure video quality in an objective way. At the
transport layer observations regarding packet loss can reveal information
about the quality of for example video traffic. At the physical layer metrics
such as number of damaged blocks received by end-users modem, line bit
rate and actual SNR are of interest.

“rapport” — 2011/11/22 — 23:34 — page 46 — #60

46 Theory

“rapport” — 2011/11/22 — 23:34 — page 47 — #61

Chapter5
Controlled Disturbance

In order to evaluate probing methods and correlation between QoS and QoE
as described in previous chapters there is a need of controlling a DSL link in
a noisy environment. The solution is a controlled disturbance signal, seen in
Figure 5.1, where both center frequency and bandwidth can be varied. Such
a device and its deployment is describe in this chapter and is executed over
a laboratory DSL network in the department of electrical and information
technology in Lund. As mentioned previously, DSL technique use Discrete
Multi Tone and this is performed by the DSLAM on the network operator
side and by the Customer Premises Equipment (CPE) on customer side.
DMT is a method of converting data into so called tones where each tone
forms a sub-channel of 4.3125 kHz. The amount of bits that can be carried
by these tones depends upon the SNR at that particular frequency. If
the SNR is good a maximum of 15 bits can be allocated to that tone. A
disturbance signal can be generated using Pulse Amplitude Modulation, or
PAM for short. The reason for this choice of modulation is that PAM has
similar frequency spectrum as signals from radio stations that is known to
interfere with DSL links. A short introduction to PAM and signal theory
is given in next section.

AB/2

-f c 0 f

= 2

2/Ts 2/Ts

-f c

G(f)X(f)

Figure 5.1: Frequency content in x(t)

47

“rapport” — 2011/11/22 — 23:34 — page 48 — #62

48 Controlled Disturbance

5.1 Signal Theory
A very common PAM signal is the square wave, here denoted g(t), and
there are two types of techniques for this. The first one is called unipolar
square wave, sometimes called a rectangle wave and it transmits a logical 1
using a square pulse of amplitude +A voltage and a logical 0 is transmitted
with 0 voltage. The second one is the bipolar square wave and transmit a
logical 1 as a square wave with amplitude +A voltage and a logical 0 as a
square wave with amplitude −A voltage. In a time period 0 ≤ t ≤ Ts, the
l :th signal of a general PAM signal can be expressed as:

sl(t) = Alg(t) (5.1)

In order to control a signal there are two important parameters, the first
is the frequency f and the second is the bandwidth W . Via two equations
these parameters makes it is possible to control the width of the main-lobe
in the signal.

f =
1
Ts

(5.2)

W =
2
Ts

(5.3)

In signaling systems it is important to investigate the characteristics of the
signal in both the time domain and the frequency domain. By Fourier trans-
form it is possible to alternate between these domains for any given signal,
the Fourier transform decomposes a function into the sum of a (potentially
infinite) number of sine wave frequency components. A general unipolar
square wave signal in the frequency domain can be seen in Figure 5.2. The
Fourier transform is given by:

G(f) =
∫ ∞
−∞

f(t)e−j2πftdt (5.4)

A better way to describe the PAM signal is the sum of the signal over a
given period of time. Often a signal is sent not only during one signal time
but rather over an extended period of time. A PAM signal can then be seen
as:

“rapport” — 2011/11/22 — 23:34 — page 49 — #63

Controlled Disturbance 49

Figure 5.2: Rectangular pulse G(f) in frequency domain

s(t) =
∞∑
k=0

Akg(t− kTs) (5.5)

where Ak is the amplitude of the generated signal. If a bipolar square wave
is used it will alternate between ±A voltage with some given probability.
The power spectral density function R(f) of the signal s(t), here denoted
Rs(f), is of importance since it shows how the average signal power in s(t) is
distributed along the frequency axis. Rs(f) can be calculated in two steps,
first the autocorrelation function rs(τ) is calculated as:

rv(τ) = E {v(t+ τ)v(t)} (5.6)

Where E {...} denotes the expected value. The second step Rs(f) is ob-
tained by the Fourier transform of rs(τ):

Rs(f) =
∫ ∞
−∞

rs(τ)e−j2πfτdτ (5.7)

The power spectral density of a general signal s(t) can be seen in Figure
5.3. To set the baseband signal s(t) at the center of a carrier frequency

“rapport” — 2011/11/22 — 23:34 — page 50 — #64

50 Controlled Disturbance

A

Figure 5.3: Power spectrum density of s(t)

fc, convolution of s(t) and some cosine function here denoted B cos(2πfct)
is done. The use of a carrier frequency allow placement at a desirable
frequency in the ADSL band making it possible to not only put the signal
at arbitrary frequency but also influence the frequency range it will affect.
A signal around a carrier frequency is called a pass-band signal and here
denoted x(t) and expressed as:

x(t) =
∞∑
k=0

Akg(t− kTs) ·Bcos(2πfct)) (5.8)

This operation is based on the Fourier transform relationship (5.10) and
(5.11) and gives a characteristic lobe at ±fc as illustrated in Figure 5.1.

“rapport” — 2011/11/22 — 23:34 — page 51 — #65

Controlled Disturbance 51

5.2 Methodology
The signal theory in the previous section is applied and an external signal
is generated by a software written in C# and the complete code can be seen
in Appendix A. Besides the above mentioned software the set-up consist
of a UM232R - USB Serial UART Development Module, a Maxim 233EEP
device and a Function Generator as seen in Figure 5.4. A circuit diagram
over the connections between UM232R and Maxim 233EEP can be seen in
Appendix B. The base-band signal generated via the UM232R unit has a
frequency range from 200 Hz to 3MHz. Since the frequency f is connected
to the bandwidth W as mentioned before this is a very general signal and
can be used also in applications outside the scope of this thesis. However,
the Maxim 232EEP unit only handles frequencies up to about 150 kHz and
sets the upper limit. In this test the frequency used will be 100 kHz and is
well within the limits of both devices. Note that the generated pass-band
signal is not cyclic. The importance of having a random signal is related
to the fact that any repeating non-sinusoidal waveform can be equated to
a combination of discrete components. The resulting signal would not have
the desirable characteristics in this case.

CPU Function
Generator

Data Stream Base band
signal

Pass band
signal

UM232R 233EEP

Figure 5.4: Generalized view over lab set-up.

The UM232 USB device is a development module connected via the USB
interface to the computer running the written software and generates a
baseband unipolar square signal. In order to generate the wanted output
signal from the USB device the software controls the device to write random
bytes at selected speed. This is handled by a GUI where execution time
as well as frequency can be tuned. The frequency, or actually the baud-
rate, can vary between 200 Baud to 3 MegaBaud. Since we have binary
signaling the baud-rate equals the bit-rate (disregarding over-head) so baud-
rate and frequency more or less also becomes equal. The output of the
UM232 generates +5 voltage when transmitting a 1 and +0 voltage when
transmitting a 0. The signal is then transmitted to the Maxim 233EEP,
a unit intended for all EIA/TIA-232E communications interfaces. This
is done since the output of the UM232 does not produce a signal with

“rapport” — 2011/11/22 — 23:34 — page 52 — #66

52 Controlled Disturbance

sufficiently large amplitude difference. The 233EEP unit however, produces
an output with greater difference in amplitude. The amplitude of the now
generated signal alternates between ±5V with the same probability p(Ak =
+5) = p(Ak = −5) = 1/2. Finally the base-band signal is placed at the
center of a carrier frequency. By placing the base-band signal around a
carrier frequency it can be set at a desirable location in the xDSL band
and making it possible to not only put the signal at arbitrary frequency but
also influence the frequency range it will affect and is done by the function
generator. The generator used in the test adds a bias term at frequency
0 Hz, which means that there is a spike in center frequency used. This is
however not a problem of great magnitude.

The now generated pass-band signal (disturbance signal) is used in the
DSL network with 2.1 km of cable. Due to lack of space the cable is still
on the original cable drum and not unwound. Before any test is done a
reference measure is executed and bit-loading, quiet line noise (QLN) and
SNR can be seen, on an undisturbed line, in Figure 5.5, 5.6 and 5.7 respec-
tively. During six ten-minutes intervals, a simulated IPTV transmission is
sent over the DSL network by the technique used in ADSL2+. The con-
trolled disturbance signal is injected on a parallel pair in the same cable,
in time intervals, during the first 500m. All lines are ended with an end
resistor with 100 ohm. The frequency of the generated signal is static at
100 kHz and via equation (5.1) and (5.2) it is shown that the bandwidth of
the generated disturbance is approximately 200 kHz. The center frequency
is however, alternated during the test and is displayed in Table 5.1.

“rapport” — 2011/11/22 — 23:34 — page 53 — #67

Controlled Disturbance 53

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

tone

N
br

 b
it

Bit loading

Upstream
Downstream

Figure 5.5: Bitloading without any disturbance.

0 100 200 300 400 500 600
−150

−145

−140

−135

−130

−125

−120
QLN

Tones

dB
m

Upstream
Downstream

Figure 5.6: Quiet line noise without any disturbance.

“rapport” — 2011/11/22 — 23:34 — page 54 — #68

54 Controlled Disturbance

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70
SNR

Tones

dB
m

Upstream
Downstream

Figure 5.7: SNR without any disturbance.

Test interval Time Disturbance
1 : 0− 10min No Disturbance
2 : 10− 20min Disturbance at Center

frequency 0.5 MHz
3 : 20− 30min No Disturbance
4 : 30− 40min Disturbance at center

frequency 1 MHz
5 : 40− 50min Disturbance at center

frequency 1.5 MHz
6 : 50− 60min Disturbance at vary-

ing center frequency

Table 5.1: Time intervals of controlled disturbance

“rapport” — 2011/11/22 — 23:34 — page 55 — #69

Controlled Disturbance 55

5.3 Results
The results on the impact of the generated pass-band (disturbance) signal
previously explained will be discussed here. In Figure 5.8, 5.9 and 5.10, it
is clearly seen how the disturbance causes severe problems at the respective
center frequency and that the higher frequencies in the DSL band suffer
most. In Figure 5.11 the number of lost packets in the emulated IPTV
stream is illustrated. The peaks have a clear correlation between the starting
time of the disturbance signal. It is once again clearly seen how higher
frequencies suffer most from external disturbances and have higher packet
loss than lower frequencies, something that will affect the QoS. In time
interval two and three, 10-20 min and 30-40min, the effect from bit-swapping
is seen as narrow peaks. Bit-swapping takes some time to perform and in
time interval 6, 50-60 min, when constantly changing the center frequency,
the effect of this process is very clear. This effect is also seen in Figure 5.12,
Inter packet gap (IGP) is more than 10 seconds in the worst case and will
severely degrade the QoE for end-users.

Number of lost packets in the test can be seen in Figure 5.11. In Figure
5.5, bit-loading can be seen for the DLS link with no disturbance affecting
it. The dotted line represent upstream band while the solid line represent
the downstream band. The dip around tone 210 is a synchronization signal,
also called pilot-tone, of two bits. Compared to Figure 5.13 and 5.14, when
the disturbance signal is used at frequency 10 kHz and 100 kHz respec-
tively, it is seen how the disturbance affect the DSL link. As mentioned
in the previous chapter the width w of the disturbance is connected to its
frequency, and the last two figures show how we can increase or decrease
the frequency interval to affect in the DSL traffic by changing the frequency
of the base-band signal. In the figures of quiet line noise (QLN) the noise
level on the link is measured without any traffic active. In Figure 5.6 QLN
is shown for the link without the disturbance, the disturbance seen in the
interval of tone 170 to 190 (approximately), is an unknown external dis-
turbance not yet revealed. Regardless of this disturbance the effect of our
disturbance signal is clearly apparent in Figure 5.15 and Figure 5.16. The
signal to noise ratio, SNR, for the same scenario is visible in Figure 5.7,
5.17 and finally 5.18.

“rapport” — 2011/11/22 — 23:34 — page 56 — #70

56 Controlled Disturbance

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

Tone

N
br

 b
it

Bit loading 10−20 minutes

Upstream
Downstream

Figure 5.8: Bit-loading in time interval 10 to 20 minutes

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

Tone

N
br

 b
it

Bit loading 30−40 minutes

Upstream
Downstream

Figure 5.9: Bit-loading in time interval 30 to 40 minutes

“rapport” — 2011/11/22 — 23:34 — page 57 — #71

Controlled Disturbance 57

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

Tone

N
br

 b
it

Bit loading 40−50 minutes

Upstream
Downstream

Figure 5.10: Bit-loading in time interval 40 to 50 minutes

0 10 20 30 40 50 60
100

101

102

103

104

Time (minutes)

N
um

be
r o

f p
ac

ke
ts

 lo
st

Consecutive packets lost in emulated IPTV stream

Figure 5.11: Number of packets lost

“rapport” — 2011/11/22 — 23:34 — page 58 — #72

58 Controlled Disturbance

0 10 20 30 40 50 60
10−2

10−1

100

101

Time (minutes)

IP
G

 (s
ec

on
ds

)

IPG of emulated IPTV stream
(ADSL 2.1 km)

Figure 5.12: Inter Packet Gap in emulated IPTV

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

Tone

N
br

 b
it

Bit loading

Upstream
Downstream

Figure 5.13: Bitloading with disturbance at 10kHz at cfq
1MHz

“rapport” — 2011/11/22 — 23:34 — page 59 — #73

Controlled Disturbance 59

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

Tone

N
br

 b
it

Bit loading

Upstrem
Downstream

Figure 5.14: Bitloading with disturbance at 100kHz at cfq
1MHz

0 100 200 300 400 500 600
−150

−145

−140

−135

−130

−125

−120

−115

−110

−105
QLN

Tones

dB
m

Upstream
Downstream

Figure 5.15: Quiet line noise with disturbance at 10kHz at
cfq 1MHz

“rapport” — 2011/11/22 — 23:34 — page 60 — #74

60 Controlled Disturbance

0 100 200 300 400 500 600
−150

−145

−140

−135

−130

−125

−120

−115

−110
QLN

Tones

dB
m

Upstream
Downstream

Figure 5.16: Quiet line noise with disturbance at 100kHz at
cfq 1MHz

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70
SNR

Tones

dB
m

Upstream
Downstream

Figure 5.17: SNR with disturbance at 10kHz at cfq 1MHz

“rapport” — 2011/11/22 — 23:34 — page 61 — #75

Controlled Disturbance 61

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70
SNR

Tones

dB
m

Upstream
Downstream

Figure 5.18: SNR with disturbance at 100kHz at cfq 1MHz

“rapport” — 2011/11/22 — 23:34 — page 62 — #76

62 Controlled Disturbance

“rapport” — 2011/11/22 — 23:34 — page 63 — #77

Chapter6
Conclusion and Future Work

The work of classification, probing and correlation between QoS and QoE
is an enormous task, especially when dealing with traffic over the best-
effort channel on xDSL links. The core network of today is indeed a high
speed network often based on fiber technology, but the access network, or
the so called last mile, is still mostly old copper cables and is receptive
for external disturbances. These disturbances can come from both nearby
electronic equipment, such as voltage cables and transformers, and far away
sources that radiates electromagnetic disturbances, such as radio stations.
It is important to probe and classify the network traffic in an attempt of
making the QoE better for end-customers. Probing can be both passive
and active, in some cases a combination seems to be a strong candidate,
taking advantage of both technologies. The active probing is well suited
for end-to-end measurements but one must be aware of the load put on the
network while sending packet trains across an already, sometimes heavily,
loaded link. There is a lot of research done in the field of how to construct
these packet trains and how to departure them in such a way that the
final results are as accurate as possible. Also how cross-traffic affects these
trains is of outmost importance to gain knowledge about and depends very
much on the hardware such as routers and switches and how they handle
traffic queues. Moreover, it is not just the overall loss rate or jitter, but
also the characteristics of these QoS parameters that are important, with
different loss patterns having different implications for different applications
and in the end QoE for end-customers. For example, does packet loss occur
independently as single events, or are they grouped together. The latter
often indicates that packet losses are being caused by transient congestion,
while the former may indicate physical layer problems (e.g. high noise levels
on the link).

The passive approach clearly has the advantage of monitoring the net-
work traffic in a completely non intrusive way and by that not effecting the
network itself. The burden is instead put on the already, existing hardware

63

“rapport” — 2011/11/22 — 23:34 — page 64 — #78

64 Conclusion and Future Work

(e.g. routers and switches) and is not always suitable for time sensitive mea-
surements. The more active technique of the passive ones are as mentioned
network taps, these taps copies the whole traffic stream with physical errors
and provides full visibility into full-duplex networks. One major question
must be answered regardless of which technique used, if there really is a
problem. OTT-traffic on the best-effort channel is just what it sounds like,
traffic streaming over a best-effort channel. So to what degree will cus-
tomers have to accept poor quality? If we dedicate more resources to a
particular channel, is it still a best-effort channel?

Another important task is traffic classification, this can be done in sev-
eral ways such as fast and simple port classification or more advanced statis-
tical methods. Port classification still works very well but with an increasing
amount of applications using dynamic ports it is not always a suitable solu-
tion. DPI investigates the actual payload instead. This however, demands
well-identified signatures for those applications to be identified and lacks
the ability to handle encrypted traffic. Signatures also needs to be up to
date since applications change over time. It is also of the author’s opinion
that end-customers privacy must be kept in mind. The statistical approach
on the other hand, shows interesting properties, privacy can be kept and
still handles encrypted traffic. Machine learning, which is based on statis-
tics, also handles a broad variety of traffic and can adapt and evolve more
easily then other classification methods. What method to use to classify
the traffic must be evaluated at a point after a decision is made regarding
what traffic and/or application that is of interest.

In the work of mapping QoS parameters to expected QoE for end-users
some studies have been made, the problem occurs when one aims at mapping
diverse types of traffic, network traffic with different characteristics will be
affected in different ways, making it hard to construct a general QoS/QoE
map. As mentioned it is suggested to introduce an expectation term in the
process of mapping since the expectation of a customer is connected to QoE.
With more time a better correlation-study, regarding QoS and QoE, could
be done. The controlled disturbance signal can be used in more extensive
studies in future work and from the performed test it is clearly seen how
great the impact is on an IPTV transmission. Most likely this effect will
be noticeable for end-users using IPTV or other time sensitive media. The
disturbance signal has the same characteristics in the frequency domain as
distant radio stations.

This demonstrates how sensitive the DSL network is for not only nearby
sources of disturbances, but also long distance ones. There is also a wish to
improve the set-up for the generated signal. Further investigations regarding
the unexplained disturbance around tone 200 kHz in the lab is also to be

“rapport” — 2011/11/22 — 23:34 — page 65 — #79

Conclusion and Future Work 65

investigated.
From both operators and customers point of view the subject of traffic

classification and probing is of importance. The amount of traffic today
is enormous in the network, and nothing point in the direction of that to
change in the coming years. More time sensitive media is growing ground
and QoS parameters are a key factor to maintain and even enhance the
quality for end-customers. This demands for operators to be ably to dis-
criminate traffic, especially the traffic paid for by end-customers. Probing
is a way of gathering information about the QoS parameters in the net-
work, once that step is taken traffic classification is the tool to change the
situation and perhaps label some traffic with higher priority. Traffic classi-
fication and higher priority to time sensitive media will in the future most
certainly make the QoE better for customers.

“rapport” — 2011/11/22 — 23:34 — page 66 — #80

66 Conclusion and Future Work

“rapport” — 2011/11/22 — 23:34 — page 67 — #81

References

[1] Martin, J.; Nilsson, A.;, On service level agreements for IP net-
works.INFOCOM 2002. Twenty-First Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE,
vol.2, no., pp.855-863, 2002

[2] Murphy, S.; Searles, M.; Rambeau, C.; Murphy, L.;, Evaluating the
Impact of Network Performance on Video Streaming Quality for Cat-
egorized Video Content, 14th International Packet Video Workshop,
2004, vol., no., pp.1-8, 2002

[3] Balin, S.; Jinn, Y; Frost, V. S.; Duncan, T.;, Characterizing user-
perceived impairment events using end-to-end measurements, John Wi-
ley Sons, Ltd., International Journal of Communication Systems,
vol.18, no.10, pp. 935-960, December 2005

[4] Jain, R.; Routhier, S.;, Packet trains – measurement and a new model
for computer network traffic, IEEE Journal on Selected Areas in Com-
munications, vol.4, no.6, pp.986-995, September 1986

[5] Brodie, M.; Rish, I.;Ma, S.; Grabarnik, G.; Odintsova, N.;, Active
Probing, I.B.M. T.J. Watson Research, vol., no., pp.1-15, 2002

[6] Nilsson, M.; Measuring available path capacity using short probe trains,
Swedish Institute of Computer Science (SICS), Network Operations and
Management Symposium (NOMS), 2010 IEEE, vol., no., pp.910-913,
19-23 April 2010

[7] Ahlgren, B.; Björkman, M.; Melander B.;, Network Probing Using
Packet Trains, Swedish Institute of Computer Science (SICS), vol.,
no., pp.1-6, 15 March, 1999

67

“rapport” — 2011/11/22 — 23:34 — page 68 — #82

68 References

[8] Johnsson, A.; Melander, B.; Björkman, M.;, Analyzing Cross Traffic
Effects on Packet TrainsUsing a Generic Multihop Model, The Depart-
ment of Computer Science and Engineering, Mälardalen University of
Sweden, vol., no., pp.1-9

[9] Agrawal, S. ; Naidu, K.V.M. ; Rastogi, R.;, Diagnosing Link-level
Anomalies Using Passive Probes, INFOCOM 2007. 26th IEEE Inter-
national Conference on Computer Communications, IEEE, vol., no.,
pp. 1757-1765, 6-12 May 2007

[10] Brodie, M.; Rish, I.; Ma, S.;, Optimizing Probe Selection for Fault
Localization, IBM T.J. Watson Research Center, vol., no., pp.1-12

[11] Ishibashi, K.; Kanazawa, T.; Aida, M.;, Active/passive combination-
type performance measurement method using change-of-measure frame-
work, Global Telecommunications Conference, 2002. GLOBECOM ’02.
IEEE, NTT Inf. Sharing Platform Labs., NTT Corp., Tokyo, Japan,
vol.3, no., pp. 2538-2542, 17-21 November 2002

[12] Dainotti, A.; de Donato, W.; Pescape, A.; Salvo Rossi, P.;, Clas-
sification of Network Traffic via Packet-Level Hidden Markov Mod-
els, Global Telecommunications Conference, 2008. IEEE GLOBECOM
2008. IEEE, vol., no., pp.1-5, 30 November 2008 - 4 December 20048

[13] Mohd, A. B.; Dr. Mohd, Nor S.;, Towards a Flow-based Internet Traf-
fic Classification for Bandwidth Optimization, International Journal of
Engineering, vol.3, no.4, pp.370-379, 2009

[14] Dornger, P.;, Real-Time Detection of Encrypted Traffic based on En-
tropy Estimation, Salzburg University of Applied Sciences Degree Pro-
gram, vol., no., pp.1-89, August 2010

[15] Zhang, M.; John, W.; Claffy, K. C.; BrownleeN.;, State of the Art
in Traffic Classification: A Research Review, PAM ’09: 10th Interna-
tional Conference on Passive and Active Measurement, Student Work-
shop, vol., no., pp.1-2, 1-3 April 2009

[16] Yildirim, T.; Dr. Radcliffe, P. J.;, VoIP Traffic Classification in IPSec
Tunnels, Electronics and Information Engineering (ICEIE), 2010 In-
ternational Conference On, IEEE, vol.1 no., pp.V1-151 - V1-157, 2010

[17] Fan, J.; Nucci, A.; Keralapura, R.; Gao L.;, Protocol Oblivious Classi-
fication of Multimedia Traffic, University of Florida, Dept. of Electrical
Computer Engineering, vol., no., pp.1-25, 2009

“rapport” — 2011/11/22 — 23:34 — page 69 — #83

References 69

[18] Na, W.;, Design and implementation of RTP stream
Classification Methods, National University of Singa-
pore, vol., no., pp.1-110, 2004, [Online], Available:
http://scholarbank.nus.edu.sg/handle/10635/13968, Viewed: June
2011

[19] Molnár, S.; Peréyi, M.;, On the identification and analysis of Skype
traffic, Department of Telecommunications and Media informatic, Bu-
dapest Univeristy of Technology and Economics, International Journal
of Communication Systems, 2011, vol.24, no.1, pp.94-117, 2010

[20] Valenti, S.; Rossi, D.; Meo, M.; Mellia, M.; Bermolen, P.;,
Accurate, Fine-Grained Classification of P2P-TV Applications by
Simply Counting Packets, Royal Institute of Technology, Interna-
tional In Traffic Measurement and Analysis (TMA) Workshop at
IFIP Networking 2009, vol., no., pp.84-92, [Online], Available:
http://www.csc.kth.se/ gkreitz/
spotify-p2p10/spotify-p2p10.pdf, Viewed: June 2011

[21] Schapire, R.;, Theoretical Machine Learning, Princeton University
Computer Science Department, vol., no., pp.1-6, 2008, [Online], Avail-
able: http://www.cs.princeton.edu/courses/archive/spr08/cos511/
scribenotes/0204.pdf, V iewed : June2011

[22] Kreitz, G.; Niemelä, F.;, Spotify - Large Scale, Low Latency, P2P
Music-on-Demand Streaming, KTH ? Royal Institute of Technology,
Proceedings of IEEE P2P 2010, vol., no., pp.1-10,

[23] Spoto, S.; Gaeta, R.; Grangetto, M.; Sereno, M.;, Analysis of
PPLive through active and passive measurements, Dipartimento di
Informatica, Università di Torino, International Workshop on Hot
Topics in Peer-to-Peer Systems, 2009. vol., no., pp.1-7, [Online],
Available: http://www.di.unito.it/ mgrange/conf/pplive09.pdf, Viewed:
June 2011

[24] [Online], Available: http://www.ntop.org/blog/ntop/port-mirror-vs-
network-tap/, Viewed: June 2011

[25] Forouzan, B. A.;, Data Communication and Networking, 2nd edition,
McGraw-Hill Book Co. ISBN: 0-07-118160-1, vol., no., pp.231-271,
2001,

[26] [Online], Available: http://www.kitz.co.uk/adsl/adsltechnology.htm, V iewed :
June2011

“rapport” — 2011/11/22 — 23:34 — page 70 — #84

70 References

[27] FTDI webpage, [Online], Available: http://www.ftdichip.com/,
Viewed: June 2011

“rapport” — 2011/11/22 — 23:34 — page 71 — #85

AppendixA
Program Code

Listing A.1: Program
us ing System ;
us ing System . Co l l e c t i o n s . Generic ;
us ing System . Linq ;
us ing System .Windows . Forms ;

namespace WindowsFormsApplication1
{

s t a t i c c l a s s Program
{

/// <summary>
/// The main entry point for the appl icat ion .
/// </summary>
[STAThread]
s t a t i c void Main ()
{

Appl i cat ion . Enab leVi sua lSty l e s () ;
Appl i cat ion . SetCompatibleTextRenderingDefault (f a l s e) ;
Appl i cat ion .Run(new Form1 ()) ;

}
}

}

Listing A.2: Form1
us ing System ;
us ing System . Co l l e c t i o n s . Generic ;
us ing System . ComponentModel ;
us ing System . Data ;
us ing System . Drawing ;
us ing System . Linq ;
us ing System . Text ;
us ing System .Windows . Forms ;
us ing System . Diagnos t i c s ;
us ing System . Threading ;

namespace WindowsFormsApplication1
{

pub l i c p a r t i a l c l a s s Form1 : Form
{

pr i va t e double runTime = 0 ;
p r i va t e Cont ro l l e r myControl ler ;

pub l i c Form1 ()
{

In i t ia l i z eComponent () ;
I n i t i a l i z eGUI () ;

}

/∗
∗ Sets up GUI
∗/

pr i va t e void I n i t i a l i z eGUI ()

71

“rapport” — 2011/11/22 — 23:34 — page 72 — #86

72 Program Code

{
txtBaudrate . Text = s t r i n g . Empty ;
errorOutput . Text = s t r i n g . Empty ;
txtRunning . Text = s t r i n g . Empty ;
txtTime . Text = s t r i n g . Empty ;
btnStart . Enabled = true ;
btnStop . Enabled = f a l s e ;

}

/∗
∗ Writes errors to form .
∗/

pub l i c void ErrorOutput (s t r i n g e r r o r)
{

errorOutput . Text += e r r o r + "\n" ;
}

/∗
∗ Writes information to form .
∗/

pub l i c void InformatinOutput (s t r i n g in format ion)
{

infoOutPut . Text += informat ion +"\n" ;
}

/∗
∗ Action taken i f user push Stop−button .
∗/

pr i va t e void btnStop_Click (ob j e c t sender , EventArgs e)
{

Dia logResu l t d lgResu l t = MessageBox . Show("Do␣you␣ r e a l l y ␣want␣ to ␣
c l o s e ␣ the ␣program?" , "" , MessageBoxButtons . YesNo , MessageBoxIcon .
Question) ;

i f (d lgResu l t == Dia logResu l t . Yes)
{

myControl ler . Stop () ;
ClearForm () ;
btnStart . Enabled = true ;
btnStop . Enabled = f a l s e ;

}
}

/∗
∗ Writes runTime in form .
∗/

pr i va t e void timer1_Tick (ob j e c t sender , EventArgs e)
{

//Trigger update of txtProgressTime
txtProgressTime . Text = myControl ler . GetElapsedTimeString () ;

}

/∗
∗ Starts timer and checks i f user has given a runTime , i f so the

progressbar also s tar t s .
∗/

pr i va t e void In i t i a l i z eMyTimer ()
{

runTime = myControl ler . getRunTime () ;
t imer1 . Enabled = true ;
// Start the timer .
t imer1 . Star t () ;
// Set the in terva l for the timer .
i f (runTime != 0)
{

timer1 . I n t e r v a l = Convert . ToInt32 (((runTime ∗ 60) / 100) ∗ 1000)
;

progressBar1 .Maximum = Convert . ToInt32 (100) ;
progressBar1 .Minimum = 0 ;
t imer1 . Tick += new EventHandler (IncreaseProgre s sBar) ;

}
}

/∗

“rapport” — 2011/11/22 — 23:34 — page 73 — #87

Program Code 73

∗ Increase progressbar and check i f i t i s at i t s end .
∗/

pr i va t e void IncreaseProgre s sBar (ob j e c t sender , EventArgs e)
{

// Increment the value of the ProgressBar a value of one each time .
progressBar1 . Increment (1) ;
// Display the tex tua l value of the ProgressBar in the StatusBar

control ’ s f i r s t panel .
l a b e l 1 . Text = "Progress ␣" + progressBar1 . Value . ToString () + "%" ;
// Determine i f we have completed by comparing the value of the Value

property to the Maximum value .
i f (progressBar1 . Value == progressBar1 .Maximum)
{

timer1 . Stop () ;
MessageBox . Show(" S i gna l g ene ra to r ␣has␣ended") ;
ClearForm () ;

}
}

/∗
∗ Action taken when user push Start−button .
∗/

pr i va t e void btnStart_Click (ob j e c t sender , EventArgs e)
{

myControl ler = new Cont ro l l e r (t h i s) ;

//Call for va l idat ion of input before run signalgenerator
i f (myControl ler . ReadAndValidateInput (txtBaudrate . Text , txtTime . Text

))
{

In i t ia l i z eMyTimer () ;
txtRunning . Text = txtBaudrate . Text ;
myControl ler .Run() ;
btnStart . Enabled = f a l s e ;
btnStop . Enabled = true ;

}
}

/∗
∗ Clears the GUI.
∗/

pub l i c void ClearForm ()
{

txtBaudrate . Text = s t r i n g . Empty ;
errorOutput . Text = s t r i n g . Empty ;
infoOutPut . Text = Str ing . Empty ;
txtProgressTime . Text = Str ing . Empty ;
txtRunning . Text = s t r i n g . Empty ;
txtTime . Text = s t r i n g . Empty ;
t imer1 . Stop () ; //Av−ka l l a r timer1_Tick
t imer1 . Enabled = f a l s e ;
progressBar1 . Value = 0 ;
l ab e l 1 . Text = progressBar1 . Value . ToString () ;
btnStart . Enabled = true ;
btnStop . Enabled = f a l s e ;

}

/∗
∗ Following methods must exc i s t even i f the are empty .
∗/

pr i va t e void txtRunning_TextChanged (ob j e c t sender , EventArgs e)
{

}

p r i va t e void txtProgressTime_TextChanged (ob j e c t sender , EventArgs e)
{

}

p r i va t e void errorOutput_TextChanged (ob j e c t sender , EventArgs e)
{

}

“rapport” — 2011/11/22 — 23:34 — page 74 — #88

74 Program Code

pr i va t e void infoOutPut_TextChanged (ob j e c t sender , EventArgs e)
{

}

}
}

Listing A.3: Form1.Designer
namespace WindowsFormsApplication1
{

p a r t i a l c l a s s Form1
{

/// <summary>
/// Required designer var iab le .
/// </summary>
pr i va t e System . ComponentModel . IConta iner components = nu l l ;

/// <summary>
/// Clean up any resources being used .
/// </summary>
/// <param name="disposing">true i f managed resources should be disposed

; otherwise , f a l s e .</param>
protec ted ove r r i d e void Dispose (bool d i spo s ing)
{

i f (d i spo s ing && (components != nu l l))
{

components . Dispose () ;
}
base . Dispose (d i spo s ing) ;

}

#reg ion Windows Form Designer generated code

/// <summary>
/// Required method for Designer support − do not modify
/// the contents of th i s method with the code edi tor .
/// </summary>
pr i va t e void In i t ia l i z eComponent ()
{

t h i s . components = new System . ComponentModel . Container () ;
t h i s . lb lBaudrate = new System .Windows . Forms . Label () ;
t h i s . grpInput = new System .Windows . Forms . GroupBox () ;
t h i s . lblTime = new System .Windows . Forms . Label () ;
t h i s . txtTime = new System .Windows . Forms . TextBox () ;
t h i s . btnStop = new System .Windows . Forms . Button () ;
t h i s . btnStart = new System .Windows . Forms . Button () ;
t h i s . txtBaudrate = new System .Windows . Forms . TextBox () ;
t h i s . g rp In fo = new System .Windows . Forms . GroupBox () ;
t h i s . lb l InfoOutPut = new System .Windows . Forms . Label () ;
t h i s . l b lE r r o r = new System .Windows . Forms . Label () ;
t h i s . infoOutPut = new System .Windows . Forms . RichTextBox () ;
t h i s . lblRunningTime = new System .Windows . Forms . Label () ;
t h i s . txtProgressTime = new System .Windows . Forms . TextBox () ;
t h i s . l a b e l 1 = new System .Windows . Forms . Label () ;
t h i s . lblRunning = new System .Windows . Forms . Label () ;
t h i s . txtRunning = new System .Windows . Forms . TextBox () ;
t h i s . errorOutput = new System .Windows . Forms . RichTextBox () ;
t h i s . progressBar1 = new System .Windows . Forms . ProgressBar () ;
t h i s . t imer1 = new System .Windows . Forms . Timer (t h i s . components) ;
t h i s . grpInput . SuspendLayout () ;
t h i s . g rp In fo . SuspendLayout () ;
t h i s . SuspendLayout () ;
//
// lblBaudrate
//
t h i s . lb lBaudrate . AutoSize = true ;
t h i s . lb lBaudrate . Locat ion = new System . Drawing . Point (6 , 26) ;
t h i s . lb lBaudrate .Name = " lb lBaudrate " ;
t h i s . lb lBaudrate . S i z e = new System . Drawing . S i z e (69 , 13) ;
t h i s . lb lBaudrate . TabIndex = 0 ;
t h i s . lb lBaudrate . Text = "Set ␣Baudrate" ;
//
// grpInput
//
t h i s . grpInput . Contro l s .Add(t h i s . lblTime) ;
t h i s . grpInput . Contro l s .Add(t h i s . txtTime) ;
t h i s . grpInput . Contro l s .Add(t h i s . btnStop) ;

“rapport” — 2011/11/22 — 23:34 — page 75 — #89

Program Code 75

t h i s . grpInput . Contro l s .Add(t h i s . btnStart) ;
t h i s . grpInput . Contro l s .Add(t h i s . txtBaudrate) ;
t h i s . grpInput . Contro l s .Add(t h i s . lb lBaudrate) ;
t h i s . grpInput . Locat ion = new System . Drawing . Point (12 , 12) ;
t h i s . grpInput .Name = "grpInput " ;
t h i s . grpInput . S i z e = new System . Drawing . S i z e (355 , 125) ;
t h i s . grpInput . TabIndex = 1 ;
t h i s . grpInput . TabStop = f a l s e ;
t h i s . grpInput . Text = " Input " ;
//
// lblTime
//
t h i s . lblTime . AutoSize = true ;
t h i s . lblTime . Locat ion = new System . Drawing . Point (113 , 26) ;
t h i s . lblTime .Name = " lblTime" ;
t h i s . lblTime . S i z e = new System . Drawing . S i z e (230 , 13) ;
t h i s . lblTime . TabIndex = 5 ;
t h i s . lblTime . Text = "Set ␣run␣Time␣ in ␣minutes ␣ (l eave ␣empty␣ f o r ␣

i n f i n i t y) " ;
//
// txtTime
//
t h i s . txtTime . Locat ion = new System . Drawing . Point (113 , 43) ;
t h i s . txtTime .Name = "txtTime" ;
t h i s . txtTime . S i z e = new System . Drawing . S i z e (100 , 20) ;
t h i s . txtTime . TabIndex = 4 ;
//
// btnStop
//
t h i s . btnStop . Locat ion = new System . Drawing . Point (104 , 84) ;
t h i s . btnStop .Name = "btnStop" ;
t h i s . btnStop . S i z e = new System . Drawing . S i z e (75 , 23) ;
t h i s . btnStop . TabIndex = 3 ;
t h i s . btnStop . Text = "Stopp" ;
t h i s . btnStop . UseVisualStyleBackColor = true ;
t h i s . btnStop . Cl i ck += new System . EventHandler (t h i s . btnStop_Click) ;
//
// btnStart
//
t h i s . btnStart . Locat ion = new System . Drawing . Point (7 , 84) ;
t h i s . btnStart .Name = "btnStart " ;
t h i s . btnStart . S i z e = new System . Drawing . S i z e (75 , 23) ;
t h i s . btnStart . TabIndex = 2 ;
t h i s . btnStart . Text = " Star t " ;
t h i s . btnStart . UseVisualStyleBackColor = true ;
t h i s . btnStart . C l i ck += new System . EventHandler (t h i s . btnStart_Click) ;
//
// txtBaudrate
//
t h i s . txtBaudrate . Locat ion = new System . Drawing . Point (7 , 43) ;
t h i s . txtBaudrate .Name = " txtBaudrate " ;
t h i s . txtBaudrate . S i z e = new System . Drawing . S i z e (100 , 20) ;
t h i s . txtBaudrate . TabIndex = 1 ;
//
// grpInfo
//
t h i s . g rp In fo . Contro l s .Add(t h i s . lb l InfoOutPut) ;
t h i s . g rp In fo . Contro l s .Add(t h i s . l b lE r r o r) ;
t h i s . g rp In fo . Contro l s .Add(t h i s . infoOutPut) ;
t h i s . g rp In fo . Contro l s .Add(t h i s . lblRunningTime) ;
t h i s . g rp In fo . Contro l s .Add(t h i s . txtProgressTime) ;
t h i s . g rp In fo . Contro l s .Add(t h i s . l a b e l 1) ;
t h i s . g rp In fo . Contro l s .Add(t h i s . lblRunning) ;
t h i s . g rp In fo . Contro l s .Add(t h i s . txtRunning) ;
t h i s . g rp In fo . Contro l s .Add(t h i s . errorOutput) ;
t h i s . g rp In fo . Contro l s .Add(t h i s . progressBar1) ;
t h i s . g rp In fo . Locat ion = new System . Drawing . Point (12 , 143) ;
t h i s . g rp In fo .Name = " grpIn fo " ;
t h i s . g rp In fo . S i z e = new System . Drawing . S i z e (729 , 323) ;
t h i s . g rp In fo . TabIndex = 2 ;
t h i s . g rp In fo . TabStop = f a l s e ;
t h i s . g rp In fo . Text = " Informat ion " ;
//
// lblInfoOutPut
//
t h i s . lb l InfoOutPut . AutoSize = true ;
t h i s . lb l InfoOutPut . Locat ion = new System . Drawing . Point (9 , 127) ;
t h i s . lb l InfoOutPut .Name = " lbl InfoOutPut " ;
t h i s . lb l InfoOutPut . S i z e = new System . Drawing . S i z e (92 , 13) ;
t h i s . lb l InfoOutPut . TabIndex = 9 ;

“rapport” — 2011/11/22 — 23:34 — page 76 — #90

76 Program Code

t h i s . lb l InfoOutPut . Text = " Informat ion ␣output" ;
//
// lb lError
//
t h i s . l b lE r r o r . AutoSize = true ;
t h i s . l b lE r r o r . Locat ion = new System . Drawing . Point (346 , 120) ;
t h i s . l b lE r r o r .Name = " lb lE r r o r " ;
t h i s . l b lE r r o r . S i z e = new System . Drawing . S i z e (62 , 13) ;
t h i s . l b lE r r o r . TabIndex = 8 ;
t h i s . l b lE r r o r . Text = "Error ␣output" ;
//
// infoOutPut
//
t h i s . infoOutPut . AcceptsTab = true ;
t h i s . infoOutPut . Locat ion = new System . Drawing . Point (6 , 146) ;
t h i s . infoOutPut .Name = " infoOutPut" ;
t h i s . infoOutPut . S i z e = new System . Drawing . S i z e (337 , 177) ;
t h i s . infoOutPut . TabIndex = 7 ;
t h i s . infoOutPut . Text = "" ;
t h i s . infoOutPut . TextChanged += new System . EventHandler (t h i s .

infoOutPut_TextChanged) ;
//
// lblRunningTime
//
t h i s . lblRunningTime . AutoSize = true ;
t h i s . lblRunningTime . Locat ion = new System . Drawing . Point (12 , 72) ;
t h i s . lblRunningTime .Name = " lblRunningTime" ;
t h i s . lblRunningTime . S i z e = new System . Drawing . S i z e (49 , 13) ;
t h i s . lblRunningTime . TabIndex = 6 ;
t h i s . lblRunningTime . Text = "Runtime : " ;
//
// txtProgressTime
//
t h i s . txtProgressTime . Locat ion = new System . Drawing . Point (12 , 88) ;
t h i s . txtProgressTime .Name = " txtProgressTime " ;
t h i s . txtProgressTime . S i z e = new System . Drawing . S i z e (100 , 20) ;
t h i s . txtProgressTime . TabIndex = 5 ;
t h i s . txtProgressTime . TextChanged += new System . EventHandler (t h i s .

txtProgressTime_TextChanged) ;
//
// labe l1
//
t h i s . l a b e l 1 . AutoSize = true ;
t h i s . l a b e l 1 . Locat ion = new System . Drawing . Point (131 , 69) ;
t h i s . l a b e l 1 .Name = " l ab e l 1 " ;
t h i s . l a b e l 1 . S i z e = new System . Drawing . S i z e (165 , 13) ;
t h i s . l a b e l 1 . TabIndex = 4 ;
t h i s . l a b e l 1 . Text = "Progres ␣␣␣␣ (When␣ running ␣on␣ time) " ;
//
// lblRunning
//
t h i s . lblRunning . AutoSize = true ;
t h i s . lblRunning . Locat ion = new System . Drawing . Point (9 , 29) ;
t h i s . lblRunning .Name = " lblRunning " ;
t h i s . lblRunning . S i z e = new System . Drawing . S i z e (53 , 13) ;
t h i s . lblRunning . TabIndex = 3 ;
t h i s . lblRunning . Text = "Baudrate : " ;
//
// txtRunning
//
t h i s . txtRunning . Locat ion = new System . Drawing . Point (12 , 45) ;
t h i s . txtRunning .Name = "txtRunning" ;
t h i s . txtRunning . S i z e = new System . Drawing . S i z e (80 , 20) ;
t h i s . txtRunning . TabIndex = 2 ;
t h i s . txtRunning . TextChanged += new System . EventHandler (t h i s .

txtRunning_TextChanged) ;
//
// errorOutput
//
t h i s . errorOutput . Locat ion = new System . Drawing . Point (349 , 146) ;
t h i s . errorOutput .Name = " errorOutput " ;
t h i s . errorOutput . S i z e = new System . Drawing . S i z e (337 , 177) ;
t h i s . errorOutput . TabIndex = 1 ;
t h i s . errorOutput . Text = "" ;
t h i s . errorOutput . TextChanged += new System . EventHandler (t h i s .

errorOutput_TextChanged) ;
//
// progressBar1
//
t h i s . progressBar1 . Locat ion = new System . Drawing . Point (134 , 85) ;

“rapport” — 2011/11/22 — 23:34 — page 77 — #91

Program Code 77

t h i s . progressBar1 .Name = "progressBar1 " ;
t h i s . progressBar1 . S i z e = new System . Drawing . S i z e (100 , 23) ;
t h i s . progressBar1 . TabIndex = 0 ;
//
// timer1
//
t h i s . t imer1 . Tick += new System . EventHandler (t h i s . timer1_Tick) ;
//
// Form1
//
t h i s . AutoScaleDimensions = new System . Drawing . SizeF (6F , 13F) ;
t h i s . AutoScaleMode = System .Windows . Forms . AutoScaleMode . Font ;
t h i s . C l i e n tS i z e = new System . Drawing . S i z e (775 , 478) ;
t h i s . Contro l s .Add(t h i s . g rp In fo) ;
t h i s . Contro l s .Add(t h i s . grpInput) ;
t h i s .Name = "Form1" ;
t h i s . Text = "Form1" ;
t h i s . grpInput . ResumeLayout (f a l s e) ;
t h i s . grpInput . PerformLayout () ;
t h i s . g rp In fo . ResumeLayout (f a l s e) ;
t h i s . g rp In fo . PerformLayout () ;
t h i s . ResumeLayout (f a l s e) ;

}

#endreg ion

pr i va t e System .Windows . Forms . Label lb lBaudrate ;
p r i va t e System .Windows . Forms . GroupBox grpInput ;
p r i va t e System .Windows . Forms . Button btnStop ;
p r i va t e System .Windows . Forms . Button btnStart ;
p r i va t e System .Windows . Forms . TextBox txtBaudrate ;
p r i va t e System .Windows . Forms . GroupBox grpIn fo ;
p r i va t e System .Windows . Forms . RichTextBox errorOutput ;
p r i va t e System .Windows . Forms . ProgressBar progressBar1 ;
p r i va t e System .Windows . Forms . Timer t imer1 ;
p r i va t e System .Windows . Forms . Label lblRunning ;
p r i va t e System .Windows . Forms . TextBox txtRunning ;
p r i va t e System .Windows . Forms . Label lblTime ;
p r i va t e System .Windows . Forms . TextBox txtTime ;
p r i va t e System .Windows . Forms . Label l a b e l 1 ;
p r i va t e System .Windows . Forms . TextBox txtProgressTime ;
p r i va t e System .Windows . Forms . Label lblRunningTime ;
p r i va t e System .Windows . Forms . Label lb l InfoOutPut ;
p r i va t e System .Windows . Forms . Label l b lE r r o r ;
p r i va t e System .Windows . Forms . RichTextBox infoOutPut ;

}
}

Listing A.4: Controller
us ing System ;
us ing System . Co l l e c t i o n s . Generic ;
us ing System . ComponentModel ;
us ing System . Data ;
us ing System . Drawing ;
us ing System . Linq ;
us ing System . Text ;
us ing System .Windows . Forms ;
us ing System . Diagnos t i c s ;
us ing System . Threading ;

namespace WindowsFormsApplication1
{

c l a s s Cont ro l l e r
{

p r i va t e double runTime ;
p r i va t e i n t baudRate ;
p r i va t e Timer myTimer ;
p r i va t e Form1 myForm ;
Thread myThread ;
p r i va t e S igna lGenerator s i gna lGenera to r ;

/∗
∗ Constructor
∗/

pub l i c Cont ro l l e r (Form1 iMyForm)
{

“rapport” — 2011/11/22 — 23:34 — page 78 — #92

78 Program Code

myForm = iMyForm ;
}

/∗
∗ Set up Control ler and runs the Signalgenerator
∗/

pub l i c void Run()
{

SetUp () ;
i f (! s i gna lGenera to r . SetUp ())
{

myForm . ErrorOutput (" Fa i l ed ␣ to ␣ s e t ␣up␣USB␣ dev ice ") ;
}
e l s e
{

myTimer . Star t () ;
myThread . Star t () ;

}
}

/∗
∗ Starts a new thread that handles the signalgenerator .
∗ Starts a new timmer with time chossen by user .
∗/

pub l i c void SetUp ()
{

myTimer = new Timer (runTime) ;
s i gna lGenerato r = new Signa lGenerator (baudRate , t h i s) ;
myThread = new Thread (s i gna lGenerato r .Run) ;

}

/∗
∗ Stops the generator and timer , also ends the thread handeling the

generator
∗/

pub l i c void Stop ()
{

s i gna lGenerato r . Stop () ;
myTimer . Stop () ;
myThread . Abort () ;

}

/∗
∗ Displays the information in the form .
∗/

pub l i c void DisplayInformationOutoput (s t r i n g in format ion)
{

myForm . InformatinOutput (in format ion) ;
}

/∗
∗ Displays the error−information in the form .
∗/

pub l i c void DisplayErrorOutput (s t r i n g e r r o r)
{

myForm . ErrorOutput (e r r o r +"\n") ;
}

/∗
∗ Validates inputdata from user f i e l d .
∗/

pub l i c bool ReadAndValidateInput (s t r i n g baudrate , s t r i n g time)
{

bool t imeVal idated = ValidateTime (time) ;
bool baudrateVal idated = Val idateBaudrate (baudrate) ;
//Check i f both f i e l d s are empty
i f (S t r ing . IsNullOrEmpty (time) && Str ing . IsNullOrEmpty (baudrate))
{

DisplayErrorOutput ("You␣ cant ␣ l eave ␣both␣ f i e l d s ␣empty") ;
re turn f a l s e ;

}
//Check i f only Baudrate i s given
e l s e i f ((! S t r ing . IsNullOrEmpty (baudrate)) && Str ing . IsNullOrEmpty (

time))
{

i f (baudrateVal idated)

“rapport” — 2011/11/22 — 23:34 — page 79 — #93

Program Code 79

{
return true ;

}
e l s e

DisplayErrorOutput ("Enter ␣a␣ c o r r e c t ␣ value ␣ f o r ␣baudrate ") ;
re turn f a l s e ;

}
//Check i f only time i s given
e l s e i f ((S t r ing . IsNullOrEmpty (baudrate)) && (! St r ing . IsNullOrEmpty (

time)))
{

DisplayErrorOutput ("Enter ␣a␣ c o r r e c t ␣ value ␣ f o r ␣baudrate ") ;
re turn f a l s e ;

}
e l s e i f (t imeVal idated && baudrateVal idated)
{

return true ;
}
e l s e

DisplayErrorOutput ("Enter ␣ c o r r e c t ␣ va lues ␣ f o r ␣baudrate ␣and␣ time")
;

re turn f a l s e ;
}

/∗
∗ Validates user input of baudrate .
∗/

pr i va t e bool Val idateBaudrate (s t r i n g baudrate)
{

return (i n t . TryParse (baudrate , out baudRate)) ;
}

/∗
∗ Validates user input of time .
∗/
pr i va t e bool ValidateTime (s t r i n g time)
{

return (double . TryParse (time , out runTime)) ;
}

/∗
∗ Get the baudrate .
∗/

pub l i c i n t getBaudRate ()
{

return baudRate ;
}

/∗
∗ Get the runTime .
∗/

pub l i c double getRunTime ()
{

return runTime ;
}

/∗
∗ Check i f runTime i s ended .
∗/

pub l i c bool IsTimerDone ()
{

return myTimer . Done () ;
}

/∗
∗ Get elapsed time .
∗/

pub l i c double GetElapsedTimeSecs ()
{

return myTimer . GetElapsedTimeSecs () ;
}

/∗

“rapport” — 2011/11/22 — 23:34 — page 80 — #94

80 Program Code

∗ Get elapsedtime in Strin form .
∗/

pub l i c s t r i n g GetElapsedTimeString ()
{

return myTimer . GetElapsedTimeString () ;
}

}
}

Listing A.5: SignalGenerator
us ing System ;
us ing System . Co l l e c t i o n s . Generic ;
us ing System . Linq ;
us ing System . Text ;
us ing System . Threading ;
us ing FTD2XX_NET;
us ing System .Windows . Forms ;
us ing System . Diagnos t i c s ;

namespace WindowsFormsApplication1
{

c l a s s S igna lGenerator
{

p r i va t e bool runCheck ;
UInt32 BaudRate ;
UInt32 ftd iDeviceCount = 0 ;
FTDI .FT_STATUS f tS t a tu s = FTDI .FT_STATUS.FT_OK;
// Create new instance of the FTDI device c lass
FTDI myFtdiDevice = new FTDI() ;
Cont ro l l e r myControl ler ;

/∗
∗ Constructor
∗
∗ ∗/

pub l i c S igna lGenerator (i n t baudRate , Cont ro l l e r iCon t r o l l e r)
{

BaudRate = Convert . ToUInt32 (baudRate) ;
myControl ler = iCon t r o l l e r ;

}

/∗
∗ I n i t i a l i z e USB device .
∗
∗/

pub l i c bool SetUp () {

runCheck = true ;
// Determine the number of FTDI devices connected to the machine
f t S t a tu s = myFtdiDevice . GetNumberOfDevices (r e f f td iDeviceCount) ;
// Check status
i f (f t S t a tu s == FTDI .FT_STATUS.FT_OK)
{

myControl ler . DisplayInformationOutoput ("Number␣ o f ␣FTDI␣ dev i c e s : ␣
" + ftdiDeviceCount . ToString ()) ;

}
e l s e
{

myControl ler . DisplayErrorOutput (" Fa i l ed ␣ to ␣ get ␣number␣ o f ␣ dev i c e s
␣ (e r r o r ␣" + f tS t a tu s . ToString () + ") ") ;

runCheck = f a l s e ;
}

// I f no devices avai lab le , return
i f (f td iDeviceCount == 0)
{

myControl ler . DisplayErrorOutput (" Fa i l ed ␣ to ␣ get ␣number␣ o f ␣ dev i c e s
␣ (e r r o r ␣" + f tS t a tu s . ToString () + ") ") ;

runCheck = f a l s e ;
}

“rapport” — 2011/11/22 — 23:34 — page 81 — #95

Program Code 81

// Allocate storage for device info l i s t
FTDI .FT_DEVICE_INFO_NODE[] f t d iDev i c eL i s t = new FTDI .

FT_DEVICE_INFO_NODE[ftdiDeviceCount] ;

// Populate our device l i s t
f t S t a tu s = myFtdiDevice . GetDeviceList (f t d iDev i c eL i s t) ;

i f (f t S t a tu s == FTDI .FT_STATUS.FT_OK)
{

f o r (UInt32 i = 0 ; i < ftdiDeviceCount ; i++)
{

myControl ler . DisplayInformationOutoput ("Device ␣ Index : ␣" + i .
ToString ()) ;

myControl ler . DisplayInformationOutoput ("Flags : ␣" + Str ing .
Format (" {0 : x}" , f t d iDev i c eL i s t [i] . Flags)) ;

myControl ler . DisplayInformationOutoput ("Type : ␣" +
f t d iDev i c eL i s t [i] . Type . ToString ()) ;

myControl ler . DisplayInformationOutoput ("ID : ␣" + Str ing .
Format (" {0 : x}" , f t d iDev i c eL i s t [i] . ID)) ;

myControl ler . DisplayInformationOutoput ("Locat ion ␣ID : ␣" +
Str ing . Format (" {0 : x}" , f t d iDev i c eL i s t [i] . LocId)) ;

myControl ler . DisplayInformationOutoput (" S e r i a l ␣Number : ␣" +
f t d iDev i c eL i s t [i] . SerialNumber . ToString ()) ;

myControl ler . DisplayInformationOutoput ("Desc r ip t i on : ␣" +
f t d iDev i c eL i s t [i] . De sc r ip t i on . ToString ()) ;

myControl ler . DisplayInformationOutoput ("") ;
}

}
e l s e
{

myControl ler . DisplayErrorOutput (" Fa i l ed ␣ to ␣ populate ␣ d e v i c e l i s t ␣ (
e r r o r ␣" + f tS t a tu s . ToString () + ") ") ;

runCheck = f a l s e ;
}

// Open f i r s t device in our l i s t by s e r i a l number
f t S t a tu s = myFtdiDevice . OpenBySerialNumber (f t d iDev i c eL i s t [0] .

SerialNumber) ;
i f (f t S t a tu s != FTDI .FT_STATUS.FT_OK)
{

myControl ler . DisplayErrorOutput (" Fa i l ed ␣ to ␣open␣ dev i ce ␣ (e r r o r ␣"
+ f tS t a tu s . ToString () + ") ") ;

runCheck = f a l s e ;
}

// Set Baud rate
f t S t a tu s = myFtdiDevice . SetBaudRate (BaudRate) ;
i f (f t S t a tu s != FTDI .FT_STATUS.FT_OK)
{

myControl ler . DisplayErrorOutput (" Fa i l ed ␣ to ␣ s e t ␣BaudRate␣ (e r r o r ␣"
+ f tS t a tu s . ToString () + ") ") ;

runCheck = f a l s e ;
}

// Set data charac ter i s t i c s − Data bi t s , Stop bi t s , Parity
f t S t a tu s = myFtdiDevice . Se tDataCharac t e r i s t i c s (FTDI .FT_DATA_BITS.

FT_BITS_8, FTDI .FT_STOP_BITS.FT_STOP_BITS_1, FTDI .FT_PARITY.
FT_PARITY_NONE) ;

i f (f t S t a tu s != FTDI .FT_STATUS.FT_OK)
{

myControl ler . DisplayErrorOutput (" Fa i l ed ␣ to ␣ s e t ␣data␣
c h a r a c t e r i s t i c s ␣ (e r r o r ␣" + f tS t a tu s . ToString () + ") ") ;

runCheck = f a l s e ;
}

// Set f low control − set RTS/CTS flow control
f t S t a tu s = myFtdiDevice . SetFlowControl (FTDI .FT_FLOW_CONTROL.

FT_FLOW_NONE, 0x11 , 0x13) ;
i f (f t S t a tu s != FTDI .FT_STATUS.FT_OK)
{

myControl ler . DisplayErrorOutput (" Fa i l ed ␣ to ␣ s e t ␣ f low ␣ con t r o l ␣ (
e r r o r ␣" + f tS t a tu s . ToString () + ") ") ;

runCheck = f a l s e ;
}

“rapport” — 2011/11/22 — 23:34 — page 82 — #96

82 Program Code

// Set read timeout to 5 seconds , write timeout to i n f i n i t e
f t S t a tu s = myFtdiDevice . SetTimeouts (5 , 0) ;
i f (f t S t a tu s != FTDI .FT_STATUS.FT_OK)
{

myControl ler . DisplayErrorOutput (" Fa i l ed ␣ to ␣ s e t ␣ t imeouts ␣ (e r r o r ␣"
+ f tS t a tu s . ToString () + ") ") ;

runCheck = f a l s e ;
}

re turn runCheck ;

}

/∗
∗ Stops the output s igna l
∗/

pub l i c void Stop ()
{

runCheck = f a l s e ;
CloseUSB () ;

}

/∗
∗ Starts the output s igna l
∗/

pub l i c void Run()
{

//Random bytes written to USB unit
byte [] array = new byte [1 0 0 0] ;
Random random = new Random() ;

whi le (runCheck && myControl ler . IsTimerDone ())
{

//Get next byte
random . NextBytes (array) ;
UInt32 numBytesWritten = 0 ;
// Note that the Write method i s overloaded , so can write s tr ing

or byte array data
f t S t a tu s = myFtdiDevice . Write (array , array . Length , r e f

numBytesWritten) ;

i f (f t S t a tu s != FTDI .FT_STATUS.FT_OK)
{

myControl ler . DisplayErrorOutput (" Fa i l ed ␣ to ␣wr i t e ␣ to ␣ dev i ce ␣ (
e r r o r ␣" + f tS t a tu s . ToString () + ") ") ;

}
}

}

/∗
∗ Closes the USB device
∗/

pub l i c bool CloseUSB ()
{

f t S t a tu s = myFtdiDevice . Close () ;
i f (f t S t a tu s == FTDI .FT_STATUS.FT_OK)

return true ;
e l s e

re turn f a l s e ;
}

}
}

Listing A.6: Timer
us ing System ;
us ing System . Co l l e c t i o n s . Generic ;
us ing System . ComponentModel ;
us ing System . Data ;
us ing System . Drawing ;
us ing System . Linq ;
us ing System . Text ;
us ing System .Windows . Forms ;
us ing System . Diagnos t i c s ;

namespace WindowsFormsApplication1

“rapport” — 2011/11/22 — 23:34 — page 83 — #97

Program Code 83

{
c l a s s Timer
{

pub l i c DateTime startTime ;
pub l i c DateTime stopTime ;
p r i va t e DateTime currentTime ;
p r i va t e double runTime ;
p r i va t e bool running ;
pub l i c double elapsedTime ;
double remainingTime ;

/∗
∗ Constructor .
∗/

pub l i c Timer (double runTime)
{

t h i s . runTime = runTime ;
}

/∗
∗ Starts the timer .
∗/

pub l i c void Star t ()
{

startTime = DateTime .Now;
running = true ;

}

/∗
∗ Stops the timer
∗/

pub l i c void Stop ()
{

t h i s . stopTime = DateTime .Now;
running = f a l s e ;

}

/∗
∗ Checks i f timer i s done .
∗/

pub l i c bool Done ()
{

elapsedTime = GetElapsedTimeSecs () ;

remainingTime = (runTime∗60) − elapsedTime ;

i f (remainingTime > 0 | | runTime == 0)
{

return true ;

}
e l s e
{

return f a l s e ;
}

}

/∗
∗ Get elaspsed time in String form .
∗/

pub l i c s t r i n g GetElapsedTimeString ()
{

TimeSpan i n t e r v a l ;

i f (! running)
return "" ; // in terva l = DateTime .Now − startTime ;

e l s e
{

t h i s . currentTime = DateTime .Now;
i n t e r v a l = currentTime − startTime ;

}

“rapport” — 2011/11/22 — 23:34 — page 84 — #98

84 Program Code

i n t days = i n t e r v a l . Days ;
double hours = i n t e r v a l . Hours ;
double mins = i n t e r v a l . Minutes ;
double s e c s = i n t e r v a l . Seconds ;
s t r i n g x = "" ;
i f (days != 0)
{

x += days . ToString () + " : " ;
}
i f (hours != 0)
{

x += hours . ToString ("00") + " : " ;
}
x += mins . ToString ("00") + " : " ;
x += se c s . ToString ("00") ;

re turn x ;
}

/∗
∗ Get elaspsed time in double form .
∗/
pub l i c double GetElapsedTimeSecs ()
{

TimeSpan i n t e r v a l ;

i f (running)
i n t e r v a l = DateTime .Now − startTime ;

e l s e
i n t e r v a l = stopTime − startTime ;

re turn i n t e r v a l . TotalSeconds ;
}

}
}

“rapport” — 2011/11/22 — 23:34 — page 85 — #99

AppendixB
Wiring Diagram

1

2

3

4

5

6

7

8

9

10

11

12

UM232R

24

23

22

21

20

19

18

17

16

15

14

13

J2

J1TXD

DTR#

RTS#

VIO

RXD

RI#

GND

DSR#

DCD#

CTS#

CB4

CB2

GND

CB0

CB1

VCC

 RST

3V3

CB3

PU1

PU2

VCC

USB

SLD

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

T2IN

T1IN

R1OUT

R1IN

T1OUT

GND

Vcc

(V+)C1+#

GND

(V-)CS-

R2OUT

R2IN

T2OUT

V-

 C2-

C2+

V+(C1-)

C1-(C1+)

V-(C2+)

C2+(C2-)

Maxim
233EEP

+/-5V

Figure B.1: Circuit diagram over UM232R and Maxim 233EEP

85

