
1

Master’s Thesis

Dynamical Modeling of MySQL

Database Server

By

Shirish K.C.

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

2

3

Abstract

This thesis basically consists of different experiments conducted at the

Department of Electrical and Information Technology, Lund University,

Sweden.

These experiments are conducted to quantify the dynamics of the mean

response time of the requests in a MySQL database server. The dynamics

are studied under various load (requests per second) and database

characteristics such as relation size, database engine type and number of

concurrent connections to the MySQL server.

4

Acknowledgement

I would like to express my deep gratitude to my professor Maria Kihl for

providing me with the opportunity to work on such an interesting project. I

am very thankful for her trust and flexibility that she provided me in this

project.

Further, I would like to thank to my project supervisor Payam Amani for

providing me necessary guidance and co-operation while accomplishing this

project.

I also want to express my gratitude to Manfred Dellkrantz and Gustav

Cedersjö for providing support and assistance during the entire project.

Finally I would like to thank all of my friends for helping me to achieve this

goal.

Shirish K.C.

5

Table of Contents
Acknowledgement .. 4

1 Introduction ... 9

2 Background and Related Work .. 11

2.1 Detailed architecture description ... 11

2.2 Database Management System .. 12

2.2.1 Relational Model .. 12

2.2.2 Structural Query Language .. 14

2.2.3 Indexing ... 15

2.2.4 MySQL ... 15

2.3 Database Performance Analysis ... 18

2.3.1 Database Benchmarks .. 18

2.3.2 Traffic Experiments .. 19

2.4 The Java Programming Language .. 20

2.4.1 Java Platform .. 20

2.4.2 Java Database Connectivity (JDBC)... 21

3 Problem Descriptions and Methods .. 23

3.1 Problem Description .. 23

3.1.1 Why do we need this model and where are we going to use

it? ……… ... 23

3.1.2 What types of models do we use? .. 24

3.2 Methods ... 24

4 Lab Setup .. 29

6

4.1 Database Server .. 29

4.1.1 Server Hardware and Software ... 29

4.1.2 Database Structure .. 30

4.2 Traffic Generator .. 30

4.2.1 Introduction ... 30

4.2.2 Concurrent Activities.. 31

4.2.3 Arrival Distribution .. 32

4.2.4 Query Generator .. 34

5 Experiments .. 35

5.1 Introduction ... 35

5.1.1 Basic Experiment ... 35

5.1.2 SQL .. 35

5.1.3 Verification .. 36

5.2 Experiment: Select only ... 36

5.2.1 Description .. 36

5.2.2 Result ... 37

5.3 Experiment: Update only ... 39

5.3.1 Description .. 39

5.3.2 Result ... 40

5.4 Experiment: Mixture of Update and Select 42

5.4.1 Description .. 42

5.4.2 Result ... 42

5.5 Experiment: Select and Update ... 44

5.5.1 Experiment : Comparison of 5M Select and 5M Update with

InnoDB storage engine ... 44

5.5.2 Experiment : Comparison of 50M Update and 50M Select with

MyISAM storage engine ... 46

7

5.6 Experiment: Change in number of connections to the MySQL

database server ... 48

5.6.1 Experiment: Effects of change in number of connections to

the server on 10MSelect with InnoDB engine ... 48

5.6.2 Experiment: Effects of change in number of connections to

the server Decreased on 50M Update with MyISAM engine 50

5.7 Experiment: Effect of choosing different Step Size for Input

Request Arrival Rate ... 52

5.7.1 Description .. 52

5.7.2 Results ... 52

6 Discussion on Limitations ... 55

7 Conclusion and Future Works ... 57

List of References ………………………………………………………………59

List of Figures ...…………………………………………………………………61

List of Tables …………………………………………………………………. 63

List of Acronyms .……………………………………………………………… 65

Appendix A …………………………………………………………………….. 67

Appendix B …………………………………………………………………….. 69

8

9

1 Introduction

Resource management for computing systems nowadays is considered as

the most important part for any computing system. The reason behind this is

that poorly managed resources severely reduce the performance of the

computing systems. The current trends allow enterprise services to be

accessible through networks. Usually, communication between these

services is done across IP-networks. As user traffic to the servers is

unpredictable and gets surged more often, these servers experience external

load disturbances. As a result, servers belonging to enterprises often become

bottleneck while the network backbone may remain not fully utilized. Due

to these facts, these servers must provide some kind of performance

guarantees against uncertain external load which it experiences quite often.

The guarantee to service performance may include agreement on services

(on QoS, throughput etc) that the system provides on their clients. On

overloaded condition, the system should able to maintain acceptable

degradation on these server performances.

However, it is important for involved computing systems to have accurate

performance models for finding better resource optimization methods.

Usually, a high number of clients are involved in accessing database servers.

Therefore, operating regions of these servers experience mainly the high

traffic situations which also mean the computing systems follow non-linear

dynamics. The accurate characteristic of this dynamics determine the

performance of the servers. Here, load dynamics of the database servers

show completely different characteristic in overloaded situation than in low

load situation or in high load situation.

The common problem that database servers usually encounter is database

overload. This happens when requests to the database server become

temporarily peak. When the requests to the database server get peak, more

requests arrive at the server than they are designed for. However, if this kind

of requests peaks seldom occurs, then it is not economical to allocate

additional server capacity to handle these peaks. This is due to the fact that

many of the resources remain unused and just consumed for waiting for the

situation where the load peaks become high. In addition, the need of more

10

processing power also increases the need of more hardware in the

computing system.

Some kind of admission control can be implemented in order to control

these peaks in the load to the server. The admission control basically rejects

some requests in order to avoid server overload and thereby ensure that the

server do not stop functioning because of the overload problem. Another

solution is load balancing which is basically a kind of powerful resource

management mechanism that should be implemented in order to distribute

the need of resources uniformly among several resources sharing units.

The database servers are also considered as a major component in the future

Internet systems especially in field of cloud computing and data centers.

Considering these facts in mind, different models and characteristics of high

load dynamics of databases is closely observed. This report illustrates

models that are able to accurately represent the dynamic of mean response

time of requests that arrive to the database servers.

In other words, the servers get overloaded when arrival rate of the requests

from the clients exceed the server capacity. Therefore, the modeling of the

database server is needed for providing admission control on user requests

in order to avoid the server overload. Then, we can achieve the same

performance of database server with no need to allocate additional server

capacity.

11

2 Background and Related Work

2.1 Detailed architecture description

The whole system can be viewed as a multi-tier system with layered

architecture.

The multi-tier architecture is often described in client-server architecture in

which the data presentation, data application processing and managing

database are logically different processes.

Each tier or layer is responsible for performing its own specific functions

and forms a part of the system. In a layered architecture, processing of the

requests starts from the topmost layer. The part which remains unprocessed

is passed to the layer or tier below this layer. It can be viewed as each layer

will get request from the tier just above and responds back for that request

to that tier.

In case of a multi-tier web application, servers are distributed among

different tiers. The number of tiers differs from system to system. However,

there are some general principles that are common in most of the systems.

The requests from the clients are usually handled by topmost tier which is

client tier and the lowest tier is often a data tier with a database server.

Client Tier Web Browser

Application Tier Application Server

Data Tier Database Server

 Figure 2.1 Two-tier web server system

The client tier which is the web browser renders the web page and executes the

client-side scripts of the web application. The generation and handling of

dynamic content are performed in the application tier. Here, the

programming can be developed for application servers to enable them to

perform different functions for different requests. Some examples of

application tier include Java EE, ASP.NET, PHP, ColdFusion platform.

12

When clients initiate requests for getting or updating some of the attribute

values of the specified tuple inside the relation then those requests are sent

to next tier, data tier.

The data tier comprises of a database management system where user

requests are handled on the basis of need from the application server. One of

the mostly used types of database server is the relational database server. In

a relational database, the requests to the database are usually accompanied

with SQL statement. The data in the relational database server is stored in a

single relation or in several relations. Depending upon the types of requests

from users, a request is actually delivered for getting data from relations or

confirmation of updating or inserting or deleting of data in the relations.

2.2 Database Management System

2.2.1 Relational Model

The relational model is a famous model used for database management

system. It was first introduced and proposed by Edgar F. Codd [1]. This

model is a database model which is based on first-order predicate logic.

This model is intended to provide declarative methods to specify data and

queries. It basically means that the users can directly state the information

that database contains and information of the users is acquired from the

database. The procedure behind this is relied on the database management

system software which defines data structures for storing and retrieving user

data.

2.2.1.1 Relational Database

The data in relational database is stored into distributed data sets or

relations. However, data is matched in relational database using a common

characteristic that lies within the data set.

The relational database uses some sort of software called relational database

management system (RDBMS).

Some mathematical terms are implemented in the relational database theory.

These terms are broadly equivalent to SQL database terminology.

13

Table 2.1 illustrates some of the mostly used relational database terms and

their SQL database equivalents.

Table 2.1: Lists of terms and their equivalent used in relational database

A relation usually consists of a set of tuples where each of the tuples

contains same attributes. A tuple generally denotes an object or information

related to the object. Objects can be anything which may be something

physical or concepts. A relation can also be described as a table consisting

of rows and columns. The columns or attributes provides the list of data

referenced to the same domain or heading and the type of data referenced

which are conformed to same constraints.

There is no specific order how data is stored in the tuples or attributes. The

applications can access data by different methods of querying of database.

There are different queries types such as select query to acquire data from

the database and insert, delete, update query to modify the relations of

database. In any relations, there need to be some attribute to be uniquely

defined in order to provide reference to each tuple of a relation. This can be

carried out by defining the primary key.

Relational terms SQL equivalents

Relation, base relvar Table

derived relvar view, query result, result set

tuple row

attribute column

14

2.2.2 Structural Query Language

SQL is an acronym for Structured Query Language and that is a

standardized language designed for relational database management systems

for retrieving, updating and managing data in relational databases. The

design of original version called SEQUEL (structured English query

language) was accomplished in IBM research center in 1974 and 1975.The

introduction of SQL as a commercial database system was started by Oracle

Corporation in 1979 [2].

SQL is a type of declarative language where expected outcome or operation

is performed without any details about how to perform the tasks.

The statements are used in order to command for certain type of operations

or methods. This methods need to be carried out in certain instructions

which contain specific SQL statement and additional parameters that are

applied to that statement. All SQL statements and their modifiers should

follow certain official SQL standards and certain extensions to those

standards depending on the ways each specific database provider

implements them. Commonly used statements are grouped into the

following categories [2]:

Data Query Language (DQL)

 SELECT - Used to retrieve certain records from one or more tables.

Data Manipulation Language (DML)

 INSERT - Used to create a record.

 UPDATE - Used to change certain records.

 DELETE - Used to delete certain records.

Data Definition Language (DDL)

 CREATE - Used to create a new table, a view of a table, or other

object in database.

 ALTER - Used to modify an existing database object, such as a

table.

 DROP - Used to delete an entire table, a view of a table or other

object in the database.

Data Control Language (DCL)

 GRANT - Used to give a privilege to someone.

 REVOKE - Used to take back privileges granted to someone.

15

2.2.3 Indexing

For the prompt searching of rows with specific column values, indexes are

used. If there is no indexing, MySQL database need to read from the

beginning starting from first row through the whole table to find relevant

rows. This process is repeated for each search of a relevant row. This

searching of the MySQL database takes long time if the size of table is

large. However, if indexing is used for the columns, MySQL can quickly

find the position of the data in the relevant rows without a requirement for

search from the beginning to the end of the table. This indexing will

significantly reduce the reading time compare to sequential read time

without indexing.

The common MySQL indexes are defined by parameters like PRIMARY

KEY, UNIQUE, INDEX, and FULLTEXT on certain columns.

2.2.4 MySQL

MySQL is an open source relational database management system

(RDBMS) that runs as a server providing a very fast, robust SQL

(Structured Query Language), multi-threaded, multi-user access to a number

of databases. It was first developed by the Swedish company MySQL AB

and now it is owned by Oracle Corporation [3]. MySQL is made available

in both open source license and in commercial license.

The MySQL has a certain communication protocol which is used for

authentication, querying and managing the server using a subset of the

standard Structured Query Language (SQL) commands. The client libraries

with other libraries which implement the protocol are written for JDBC

(Java Database Connectivity) and for the .NET platforms. MySQL provides

APIs for the C, C++, Eiffel, Java, Perl, PHP and Python languages. In

addition, OLE DB and ODBC providers can also connect to MySQL in the

Microsoft environment.

The MySQL database server contains several relations under each database

and there can be many databases inside MySQL server. Nowadays, there are

different types of database storage engines such as MyISAM Storage

engine, InnoDB Storage engine, Merge Storage engine etc.

16

All relations contained inside MySQL database server in our experiment

consists of InnoDB as default database storage engine.

2.2.4.1 InnoDB

InnoDB includes standard ACID-compliant transaction features which are

capable of commit, rollback and crash-recovery. Therefore, user data is

protected in InnoDB. The InnoDB is able to maintain the data integrity in

entire query process. InnoDB involves row-level locking. With row-level

locking features, it is possible for one query to update or read a row while,

another query updates or reads a different row at the same time. Hence,

multiuser concurrency and performance of database is enhanced. The user

data is stored in clustered indexes so that I/O operations for common queries

can be reduced. These queries are issued based on the primary keys.

InnoDB engine is selected in case of processing a large volume of data. The

reason behind this is that it can be designed to provide maximum

performance. InnoDB has been used in a famous Internet news site

Slashdot.org, Mytrix, Inc. which stores more than 1TB of data.

The InnoDB became part of the Oracle Corporation in October 2005 after

former company Innobase Oy has been acquired by Oracle Corporation [4].

In order to find whether the database server support InnoDB, SHOW

ENGINES command can be used in mysql command prompt.

mysql>show engines;

If the database server which has been installed supports InnoDB, the

window installer while configuring MySQL server makes InnoDB as the

default engine in Windows.

2.2.4.2 MyISAM

MyISAM is the default storage engine for older versions of MySQL,

generally before MySQL 5.5. This engine relies on the older ISAM code.

However, many useful extensions have been added in this code.

Each MyISAM table is split in three different files on disk. These three

different files contain information about table format, data, and the indexes.

17

All these files have the same name as name of the specified table and the

extension added to this name identify three different file types. The file with

.frm denotes the format of table. The .MYD and .MYI extension describe

the data file and index file respectively.

The maximum number of rows for server with MyISAM engine is limited to

2^32 (≈ 4.295E+09) rows. But, if the server is built with –with-big-tables

option , the limit on maximum number of rows that MySQL server supports

will be increased to (2^32)^2 (≈ 1.844E+19) rows. The MySQL server can

have maximum 64 indexed fields per MyISAM table and they can have

maximum 16 columns per index in a MyISAM table.

2.2.4.3 Basic Differences between InnoDB and MyISAM engines

MyISAM engine is faster than InnoDB in case of execution of queries if the

number of queries is not enormously large. It means that the time taken for

selecting, updating and inserting is relatively less under normal condition

than the time required doing this operation for InnoDB engine.

The features like row-level locking, transaction-safe queries and relational

table design in InnoDB engine make the InnoDB engine very attractive and

popular engine to choose.

The recovery in case of a crash or any unexpected shutdown is possible in

InnoDB. This recovery can be achieved by replaying its logs. In case of

MyISAM, the engine need to carry out full scan and to repair any indexes or

possibly tables if the insert or any update operation is performed on table

but not completely flushed on disk.

The MySQL table ENGINE can be defined at the time of creating table

inside defined database. This ENGINE definition can be performed by

issuing command as shown below.

mysql>CREATE TABLE tablename (val1 INT, val2 INT,

val3 varchar(90),val4 varchar(90),PRIMARY

KEY(val2)) ENGINE=MyISAM;

18

If ENGINE definition is not stated, default InnoDB storage engine will be

defined.

The following statement can be issued to determine storage ENGINE of the

table.

mysql>show table status;

This command gives some additional useful information regarding the table

under specified database to.

Also, many features of the table can be changed by using command ALTER

TABLE. In order to change the storage engine of table defined under

specified database, the following command can be issued;

mysql>ALTER TABLE tablename ENGINE = InnoDB;

This command basically changes the storage ENGINE of table tablename to

InnoDB if this table’s previous storage engine is MyISAM.

2.3 Database Performance Analysis

The measurement of performance of databases can be performed in different

ways and performance requirements can be different for different

applications. There are some applications especially designed to perform

complex queries while others applications are focused on high concurrency

demands. There are different distinct database benchmarks which are

designed for comparing different database servers to each other and traffic

experiments for investigating the dynamics of a working system.

2.3.1 Database Benchmarks

The first database benchmark developed by Bitton, DeWitt and Turbyfill [5]

is called Wisconsin Benchmark which was widely spread. Mainly, this

benchmark is used for the measurement of speed of different SELECT

19

queries. In this benchmark, the execution of all of the tests is carried out by

single users in sequential order.

There is another well known benchmark developed by Turbyfill, Orji and

Bit-ton [6].It is called as AS3AP (Ansi SQL Standard Scalable and

Portable).This benchmark is basically created for the comparison of the

different DBMS implementations. Both single user and multi-user tests are

included in AS3AP.

The multi-user tests are carried out first to determine the number of users

where maximum throughput is achieved. The real tests are conducted after

finding the optimal number of users. The benchmark specifies a long series

of tasks which are carried out by the database server. The defining of final

performance measurement is specified as the maximum database size for

which the server can execute all tasks in 12 hours.

There are new and updated database benchmarks provided by Transaction

Processing Performance Council (TPC). Currently, three different

benchmarks suites namely TPC-C, TPC-E and TPC-H are proposed. All

these benchmarks are intended to simulate the complete complex system

which reflects real world applications.

2.3.2 Traffic Experiments

The benchmarks that are mentioned above are intended to provide the

general measure of the overall performance of the server. However, this

thesis is more focused on the investigation of behavior of the database for

different changed scenarios. This investigation explores the real dynamics of

a running system.

A traffic generator is required in order to load test the database server. The

traffic generator generates the requests to the database server. This

generation of requests can be random or replayed from a recording of a real

system. The response time from the requests are logged and are further

analyzed.

20

There are a number of traffic generators available as a open source software

for web servers. One example of traffic generator for web servers is

CRIS[7]. However, these traffic generators are not easily available even

though they exist. One traffic generator that can generate requests to both

web servers and database servers is called Apache JMeter [8].

2.4 The Java Programming Language

2.4.1 Java Platform

Java is described as a programming language which is developed by James

Gosling at Sun Microsystems (now part of Oracle Corporation) and is

released as a core component of Sun Microsystems' Java platform in 1995.

Java language derives many of its syntax from C and C++ languages.

However, it has its own simpler object model and fewer low-level facilities.

In the preface of the Java language specification, the language is described

as follows.

 “The Java programming language is a general-purpose concurrent

class-based object-oriented programming language, specifically designed to

have as few implementation dependencies as possible. The main aim of

usage of Java language is to facilitate the application developers to write a

program once and then be able to run it everywhere on the Internet. Java

language nowadays is considered to be one of the most popular

programming languages in use, especially for client-server web

applications.” [9]

To be able to run Java applications 'anywhere' in the network, the java

applications are compiled to what Java calls bytecode (class file).The Java

Virtual Machine (JVM) interprets the bytecodes into code which can run on

Java Virtual Machine (JVM) everywhere with no regard of computer

architecture. The JVM ensures that the application is unable to do anything

that it is not intended to do.

The JVM uses a mechanism called garbage collection for the memory

management for the application. This implies that old objects which do not

need memory are treated as 'garbage' and this garbage are collected by

garbage collector and deleted. This freed memory space is available for

21

subsequent new objects. This garbage collector should have a mechanism to

determine which objects are no longer referenced by the application and free

the memory heap used by these unused objects. In general, the current

garbage collector operates in parallel with the application. However, in

some case, it sometimes needs to pause the application in order to

accumulate some of the oldest objects. The other advantage of garbage

collector is that it provides assurance of program integrity which is an

important part of Java security strategy.

Java Platform, Standard Edition or Java SE is the mostly used platform for

developing Java applications. The Java SE contains Java Virtual Machine

along with a set of standard libraries. Java Platform, Enterprise Edition

(Java EE) extends the features of Java SE with specifications and libraries

needed for building of enterprise server applications.

2.4.2 Java Database Connectivity (JDBC)

Java Database Connectivity (JDBC) is an API which defines interfaces and

classes for Java SE for connecting and accessing relational databases. This

JDBC enables connecting and interacting with different relational databases.

Many database manufactures and vendors provide drivers which when

loaded allow the users and DBMS to interact with database and Java

applications.

22

23

3 Problem Descriptions and Methods

3.1 Problem Description

3.1.1 Why do we need this model and where are we going to use it?

The MySQL database server basically executes the queries that arrive at the

server through any of the predefined number of concurrent connections. If

the arrival rate of the queries increases, the throughput of server for queries

will also increase. However, every database server has its own capacity of

handling queries arriving to the server at certain rate. If the arrival rate of

these queries exceeds beyond that certain rate, the server gets overloaded

and rejects some of the queries. We need a model that can provide detailed

analysis of this behavior of the server. In our case, the model showing

dynamics of the mean response time of request as a function of the mean

arrival rate is used for the analysis of this behavior of the server.

The model generally shows the mean response time for low traffic load,

high traffic load and maximum load beyond which the server gets

overloaded. Therefore, this model is necessary to design the response time

estimator and controller logic inside the application server to keep database

server operating in normal condition. Here, normal condition implies the

condition where server is running without getting overloaded.

 Many computing systems require that their server should operate in high

load traffic without being overloaded. In this case, we need to determine the

ranges of the values of queries mean arrival rate over which the server

remains in high load traffic. With the help of such a model, we can design a

response time estimator to determine ranges of the values of requests mean

arrival rates for which the mean response time lie within high load traffic

below the maximum value of queries mean arrival rate beyond which the

server gets overloaded. After this, the controller is implemented inside the

application server that controls the amount of traffic to ensure that the

queries mean arrival rate lies within the high traffic loads below the

overload region of database server.

24

Application

Server

Database

Server

Traffic Generator

Figure 3.1 Experiment Setup

Also, there are many systems that may require fixed requests’ mean

response time delay. This means that the mean response time for those

systems should be below a predefined desired value. Similarly, the model

can be used to design the response time estimator and controller which will

help to determine the mean value of response time and control the request

arrival rate so that the mean response time is always below the desired

value.

3.1.2 What types of models do we use?

When the traffic generator generates requests with a certain mean arrival

rate for predefined period of time then we can achieve the measurement of

samples of response time for that arrival rate. Since the instantaneous

measurements of all samples of response time for each input arrival rate is

very noisy, the long term averaging of all the samples of response time are

performed in order to achieve model for steady state measurement.

3.2 Methods

The behavior of the database server has been analyzed by iterative

experiments on the database server. All experiments are conducted by

25

exposing the database server with different mean arrival rates (requests per

second) to investigate how the server mean response time behavior changes.

Besides this, experiments are also conducted to investigate dynamics of the

server mean response time of requests for different scenarios. These

scenarios basically involves change in request type which means either

Select or Update or mixture of Update and Select, change in the database

storage engine, change in the relations sizes for several relations and change

in the number of concurrent connections to server.

For a certain arrival rate, the traffic generator is run for a certain period of

time so that enough requests are generated which in turn, delivered to the

database server to provide enough samples of response time. The longer the

traffic generator runs, the larger the amount of the requests traffic would be

and hence the larger the amount of samples of response time would be.

Generally, if we have large samples of response time, we can measure

response time more exactly. The optimum time for how long time the traffic

generator needs to run for the measurements of response time depends upon

how much accuracy we want in our measurements of response time. In our

case, the traffic generator is run for 5 minutes for a certain arrival rate.

The inter arrival waiting time between two consecutive queries follow an

exponential distribution. These times generally are of the order of some

milliseconds. After getting enough samples of response times for a certain

mean arrival rate, we take the mean of all the samples for that mean arrival

rate. Similarly, the experiment is repeated for another value of mean arrival

rate and corresponding mean is taken. This process is iterated for a range of

mean arrival rates so that we can measure the mean response time for that

range.

The whole process of measuring the mean response time for a range of

mean arrival rates is repeated for at least five times and the mean of all five

mean response time for each arrival rate is taken in order to get a more exact

mean value. Thus, we can achieve the range of mean response times for the

range of request’s mean arrival rate. The number of times the whole process

is repeated depends upon the how exactly we need to measure the mean

response time value. If we need more exact value of the mean response

time, the whole process of measurement of the mean response time of a

26

request is repeated for more number of times. The plot of mean response

time against arrival rate is shown in Figure 3.2.

Figure 3.2: General output mean response time plot specifying three

distinct load regions

Each experiment is performed for ranges of mean arrival rate of requests

enough to be able to show mean response time of database server for low

load region, high load region and saturation region.

The region on the Figure 3.2 that shows the less steep part in the dynamic of

mean response time of requests is considered to be low load region.

The region on the Figure 3.2 that shows the more steep part in the dynamic

of mean response time of requests is considered to be high load region.

The region on the Figure 3.2 where output mean response time curve of

request delivered to the database server gets saturated and gives flat

27

response is considered to be saturation region. In other words, saturation

region is the region where database server for a particular request gets

overloaded for the defined number of connections.

28

29

4 Lab Setup

4.1 Database Server

The data tier in a multi-tier server system consists of a database server. Most

of the experiments is performed on the database server together with the

application server.

Database

Server

Traffic

Generator

Switch

Figure 4.1: Lab Hardware Setup

4.1.1 Server Hardware and Software

The experiments are performed in the lab of Lund university consisting of

two ordinary computers with some open source software installed. The

hardware of computer involved in the experiment is a DELL OptiPlex

GX270. The other hardware is equipped with a computer that constitutes an

1.86 GHz Intel(R) Core(TM)2 CPUs processor, 2022MB RAM main

memory, a single hard-drive and a Gigabit Ethernet network card. The hard

drive has SATA interface with capacity of 160 GB. The rotational speed of

the hard drive is 7200 RPM and the hard drive has buffer size of 2048kB.

The computers are connected with a Fast Ethernet switch. Here, one out of

two computers is acting as traffic generator while the other computer has the

default version of the MySQL server 5.1 installed on it. The Windows XP is

running on all computers.

The MySQL server is further configured such that it is opened for external

connections and the maximum number of concurrent connections has been

increased to 800 connections. Although there are many different database

30

engines that MySQL can support, the default INNOdB storage engine and

MyISAM storage engine have been selected for the experiments.

4.1.2 Database Structure

In this experiment, only one database is used which contains several

relations. All relations are made up with same scheme however these

relations may have different relations sizes. The concept of basic structure

of the relation comes from the database benchmark developed by Bitton,

DeWitt and Turbyfill called the “Wisconsin Benchmark” [4].The actual

structure comes from a newer version of this benchmark that is more

scalable with respect to relation size [10].The limit on the maximum number

of tuples is determined by the number of unique values of a 32 bit integer

which is 2^32 ≈ 4.3 × 10^9 tuples. The relation consists of 16 attributes.

Two relations of InnoDB storage engine with size of five million and ten

million tuples and three relations of MyISAM storage engine with size of

two million, five million and ten million tuples are used in these

experiments.

The two attributes in the relations namely unique1 and unique2 are integers

in the range between zero to the number of tuples. Here, unique1 is random

while unique2 is sequential while other remaining thirteen attributes are

derived from either of them. Based on the specification of the benchmark, a

Huskell program is utilized to create the data for the relation. Haskell is a

lazy functional programming language [11]. In order to create the sequences

for unique1 and unique2, a linear feedback shift register which is used to

create a maximum length sequence is used. The program not just only

generates the sequences, instead the whole relation is completed with

INSERT-statements with this program.

4.2 Traffic Generator

4.2.1 Introduction

To determine how the behavior of the server changes with load, the load

needs to be introduced in some way. However, the whole aim of the

experiment is not only analysis of the behavior of the database server, but

31

also comparing that behavior for different scenarios. Therefore, the traffic

directed to the database server is controlled in the application server. All this

behavioral changes and control mechanisms should be included in the traffic

generator.

The major function of the traffic generator is to generate desired traffic and

measure the response time accurately. In order to make the traffic generator

effectively, there are some conditions that need to be considered carefully.

 1. Ability to measure the mean response time correctly.

 2. Ability to produce traffic that follows desirable arrival

distribution.

The generator is supposed to perform some concurrent activities. These

activities include generating of requests, processing of requests and logging

the response time accurately. All this activities are demonstrated with the

Java threads.

4.2.2 Concurrent Activities

Basically the traffic generator performs three concurrent activities. It should

firstly generate query requests, process the requests secondly and finally log

the response times of the requests. All these activities are carried out by Java

threads. The generation of query requests follows a Poisson process and

fixed numbers of workers are Java threads that execute these query requests

directed to the database server. All threads and connection are set up before

the actual traffic generation and execution starts.

The traffic generator sends query requests to the database server. Inside the

traffic generator, the interval between generations of request is controlled on

the signaling thread. Each worker thread has built a connection with the

database and waits for the requests to come for execution. Whenever a

request arrives then the signaling thread signals the worker threads, the

worker threads first establish connection to the database and take that

request. Before executing that request, it starts a timer and when response is

received, it stops the timer. By doing this, the actual response time is logged

which is the difference of start time and stop time.

32

4.2.3 Arrival Distribution

The traffic generator generates the queries after waiting a random

exponentially distributed time so that the generation of queries follows the

Poisson process. However, the queries that arrive to the database server may

not be able to follow the Poisson process all the time. The reason behind this

is that the Java threads which actually are worker threads are responsible to

fetch these queries to the database server. If all the workers threads are busy

processing the requests then the incoming requests need to wait for

processing. Due to this reason, the arrival distribution of requests to the

database server (or logged response time) no longer follows the Poisson

process.

This arrival distribution has been achieved based on the concept of Counting

Semaphore. The basic of Counting Semaphore will be discussed here.

4.2.3.1 Concept of Semaphore

Semaphore is a variable or abstract data type which is most often used in a

parallel programming environment for providing controlling access by

multiple processes or threads to common resources. This concept of

semaphore emerges when several threads frequently need to access a limited

number of resources.

4.2.3.2 Description

A counting semaphore is simply a synchronization object. This counting

semaphore can consist of an arbitrarily large number of states where an

integer variable called counter defines this internal state.

The value of the counter defines a particular meaning:

Counter Value

zero All waiting worker threads

positive No waiting worker threads

Table 4.1: Counter value and their meaning

There are two operation defined for counting semaphores:

33

 Wait, this operation decreases the semaphore counter, if the result is

zero, the invoking worker threads waits until this result is positive.

 Signal, this operation increases the semaphore counter, if the result

is positive, then the signaling thread signals the calling worker

threads.

Count = NCount = 2Count = 1Count = 0

Signal

Wait

SignalSignal

WaitWait

Figure 4.2: Concept of states on counting semaphore

Counting Semaphores are used mostly for synchronization purposes which

allow several calling worker threads to wait until an event has occurred.

Usually the event is generated by a signaling thread. An integer counter

(usually initiate to 0) is used to keep tract of each associated semaphore. The

signaling thread is responsible to increase the integer counter by one at a

time which in turn, automatically decreases by associated calling worker

thread in order to acquire an instance of a resource. It means that if the value

of the counter is greater than 0, it announces the availability of resources

and the waiting worker thread can consume one event and decrease the

counter and return immediately. If the value is 0, the calling worker thread

needs to wait until the signaling threads increase the counter value by

posting new event. The signaling thread used for posting to a semaphore is

responsible for waking up the first worker thread that is currently waiting,

which in turn resume semaphore wait operation and decrease the counter

again.

Semaphore can also be used for a certain type of resource management. The

counter indicate the amount of the currently availability of a certain type of

resource for which the calling worker threads are waiting on the semaphore.

These resources become available again when the signaling thread posts

these resources again.

34

4.2.4 Query Generator

In this experiment, requests are sent to the database server through multiple

connections where each request is sent per connection basis. Each query is

denoted by a String. In different experiments, query generator generates

different queries that are sent to the database. The general structure of the

query statement is the same where the only difference is on different

parameters. The sample example representing the basic structure is shown

below.

SELECT attribute FROM relation WHERE

otherAttribute=?

where the question-mark is replaced by a number between 0 and total

number of tuples. In another experiment the query looks like

UPDATE otherRelation SET attribute=? WHERE

attribute=?

where both question-marks are replaced by different numbers between 0 and

total number of tuples.

35

5 Experiments

5.1 Introduction

To be able to investigate a performance model of the database server,

several experiments are carried out. All these experiments are performed

with different loads to identify how the dynamics of the mean response time

of queries sent to the database server changes with different loads.

5.1.1 Basic Experiment

The methods for carrying out these experiments are basically similar. The

computer running as database server is connected to another computer

acting as a traffic generator which measures the response time it takes for

the database server to execute the requests. The major functionality of the

traffic generator includes generation of requests to the database server.

Before the generation of requests in the traffic generator starts, multiple

concurrent connections to the database server are established and verified.

After confirming that the connections are perfectly working, requests are

transmitted to the database server on these connections. The transmission of

requests follows the Poisson process with a specified rate and all the

response times are logged. The whole experiment is carried out for some

predefined time, usually some minutes. After this time, the connections are

closed and the process for generation of requests is stopped. All the log files

are saved in a file with a filename that corresponds to the mean arrival rate.

Similar experiments are repeated with different mean arrival rate and all the

log files are saved in the folder. Later, the results are processed and

necessary graphs are plotted with the help of Matlab.

5.1.2 SQL

The requests generated from the traffic generator to the database server

consists of either SELECT or UPDATE or a mixture of SELECT and

UPDATE statements in which the probability of choosing UPDATE

statement is 75 percent and of SELECT statement is 25 percent. The general

structure of requests is explained as follows.

36

SELECT * FROM tablename WHERE unique2=?;

UPDATE tablename SET val6='some random string'

WHERE unique2=?;

The relation tablename is generated based on Wisconsin Scalable (wiscs)

Benchmark with a predefined size. The attribute unique2 was indexed in

sequential order. In place of question marks shown above, the randomly

generated integer number is inserted. The insertion of these numbers follows

a uniform distribution that lies between zero and the total number of tuples.

Two MySQL relations of InnoDB storage engine are used with size of

tuples equal to 5x10^6, and 10x10^6 tuples respectively and three MySQL

relations of MyISAM storage engine are used with size of tuples equal to

20x10^6, 50x10^6, and 100x10^6 tuples respectively.

5.1.3 Verification

All the response times are logged in a file. All the queries from the traffic

generator arrive at the database server through the predefined concurrent

connections. If all connections are occupied at the same time in an

experiment, the database server is considered to be saturated and then that

experiment is excluded.

5.2 Experiment: Select only

5.2.1 Description

The Select request is based on read only operations on the single or multiple

columns of the single row of MySQL relations. Therefore, the locking of a

particular section of database is not required.

The experiment involves forwarding Select requests from the traffic

generator to the MySQL database with the structure as below.

mysql>SELECT number FROM tablename WHERE val2=?;

37

Here, val2 is the primary key of the relation tablename. The primary key is

used for unique indexing of number of rows in relation tablename.

The purpose of the experiment is to determine dynamics of the mean

response time of Select requests when data are read from a particular row of

a relation. In order to compare the dynamics of mean response time for

Select requests, the experiment is iterated for several relations with various

relation sizes.

The mean response time of the MySQL server for Select requests depends

on the mean arrival rate, relation size and storage engine of database server.

Therefore, the experiment is conducted to investigate mean response time

for 5MSelectInnoDB, 10MSelectInnoDB, 20MSelectMyISAM,

50MSelectMyISAM and 100MSelectMyISAM.

The mean response time of Select request in MySQL relations increases

with the increase in size of relations. The input request mean arrival rate is

increased with step sizes of 5.

5.2.2 Result

Figure 5.1 compares the dynamics of mean response times of

5MSelectInnoDB, 10MSelectInnoDB, 20MSelectMyISAM,

50MSelectMyISAM and 100MSelectMyISAM.

38

 Figure 5.1: Comparison of mean response time of 5MSelectInnoDB,

10MSelectInnoDB, 20MSelectMyISAM, 50MSelectMyISAM and

100MSelectMyISAM.

The 5MSelectInnoDB remains in the low load situation for the highest value

of request mean arrival rate while the 100MSelectMyISAM remains in the

low load situation for the smallest value of request mean arrival rate. This is

because 5MSelectInnoDB involves relations with size of 5 million and

100MSelectMyISAM involves relations with size of 100 million. The mean

response time curve of Select request for relations with large relation size

(100M) shows high value at lower input arrival rate than for relations with

low relation size (10M) at high input arrival rate.

 The rising trend of server mean response time for Select requests in all

scenarios is more or less similar even if relations with different engine types

39

are involved. These similarities in rising trend are because of the fact that

the Select request basically performs read only operations which doesn’t

require locking of part of database. Since the reading operation on MySQL

relations is same for both InnoDB storage engine and MyISAM storage

engine, the mean response time of Select requests do not depend on the

MySQL relations engine type. The 100MSelectMyISAM saturates at the

smallest value of mean arrival rate (around 50) with the highest value of

mean response time (around 0.6 sec) while 5MSelectInnoDB saturates at

highest value of mean arrival rate (around 110) with smallest value of mean

response time (around 0.26 sec). The reason behind this trend of saturation

of mean response time is that the Select requests in these experiments utilize

different MySQL relations with different relation sizes.

5.3 Experiment: Update only

5.3.1 Description

The Update request is based on write operations which require locking of

the part of the database. The locking method of the database depends upon

on the storage engine type of the database. The InnoDB performs row-level

locking while MyISAM allows table locking when updating.

The request from the traffic generator consists of an UPDATE-query which

is structured as follows.

mysql>UPDATE tablename SET val5=’some random

string’ WHERE val2=?;

Here, val2 is the primary key of the relation tablename.

Similar to the Experiment 5.2, the mean response time of the MySQL server

for the Update requests depends on factors such as request mean arrival rate,

different relation size and storage engine of database server. Therefore, the

experiment is conducted to measure the mean response time for

40

5MUpdateInnoDB, 10MUpdateInnoDB, 20MUpdateMyISAM,

50MUpdateMyISAM and 100MUpdateMyISAM and to compare these

mean response time to investigate the effects of above mentioned factors on

it. The input request mean arrival rate is increased with step sizes of 1.

5.3.2 Result

Figure 5.2 shows the dynamics of the mean response times of

5MUpdateInnoDB, 10MUpdateInnoDB, 20MUpdateMyISAM,

50MUpdateMyISAM and 100MUpdateMyISAM.

Figure 5.2: Comparison of mean response time of 5MUpdateInnoDB,

10MUpdateInnoDB, 20MUpdateMyISAM, 50MUpdateMyISAM and

100MUpdateMyISAM.

41

The mean response times for 20MUpdateMyISAM, 50MUpdateMyISAM and

100MUpdateMyISAM show almost similar flat response for low load

situations. This low load situation can be measured when the values of mean

arrival rate for 20MUpdateMyISAM, 50MUpdateMyISAM and

100MUpdateMyISAM are below 34, 38 and 50 respectively. However, the

mean response time of 5MUpdateInnoDB, 10MUpdateInnoDB shows

almost linear response at low load situations while 20MUpdateMyISAM,

50MUpdateMyISAM and 100MUpdateMyISAM shows almost flat

response at low load situations. This change in trend of graph in Figure 5.2

is due to the fact that 20MUpdateMyISAM, 50MUpdateMyISAM and

100MUpdateMyISAM involves relations with MyISAM storage engine

while 5MUpdateInnoDB and 10MUpdateInnoDB involves relations with

InnoDB storage engine. In case of low load situation, the mean response

time of 5MUpdateInnoDB and 10MUpdateInnoDB which utilize InnoDB

engine is relatively higher than that of 20MUpdateMyISAM,

50MUpdateMyISAM and 100MUpdateMyISAM which utilize MyISAM

engine.

The rising trend of mean response time of Update request for relations with

MyISAM engine type is steeper than that for relations with InnoDB engine

type. It can be seen from Figure 5.2 that 5MUpdateInnoDB and

50MUpdateMyISAM saturate for similar values of mean arrival rate

(around 45). Also, the mean response time for saturation shows a similar

value (around 0.7 sec) for both 5MUpdateInnoDB and

50MUpdateMyISAM.

Similarly, the mean response time of 10MUpdateInnoDB and

100MUpdateMyISAM saturates at similar value (around 0.78 sec) and

corresponding mean arrival rates also show similar value (around 41).

The different trend of the graph in Figure 5.2 is due to the fact that

5MUpdateInnoDB and 10MUpdateInnoDB utilize InnoDB engine which

involves row level locking while 20MUpdateMyISAM,

42

50MUpdateMyISAM and 100MUpdateMyISAM utilize the MyISAM

engine which involves table level locking.

5.4 Experiment: Mixture of Update and Select

5.4.1 Description

This experiment is conducted to determine the mean response time of the mixed

requests consisting mixture of Update and Select requests. The generation of mixed

requests from the traffic generator is performed in such a way that the probability

of generation of Update requests is 75 percent and probability of generation of

Select requests is 25 percent.

The mean response time for mixed requests depends upon a number of

factors such as the mean arrival rate, relation size and different storage

engines of the database server (either InnoDB or MyISAM). The experiment

is performed with 5MmixInnoDB, 10MmixInnoDB, 20MmixMyISAM,

50MmixMyISAM and 100MmixMyISAM to compare and investigate the

effects of these factors on mean response time of mixed requests. The

experiment is performed with input mean request arrival rate taken at step

sizes of 1.

5.4.2 Result

Figure 5.3 compares the dynamics of the mean response time of mixed

requests for five different scenarios (5MmixInnoDB, 10MmixInnoDB,

20MmixMyISAM, 50MmixMyISAM and 100MmixMyISAM).

43

Figure 5.3: Comparison of mean response time of 5MmixInnoDB,

10MmixInnoDB, 20MmixMyISAM, 50MmixMyISAM and

100MmixMyISAM

Generally, the dynamics of mean response times for mixed requests for all

five scenarios (5MmixInnoDB, 10MmixInnoDB, 20MmixMyISAM,

50MmixMyISAM and 100MmixMyISAM) is more or less similar to that

for Update requests for five scenarios (5MUpdateInnoDB,

10MUpdateInnoDB, 20MUpdateMyISAM, 50MUpdateMyISAM and

100MUpdateMyISAM) of Figure 5.2.

However, the mean arrival rate required for saturation of

100MmixMyISAM (around 43) is less than that of 10MmixMyISAM

(around 46). The mean response time for saturation of 100MmixMyISAM

(around 0.76 sec) is greater than the mean response time for saturation of

44

10MmixInnoDB (around 0.66 sec). Instead, both the 50MmixMyISAM and

10MmixInnoDB at saturation show similar values of mean response time

(around 0.66 sec). Also, the input request mean arrival rate required for

saturation of both 50MmixMyISAM and 10MmixInnoDB are of almost

similar values (around 46).

The mean response time of 5MmixInnoDB, 10MmixInnoDB,

20MmixMyISAM, 50MmixMyISAM and 100MmixMyISAM at saturation

show correspondingly smaller value than that of 5MUpdateInnoDB,

10MUpdateInnoDB, 20MUpdateMyISAM, 50MUpdateMyISAM and

100MUpdateMyISAM of Figure 5.2. However, the mean arrival rate needed

for saturation of all 5MmixInnoDB, 10MmixInnoDB, 20MmixMyISAM,

50MmixMyISAM and 100MmixMyISAM is correspondingly higher than

that of 5MUpdateInnoDB, 10MUpdateInnoDB, 20MUpdateMyISAM,

50MUpdateMyISAM and 100MUpdateMyISAM of Figure 5.2.

One reason for this change in trend of graph in Figure 5.3 compared to the

graph in Figure 5.2 is the selection of requests type. The experiment 5.3

involves mixed requests which can be either Update or Select request from

the traffic generator for five different scenarios. However, experiment 5.2 is

conducted only with the Update queries for five different scenarios.

5.5 Experiment: Select and Update

5.5.1 Experiment : Comparison of 5M Select and 5M Update with

InnoDB storage engine

5.5.1.1 Description

This experiment is firstly performed for Select queries on MySQL relations

with size of 5million tuples and then the experiment is repeated for Update

queries on the same MySQL relations. The purpose of this experiment is to

determine and then compare the dynamics of mean response times for Select

request and Update request. Here, default InnoDB database storage engine

45

type for MySQL relation is considered. The input mean request arrival rate

is increased with step sizes of 1.

5.5.1.2 Result

Figure 5.4 compares the dynamics of the mean response times of

5MUpdateInnoDB and 5MSelectInnoDB .

Figure 5.4: Comparison of mean response time for 5MUpdateInnoDB

and 5MSelectInnoDB

The dynamics of the mean response times of 5MUpdateInnoDB are quite

different than that of 5MSelectInnoDB.

The 5MUpdateInnoDB remains in a low load situation for request mean

arrival rates less than approximately 20 while the 5MSelectInnoDB remains

in a low load situation for request mean arrival rate less than approximately

105. This means that 5MUpdateInnoDB remains in a low load situation for

46

much smaller values of request mean arrival rate compared to

5MSelectInnoDB.

The reason behind this trend in case of a low load situation is that the server

needs to wait for the requests from the traffic generator to arrive at the

server in order to execute the requests. The mean arrival rate of requests on

different concurrent connections is far lower than the capacity of the server

to handle requests that arrive on different concurrent connections.

The rising rate of dynamics of mean response times for both

5MSelectInnoDB and 5MUpdateInnoDB in case of a high load situation is

comparatively steeper compared to that of a low load situation. This is

because the database server remains always busy executing requests arriving

at the server through different concurrent connections.

The 5MUpdateInnoDB curve saturates when the mean arrival rate becomes

higher than 48. This value of mean arrival rate is much smaller compared to

the mean arrival rate needed for saturation of 5MSelectInnoDB.

5MSelectInnoDB saturates when the mean arrival rate becomes greater than

115.

The mean response time of Update for the overloaded condition (around 0.7

sec) is far higher than that of Select curve (around 0.28 sec).

5.5.2 Experiment : Comparison of 50M Update and 50M Select with

MyISAM storage engine

5.5.2.1 Description

The experiment is carried out to determine and compare the dynamics of

mean response times of both 50MUpdateMyISAM and 50MSelectMyISAM

at different values of input request mean arrival rate. The input mean arrival

rate is increased with step sizes of 1.

47

5.5.2.2 Result

The graph showing the comparison of dynamics of the mean response time

of 50MUpdateMyISAM and 50MSelectMyISAM is plotted in Figure 5.5.

Figure 5.5: Comparison of mean response time for

50MUpdateMyISAM and 50MSelectMyISAM

The dynamics of mean response time of both 50MUpdateMyISAM and

50MSelectMyISAM show an almost flat response time at low load

situations. The low load situations for 50MUpdateMyISAM and

50MSelectMyISAM are observed when the request mean arrival rates for

both 50MUpdateMyISAM and 50MSelectMyISAM are less than 37. The

flat nature of the mean response time for low load situation is due to the

reason that the experiment is conducted for MySQL relations with MyISAM

database storage engine. However, the mean response of

48

50MSelectMyISAM remains in a low load situation for a higher range of

mean arrival rates than that of 50MUpdateMyISAM.

The high load situation for both 50MUpdateMyISAM and

50MSelectMyISAM shows a sharp rising when the mean arrival rate is

greater than around 37 and less than the value where mean response times

for these requests saturate. However, the rising rate of 50MUpdateMyISAM

is steeper than for 50MSelectMyISAM.

The mean response time curve for 50MUpdateMyISAM saturates when the

value of mean arrival rate becomes greater than around 44. The mean

response time of 50MSelectMyISAM saturates when the mean arrival rate

becomes greater than around 74. This shows that the mean arrival rate

needed for saturation of 50MSelectMyISAM is much higher than for

50MUpdateMyISAM.

The mean response time for saturation of database server for

50MUpdateMyISAM is around 0.7 sec. This value is much higher than the

mean response time for saturation of 50MSelectMyISAM (around 0.46 sec).

5.6 Experiment: Change in number of connections to the

MySQL database server

5.6.1 Experiment: Effects of change in number of connections to the

server on 10MSelect with InnoDB engine

5.6.1.1 Description

Several clients can access MySQL server at the same time. This can be done

through multiple concurrent connections to the MySQL database server. It is

possible to manually set the number of the connections to the MySQL

server that can be built until the number do not exceed maximum

connection limit.

The experiment is carried out to determine and compare the dynamics of the

mean response time of 10MSelectInnoDB when number of concurrent

connections to the database server is changed. Here, at first, the experiment

49

is conducted for the default number of concurrent connections. Afterward,

the same experiment is repeated separately when the number of concurrent

connections is manually changed to 15, 10 and 5 respectively. If the number

of connections is manually reduced then the server rejects the requests that

arrive at the database server through concurrent connections depending

upon the number of connections reduced from the default connections. In all

experiments, the default number of concurrent connections is assumed to be

30. The database server with InnoDB engine type is used. The input mean

request arrival rate is increased with step sizes of 5.

5.6.1.2 Result

Figure 5.6 shows the dynamics of the mean response times of

10MSelectInnoDB5, 10MSelectInnoDB10, 10MSelectInnoDB15 and

default 10MSelectInnoDB.

Figure 5.6: Effect of change in number of concurrent connections on

10MSelectInnoDB

50

When we increase the number of concurrent connections from 5 to the

default value, the rising rate of mean response time of 10MSelectInnoDB

for high traffic situations will also increase and trend of curves becomes

correspondingly steeper. However, the mean response time for the low load

region does not show any significant changes for different number of

concurrent connections.

The saturation of the mean response time of 10MSelectInnoDB requires less

value of mean arrival rate if the number of concurrent connections is

decreased from the default number. Similarly, the mean response times for

saturation of 10MSelectInnoDB show smaller values if the number of

concurrent connections decreases from default number.

The reason behind this trend is that if we increase the number of concurrent

connections to the database server then rate of number of concurrent

execution of queries (throughput) will also be increased corresponding to

the increased number of concurrent connections.

However, if we reduce number of concurrent connections without reducing

the default number of worker threads, fewer queries will reach to the

database server through these reduced connections. Therefore, the

throughput of the database server will be also reduced.

Hence, if we reduce the number of concurrent connections, the ability of the

server to execute queries in parallel will also be reduced. Therefore, the

server becomes saturated for a smaller value of the mean arrival rate in

compared to a server with an increased number of concurrent connections.

5.6.2 Experiment: Effects of change in number of connections to the

server Decreased on 50M Update with MyISAM engine

5.6.2.1 Description

This experiment is conducted to investigate the effect of changing the

number of concurrent connections to the database server on the dynamics of

the mean response time for Update requests. The numbers of concurrent

connections considered in this experiment are default 30, 20 and 15. The

51

database server with MyISAM storage engine type is used. The input mean

request arrival rate is increased with step sizes of 1.

5.6.2.2 Results

Figure 5.7 shows the mean response time of Update request for different

number of concurrent connections to the database server.

Figure 5.7: Effect of change in number of concurrent connections on

50MUpdateMyISAM

Similar to the Select query in Figure 5.6, the mean response time of Update

requests for all three concurrent connections to the server (default 30, 20

and 15 connections) do not show any significant difference in low load

situations. However, the rising trends of these mean response times for high

load situations are quite different. The mean response times of Update for

all three concurrent connections saturates for a smaller value of mean arrival

rate in compared to the mean response time for Select request shown in

52

Figure 5.6. Also, the corresponding saturation value for the mean response

time is higher for Update than that for Select shown in Figure 5.6.

The reason behind this trend of graphs which are measured after the number

of connections is manually reduced is same as the trend of graphs in

experiment 5.1. However, the trend of graph in Figure 5.7 shows an almost

flat response at low load situations due to the nature of MyISAM storage

engine involved in this experiment.

5.7 Experiment: Effect of choosing different Step Size for

Input Request Arrival Rate

5.7.1 Description

This experiment is conducted to observe the effect of the selection of step

sizes for the input request arrival rate on the dynamics of the mean response

time of requests delivered to the database server. If we choose a large step

size of input request mean arrival rate, we cannot figure out the dynamics of

output mean response time of requests accurately and exactly. In this

experiment, we choose step sizes for the input request mean arrival rate of 1

and 5.

5.7.2 Results

Figure 5.8 shows the comparison of the dynamics of mean response time of

Update request for input mean arrival rate increased with step sizes of 1 and

5.

53

Figure 5.8: Effect of choosing different step size for input request

arrival rate on 5MUpdateInnoDB

The dynamics of the mean response time of Update request in high load

situation can be more exactly measured if we choose a small step size for

the input request mean arrival rate. If we choose a large value of step size,

then we may not be able to measure the dynamics of the mean response time

of Update request more accurately. Also, the rising rate of the trend in the

graph can be determined exactly if we choose a small value of input step

size.

In the above Figure 5.8, the mean response time of Update request for the

low load region and the saturation region is not so much affected by the

selection of input step size than that for the high load region.

Hence, the selection of step size of input request mean arrival rate is also

depend on the need of how accurately we want to determine the optimum

performance of the database server for high load traffic and therefore it

plays a significant role in achieving a good model of the database server.

54

Thus, the selection of step size of input mean arrival rate also affects the

efficient designing of a response time estimator and controller logic used for

controlling the requests traffic.

55

6 Discussion on Limitations

Section 5 (Experiment section) provides a discussion on a set of

experiments performed on the data tier that contains a database server. The

whole idea is to measure the mean response time of the requests sent to the

database server. This section provides discussion on the validity of the

measured responses times.

The measurement of response time starts when the request has left the traffic

generator and stops when the response of request is returned from the

server. The time measured does not only include the response time in the

database server but also the time in the network and also the time to process

the network packets in the operating system.

The generation of traffic and measurement of the response time are

performed on the same computer. The traffic generation needs processing

power. If the processing power of the computer that measure the response

time is not enough, then the measured response time might be larger than

the actual response time.

The methods used for performing all the experiments also have some

limitations. All the experiments assume that the default number of worker

threads is equal to 30 and that the default number of external concurrent

connections to the database server is equal to 30. However, the maximum

number of concurrent connections available for the worker threads is

configured to be 800.

The experiment results in this thesis do not contain any graphs for the

number of worker threads more or less than 30 and the number of external

concurrent connections greater than 30.

56

The worker threads which are actually Java threads are responsible for

fetching the requests to the database server. If, in case, high traffic of the

requests are generated from traffic generator and sent to the database server

and at the same time, all the worker threads are busy in executing the

requests at every predefined connections then the worker threads are unable

to perform simultaneous fetching of those requests. Therefore, the requests

arriving at the database server may not follow exponential distribution all

the time even if the generation of requests from traffic generator follows

exponential distribution.

In all the experiments, relations with smaller relation sizes (5 millions and

10 millions) are considered for InnoDB engines while relations having

larger relation sizes (20 millions, 50 millions and 100 millions) are used for

MyISAM engine. The reason behind this is that we cannot figure

saturation regions exactly in practice and, the results look something

unreasonable and not promising if we use relations having smaller relation

sizes for MyISAM engine.

57

7 Conclusion and Future Works

The modeling of the MySQL database server is performed according to the

dynamics of the mean response time for different loads (request mean arrival

rates). The dynamic modeling of MySQL database server for given particular

requests shows different behavior for different loads and also for different changed

scenarios. These changed scenarios include change in any of the metrics such as

types of requests, engine storage type, number of concurrent connections and

relations sizes.

Hence, the model showing this behavior of the database server need to be

considered when designing the database server for optimum performance.

With this, we are able to determine the mechanism for maximum utilization

of system’s capacity while meeting all the SLAs (service level agreement).

In this way, we are able to perform resources management in efficient way.

Future Works

 This thesis does not discuss anything about the overload protection

mechanism. However, there are many papers and reports related to

mechanism for overloading protection.

Since we achieve a good model for the optimum performance of the

database server, we can use this model in the future to determine appropriate

methods for overload protection.

The step-controllers and PI-controllers (Proportional-Integral controllers)

are the simpler controllers which have been used in application servers for

control purposes. The implementation of these types of controllers has been

discussed in a previously published thesis report written by Gustav Cedersjö

[12]. However, there exist many sophisticated controllers applied on

application servers for controlling database overload.

58

59

List of References

[1] E.F. Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377–387, 1970.

[2] Oracle9i SQL Reference Release 2(9.2), Part Number A96540-02, October

2002.

[3] "Sun Microsystems Announces Completion of MySQL Acquisition; Paves

Way for Secure, Open Source Platform to Power the Network Economy" . Sun

Microsystems. 26 February 2008.

[4] "Oracle Announces the Acquisition of Open Source Software Company,

Innobase" . Oracle. Retrieved 2012-01-30.

[5] D. Bitton, D.J. DeWitt, and C. Turbyfill. Benchmarking database systems a

systematic approach. In Proceedings of the 9
th
 International Conference on Very

Large Data Bases, pages 8–19. Citeseer, 1983.

[6] C. Turbyfill, C. Orji, and D. Bitton. AS3AP – a comparative relational

database benchmark. In COMPCON Spring ’89. Thirty-Fourth IEEE Computer

Society International Conference: Intellectual Leverage, Digest of Papers., pages

560–564, 1989.

[7] A. Hagsten and F. Neis. Crisis request generator for internet servers. Master’s

thesis, Dept. of Communication Systems, Lund University, 2006.

[8] Apache Software Foundation. Jmeter. http://jakarta.apache.org/jmeter.

[9] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java™ Language

Specification, The (3
rd

 Edition) (Java (Addison-Wesley)). Addison-Wesley

Professional, 2005.

http://www.sun.com/aboutsun/pr/2008-02/sunflash.20080226.1.xml
http://www.sun.com/aboutsun/pr/2008-02/sunflash.20080226.1.xml
http://www.oracle.com/us/corporate/press/016679_EN
http://www.oracle.com/us/corporate/press/016679_EN
http://en.wikipedia.org/wiki/Oracle_Corporation
http://jakarta.apache.org/jmeter

60

[10] D.J. DeWitt. The Wisconsin benchmark: Past, present, and future. The

Benchmark Handbook for Database and Transaction Processing Systems, 1, 1991.

[11] S. Marlow. Haskell 2010 Language Report, 2009.

[12] G. Cedersjö. Overload Protection for the Data Tier in a Multi-Tier Web

Server System. M.Sc. thesis, EIT, LTH, Sweden 2010.

61

List of Figures

Figure 2.1 Two-tier web server system .. 11

Figure 3.1 Experiment Setup.. 24

Figure 3.2: General output mean response time plot specifying three distinct

load regions ... 26

Figure 4.1: Lab Hardware Setup .. 29

Figure 4.2: Concept of states on counting semaphore.................................... 33

Figure 5.1: Comparison of mean response time of 5MSelectInnoDB,

10MSelectInnoDB, 20MSelectMyISAM, 50MSelectMyISAM and

100MSelectMyISAM. .. 38

Figure 5.2: Comparison of mean response time of 5MUpdateInnoDB,

10MUpdateInnoDB, 20MUpdateMyISAM, 50MUpdateMyISAM and

100MUpdateMyISAM. .. 40

Figure 5.3: Comparison of mean response time of 5MmixInnoDB,

10MmixInnoDB, 20MmixMyISAM, 50MmixMyISAM and

100MmixMyISAM ... 43

Figure 5.4: Comparison of mean response time for 5MUpdateInnoDB and

5MSelectInnoDB ... 45

Figure 5.5: Comparison of mean response time for 50MUpdateMyISAM and

50MSelectMyISAM ... 47

Figure 5.6: Effect of change in number of concurrent connections on

10MSelectInnoDB .. 49

62

Figure 5.7: Effect of change in number of concurrent connections on

50MUpdateMyISAM ... 51

Figure 5.8: Effect of choosing different step size for input request arrival rate

on 5MUpdateInnoDB .. 53

63

List of Tables

Table 2.1: Lists of terms and their equivalent used in relational database 13

Table 4.1: Counter value and their meaning .. 32

64

65

List of Acronyms

T : mean response time taken by MySQL database server for particular SQL
request

λ : request mean arrival rate

5MSelectInnoDB: SELECT request to the relation of InnoDB engine type with size

of 5 millions tuples

5MUpdateInnoDB: Update request to the relation of InnoDB engine type with size
of 5 millions tuples

5MUpdateInnoDBOne: same as 5MUpdateInnoDB but the input step size is
choosen as 1

5MUpdateInnoDBFive: same as 5MUpdateInnoDB but the input step size is

choosen as 5

10MSelectInnoDB: SELECT request to the relation of InnoDB engine type with size
of 10 millions tuples

10MSelectInnoDB15: same as 10MSelectInnoDB but the number of connections

to the MySQL server is reduced to 15

10MSelectInnoDB10: same as 10MSelectInnoDB but the number of connections

to the MySQL server is reduced to 10

10MSelectInnoDB5: same as 10MSelectInnoDB but the number of connections to

the MySQL server is reduced to 5

10MUpdateInnoDB: Update request to the relation of InnoDB engine type with
size of 10 millions tuples

10MSelectMyISAM: SELECT request to the relation of MyISAM engine type with

size of 10 millions tuples

66

10MUpdateMyISAM: Update request to the relation of MyISAM engine type with

size of 10 millions tuples

20MSelectMyISAM: SELECT request to the relation of MyISAM engine type with

size of 20 millions tuples

20MUpdateMyISAM: Update request to the relation of MyISAM engine type with

size of 20 millions tuples

50MSelectMyISAM: SELECT request to the relation of MyISAM engine type with

size of 50 millions tuples

50MUpdateMyISAM: Update request to the relation of MyISAM engine type with

size of 50 millions tuples

50MUpdateMyISAM25: same as 50MUpdateMyISAM but the number of

connections to the MySQL server is reduced to 25

50MUpdateMyISAM15: same as 50MUpdateMyISAM but the number of

connections to the MySQL server is reduced to 15

100MSelectMyISAM: SELECT request to the relation of MyISAM engine type with

size of 100 millions tuples

100MUpdateMyISAM: Update request to relation of MyISAM engine type with
size of 100 millions tuples

67

Appendix A

A.1 Caching

In MySQL, many clients may send requests for fetching the values from the

single or multiple columns of the same tuple of certain relations of the

database. Meanwhile, default caching time of results of requests depends on

the type of database server used. The caching help to get prompt reply of the

requested query which has been previously requested. This is because

MySQL’s query cache stores the results of previously executed requests

until some valid time before it gets expired.

However, this caching of requests may affect our motive of getting exact

response time needed for the execution of the requests since the response

result set of requests are delivered directly from cache instead from the

database server.

Hence, it is necessary to ensure whether caching of the requests is enabled

or not. This can be performed by issuing following command in mysql

command prompt,

mysql> SHOW VARIABLES LIKE ‘query_cache_size’;

It will return the following result
+------------------+-------+

| Variable_name | Value |

+------------------+-------+

| query_cache_size | 0 |

+------------------+-------+

68

It means that the query cache size is 0. This value ensures that the caching

has not been enabled. By default, the query cache size is 0 so caching is

disabled by default.

Furthermore, setting the query cache type variable equal to 0 also disable

the query caching.

mysql> SET SESSION query_cache_type = 0;

A.2 Remote MySQL Server Connection

The remote accessing of the MySQL database server from user or client

server is disabled by default due to security reasons. However, in many

cases, the remotely accessing of MySQL database server from another client

server or user is required. Also, to be able to connect the MySQL server

remotely, IP based account is also needed and proper connection parameters

that includes name of the host where server is running and username and

password of the mysql server account is needed. There is default value for

each connection parameters but these values can be overrided if necessary

by using program options specified either on the command line or option

file.

 For doing this, following configuration is needed to be performed.

The connection to mysql server should be made:
$ mysql -u root -p mysql

The next step is to create a database or use the database if that database

already exists. If new database called mindata needs to be associated with

user root and remote IP 202.54.10.20, then, the following commands can be

issued at mysql command prompt;

mysql> CREATE DATABASE foo;

mysql> GRANT ALL ON foo.* TO bar@'202.54.10.20'

IDENTIFIED BY 'PASSWORD';

69

Then, the next step is to logout from mysql command prompt and make sure

that the port 3306 is opened.

By default, port 3306 is not opened and firewalled.

After making sure that the port 3306 is opened for mysql server the

following command can be typed to check whether the remote connection of

mysql server is established or not.

$ mysql -u webadmin –h 65.55.55.2 –p

Another method is the use of telnet command to test the connection to

remote MySQL server and port 3306.

$ telnet 65.55.55.2 3306

After issuing these commands, we can check and verify whether the specific

user has been granted with a privilege for accessing the MySQL server

remotely. The following command is issued in mysql command prompt for

this purpose.

mysql> SHOW GRANTS FOR 'root'@'localhost';

mysql> SHOW GRANTS FOR 'root'@'202.54.10.20';

Other statements that are used for verifying user privileges are shown

below.

SHOW GRANTS;

SHOW GRANTS FOR CURRENT_USER;

SHOW GRANTS FOR CURRENT_USER();

Problem Encountered:

The port 3306 is blocked by default because of firewall which prevents the

client program to access the MySQL server remotely. Therefore, the

windows firewall needs to be configured through control panel and make

exception for the port 3306. This port is used for connecting MySQL server.

70

The following steps are carried out before remotely connecting to the

MySQL server.

1. Ping the remote ip address of server.

2. Show grant for specific user.

3. Check whether exception is made for port 3306 since this port is used by

MySQL server.

A.3 Changing The concurrent connection limit

While installing MySQL, the default configuration of the MySQL server

which is also part of installation process sets number of the maximum

concurrent connections to the MySQL server equal to 100.

In Windows, this could be verified by looking the my.ini file .This file can

be found in the default location mentioned below.

--defaults-file="C:\Program Files\MySQL\MySQL

Server 5.1\my.ini"

Alternatively, the maximum concurrent connections to the MySQL server

can be achieved by issuing the following command in mysql command

prompt.

mysql>show variables like 'max_connections';

The default output gives number of maximum concurrent connections equal

to 100.

The maximum number of concurrent connections to the MySQL server can

be increased or decreased whenever necessary. However, the maximum

number of concurrent connections cannot be exceeded beyond 1400.

The following command can be issued in mysql command prompt to set the

maximum concurrent connections to different value apart from default

value.

71

mysql>Set global max_connections=15;

mysql>Set global max_connections=250;

Alternatively, it is possible to navigate to the bin directly of MySQL

installation and use the MySQLInstanceConfig.exe file to reconfigure the

MySQL server directly. This will allow opening the MySQL Server

Instance Configuration Wizard which when further proceeding allows to

manually set the concurrent connections limit.

In many cases, it may be significant to limit the maximum number of

concurrent connections to MySQL server that can be built. The reason

behind this is that the MySQL server may run out of resources when there

involves large number of concurrent connections to the server.

72

73

Appendix B

B.1 Comparison of 10M Select and 10M Update for

InnoDB engine

74

B.2 Comparison of 20M Select and 20M Update for

MyISAM engine

