MASTER’S THESIS

Matrix Inversion Using QR Decomposition
by Parabolic Synthesis

By

Nafiz Ahmed Chisty

Supervisors:

Professor Peter Nilsson and MScEE Erik Hertz

Department of Electrical and Information Technology
Faculty of Engineering, LTH, Lund University
SE-221 00 Lund, Sweden

Abstract

Parabolic synthesis is one of the latest methodologies, proposed by Professor Peter Nilsson and Erik
Hertz of EIT department at Lund University (LTH), for the implementation of unary functions in
hardware. In the preceding research conducted at Lund University, it had been shown that parabolic
synthesis is an effective solution, which is both fast and consumes less area compared to all the existing
methods.

The goal of this Master’s thesis is to develop hardware for the generation of three trigonometric functions
(+sine, -sine and +cosine) using the novel approximation methodology, which is based on Parabolic
synthesis, for the use in Givens rotations for implementing matrix inversion using QR decomposition.
Two hardware designs has been developed, one for the parabolic synthesis and another for matrix
inversion but due to time limitations the two hardware designs could not be integrated together. The paper
mainly focuses on the implementation of the three trigonometric functions on both FPGA and ASIC and
compares the result with metrics of speed and area and later a hardware solution for the overall system
has been proposed.

Acknowledgements

The greatest gratitude after GOD goes to Professor Peter Nilsson, my Master’s Thesis supervisor and
Examiner, who not only helped me with kind insightful advice and encouragements but also made it
possible for me to finish the thesis successfully by going beyond my expectations in assisting me with
various academic and administrative issues.

I would also like to thank my other supervisor, MScEE Erik Hertz for his kind support and guidance.

Last but not least, | would like to thank my beloved family and all friends for their constant moral support
and courage.

Nafiz Ahmed Chisty
Master’s in System-on-Chip
Lund University (LTH)
Lund, Sweden

January 2012

Contents

AADSTTACT ...t b bttt h bbbt e ettt a e b e nen 2
ACKNOWIEAGEMENTScuviiieiieie ettt ettt ettt st e et e st e st e ste s be e s e steeseesbeeseensesseeasesteesaensesteesaensesseenes 3
CHAPTER L ..ttt sttt s h et bt e a et s bt et e s bt eat et e s bt eatesbesheenbesbeent e beeaeentesbeeaeas 7
1 INEFOTUCTION ...ttt b et b et b ettt b et b e 7
CHAPTER 2 ..ttt ettt sttt e b e e s bt e s at e st e s bt e bt e bt e sbeesae e eaee et e ebeesaeesaeesabeeabeenbeennes 9
2 Matrix Inversion by QR decomposition using GiVens rotationcccoeeeeeerererienenenenieeeeseseneens 9
2.1 MAETIX INVEISION ...ttt sttt ettt b st b bttt b e bt b se et e e e e et e e ebeebeebennens 9
211 Properties Of INVEISE MALIIXcciiieiiiiieeiecieceete ettt sttt et e s re b e sbeera e besreenes 9

2.2 QR AECOMPOSITION ...c.veiiiiiceeitieteeie sttt ettt e st et e st e e te e besbeesbesbeeasasesreenbesteessenbesanenes 9
2.3 GIVENS ROTALIONS ...ttt ettt sttt et b e 10
2.4 QRD USING GIVENS FOLALIONSevveeiteienieiieiieiineesteste ettt ettt sbe st s st ss s s seeneebesaesneneens 11
24.1 Triangularization For QRDcoeiiieieieeeereree e 11
24.2 The inverse MatriX for QRDccooviiieieieeee e 12

2.5 Hardware for inverse matrixX for QRDocvoiueiieiiiicee ettt et ettt ettt eeveeete e et e saeeeaee e 12
CHAPTER 3 ettt ettt b et s at e et e bt e bt e s bt e she e sat e sab e et e e bt e bt e sbeesaeesateebeesbeesbeesanenas 15
3 Parabolic Synthesis MethoUOIOQY.......c.coivveeriirieierieietereee ettt st ae e e eesneennes 15
3.1 INEOAUCTION ...ttt sttt 15
3.2 Other Hardware ApproxXimation Methodsc.cceieerenenieri e 15
3.2.1 Advantage of Hardware OVer SOfIWAre...........ceeceiieeeieceeceeeeee e 15
3.2.2 Disadvantage of LOOK UP taADIEc.ooueeiiiieieieeceeeeectecte ettt 15
3.2.3 Disadvantage of using polyNOMIAlSceccveiiiieiicecteceeee et 15
3.24 Disadvantage 0f the CORDIC........cccocieiiiieereceee ettt et ssa e eeae e eneens 15

3.3 Parabolic Synthesis MethOdOIOgYccevieieriiiieeceeece et 16
3.3.1 N0 T4 o TSRS 16
3.3.2 Developing the Hardware ArchiteCtureocceoioeeeiieeee e 16
3.3.3 Methodology for developing SUD-TUNCLIONSccoieieiirieee e 17
3.34 Hardware IMplementation..........coco oot et 18
3.35 POSTPIOCESSING. .. viveeeeetieeteie st ee et e e st et e e e e et e s e s e e stesreesbesteesaessesseessesseessesseeseensesseeseens 21
CHAPTER 4 ...ttt b e e at et s bt et e s bt e at e s bt sh e et e s beehe e besbe e st e bt saeentesbeenseseeentans 23
4 Parabolic Architecture development for Trigonometric fUNCLIONSc.ccveevevieeereceeeceee e, 23
1t R B T=T3 o I\ =11 ToTo (o] oo | TSR 23
4.2 THE SUD-TUNCLIONS. ...ttt ettt st eb b b e 24

G I AN 1o | Lo {1y o] 0= UL o] R 25

A4 SIMPITICALIONSeiiitiitiriestet ettt ettt b e b st bt s e e besbeene e 27
441 THE MCIM UNIT .ttt 27
4.4.2 ElIMIiNating an @00ercoveiveeiee ettt re et et sbesreenaens 29
4.4.3 TWO0’S COMPIEMENt CONVEISION ...vviiiririiiierieeerieesteeesteesreeesieeesteessseeessreeesseeesssesssseeessees 29
444 SOUANET .ttt ettt ettt ettt s bt et b et e st e s b et e s b e e st e bt sbe et e e bt et et e ebeearesheeme e nesae e s e ereeanes 29

45 FINAL GrCNITECTUIEovitiieiee ettt ettt sttt sbe b e 30

4.6 WWOIIBNGENS ...ttt ettt b e et b et et ebesbe b e 31

4.7 Hardware for matrix inversion using QRD by Parabolic synthesiscccccevvevevienieveneciececeenen, 31

CHAPTER 5 ettt b ettt et e bt e s bt e she e s atesab e et e e bt e beesbeesaeesateenbeesbeesbeesanenas 33

D SYNENESIS ...ttt te e ba et e e be et e be e e e beebe e beateeraenbesreentenreeneas 33

5.1 SYNENESIS ottt b e bbb sttt be e bt 33

5.2 TYPES OF SYNTNESIS ...ttt ettt sttt ettt b b bt 33

5.3 SYNENESIS TOF FPGA ...ttt sttt st e b be st e era e besanentesreennas 34
5.3.1 Synthesis RePOIt frOM FPGAcoi ettt sttt st 36

5.4 SYNENESIS TOF ASIC ...ttt sttt et s et e s beete st e eaa e besanentesreennas 36
54.1 MiNIMUM Area SYNTNESIS.......iiieieiceees ettt sa et aesreeneens 36
5.4.2 High SPEEd SYNINESIS.......iieieiececiee ettt s esae e eneens 36
5.4.3 ReSUILS Trom ASIC SYNINESIS.....cceeciieieiesietee ettt se b e e eneens 36

CHAPTER B ..ttt b e bttt ettt ekt e s bt e she e s atesabe et e e bt e bt e sbeesaeeeateebeesbeesaeesanenas 41
6 RESUIS AN CONCIUSTON.........euiitiieiiieieet ettt 41
CHAPTER 7 ettt b e s at e ettt e bt e e be e she e s atesabe et e e bt e bt e sbeesaeesateebeesbeesbeesanenas 43
T FULUIE WOTK ...ttt sttt 43
RETEIEICE ...ttt b bbbt e bbbt a ettt 45
APPENTIX 1: FOI SYNTNESIS....iviiieiieiesie sttt ettt et re et e s teestesaeeseestesseensesseessesseessensesseenes 47

CHAPTER 1

1 Introduction

The demand of fast and small hardware architectures are increasing day by day. Most hardware uses
Unary functions like trigonometric functions, logarithms as well as square root and division functions.
These functions are extensively used in applications like robotics, signal processing, communication
systems, navigation, fluid physics, etc. The overall performance of the system is dependent on the
methods of computing such functions. In many cases, software solutions are not sufficient and a
hardware implementation is required [1].

For low precision computations, the simplest and faster method of implementations of such functions is
by using Single look-up table. However, for High-precision computations this method gets inappropriate
due to large table size and long execution time. Implementation using polynomial approximation also has
large computational complexities and delays due to extensive use of multiplications and divisions [1].

The Coordinate Rotation Digital Computer (CORDIC) algorithm is a popular method for the fast
computation of unary functions using only simple shift-add operation. Although this method is faster
than a software solution but due to its iterative property it is slow and thus improper for high speed
applications [1].

On the other hand Parabolic Synthesis, a methodology proposed by Professor Peter Nilsson and Erik
hertz, is a method based on developing functions that performs approximation of original unary functions
in hardware. This method uses parallelism to reduce execution time and employs low complexity
operations thus making hardware implementation faster and simpler than all other existing methodologies

[1].

This thesis mainly develops hardware for the generation of three trigonometric functions (+sine, -sine and
+cosine) using parabolic synthesis. Later, hardware architecture is proposed for implementing matrix
inversion using QR decomposition.

This paper consists of eight Chapters:
Chapter 1 deals with the motivation behind this thesis work.

Chapter 2 explains the basic of matrix inversion with details of QR decomposition using Given’s
rotations.

Chapter 3 introduces the novel Parabolic synthesis methodology.

Chapter 4 explains the development of architecture for the generation of trigonometric functions using
parabolic synthesis. A hardware solution is also shown for implementing matrix inversion with QR
decomposition using the implemented parabolic architecture.

Chapter 5 deals the Synthesis procedure and discusses the results obtained from FPGA and ASIC
synthesis.

Chapter 6 discusses the result obtained from the thesis work.
Chapter 7 concludes the thesis work.

Chapter 8 suggests some future prospects of the implemented design with improvement.

CHAPTER 2

2 Matrix Inversion by QR decomposition using Givens rotation

2.1 Matrix inversion

In linear algebra, for an n-by-n square matrix A, matrix inversion is the process of finding the matrix B if
(2.1) is satisfied

AB=BA=1, (2.1)
where I, denotes the n-by-n identity matrix. The inverse of A is denoted by A™".

Non-square matrices (m-by-n matrices for which m # n) do not have an inverse but may have a left
inverse or right inverse. A square matrix that is not invertible is called singular [3][4].

2.1.1 Properties of inverse matrix

Some of the most important properties for an invertible matrix A are:

(AH'=A (2.2)
(kA)*=k* A* for nonzero scalar k (2.3)
(A= (AT (2.4)
det(A™) = det(A)* (2.5)

2.2 QR decomposition

QR decomposition is an efficient frequently used methodology when matrix inversion is needed. A
typical application area is mobile communication systems using multiple antennas, i.e. Multi-Input Multi-
Output (MIMO) systems. The QR decomposition factorizes a matrix into an orthogonal and an upper
triangular matrix.

A=QxR (2.6)
where R is an upper triangular matrix and Q is orthogonal, that is, the unity matrix is

1=QxQ' @.7)
where Q" is the transpose of Q, for real valued matrices.

MIMO systems often uses 4 transmit and 4 receive antennas. The inverse of a 4 by 4 matrix at the
receiver side is therefore often practiced. We thus get a system like:

A= (2.8)

O G Ohs G
qu q22 q23 q24
Q= 2.9

q31 q32 q33 q34 ()

O G2 Oaz Qs

-
i
o R
Rl
N O~
Kl
NI
=
[y
R R

R= _
0 0 r, (2.10)
0 0 0 r,

where R is an upper triangular matrix.

QR decomposition can be computed using several methods like the Gram-Schmidt process, Householder
transformations, or Givens rotations. Each has a number of advantages and disadvantages. In this thesis,
we will use Givens rotation method for computing QR decomposition since it can be parallelized and
have a lower operation count [5].

2.3 Givens Rotations

Givens rotation is a rotation in the plane spanned by two coordinates axes, which is represented by a
matrix of the form

1 0 0 0
0 oo € oo 8§ o0 0
G(i,5.8) = |: ST :
D see —=F eie g sen 0

0 ... 0 .. 0 .o 1]

(2.11)

where ¢ = cos(d) and s = sin(6). [6]

10

2.4 QRD Using Givens rotations

Givens rotations can be used to perform QR decomposition. The process utilizes a number of cycles of
rotations whose function is to null an element in the sub-diagonal of the matrix, forming the R matrix as
shown in (2.10). The orthogonal Q matrix, as shown in (2.9), can be obtained by the concatenation of all
the Givens rotations [6].

2.4.1 Triangularization for QRD

A 3 by 3 input matrix, A;, is given in (2.12)

&; 8, 8y
A=la, a, ay (2.12)
8y 8y dy

From A;, we will determine the matrices A, and As, as well. In order to find a triangular matrix, R, three
rotations are needed, where one element is set to zero after each rotation. It can for instance be done in the
order (3, 1), (2, 1), and (3, 2). For that, three Givens rotation matrices are needed, G;, G,, and Gs, as
defined below.

c S
G =0 0 (2.13)
=S c
c s O (2.14)
G,=|-s ¢
1 0 0]
G,=|0 ¢ (2.15)
|0 -s c]
where ¢ = cos(0) and s = sin(0). These values can be calculated as:
L AQY
1
1,1 + A(3,2)°
VALY +ABY) 216)
C___AGD
1
VALY +ABY’

11

- A1)
JALD? + A2,

_ A1) (2.17)
© JALD A2,
o A(2,2)

A(2,2)° +A(3,2)°
N AG2) (2.18)
© JAR27 A2y

However, these operations include square-root, square, and division, which is not feasible for hardware
implementation.

In (2.19), the matrices A, and A; are determined.

= G X
A =G A (2.19)
A =G, x A,
Finally, the Q and R matrices can be determined, as shown in (2.20).
=G’ xG, xG,
Q=6 S (2.20)

R=G,xA

2.4.2 The inverse matrix for QRD

In (2.21) the inverse of A is derived. For that, the inverse of R is needed, which is a straight forward
operation since R is upper triangular. The transpose of Q is basically done with memory operations.

A=QxR

Am=QR) 2.21
A—l — Q—l x R—l (.)
A*=R'xQ"

2.5 Hardware for inverse matrix for QRD

Using formula (2.12) - (2.21), the basic hardware for obtaining the inverse matrix is demonstrated in Fig.
2.1.

12

A-l

v v ¥

[Transpose [Transpose [Transpose [Transpose]

5 g]

Figure 2.1. Basic hardware for obtaining matrix inversion using QRD.

13

14

CHAPTER 3

3 Parabolic Synthesis Methodology

3.1 Introduction

Parabolic Synthesis is a method based on developing functions that performs approximation of original
unary functions in hardware. This method uses parallelism to reduce execution time and employs low
complexity operations like shifts, additions, and multiplications that are simple to implement in hardware,
thus making hardware implementation faster and simpler than all other existing methodologies [1].

3.2 Other Hardware Approximation Methods

The demand of hardware approximation for the implementation of elementary functions is increasing
with the passage of time. The goal is to make the implemented hardware fast at the same time limiting the
area consumption to a minimum level.

3.2.1 Advantage of Hardware over Software

Most hardware uses Unary functions like trigonometric functions, logarithms as well as square root and
division functions. These functions are extensively used in applications like robotics, signal processing,
communication systems, navigation, fluid physics, etc. The overall performance of the system is
dependent on the methods of computing such functions. In many cases, software solutions are not
sufficient and a hardware implementation is required [1].

Some popular hardware approximation methods include single lookup table, approximations using
polynomials, CORDIC etc.

3.2.2 Disadvantage of Look up table

For low precision computations, the simplest and fastest method of implementations of such functions is
by using Single look-up table. However, for High-precision computations this method gets inappropriate
due to large table size and long execution time [1].

3.2.3 Disadvantage of using polynomials

This method is also known as ROM-less system. Implementation using polynomial approximation also
has large computational complexities and delays due to extensive use of multiplications and divisions [1].

3.2.4 Disadvantage of the CORDIC

The Coordinate Rotation Digital Computer (CORDIC) algorithm is a popular method for the fast
computation of unary functions using only simple shift-add operation. Although, this method is faster
than a software solution but due to its iterative property it is slow thus improper for high speed
applications [1].

15

3.3 Parabolic Synthesis methodology

This is a method for hardware implementation of approximations of unary functions using parallelism and
low complexity operations. The method consists of three important steps: Normalization, Processing and
Post Processing. Of these three steps, the processing step is the most important part but the other two
steps are also necessary in some cases [1] [2].

3.3.1 Normalizing

This is the first step of the Parabolic synthesis methodology. The purpose of this step is to limit the
numerical range in the interval 0 < x < 1 on the x-axis and 0 <y < 1 on the y-axis to facilitate the hardware
implementation. The unary function is normalized to either a concave or convex function, known as the
original function for4(x), with starting coordinate of (0,0) and ending coordinate smaller than (1,1) [1] [2].

1.00

(1,1)

0.75 4
f _(x)
org \

2 050t
025
(0,0)
0.00 1 I I
0.00 0.25 0.50 0.75 1.00

Figure 3.1. Example of normalized function [1].

3.3.2 Developing the Hardware Architecture

For efficient hardware architecture development, this methodology is founded on second order parabolic
functions called sub-functions, s,(x), which uses low complexity operations like shifts, additions and
multiplications. Multipliers are commonly used due to the ever going scaling down of the semiconductor
technologies and fast development of efficient multiplier architecture which has led hardware
implementation of multiplication operation efficient in both size and execution time. As shown in (3.1),
the original function f,4(x), can be obtained by multiplying the sub-functions and its accuracy depends on
the number of sub-functions used [1] [2].

forg(x) = s, (x) xs,(X) x 5 (x) x5,(X) (3.1)
A parabolic looking function called the first help-function, f;(x), is obtained by dividing the original

function for(x), with the first sub-function s;(x).

f,(x) =129) (3.2)

5(x)

16

The rest of the functions is generated, as shown on (3.3).

foa (X) = Sf—((x)g) (3.3)

3.3.3 Methodology for developing sub-functions

Sub-functions are developed by the decomposition of the original function f,4(x) by using second order
parabolic functions within the interval 0 <X < 1.0 and the sub intervals within the interval [1] [2].

3.3.3.1 The first sub-function
The first sub-function s;(x) can be obtained by dividing the original function f,4(x) with x as a first order

approximation. The division produces two possible results, one where f(x)>1 and one where f(x)<1 as
shown on Fig. 3.2 [1] [2].

1.50

fix) > I/

1.00

0.75 |

fix)

0.25 |

0.00
0.00 0.25 0.50 0.75 1.00

Figure 3.2. Two possible results after dividing an original function with x [1].

The first sub-function s;(x), as shown on equation (3.4), is achieved by multiplying x with the expression
1+(cy-(1-x)) where the coefficient c, is obtained from the limit from the division of the original function
with x and subtracted with 1, according to (3.5) [1] [2].

5,(X) = Xx L+, x (1 X)]) = X+ ¢, x (X X) 3.4
. forg(x)
G =lim——-1 (3.5)

17

3.3.3.2 The second sub-function
The second sub-function s,(x), is chosen as a second order parabolic function as shown in (3.6) [1] [2].
SZ(X) =1+[C2 ><(X_Xz)] (3.6)

The coefficient ¢,, is chosen in a such way that it satisfies with the quotient between the first function f;(x)
and the second sub-function s,(x) is equal to 1 when x is set to 0.5, as shown below.

c, =4x[f,(0.5)-1] (3.7)
In this manner the second help-function f,(x), will get a shape of lying S shape as shown in figure (3.3).
This help-function can be divided into a pair of parabolic looking shapes where the first interval are from

0 <x<0.5 and second interval from 0.5 <x < 1.0 [2].

1.0010

1.0005
1.0000 |-

0.9995
0.9990 \ /
0.9985

0.9980
0.00 0.25 0.50 0.75 1.00

fix)

Figure 3.3 Example of the second help function [2].

For easy hardware implementation, the size of the sub-intervals are chosen as a power of 2 since
the normalization of the interval can be performed as a left shift of x where the fractional part is
the normalization of the two new intervals and the integer part is the addressing of the
coefficients for the intervals [1] [2].

3.3.3.3 Sub-functions when n > 2

It is beyond the scope of this thesis to evaluate sub-functions for n>2.

3.34 Hardware Implementation

Two’s complement representation is used for the hardware implementation. The implementation is
divided into three hardware parts: preprocessing, processing, and postprocessing as shown in Figure 3.4.

18

Operand v l

Preprocessing

Operand X

Processing

Operand y l

Postprocessing

Result z l

Figure 3.4 The hardware architecture of the methodology [1].

3.34.1 Preprocessing

In this part the input operand v is normalized for the processing part. For a large system the
preprocessing part can be reduced or eliminated if the approximation is implemented together
with other logic in the preceding block [1].

3.34.2 Processing

In this part, the approximation of the original function is implemented in either iterative or
parallel hardware architecture. The iterative architecture as shown on figure (3.6) has the
advantage of small chip area but at the expense of longer computation time [1].

—>{ reg ﬂ[Sn(x) reg >
X y

Figure 3.6 The principle of iterative hardware architecture [1].

On the other hand, the parallel hardware architectures as shown for four sub-functions on figure (3.7),
give a short critical path and fast computation at the prize of a larger chip area. The throughput can be
increased by pipelining.

19

3.34.3

Square components like x* and x,? are reoccurring operations in the sub-functions. The square operation
X~ in the parallel hardware architecture is a partial result of x2. That is why a unique squarer has been

developed [1].

KB
KB
KCB
KB

Figure 3.7 The architecture principle for four sub-functions [1].

The square Unit

X3 X2 X1 Xo
X3 X2 X1 Xo
Xo Xo
P1 Po
X1 Xo
X1 X1 XoXi
Qs (Sp) Q1 Jo
X2 Xo
X2 X1
Xo2X2 X1Xy XoX
Is I I3 P r lo
X3 Xo
X3 X1
X3 X2
X3 Xz XoX3 X1 X3 XoXa
S7 Se Ss Sq S3 S2 S1 So
Figure 3.8 Squaring algorithm for the partial product x,? [1].
X3 Xz X1 Xo
X3 X5 X1 Xo
Xo
X1 P1 Po
X1 Xo
Xz 0s Q2 01 Qo
Xo X1 Xo Xo
X3 s ry s r, r ro

20

X3 X2 X3 X3 X3 Xp

S7 Sg Sg Sy S3 Sy S1 So

Figure 3.9 Simplified squaring algorithm for the partial product x,? [1].

Vector p:

Po=XoXo =Xo

The result of component p; is equal to 0 as the result of p, does not contribute anything to p;.
Vector Q:

01=P1.2 X X0. 2 4 XoXy .21 =p1. 2 Xy X0.2°=p1. 2"

0= X1Xo.22+X1X1 .22= X1.2% +X1Xo.2°

Vector r:

Fa=0p.2°+XoX0. 22+ XXz . 22=0p. 2%+ XX0. 22 =(. 22

Fa=0s. 2°+XoX0. 224X 1% .23 +30X0.28 = 3. 234 %% 2% + XX0.2°=05.2° +Xp%0.2°
F4= XoX1.2* %X, . 2%= X5.2%4%,%,. 2

Vector s:

S3=r3.234+X3X0. 23+ XoX3.2° =13. 2%+ X3%0.2* =r3.2°

4= 4. 2% XX 2 XaX1 . 2% +X1X3.2% = 1. 2%+ X3X0.2* + X3X1.2°=13.2° +X3%0.2*
S5=15.2°+X3X1. 2%+ XgXy .2° +XoX3.2° = 5. 2°+XX1.2° + XgX0.2°=15.2° +X3%1.2°

Sg— X3X2.26+X3X3.26: X3.26'|'X3X2.26

(3.8)

(3.9)

(3.10)

(3.12)

(3.12)

(3.13)

(3.14)
(3.15)
(3.16)

(3.17)

The value of component s; in the s vector is a possible carry from the s component. The result of square

X, X2is in the s vector and the partial products of the square are found for x5 in r vector and in q for x,

[1].

3.3.5 Postprocessing

2

The main motivation for the part is to transform the output to a feasible form for the proceeding parts in

the system.

21

22

cHAPTER 4

4 Parabolic Architecture development for Trigonometric functions

4.1 Design Methodology

From chapter 3, we have seen that parabolic architecture uses parallelism to reduce the execution time
and employs low complexity operations thus making hardware implementation faster and simpler than all
other existing methodologies.

The first step of developing the architecture is to define the specifications and the requirements. The
second step is to develop the behavioral descriptions using a hardware description language like VHDL,
which will lead to the development of register transfer level (RTL) model. The RTL model is simulated
using a testbench for verification of the defined logic and for finding possible errors. After successful
simulation, the design is synthesized for either a FPGA or an ASIC. The synthesis converts the RTL
model into a design implementation in terms of logic gates. These logic gates are further simulated for the
actual implementation of the architecture in hardware and the process is known as post-synthesis
simulation. On the success of the simulation, the layout is sent for fabrication. The top down design
methodology is shown on figure 4.1.

4 N\
Requirements
|\ J
4 N\
Behavioral
Model
1\)\
4 N\ 4 N\
RTL Model Simulate
|\ J |\ J
4 N\ 4 N\
Synthesis Test Bench
.)N J
e A e ™
Gate-Level Simulate
Model \ J
. J
(N\
Layout
(ASIC or FPGA)

Figure 4.1 Top down design Methodology [7].

23

4.2 The sub-functions

Based on the concepts on chapter 3, the sub-functions, which lead to the approximated sine and cosine
functions are shown in (4.1) and (4.2) respectively. The angle 6; is the normalized fractional part of v. It
can be noted that it is only s, that differs for the sine and cosine functions.

$,(6;) =06, +¢,x(6, _Hfz)
S,(0;) =1+c¢, x (6 _Hfz) (4.1)
sin(0;) ~ $,(6;)xs,(6;)

5,(0;)=1-0, +c,x(6; - 07) (4.2)
S,(6;) =1+c, x(6; _'9f2)
cos(6;) ~ s,(6;)xs,(6;)

Where c; and ¢, are the coefficients.

The optimal 7-bit coefficients are shown in (4.3). For obtaining parallelism in the architecture, ¢; and c,
are multiplied at the same time. Figure 4.2 shows the basic Parabolic Synthesis architecture.

¢, = 0.5703125=0.1001001,

¢, = 0.4062500 = 0.0110100, (4.3)

1-0,

(4 X cos(v)
i

A

1-6, +¢,x (0, —6?)

»
!

1+c,x(0, —67)

®

W

0, +c, x(0; _‘91*2)
Y

®—> sin(v)

0

Figure 4.2 The first parabolic synthesis architecture

24

4.3 Angle transformation

The architecture shown in figure 4.2 is only valid for angles in the first quadrant. The other three
quadrants must also be covered, which is done by transforming normalized angles larger than “1” to the
first quadrant. Figure 4.3 illustrates the methodology. In figure 4.3a, the original angles are shown. These
are normalized to Figure 4.3b, with a factor 2/m, e.g. the angle v = /6 is transformed to the normalized
angle 6; = 1/3. The equations for the normalization are shown below.

V=7T——
6 (4.4)
Via 2
norm=—xv =— -—)=01-
7z'XU ﬂ_X(ﬂ' 6) 3 (45)
frac = 2 (4.6)
3
4.7
9f:1—frac=% 4.7

All the normalized angles in the first quadrant are less than “1”. Figure 4.3b shows the integer part of the
angle 0. The integer part, 0,8,, will thus show which quadrant the angle is in, i.e. quadrant 1, 2, 3 or 4 and
is represented by 0, 1, 2, 3 respectively in binary representation. That is useful in the selection of the
angle when transforming to the first quadrant, as shown in figure 4.3c for the sine functions. This can be
illustrated with the example in (4.4) — (4.7).

A A
After
normalization
Integer part (6, 6,)
z <v<rm 0<v< z
2 2 6,6, =01, 6,6, =00,
ﬂ£u<3—” 3—”£u<27r 6,6,=10, | 6,6,=11,
2 2
(@) (b)
A Sine functions 4 Cosine functions
COS(EQ) = COS(gg) =
2 2
LT . T . T . T
sm(z(lf 6,)) sm(Eﬁf) —sm(E 0;) sm(z 1-6,))
—sin(Z0,) | —sinZE(1-6,)) cos(Z0)= | cos(Z0)=
2 2 2 2
LT . T
—sm(E -6, sm(z 6,)
(©) (d)

Figure 4.3 Transforming angles from quadrant 2-4 to quadrant 1.

25

An angle v =1 — 1/6 (4.4) in the second quadrant corresponds to the angle v = 1t/6 in the first quadrant.
After normalization the angles will correspond to 5/3 and 1/3, where the first angel is larger than one
(4.5). The idea is now to transform 5/3, in the second quadrant to 6; = 1/3 in the first quadrant. The integer
part, 6,00 = 01, in (4.5) is taken away to get (4.6). Finally, the angle 6; = 1/3 is transformed to the first
guadrant (4.6). However, the integer part is not thrown away. It will be used to select the quadrant for the
initial angle and for two’s complement conversion at the output. Figure 4.3d shows the transformation of
the cosine functions in the four quadrants. All cosine functions are transformed to sine functions since the
architecture is designed for sine functions.

Table | shows when the input transformations are needed. To select that, the integer value 60, is used. This
is solved by using two MU Xes.

Table I. Input transformations

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4
Sine 6, 1-6, 6, 1-6,
Cosine 1-6, 0, 1-6, 0,

Since all calculations are done in the first quadrant, the output has to be transformed back again. As an
example, if we compute cos(v) for the 2™ quadrant angle = — /3, we get the value -0.5. However, the
cosine value is determined in the 1% quadrant with the angle m/3, which gives the value 0.5. To correct
that, a two’s complement conversion is needed. Table II shows when the two’s complement conversion is
needed. To select that, the integer values 6, and 6, are used.

Table 1I. Output transformations

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4
Sine + + - -
Cosine + - - +

Figure 4.4 shows the updated architecture capable of transforming the angles.

26

Fsin(v)

+sin(v)

Figure 4.4 The second parabolic architecture

4.4 Simplifications

Figure 4.4 is further improved by optimizing some of the components.

441 The MCM unit

The design can be improved by optimizing two multipliers. The multipliers can be exchanged with three
adders and some shifts as shown in Figure 4.5. The technique is called Multiple Constant Multiplication
(MCM). There is one input, 0; — 0; %, two outputs ¢,(0; — 0; %) and c,(6; — 0; %) in both figures. In the VHDL-
code, we thus eliminated expressions like “AxB " for these two multipliers.

27

>>2 || >>5 || >3 | | >> 1 |

8,/4 8, /32 9,/8 g,/2

N

0, /4+8, /32
99, /32

/

0,/4+6,/32+8, /8=
10, /2 >z]
c, x(8, —67) ax(6,— 6% B /48,3248, [2)]4=
=250, /32

Figure 4.5 Architecture for Multiple Constant Multiplication (MCM)

4411 Example

If we use a fractional positive (it cannot be negative) input value for the left part in figure 4.5 we get:

0 - 0,2 =1/7 => 001001001101

000010010011|01000 Shifted by 2 044
000000010010j01101 Shifted by 5 0:/32
000010100101j10101

000001001001|10100 Shifted by 3 0:/8
000011101111j01001

In (4.8) we then get the result for the left part of the architecture in figure 4.5

Co(0; —07)=(0, —07) / 4+(0, —6;) / 32+ (0, —07) / 8 (4.8)

28

4.4.2 Eliminating an adder

Adding a “1” to ¢,(6; — 05 %) can be simplified. Since c, is positive, c,(6; — 6;) will never be larger than
“17, i.e. Co(0; — 6 2) < 1. The fractional part can thus be merged to the “1” directly with the wiring as

shown in figure 4.6.
Integer = 1

Fractional =c, (0, —6?)

Figure 4.6 The fractional bus with an added integer “1”

443 Two’s complement conversion

Figure 4.7 shows an architecture for two’s complement conversion. The architecture uses half adders
(HAs) and XOR gates. A control signal 6; or 6; XOR 8y is used to select when the conversion is to be

done.

Voor

Figure 4.7 Two’s complement conversion
444 Squarer

Instead of using a multiplier for the squaring, a simplified version can be used as shown in figure 4.8.

x5 x4 x3 X2 x1 x0
x5 x4 x3 X2 x1 x0
x5x4 x5x3 x5x2 x5x1 x5x0 x4x0 x3x0 x2x0 x1x0 0 x0
x5 x4x3 X4x2 x4x1 x3x1 x2x1 x1
x4 x3%2 x3x2" X2

Figure 4.8 A 6-bit squarer

29

45 Final architecture

The final architecture with all the simplifications is shown in figure 4.9. The architecture contains:

Two multipliers,

One squarer,

Seven adders,

Two two’s conversion converter, and
Four MUXes.

Two’s
» + { x ——» compl. —» COS(U)
conv.

\\ %

/

1+¢,% (0, —6?)

Fsin(v)

e Y

+sin(v)

Figure 4.9 The final architecture.
The critical path goes through:

One squarer

Four adders

One multiplier

One two’s conversion converter
One MUX

30

4.6 Wordlengths

Figure 4.10 shows the needed internal bits to reach a 9-bit accuracy at the output.

10 bits 0.1426 1.1426 1.2586) (+1.2586
0.25 gint ())
\ \ Two's /
4.@i_T__ > compl. ——w cOs(D)
el : 9 bits 112 .bitts l 1 conv. 1
0int. Int. i
i 12 bits .
I 1 int. 15’ ia'tts
|
| T
I .
- | L 12 bits
» SQR —-d f > /4 1int.
1 +sin(v)
&, 11 bits
Oint.
-y
12 bits +sin(v)
1 int.
1

Figure 4.10 Internal wordlengths

4.7 Hardware for matrix inversion using QRD by Parabolic synthesis

Figure 4.11 shows the proposed hardware for doing matrix inversion using QRD. Due to time limitation
the parabolic hardware could not be integrated with the QRD hardware.

31

R

N N N

! v
A 4

O Detect 0 Detect

A 4 A 4

—— ,
Parabolic | Parabolic

b 4
——)I G, > G, > G, AL

QT

A 4

[Transpose] [Transpose]
N

G, Q

v

Figure 4.11. Proposed hardware for matrix inversion using QRD.

32

CHAPTERD

5 Synthesis

5.1 Synthesis

Synthesis is a process by which conceptual description of the logic functions needed for the desired
circuit behavior (typically register transfer level (RTL)) is turned into a design implementation in terms of
logic gates [8].

The flow chart of the synthesis is:

Read Design
Prepare

Specify
Clock
Specify
Constraints

'

Synthesis

!

Check
Synthesis

,

Create
MNetlist

Figure 5.1 Flow chart of synthesis process [8].

5.2 Types of Synthesis

For the thesis work two types of synthesis have been performed. One targeted towards Virtex 2 pro
FPGA using Xilinx ISE design suit and the other have been performed for an ASIC implementation
using Synopsis Design Vision tool in STM 65nm technology. As mentioned in the previous chapter,

33

the Hardware Description Language (HDL) has been used for the design implementation. Some of
the advantages of HDL for synthesis include:

1) Decrease in design time by permitting a high-level design specification,

2) Reduced errors for manual translation from HDL to schematic design,

3) Increased optimization and efficiency due to the utilization of the automation techniques used by
the synthesis tool (such as, automatic 1/0 insertion and machine encoding styles) during the
optimization to the original HDL code.

5.3 Synthesis for FPGA

The design has been synthesized on Xilinx ISE Design suit for Virtex 2 pro FPGA using VHDL for a
speed grade of -7. The RTL schematic from the synthesis is shown in fig. 5.2.

Figure 5.2 RTL Schematic obtained from synthesis on Virtex 2 pro FPGA.

The RTL schematic is shown in fig. 5.3.

Figure 5.3 MCM block Schematic obtained from synthesis on Virtex 2 pro FPGA.

The technology schematic for the overall design is shown in fig. 5.4

34

Figure 5.4 Technology Schematic obtained from synthesis on Virtex2pro FPGA.

5.3.1 Synthesis Report from FPGA

The critical path includes the squarer, one subtractor, one multiplier, one two’s complement unit, one
multiplexer and the MCM unit. The critical path time is 20.496 ns so the maximum clock frequency that
is achievable is (1/20.496) = 48MHz. The individual delay of each component in the critical path is
shown in Appendix 1, Table VIII.

Detailed synthesis reports containing the macro statistics, cell usage and device utilization are shown in
Appendix 1, Table IX, X and XI respectively.

54 Synthesis for ASIC

The design has been synthesized towards an ASIC implementation on a 65nm technology using
Synopsis Design Vision tool. Two constraints, area and speed, were emphasized on this synthesis. As a
result, the design has been synthesized for both high speed and for minimum area. The scripts used for
these two types of synthesis are shown on appendix 1, Table I.

54.1 Minimum Area Synthesis

While doing synthesis for minimum area, we have set the clock period to a very high value and set the
maximum area to zero.

The constraints that were set for minimum area are:

i) Area, and
ii) Clock uncertainty time.
5.4.2 High Speed Synthesis

While synthesizing for high speed we have set the clock constraint to such a value so that we do not get
any negative slack and no parameter for the area constraint.

The constraints that were set for High Speed are:

i) Clock speed, and
ii) Clock uncertainty time.

5.4.3 Results from ASIC Synthesis

The results obtained from the Synopsis Design Vision synthesis report are as follows:

36

54.3.1 Area

The total area of the design is 450893 of which 2893 is the combinational area and the remaining 448000
is the sequential area consisting of the 1/0 pads and the input and output registers used for determining the
critical path. The individual component area is shown in Appendix 1, Table IV.

5.4.3.2 Implemented arithmetic blocks

The synthesis tool wused the two libraries ‘IO65LPHVT_SF_1V8 50A 7M4X0Y2Z’ and
‘CORE65LPHVT’ for the implementation of the arithmetic blocks. The details of each implemented
blocks are shown in Appendix 1, Table V.

5.4.3.3 Timing

The critical path includes one squarer, one subtractor, one adder, one multiplier, one two’s complement
unit, one multiplexer and the MCM unit. The critical path time is 11.33 ns so the maximum clock
frequency that is achievable is (1/11.33) =88MHz. The individual delay of each component in the critical
path is shown in Appendix 1, Table I1I.

5.4.3.4 Power

From synthesis we obtained the dynamic power to be 0.0794mW of which 54.71% is net switching
power and 45.27% is cell internal power.

For obtaining a more accurate power report, the design has been simulated in Prime Time tool. The
Script and the detailed report are shown in Appendix 1, Table VII.

37

Figure 5.5 The parabolic architecture with 1/0 pads from Design Vision.

Figure 5.6 Parabolic architecture from Design vision.

Figure 5.7 Parabolic architecture from Primetime

38

Figure 5.8 Schematic view of the Matrix Inversion from Design Vision

39

40

CHAPTER 6

6 Results and Conclusion

The aim of the thesis was to develop hardware for the generation of three trigonometric functions
(+sine, -sine and +cosine) using the novel approximation methodology, which is based on
Parabolic synthesis, for the use in Givens rotations for implementing matrix inversion using QR
decomposition. Separate hardware for parabolic synthesis and matrix inversion using QRD is
implemented. However, due to time limitation, the two modules could not be integrated.
Although, a hardware solution had been presented at the end.

41

42

CHAPTER [

7 Future Work

The matrix inversion unit only works for a fixed set of matrix. Furthermore, the division unit is limited to
4 bits.

In future, square root implementation could lead to matrix inversion for any set of values. The division
logic can be scaled down at the beginning and again scaled up at the end to allow the usage of larger bits.

43

44

Reference

[1] http://www.eit.Ith.se/fileadmin/eit/docs/Licentiate/lic_14.5 mac.pdf

[2] Erik Hertz and Peter Nilsson, "A Methodology for Parabolic Synthesis", a book chapter in VLSI, In-
Tech, ISBN 978-3-902613-50-9, pp. 199-220, Vienna, Austria, September 2009.

[3] http://en.wikipedia.org/wiki/Invertible_matrix

[4] http://www.purplemath.com/modules/mtrxinvr.htm

[5] http://en.wikipedia.org/wiki/QR_decomposition

[6] http://en.wikipedia.org/wiki/Givens_rotation

[7] http://www.eit.Ith.se/index.php?id=241&ciuid=475&coursepage=2602&L=1

[8] http://www.eit.Ith.se/fileadmin/eit/courses/etin01/slides/Synthesis.pdf

[9] P.T.P. Tang (1991), "Table-lookup algorithms for elementary functions and their error analysis," Proc.
of the 10th IEEE Symposium on Computer Arithmetic, pp. 232 - 236, ISBN: 0-8186-9151-4, Grenaoble,
France, June 1991

[10] J.-M. Muller (2006), Elementary Functions: Algorithm Implementation, second ed. Birkhauser,
ISBN 0-8176-4372-9, Birkhauser Boston, c/o Springer Science+Business Media Inc., 233 Spring Street,
New York, NY 10013, USA

[11] Erik Hertz and Peter Nilsson, “Parabolic Synthesis Methodology Implemented on the Sine
Function”, in Proceedings of the 2009 International Symposium on Circuits and Systems (ISCAS’09),
Taipei, Taiwan, May 24-27, 2009.

[12] Lei Wang, Hardware Implementation of Parabolic Synthesis Methodology for the Sine and Cosine
Functions, Master’s thesis, Lund University 2009.

45

46

Appendix 1: For Synthesis

Table I: Synthesis Scripts for ASIC

For High Speed:

gui_start

remove_design -all

analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/para_generics_pack.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/adder_block_packl.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/adder_block pack2.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/subtractor_block packl.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/subtractor_block pack2.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mcm_pack.vhd}

analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mult_block pack.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2byl packl.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2byl pack2.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2byl pack3.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2byl pack4.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/squarrer_block pack.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/twos_comp_pack.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/XOR_block_pack.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/parabolic_senthesisl.vhd}
analyze -library WORK -format vhdl
{/nome/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/top_parabolic_senthesisl.vhd}
elaborate top_parabolic_senthesis -lib WORK -arch structural

compile -map_effort high

report_constraint -all_violators

change_names -rules verilog -hierarchy

write -format verilog -hierarchy -output netlists/top_para.v

write_sdf ./netlists/top_para.sdf

write_sdc ./netlists/top_para.sdc

For Minimum Area:

gui_start
remove_design -all
analyze -library WORK -format vhdl

47

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/para_generics_pack.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/adder_block_packl.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/adder_block pack2.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/subtractor_block packl.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/subtractor_block_pack2.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mcm_pack.vhd}

analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mult_block_pack.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2byl packl.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2byl pack2.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2byl pack3.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2byl pack4.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/squarrer_block_pack.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/twos_comp_pack.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/XOR_block_pack.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/parabolic_senthesis.vhd}
analyze -library WORK -format vhdl
{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/top_parabolic_senthesisl.vhd}
elaborate top_parabolic_senthesis -lib WORK -arch structural

set_ max_area0

compile -map_effort high

report_constraint -all_violators

change_names -rules verilog -hierarchy

write -format verilog -hierarchy -output netlists/par_min.v

write_sdf ./netlists/par_min.sdf

write_sdc ./netlists/par_min.sdc

48

Table Il: Area Hierarchy of the design(ASIC)

Reference Library Lrea Attributes

InPFad 1

InFad 2

InFad 3

InPad 4

InPad 5

InFad &

InPad 7

InFad 8

InPad 2

InPad 10

InPad 11

InPad 12

pad _clock

pad co2_v 0

BDZSCARUDQE 1WVg S5F LIN
ICeSLPHVT _SF_1VE S50A TH4X0Y2Z
4430.000000
di’
BDZSCARUDQE 1Wg& SF LIN
IGCeSLPHVT SF 1VE S50A TH4X0Y2Z
4480.000000
d,
BD2SCARUDQE 1Ve SF LIN
TOeSLPHVI SF 1VE SOL TM4XOY2Z
44530,000000
di’
BDZSCARUDQE 1Wg S5F LIN
ICeSLPHVT SF_1VE S0A TH4XO0Y2Z
4430.000000
di’
BD2SCARUDQE 1W8 SF LIN
IC0eSLPHVTI SF 1VE S50R TM4XOY2Z
4480.000000
d,
BD2SCARUDQE 1Ve SF LIN
I0eSLEHVI SF 1VE SOL TM4XOY2Z
4480.000000
di’
BD2SCARUDQEP 1Wg S5F LIN
ICeSLPHVT SF_1VE S0A TH4XO0Y2Z
4430.000000
BD25CARUDQE 1VE S5F LIN
IO6E5LPHVI _SF 1V8 5S0A TM4X0OY2Z
4480.000000
d, n
BD25CARUDQF 1VE S5F LIN
ICESLPHVI SF 1VE S0A TM4XOY2Z
4480.000000
d, n
BDZSCARUDQF 1VE S5F LIN
IC6SLPHVI SF 1VE SO0R TM4XOY2Z
4480.000000
d, n
BD2S5CARUDQE 1VE S5F LIN
IOESLPHVI SF 1WE8 50A TM4XO0Y2Z
4430.000000
d, n
BD25CARUDQE 1V& S5F LIN
IO6SLPHVI SF 1V8 50 TM4XOY2Z
4430.000000
d, n
BD25CARUDQE 1VE S5F LIN
IO6E5LPHVI _SF 1V8 5S0A TM4X0OY2Z
4480.000000
d, n
BD25CARUDQF 1VE S5F LIN
ICESLPHVI SF 1VE S0A TM4XOY2Z
4480.000000
d, n
BDZSCARUDQF 1VE S5F LIN
IC6SLPHVI SF 1VE SO0R TM4XOY2Z
4480.000000

I

I

n

I

I

n

49

pad cos_v_ 1

pad cos v 2

pad cos_ v _3

pad cos_v_4

pad cos_v_5

pad cos_vV_6

pad cos v 7

pad cos_ v 8

pad cos v 3

pad cos_wv_10

pad cos_wv_ 11

pad sin 1 O

pad =2in 1 1

pad =in 1 2

pad =sin 1 3

BD2SCARUDQP_1V8_SF_LIN

IC6SLPHVI SF_1VE S0A TM4X0Y2Z

ED2SCARUDQP 1VE SF LIN

4480.000000
d, n

IC6SLPHVI_SF_1VB_S0A TM4X0Y2Z

BD2SCARUDQP_1VE_SF_LIN

4480.000000
d, n

IO6SLPHVI_SF_1V8_SOA TM4X0Y2Z

BD2SCARUDQP_1VE_SF_LIN

4480.000000
d, n

I065LPHVI_SF_1VE_S0A_TM4XOY2Z

BD2SCARUDQP_1Ve_SF_LIN

4480.000000
d, n

IC6SLPHVI SF_1VE SOA TM4X0Y2Z

ED2SCARUDQP_1VE_SF_LIN

4480.000000
d, n

IC6SLPHVI SF_1VE S0A TM4X0Y2Z

ED25CARUDQP 1Ve SF LIN

4480.000000
d, n

IC6SLPHVI_SF_1VB_S0A TM4X0Y2Z

BD2SCARUDQP_1V8 SF_LIN

4480.000000
d, n

IO6SLPHVI_SF_1VE S0A TM4X0Y2Z

BD2SCARUDQP_1V8 SF_LIN

4480,000000
d, n

IO6SLPHVI_SF_1VE S0A TM4X0Y2Z

BD2SCARUDQP_1V8 SF_LIN

4480,000000
d, n

IO6SLPHVI_SF_1VE S0A TM4X0Y2Z

BD2SCARUDQP_1V8 SF_LIN

4480,000000
d, n

IO6SLPHVI_SF_1VE S0A TM4X0Y2Z

BD2SCARUDQP_1V8 SF_LIN

4480,000000
d, n

IO6SLPHVI_SF_1VE S0A TM4X0Y2Z

BD2SCARUDQF 1Ve SF LIN

4480,000000
d, n

IO6SLPHVT SF_1VE S0L TM4X0Y2Z

BD2SCARUDQP 1V8 SF LIN

4480 .000000
d, n

IO6SLPHVT SF_1VE S0L TM4X0Y2Z

BD2SCARUDQP 1V8 SF LIN

4480 .000000
d, n

IO6SLPHVT SF_1VE S0L TM4X0Y2Z

4480.000000

50

pad =in 1 4

pad =2in 1 5

pad =2in 1 &

pad s2in 1 7

pad =in 1 8

pad =in 1 9

pad =in 1 10

pad =in 1 11

pad sin 2 O

pad sin 2 1

pad =in 2 2

pad =sin 2 3

pad sin 2 4

pad sin 2 5

pad sin 2 &

pad =in 2 7

BED25CARUDQFP 1VE S5F LIN
IOG5LFHVI_SF 1VE 5S04 TM4XOYZZ
4480.000000
d, n
BED25CARUDQFP 1VE S5F LIN
IOE5LFHVI_SF 1VE S5S0A TM4XOYZZ
4480.000000
d, n
BED25CARUDQFP 1VE S5F LIN
IOE5LFHVI_SF 1VE S5S0A TM4XOYZZ
4480.000000
d, n
BED25CARUDQFP 1VE S5F LIN
IOE5LFHVI_SF 1VE S50A TM4X0OYZZ
4480.000000
d, n
BED25CARUDQFP 1VE S5F LIN
IOE5LFHVI_SF 1VE S50A TM4X0OYZZ
4480.000000
d, n
BD2SCARUDQF 1VE SF LIN
IOE5LFHVI_SF 1VE S50A TM4X0OYZZ
4480.000000
d, n
BD2SCARUDQF 1VE SF LIN
IOE5LFHVI_SF 1VE S50A TM4X0OYZZ
4480.000000
d, n
BD2SCARUDQF 1VE SF LIN
IOE5LFHVI_SF 1VE S50A TM4X0OYZZ
4480.000000
BEDZSCRRUDQF 1V& 5F LIN
IORSLPHVI S5F 1VE 504 TM4X0YZZ
4480.000000
d,
BD2ZSCRRUDQP 1VE& S5F LIN
IO6SLEHVI_SF_1VE_S50A THM4X0YZZ
4480.000000
df
BD2ZSCARUDQF 1VE 5F LIN
IC6SLEHVI SF 1Ve 50A TH4X0YZZ
4480.000000
df
BDZ5CARUDQF 1VE S5F LIN
ICESLPHVI_SF_1VE 50A TM4X0Y2Z
4480,.000000
dr
BEDZSCRRUDQF 1V& 5F LIN
IOGSLPHVI S5F 1VE 504 TM4X0YZZ
4480.000000
d,
BEDZSCRRUDQF 1VE& 5F LIN
IO6SLEFHVI_SF_1VE_ 50A THM4X0YZZ
4480.000000
d,
BD2SCRRUDQEP 1VE& 5F LIN
IC6SLEHVI_SF_1Ve_ 50A TH4X0YZZ
4480.000000
df
BDZ5CARUDQF 1VE S5F LIN
IC6SLPHVI_SF_1VE 50A TM4X0Y2Z
4480.000000

n

n

n

n

n

n

n

51

pad_sin 2 8 BD2SCRRUDQF_1VE_SF_LIN
I065LPHVT SF_1V8 50A TM4X0Y2Z

4420.000000
d, n
pad sin 2 9 BDZ2SCRRUDQF 1W8 S5F LIN
IO0eSLEHEVI_SF_1VEB_ 50R THM4X0YZZ
4420.000000
d, n
pad sin 2 10 BD2SCRRUDQP 1W8 S5F LIN

IC6SLPHVTI _SF_1VE S0RA THM4XKOY2Z
4480.000000
d, n
pad_sin 2 11 ED2SCARUDQP 1WVs 5F LIN
IC6SLPHVT _SF_1WVE S0A TH4XKOY2Z
44850.000000
d, n
parabolic top parabolic sentheszis 226893.799918
h, n

Total 31 cells 450893.7939918

Table I11: Components in the critical path with individual delays (ASIC)

Jperating Conditionsz: nom 1.00V_1.80V_25C Library: IOQO6SLPEVI_SF 1Vs_ 50A TM4X0Y2Z
dire Load Model Mode: top

Startpoint: theta f in pad[0]
(input port)
Endpoint: sin 2 pad[11]
{output port)
Path Group: (none)
Path Type: max

Point Incr Fath
input external delay 0.00 0.00 £
theta £ in pad[0] (inout) 0.00 0.00 £
InPad 0/IC (BD2SCARUDQF 1VE S5F LIN) 0.00 0.00 £
InPad 0/ZI (BDZSCRRUDQF 1VE SF_LIN) 0.95 0.95 £
parabolic_top;’theta_f_in[0] (parabolic senthesis) 0.00 0.85 £
parabolic_ top/InPad_0/IC (BDZSCARUDQP_1VE SF LIN) 0.00 0.95 £
parabolic top/InPad 0/ZI (BDZSCARUDQP 1V8 SF LIN) 0.74 1.69 £
parabolic_top;’Squarefinl_square[O] (zguarrer block I squarell O sguarell)
0.00 1.69 £
parabolic_t,op,-"Sq'Jarefrr.'Jlt_Sﬂ,-"a [0] (sguarrer block I squarell O sguarell DW mult_tc 1 0)
0.00 1.89 £
parabolic_top/Square/mult_54/U70/Z (HSE5_LH_IVXY) 0.08 1.77 r
parabolic top/Square/mult 54/US1/Z (H565 LH NOR2ZXE) 0.05 1.82 £
parabolic top/Square/mult_ 54/U10/S0 (HS65 LH HA1X4) 0.14 1.96 ¢
parabolic_t.op,f'Square;"rr.'.Jlt_S&;"product [2] (sguarrer block I squarell © sguarell DW mult tc 1 0O)
0.00 1.86 r
parabolic_top;"Squarefout_square [2] (=sguarrer block I sguarell O sguarell)
0.00 1.6 r

parabolic_t,op,-"Second_su.bsfinz_sabt_one [2] (subtractor block one Il subt onell I2 subt onell O subt oneld)

52

0.00 1.96 x
para}:olic_top,:"Second_s‘abs,-"s‘a.b_s9,:"3 [2] (subtractor block one Il subt onell I2 subt onell O subt onelld DWO1l sub 0)

0.00 1.96 r
parabolic_top/Second_subs/sub 53/U6/Z (H565_LH_IVXS)
0.03 l1.98 £
parabolic_top/Second subs/sub 59/02_2/C0 (HS65_LH FA1X4)
0.15 2.13 £
parabolic_topfSecond_subsfsub_S9{U2_3f50 (HS65_LH FRI1X4)
.22 2.35 £
parabolic top/Second subs/sub 59/DIFF[3] (subtractor block one Il subt onell I2 subt onell O subt oneld DWO1 sub 0)
- - - - 0.00 2.35 f - - - - - - -
parabolic_topf'Second_s'.Jbs,-"out._sul:t._one [3] (subtractor block one_ Il subt onell IZ2 subt_onell ¢ subt_ oneld)
0.00 2.35 £
parabolic top/mem unit/In mem[2] (mem block) 0.00 2.35 £
parabolic_top/mcm unit/O79/Z (HS65_LH IVH2) 0.12 2.47 T
parabolic top/mem unit/UO78/Z (HS565_ HMORZLX3) 0.08 2.55 f
parabolic top/mom unit/U77/Z (HS65 LH PACIZXL) 0.11 2.86
parabolic top/mcm unit/U7S/Z (HS565_LH IVX2) 0.12 2.77 £
parabolic top/mem unit/U74/Z (HS565 LH ROT12XJ) 0.09 2.86 r
parabolic top/mom unit/U73/Z (HS65 _LH AOI12X2) 0.07 2.93 £
parabolic top/mcm unit/U72/Z (HS565_LH PROI2X1) 0.12 3.05 r
parabolic top/mem unit/U70/Z (HS65_LH IVHZ) 0.14 3.19 £
parabolic top/mom unit/U639/Z (HS65 LH AOCI1ZX2) 0.11 3.30 ¢
parabolic_top,-"rr.crr._:mit,-"UﬁS,-"Z (H565_LH_ACI12X2) 0.07 3.37 £
parabolic top/mem unit/U67/Z (HE565_ PROIZX1) 0.22 3.59 r
parabolic top/mom unit/U64/Z (HS65_ AO12X4) 0.18 3.78 ¢
paIabolic_t,Op,-"rr.crr._'Jnit,-"USS,-"Z (H565_ CRT12XZ) 0.10 3.88 £
parabolic top/mem unit/U60/Z (HS565 LH NORZAX3) 0.15 4.03 f
parabolic_top/mcm unit/U59/Z (HS65_LHS XNORZH3) 0.11 4,14 r
parabolic_top/mcm unit/U58/Z (H565_LH IVXZ) 0.09 4.23 f
parabolic top/mem unit/U13/2 (HS65 _LH OATI12XZ) 0.08 4.31 r
parabolic_top/mcm unit/U12/Z (HS65_LH OAT12X2) 0.13 4,45 f
paIabGlic_t,op,-"rf.crr._'.lnit.,-"UQ,-"Z (H565_LH OR12X4) 0.16 4.61 £
parabolic_top/mem unit/U7/Z (HS565_LH_ACI12X2) 0.10 4.71 ¢
parabolic top/mcm unit/U6/Z (HS565_ LHS XOR2X3) 0.18 4.89 £
parabolic top/mcm unit/outl mem[6] (mcm block) 0.00 4,89 £
paIabolic_top,ﬂ'First_ﬁdder;"inl_adder_one [6] (adder block one I1 adder one8 I2 adder onel? O adder onell)
0.00 4.89 £
parabolic_top;"First_ﬁdder;’add_.ﬁ?fa [6] (adder_block_one_Il adder oned I2 adder_onel2 C adder_onel2 DWO1_add 0)
0.00 4.89 £
parabolic top/First RAdder/add 57/U1_&/CO (HS565_LH FR1X4)
.20 5.08 £
parabolic_top/First Adder/add 57/U1_7/CO (HS65_LH FA1X4)
0.15 5.24 £
parabolic top/First_Adder/add 57/0U1_8/CO (H365_LH FRA1X4)
0.15 5.39 £
parabolic_top,fF:'Lrst_ﬁdder!add_S”.fUl_Q,-’CO (H565_LH FL1X4)
0.15 5.54 £
parabolic_top/First_Rdder/add 57/U1_10/50 (HS65_LH FA1X4)
0.23 5.77 ¢
parabolic top/First_Adder/add 57/5UM[10] (adder block one Il adder one9 I2 adder onelZ O adder onel2 DWO1_add 0)
0.00 5.77 r
parabolic_top,-"First_ildder,-"o:lt_adder_one [10] (adder block one I1 adder onel I2 adder onel2 O adder onell)
0.00 5.77 ¢
parabolic_topf'First_rr.'.lltifinl_rr.'.llt [10] (mult_block I1 multl? T2 multl2 © multl2 0)
0.00 5.77 ¢
paIabolic_top,-"First_rr.'Jlti,f’rr.:llt_ﬁ'},n"a[lO] (mult_block I1 mnltl2 T2 mulcl2 O mueltl2 0 DW molt _te 1 0)
0.00 5.77 ¢
parabolic_top/First_multi/mult_64/U190/Z (HSE5_LH IVKI)
0.03 5.80 £
parabolic top/First_multi/mult_ €4/U70/Z (HS565_LH NORZXE)
0.04 5.84 r

53

parabolic top/First_multi/mult &3/U31750 [HEES_LH _HAIXE]

0.16 5.88 r
parabolic top/First_multi/mult 64/027/50 (HS565_LH FA1X4)

0.24 6.24 r
parabolic top/First_multi/mult 64/0U24/50 (HS65_LH FR1X4)

0.24 6.48 ¢
parabolic top/First multi/mult 64/U23/50 (HS65_LH FRA1X4)

0.23 6.71 r
parabolic top/First multi/mult &64/U3/50 (HS65_LH FAIX4)

0.25 6.96 r
parabolic_topfFirst_multifmult_ﬁ&fproduct[10] (mult_block I1 multl2 I2 multl2 O multl2 O0_DW mnlt_te 1 0)

0.00 6.96 ¢
parabolic_topfFirst_multifout_mult[lO] (mult block Il mueltl2 I2 multl2 O multl2 0)

0.00 6.96 r
parabolic_topftwos_compliment_sinfin_twos[10] (twos_comp I twosl2 1)

0.00 6.%6 r
parabolic_top/twos_compliment sin/U23/Z (HS65_LH ORA12X4)

0.10 7.06 ¢
parabolic_top/twos_compliment sin/U22/Z (H565_LHS XOR2X3)

0.11 7.17 £
parabolic_topftwos_compliment_sin!out_twos[ll] (twos_comp I twosl2 1)

0.00 T7.17 £
parabolic_topfFourth_muinnE_muxS[ll] (mux2byl 3 I1 mux312 I2 mux3l2 O mux3l2 1)

0.00 7.17 £
parabolic_top/Fourth_mux/U10/Z (H565_LH_MUX21X4) 0.19 7.36 £
parabolic_topfFourth_muonut_muxS[ll] (mux2byl 3 I1 mux312 I2 mux3l2 O mux3l2 1)

0.00 7.36 £
parabolic_top/pad sin 2_11/I0 (BD25CARUDQP_1VE_5F LIN)

1.88 9.24 £
parabolic_topfsin_Z[ll] (parabolic_senthesis) 0.00 3.24 £
pad sin 2 11/IC (BD2SCARUDQP 1VE8 SF LIN) 2.08 11.33 £
zin 2 pad[1l] (inout) 0.00 11.33 £
data arrival time 11.33

Table 1V: Area Report (ASIC)

Humber of ports: S0

Humber of nets: 102

Humber of cells: 51

Hunber of references: 2

Combinational area: 2893.7995918

Honcombinational area: 443000 .000000

Het Interconnect area: undefined [(Ho wire load specified)
Total cell area: 450893.7995918

54

Table V: Implemented Arithmetic blocks (ASIC)

top_parabolic senthesis

BD25CARUDQP 1V8_S5SF_LIN
parabolic_senthesis
BD25CARUDQP 1VE SF LIN
HS65_LH IVX2
XOR_block
H565_LH5 XOR2X3
adder block one Il adder oned I2 adder onel2 O adder onel2
adder block one Il adder onef I2 adder onel2 O adder onell2 DWO1_add O
H565_LHS XOR2X6&
H565_LHS_ XOR3X2
HS65_LH AND2X4
HS65_LH FR1X4
adder_block two_Il adder twod IZ2 adder twoll O adder twoll
adder block_two_Il_adder two9_I2 adder twoll2 O adder twoll DWO1_add 0
HS565_LHS XOR2X6
HS65_LHS XOR3X2
H565_LH AND2X4
H565_LH FR1X4
mem block
HS565_LHS XNOR2X3
H565 LHS XOR2X3
H565_LHS5_ XOR3X2
HS565_ LH ROI12X2
HS65_LH ROI32X3
H565 LH IVX2
H565_LH NAND2X2
HS565_LH NOR2AX3
HS65_LH OR12X4
H565 LH OAT12X2
H565_LH OR2X4
H565_LH_ PROZX4Y
H565 LH PROIZX]1
mem block DWO1 add 2
H565_LHS_XORZXE
H565 LH RO12X9
H565_ LH FR1X4
H565_LH OR112X%5
H565_LH PROZXI

mult block T1 multl2 I2 multl2 O maltl2 O

mult bBlock T1 mmlel? T2 mulel? O mulel? O DW mult te 1 0

H565_LHS HORZX6

H565 LHS XOR3X2

H565 LH FRI1X4

HS565 LH HRI1X4

H565_LH IVXS9

HS565 LH NANDZAXT

H565 LH NAND2X7

H565_LH NOR2X6

mult block T1 multll I2 multl2 O maltl2 1

mult bBlock T1 mmlel? T2 mulel? O mulel? 1 DW mult te 1 0
H565_LHS HORZX6
H565_LHS HOR3X2
H565 LH FAIX4
HS565 LH HRAIX4
H565_LH IVXS9
H565 LH NANDZX7
H565 LH NOR2X&

muxZbyl 1 T1 muxl112 T2 muxll]l O muoxll2

H565 LH MOX21X4

muxZbyl 2 I1 mux212 I2 mux2l]l O max212

H565 LH MOX21X4

IO65LPHVI_SF_1VE_S50A 7

IOE5LPHVI_SF_1V8_ S50A]
COREESLEHVT

CORE6&SLPHVT

CORE6SLPHVT
CORE6&SLPHVT
CORE&SLEPHVT
CORE&SLEPHVT

CORE&SLEPHVT
CORE&SLEPHVT
CORE6SLPHVT
CORE6&SLPHVT

CORE&SLEPHVT
CORE6SLPHVT
CORE6&SLPHVT
CORE&SLEPHVT
CORE&SLEPHVT
CORE6SLPHVT
CORE6&SLPHVT
CORE&SLEPHVT
CORE&SLEPHVT
CORE6SLPHVT
CORE6&SLPHVT
CORE6SLPHVT
CORE&SLPHVT

CCRE&5SLPHVT
CORE&SLPHVT
CCORE&SLPHVT
CCORE&SLPHVT
CCRE&5SLPHVT

r
CORE6&SLPHVT
CORE&SLPHVT
CCORE&SLPHVT
CORE6&SLPHVT
CORE6&SLPHVT
CORE&SLPHVT
CCORE&SLPHVT
CORE6&SLPHVT

r
CCRE&5SLPHVT
CCRE&5SLPHVT
CORE&SLPHVT
CCORE&SLPHVT
CCRE&5SLPHVT
CORE&SLPHVT
CCORE&SLPHVT

CORE&SLPHVT

CCORE&SLPHVT

55

M4X0Y2Z

M4X0Y2Z

muxZbyl 3 Il mux312 I2 mux31lZ O mux312 0
H565 LH MUX21X4
mux2byl 3 T1 mux312 12 mux3l2 O mux312 1
HS65_LH MUX21X4
squarrer_block I sguarell O sgquarell
sguarrer block I sguarell O sguarell DW mult tc 1 O
H565_LHS XORZX&
H565_LHS KOR3X2
H565 LH ANDZX4
H565 LH FRI1X4
H565 LH HRI1X4
H565_LH IVXS
H565_LH NOR2ZX&
subtractor_block one_ Il subt onell IZ2 subt_onell O subt onell
subtractor_block one_ Il subt_onell I2 subt_onell O subt_onelld DWO1_sub O
H565 LHS XNOR2XE
HS565_ LHS XNOR3XZ
H565_LH FR1X4
H565 LH IVXS
H565 LH ORZX3
subtractor block two Il subt twoll O subt twoll
H565_ LHS XNORZX3
H565_ LHS XOR2ZX3
H365_LH RD12X4
HSg65_LH IVX2
H565 LH NAND2XZ
H565 LH NOR2ZX2Z
H565 LH OAILl2X2Z
twos_conp I twosl2 O
HS65_LHS XNWORZX3
HS&E5 LHS HCR2H3
H565 LH IVX2
H565 LH NANDZAX4
H565_ LH NANDZX2Z
H565 LH NORZRX3
H565 LH NORZX2Z
H565 LH NOR3X1
H565 LH NOR4AEXZ
H565 LH OA12X4
H565 LH OAT12X2
twos_comp I twoslZ 1
H565 LHS XNORZX3
H565_ LHS XORZX3
H565 LH_IVX2
H565 LH NANDZAN4
H565_ LH NANDZXZ
H565 LH NORZAX3
H565_ LH NOR2ZXZ
H565 LH NOR3X1
H565_ LH NOR4ABXZ
H565 LH OR12X4
H565_ LH OAI12X2Z

CORE6SLPHVI

CCRE6&SLPHVT

r
CORE6SLPHVI
CCRE65LEPHVT
CCRE6&SLPHVT
CORE6SLEPHVT
CORE6&SLEPHVT
CORE6SLPHVI
CORE6SLEPHVT

CORE6SLEPHVT
CORE6&SLPHVI
CORE6SLPHVI
CCRE65LEPHVT
CCRE6&SLPHVT

CORE6SLPHVT
CORE6SLPHVI
CCRE65LEPHVT
CCRE6&SLPHVT
CORE6SLEPHVT
CORE6SLPHVT
CORE6SLPHVI

CCRE6&SLPHVT

CORE6&SLPHVT
CORE&SLFHVT

CORE&SLPHVT
CORE&SLFHVT
CORE&SLPHVT
CORE&SLPHVT
CORE&SLPHVI
CORE&SLPHVT
CORE&SLPHVI
CORE&SLPHVT

CORE&SLPHVT
CORE&SLFHVT
CORE&SLPHVT
CORE&SLPHVT
CORE&SLPHVI
CORE&SLPHVT
CORE&SLPHVI
CORE&SLPHVT
CORE&SLFHVT
CORE&SLPHVT
CORE&SLFHVT

Table VI: Prime Time Script

start_gui

remove_design -all

set power_enable_analysis true

set search_path "$env(STMO065_DIR)/IO65LPHVT_SF_1V8 50A_7M4X0Y2Z_7.0/libs \
$env(STMO065_DIR)/COREG5LPHVT_5.1/libs \
$env(STMO065_DIR)/COREG5LPSVT_5.1/libs \
$search_path"

set link_library "* I065LPHVT_SF_1V8 50A_7M4X0Y2Z_nom_1.00V_1.80V_25C.db \
CORE65LPHVT _nom_1.20V_25C.db COREB5LPSVT_nom_1.20V_25C.db"

set target_library "lIO65LPHVT_SF 1V8 50A 7M4X0Y2Z nom_1.00V_1.80V_25C.db \
COREGB5LPHVT _nom_1.20V_25C.db CORE65LPSVT_nom_1.20V_25C.db "

56

Table VII: Power analysis obtained from Prime Time

Synthesized
Area

Synthesized Time 5ns

Net switching power

Cell Internal power

Cell Leakage
power

Total
Power

None (High Speed)

8.95e-5

1.0e-4

4.61e-8

1.9e-4

0 (Minimum Area)

9.42e-5

1.0e-4

4.22e-8

1.95e-4

8592

8.20e-5

9.4e-5

4.07e-8

1.72e-4

Table VIII: Timing report from FPGA

Timing Detail:

A1l wvalues displayed in nanoseconds (ns)

Timing constraint:

Default path analysis

Total number of paths / destination ports:

157937347 / 36

Delay:
Source: theta £ in<l> (FRD)
Destination:

=in_2<11> (FAD)

Data Path: theta_f in<1>» to sin_2<11>

20.49%6ns (Levels of Logic = 21)

theta f_in 1 IBUF (First_subs/Madd_templ signal_ sub2)

SqJarE/MmJlt_tenp_sq:er_mJltOOOO (3q_s2_sig<é>

Second_= .J.bsstu.b_t,errpl_signal_su.b 1_Madd luc<é> (Second_su.bs/Msub_: empl_signal_subl Madd lut<é>)
Second subs/Msub_templ signal subl Madd cy<6> (Second subs/Msub templ signal subl Madd cy<6>)
Second subs/Msub templ signal subl Madd xor<7> (32 mcm sig<T>
mcH_Jnit/Madd_uJt_cl_addsJbOOOO_Madd_lJt<3> tHcm_Jnit/Madd_DJt_cl_addstOOOO_Madd_lJt<3>J

mem unitc /Madd_o.:lt,z _mcm addsub0001_Madd cy<1>1_F (N12)

mem unit /Hadd_D.:lt,Z _mcm addsub0001_Madd cy<1>1 (rr.crr._.mit,/Ha dd_CutZ_mem addsub0001_Madd_cw<l>)

mem unit/Madd OutZ mem addsub0001 Madd cy<2>11 (mcm unit/Madd Cut? mcm addsub0001 Madd cy<2»
mcH_Jnit/Madd_DJtZ_ch;addsJbOOOJ_Madd_cy<3>ll (mcm_Jnit/Madd_OJtZ_mcn;addsJbOOOl_Medd_cy<3>

mem unitc /Madd_o.:lt,z _mcm addsub0001_Madd xor<7>126 (mcm unit /Madd_O:L: 2_mcm addsub0001_Madd xor<7>12
mem unit /Hadd_D.:lt,Z _mcm addsub0001_Madd xor<7>143 (mcm unit /Hadd_O:L: 2_mcm addsub0001_Madd xor<7>14
ncniunitfﬂaddiDJtzimcniaddsuhoooliHaddixnr<7>153 (Hcniuni:/MaddiDutzincmiaddsJhOOOliHaddixnr<T>15
mcem_unit/Madd OutZ_mcm add0000_cy<7> (mcm unit/Madd Cut2_mcm add0000_cy<7>
mcH_Jnib/Madd_OJtZ_ch;addOOOO_xur<3> (mcm_ml12 sig<B8>)

Firs:_rr..:llt.i/m'r.'al t_temp_signal mult (ml_tl_sig<lO>)
twnsicnnplinen:isin/Haddﬁtenplinnt0000<10>171NV70 (twnsicnnp1inentisinfﬂadd7tenplinnt0000<10>
twos_compliment sin/Madd templ cy<10> (twos_compliment sin/Madd templ cy<10>
twos_cunplinent_sin/Madd_tenpl_xur(ll> (twus_conpliment_ain/tenp1<11>

Gate Het
Cell:in->out fanout Delay Delay Logical Name (Net Name)
IBUF:I->0 io 0.878 0.511
MULT1EX1E:RA1->P17 1 2.413 0.430
LUI2:I1->0 1 0.275 0.000
MUXCY:5->0 1 0.334 0.000
HXORCY:CI->0 is 0.708 0.6391
LUT2:I1->0 2 0.275 0.476
LUI3:I1->0 1 0.275 0.000
MUXF5:I0->0 2 0.303 0.396
LUT3:I2->0 3 0.275 0.415
LUTS:I2->0 B 0.275 0.614
LUT4:I0->0 1 0.275 0.429
LUT4:I1->0 1 0.275 0.429
LUTZ:11->0 1 0.275 0.000
MUXCY:5->0 1 0.334 0.000
XORCY:CI->0 2 0.708 0.378
MULT1E8X18:B8->P1l8 3 2.506 0.337
INV:I->0 1 0.275 0.000
MUXCY:5->0 0 0.334 0.000
XORCY:CI->0 1 0.708 0.430
LUT3:I1->0 1 0.275 0.332 Fo'.:lr:h_rr..:lx/ou:_rr..:lx3<11>l (gin_2_11_ OEUF)
OBUF:I->C 2.592 =in 2 11 OBUF (sin 2<11¥)
Total 20.496n= (14.56Bns logic, 5.928ns route

(71.1% logic, 28.

9% route)

Table 1X: Macro Statistics report from FPGA

Multipliers
11x11-bit multiplier
12x12-bit multiplier

Adders/Subtractors
10-bit adder
10-bit subtractor
11-bit adder
12-bit adder
9-bit adder

Xors
1-bit xor2

PRNRARRPRPOENE®

57

Table X: Cell Usage report from FPGA

BELS 1305
GND 01
INV 122
LUT1 111
LUT2 131
LUT3 129
LUT4 46
MUXCY 178
MUXF5 13
MUXF6 01
VCC 01
XORCY 1 82
10 Buffers 149
IBUF 113
OBUF 136
MULTSs 03
MULT18X18 13

Table XI: Device utilization summary from FPGA

Selected Device : 2vp2fg256-7

Number of Slices: 76 outof 1408 5%
Number of 4 input LUTS: 139 out of 2816 4%
Number of 10s: 49

Number of bonded 10Bs: 49 outof 140 35%
Number of MULT18X18s: 3 outof 12 25%

58

