
“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 1 — #1

FPGA based entropy source for cryptographic use

Emma Hilmersson

Business Security
Lund

Advisor: Kennet Bckman at Business Security
and

Thomas Johansson at Electrical and Information Technology, LTH

August 12, 2013

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 2 — #2

Printed in Sweden
E-huset, Lund, 2013

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page i — #3

Abstract

Random number generators, RNGs, are an important part of cryptographic mod-
ules and earlier there have been standards and evaluations schemes for all part
of the module except the RNG. Evaluation schemes for entropy sources used as
random number generations have now become mandatory in countries such as
Germany and the U.S. The first part of this report summarises the requirements
for these evaluation schemes with the purpose to pass in both countries.

The second part of the report focuses on implementations of random number
generators in FPGA and different designs are discussed and compared to the sum-
mary of requirements. One of the designs with a possibility , according to the
author, to pass the evaluations was implemented in three identical development
boards with an Altera FPGA. The chosen implementation was also simulated using
Modelsim Altera 10.1b to analyse the behaviour of the source, both with respect
to the surroundings, such as temperature, and different placement and routing.

The final part is to compare the result of the implementation and simulation
to the summary of the requirements. Some of the requirements were harder to
satisfy and in the conclusions a discussion is made on what to do to be able to
fulfil all the requirements and if it is possible at all.

i

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page ii — #4

ii

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page iii — #5

Acknowledgements

I would like to thank my supervisor Kennet Bäckman at Business Security in Lund
for all your guidance and enthusiasm throughout this thesis.

I will also like to thank Business Security for the opportunity to doing my
thesis at your company and your kind hospitality.

iii

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page iv — #6

iv

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page v — #7

Table of Contents

Table of Contents v

List of Figures vii

List of Tables ix

1 Introduction to random number generators 3
1.1 Entropy Source . 3
1.2 Post processing algorithm . 4

2 Requirements 5
2.1 Introduction . 5
2.2 AIS31 . 5
2.3 NIST SP800-90B . 10
2.4 ISO/IEC 18031 . 14
2.5 Comparison of requirements from AIS31 and SP800-90B 15

3 Implementation of true random number generators in FPGAs 19
3.1 Different implementations of TRNGs 19

4 Transition Effect Ring Oscillator 23

5 Implementation of a Transition Effect Ring Oscillator 25
5.1 Tools and Hardware . 25
5.2 Details on the design . 25

6 Results from the first implementations of TERO 29
6.1 Placement and Routing . 29

7 Timing Simulations 31
7.1 Impact of placement and routing 31
7.2 Impact of jitter . 31

8 How does TERO fulfil the requirements 35

v

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page vi — #8

8.1 Statistical test suites . 35
8.2 Requirements for entropy . 35
8.3 Embedded tests and stochastic model 37
8.4 Discussion of the results . 38

9 Conclusions and future work 39
9.1 Future work . 40

References 41

A VHDL Code 45

vi

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page vii — #9

List of Figures

1.1 Basic design of a true random number generator 3
1.2 Implementation model . 4

2.1 Implementation model according to AIS31 6
2.2 Entropy Source Model . 11

3.1 Sunar et al’s Ring Oscillator, with the design given in [16] 19
3.2 Fischer and Drutarovsky PLL RNG, given in [18] 20
3.3 Architecture of Vasyltsoc et al’s generator, given in [19] 20
3.4 Danger et al’s generator from [20] 21

4.1 First published version of TERO . 23
4.2 Block diagram over TERO loop with NAND gates 23
4.3 Wave diagrams over TERO loop . 24

5.1 Block diagram for design . 26
5.2 Block diagram of Entropy source module 26
5.3 Blockdiagram of Output control . 27
5.4 Data bits for transmitting UART 27

6.1 Placement of the TERO . 30
6.2 Routing of the TERO in one LAB 30
6.3 Nand gate implemented in LUT . 30

7.1 Loop divided into upper and lower part and showing the corresponding
delay . 32

7.2 Wave diagrams of the symmetric TERO loop 32
7.3 Number of oscillations for 0c slow with sigma 7 ps. 33
7.4 Number of oscillations for 85c slow with sigma 7 ps. 33
7.5 Number of oscillations for 0c fast with sigma 7 ps. 34

8.1 Result from T0 to T5 from BSI testsuite for FPGA A 36
8.2 Result from T6 to T8 from BSI testsuite for FPGA A 36
8.3 Part of wave diagrams of the TERO oscillation 37

vii

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page viii — #10

viii

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page ix — #11

List of Tables

2.1 Comparison of requirements . 16

7.1 Entropy for different jitter sizes . 32
7.2 Number of oscillation for different jitter sizes 32

8.1 Table over entropy for A, B and C in bits per bit 37
8.2 Number of oscillation for FPGA A,B and C 37
8.3 Table over entropy for A, B and C in bits per bit 38

ix

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page x — #12

x

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 1 — #13

Aim and outline of this thesis

Random number generators (RNG) are an important part in all cryptographic
systems where random numbers are used, such as in key generation processes,
authentication protocols and to seed pseudo-random number generators. Until
recently there have been standards for all parts of a cryptographic module, ex-
cept for the RNG, and the source of the randomness in the RNG; the entropy
source. Evaluation of a random number generator used in a cryptographic sys-
tem is mandatory in Germany and the USA, according to AIS31 and SP800-90B
respectively. The first part of this report summarises the requirements and a com-
bined list is created. An RNG fulfilling the requirements of this combined list
would then be able to pass the evaluation in both countries. The International
Organization for Standardization, ISO have together with the International Elec-
trotechnical Commission, IEC published another standard, 18031 which will be
briefly discussed as well.

The aim of this project is then to study if it is possible for an entropy source
from academic publications to pass the requirements given in the evaluation schemes.
Some implementations, from academic publications, of random number generators
are discussed, while trying to find one with a possibility to pass the evaluation.
Only implementations aimed at FPGAs have been considered.

Section 2 in this thesis discusses the basics about random number generators
and constructions. Section 3 summarises the requirements for entropy sources,
both for AIS31, SP800-90B and for ISO/IEC 18031. In section 4 different imple-
mentations in FPGA are discussed with the aim to find one that can fulfil the
requirements presented in section 3. Section 5 have details on the implementation
for this project while section 6 shows the results for the first implementations. Tim-
ing simulations and the results from them are presented in section 7 and section 8
focuses on how well the requirements are fulfilled. Section 9 includes conclusions
and future work.

1

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 2 — #14

2 LIST OF TABLES

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 3 — #15

Chapter 1
Introduction to random number generators

Random number generators, RNGs, are a major part in cryptographic applications
and are used to create numbers that appear to be random.

A RNG can be divided into three categories: deterministic, true (non-deterministic,
physical) and non-physical true(hybrid) random number generators. The differ-
ence between a deterministic (DRNG) and a true (TRNG) random number gen-
erator is that the DRNG uses a deterministic algorithm while the TRNG uses an
uncontrollable physical process. A non-physical true random number generator
(NTG) is a combination of a DRNG and a TRNG, where the TRNG repeatedly
seeds a DRNG. This report focuses on finding a good entropy source, which can
be used in a TRNG, discussed more in section 1.1. A basic TRNG consist of
an entropy source, which is the part that gives entropy, and the output, as in
Figure 1.1.

Figure 1.1: Basic design of a true random number generator

A more useful design of TRNGs is shown in Figure 1.2, where the raw random
numbers are the output from the noise source and the external random numbers
are the numbers out to the user. These sequences of numbers will be the same, if
not processed by an algorithm.

1.1 Entropy Source

As mentioned earlier a TRNG uses an uncontrollable physical process as the en-
tropy source and there are a few different types that can be used.

3

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 4 — #16

4 Introduction to random number generators

Figure 1.2: Implementation model

1.2 Post processing algorithm

As seen in Figure 1.2 a post-processing algorithm is an optional part of a TRNG
implementation. The post-processing algorithm is used to increase the entropy
and decrease statistical defects of the raw random numbers and this can be done
in different ways. Some common post-processing algorithms are:

XOR corrector: A function that applies an exclusive-or operation on a block of
size n bits to generate one output bit. The drawback of this is that the
bit-rate is reduced n-times, but it reduces the bias and it is possible to have
a constant bit-rate.

Von Neumann corrector: A function that tries to get a balanced distribution of
’1’ and ’0’ bits, in other words lowers the bias. It takes a pair of bits and
uses the first bit if they are different otherwise it throws away both of them.
The output bit-rate will depend on the data.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 5 — #17

Chapter 2
Requirements

2.1 Introduction

Two evaluation schemes, AIS31 and SP800-90B, have become mandatory in Ger-
many and the USA respectively. To be able to get a product passed the evaluation
in both these countries it is important to study the similarities and differences in
these schemes. The purpose of an evaluation scheme is to increase confidence in
not just the random output but in the whole design. The reason for not only
evaluating the output is that testing this data can only indicate if it is satisfactory
from a statistical point of view. The tests can not tell the difference between a
deterministic and truly random data generation. A post-processing algorithm for
example, may transform data with poor or non existing random properties so that
they pass all statistical tests. Statistical tests can still be important in order to
distinguish how the output differs from an ideal true random sequence.

The evaluation must also consider tests of the random source as quality self-
tests, which shall be based on the knowledge about the specific random number
generator.

Some general requirements for a random number generator(RNG) are that; the
output should have good statistical properties, the output should be unpredictable,
the source should be robust(to resist attacks) and it should be possible to test the
source.

2.2 AIS31

AIS31 is the German evaluation and certification scheme [1], for a True Ran-
dom Number Generator(TRNG). AIS31 contains requirements from the Federal
Office for Information Security(The Bundesamt für Sicherheit in der Information-
stechnik(BSI)) and has been mandatory in Germany, and part of the scheme is
mandatory in France, since 2001. In [1] are the updated versions of [2] and [3].
BSI is a German government agency responsible for communication security. In
AIS31 there are properties and criteria that a TRNG should fulfil together with
some tests to pass the evaluation. The main goal in this evaluation is to estimate
the entropy per random bit.

AIS31 have different predefined classes for random number generators and for
Physical TRNG:s, PTG.1,2 and 3.

5

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 6 — #18

6 Requirements

Figure 2.1: Implementation model according to AIS31

• PTG.1 is the lowest security class and can be used to generate random
numbers but the output may be guessable.

• PTG.2 generates high-entropy random numbers and these numbers may be
practically indistinguishable from independent and uniformly distributed
random numbers(as the output from an ideal RNG).

• PTG.3 defines the highest security class in AIS31 and includes both the
physical part and a cryptographic post-processing algorithm.

A PTG.2 can be used in a PTG.3 and since this project focuses on the quality
of the entropy source, the requirements for a PTG.2 will be in focus.
As seen in Figure 2.1 the embedded tests are an important part of the entropy
source and according to the AIS31 scheme the embedded tests are:

Total Failure Test The total failure test have the following requirements:

A1: Shall detect a total failure of the entropy source.

A2: If a total failure occurs while the RNG is being operated, the RNG
shall either : i) numbers generated after the breakdown will be output
ii) If a post-processing algorithm of class DRG.2 is used 1 the random
sequence generated after the breakdown can be used, if the internal
state entropy of the DRG.2 guarantees the claimed output entropy (i.e
all generated entropy comes from the deterministic algorithm.)

Either requirement i) or ii) must be used, but since this project studies only
entropy sources i) is used.

Online Tests The online tests are embedded tests that shall fulfil the following
requirements :

A3: Detect non-tolerable statistical defects of the raw random sequence.
This should be done both at start-up and while operating.

A4: The online test at start-up has to be successful before any random
numbers can be generated.

1A Deterministic random number generator of class 2, more information in [2]

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 7 — #19

Requirements 7

A5: The online test shall be able to detect non-tolerable weaknesses in an
acceptable time.

A6: Shall test the quality of the raw random number sequence.

A7: The online test can be triggered externally, at regular intervals, con-
tinuously or at specific internal events.

A8: Shall detect non-tolerable statistical defects of the raw random num-
bers within an acceptable time.

A9: The online test should detect if the entropy decreases, by ageing, tol-
erance of components, environmental stress, even though it does not
result in a total failure of the source.

The random sequence shall also be able to meet the following criteria:

A10: Test procedure A does not distinguish the internal random numbers from
output sequences of an ideal RNG.

A11: The average Shannon entropy (see section 8.2) per internal random bit
exceeds 0.997.

Requirement A11 can be checked by the statistical test procedure B, if the raw
random numbers are binary-valued.

If a post-processing algorithm is used then a PTG.2 also includes some of the
requirements from class PTG.1. If no post-processing algorithm is used, PTG.2.3
and PTG.2.5 will cover PTG.1.3 and PTG.1.4.

(PTG.1.3) The online test detects non-tolerable statistical defects of the internal
random numbers. The online test is [selection: triggered externally, applied
after regular intervals, applied continuously, applied upon specified internal
events]. When a defect is detected, the output of further random numbers
is prevented.

(PTG.1.4) Within one year of typical use, the probability that an online alarm
occurs is in the order of 10−6 or larger if the RNG works properly.

Other requirements for a PTG.2 are:

A12: A PTRNG should include an internal entropy source, a digitization mech-
anism of the signal, a (if necessary) post-processing algorithm, the online
test, a total failure test and a start-up test, all according to Figure 2.1.

A13: The internal random numbers can have an entropy defect, e.g. the numbers
can have a bias, and a post-processing algorithm is not required.

A14: If the post-processing algorithm(if any) does not reduce the average entropy
per bit, the average entropy per internal random bit equals at least the
average entropy per raw random bit.

A15: A stochastic model substantiated by statistical tests should provide evidence
that the entropy of the internal random numbers is large enough.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 8 — #20

8 Requirements

2.2.1 Evaluation methods

If the PTRNGs generate 1-bit raw random numbers there are two methods, A and
B, that may be used for evaluation.

Method A

A.1 (A16) The stochastic model should show that the raw random numbers
are stationary distributed and no significant(long-step) dependencies
occurs, which are not a part of test procedure B.

A.2 (A17) The raw random numbers shall pass the statistical test procedure
B under all relevant environmental conditions.

A.3 (A18) There shall be included a proof that the post-processing algo-
rithm does not reduce the entropy per bit. Or that the average entropy
per internal random bit is large enough.

A.4 (A19) The internal random numbers shall pass the statistical test pro-
cedure A (and other statistical standard test suites if applied) under
all relevant environmental conditions.

Method B

B.1 (A16)

B.2 (A20) The developer verifies on the basis of the stochastic model that
due to the post-processing algorithm the entropy per internal random
number is sufficiently large. Under suitable conditions test procedure
B might support this goal.

B.3 (A17/A19) The internal random numbers pass the statistical test pro-
cedures A and B (and other statistical standard test) under all relevant
environmental conditions

The evaluation method is chosen depending on your possibilities and if method
B is applied, three cases are possible: (i) Test suite B is passed if it verifies the
entropy per raw random numbers; (ii) Test suite B fails if the entropy per random
numbers could not be verified; or (iii) It is not possible to access the raw random
numbers or the numbers are not binary-valued, this leads to the result that test
suite B cannot be applied.

These methods can only be used if the source generates a single raw random
bit per time unit, if not another evaluation method needs to be performed.

2.2.2 Stochastic model

An important part in the evaluation by AIS31 is the stochastic model [1], [4]
which shall fulfil the requirements in A15, A16 and A20. A stochastic model is
part of the evaluation criteria because it is necessary to have an entropy per bit
rate that is high enough and the main purpose with the stochastic model is to give

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 9 — #21

Requirements 9

a probability distribution of the internal random numbers. It should also identify
the characteristics that can affect the distribution of the random numbers. A
model of the distribution of the raw random number shall be included.

2.2.3 Test suite for BSI

Some steps in the evaluation methods were to perform statistical tests and in
AIS31 scheme the tests are divided into two procedures, A and B, more about the
test procedures can be read in [2] section 2.4.4.
Test procedure A: Test if internal random numbers behave statistically inconspic-
uously by test T0-T5.
Test procedure B: Test to ensure that the entropy per raw bit is sufficiently large,
by test T6-T8.
Both of these test procedures can be performed by the software downloaded from
BSI [].

T0 : Disjointness
w1, ..., w216 if the members are pairwise different it will pass the disjointness
test.

T1 : Monobit test
The bit sequence b1, ..., b20000 pass the monobit test if 9654 < X < 10346
for the sequence

20000∑
j=1

bj

T2 : Poker test
For j = 1, ..., 5000 let cj = 8 · b4j−3 + 4 · b4j−2 + 2 · b4j−1 + b4j and f [i] :=|
j : cj = i | . The bit sequence b1, ..., b20000 pass the poker test if 1.03 < Y <
57.4, where

Y = (16/5000) · (
15∑
j=0

f [i]2)− 5000.

T3 : Runs test
The maximum sub-sequence of consecutive zeroes or ones. The permitted
intervals for the run lengths are shown in table.

Run length Permitted interval
1 2267-2733
2 1079-1421
3 502-748
4 233-402
5 90-223
≥ 6 90-233

T4 : Long run test
The bit sequence b1, ..., b20000 will pass the long run test if no long runs

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 10 — #22

10 Requirements

occur. A long run is a run of length ≥ 34.

T5 : Autocorrelation test
The bit sequence b1, ..., b20000 will pass the autocorrelation test if 2326 <
Zτ < 2674 ,where

Zτ =

5000∑
j=1

(bj ⊕ bj+τ).

T6 : Uniform distribution
The uniform distribution test with the sequence w1, ..., wn ∈ 0, 1k will pass,
with parameters (k,n,a) if

1

n
· | j ≤ n | wj = x |∈ [2−k − a, 2−k + a]

for all x ∈ 0, 1k.

Parameter k is the length of the vectors to be tested, n is the length of the
sequence to be tested and parameter a is a positive real number.

T7 : Comparative test for multinomial distribution
A sample wil, ...,Wi,n for i ∈ {1, ..., h} are considered with assumed values
from the set {0, 1, ..., s − 1}.The null hypothesis says that for multinomial
distribution the individual samples are identical. Let the relative frequency
for the occurrence of t, from all the sample be: pt := (f1[t] + ...+ fh[t])(hn)
and for t ∈ {0, ..., s− 1} let fi[t] := |{j : wij =}| By null hypothesis∑

i=1,...,h

∑
t=0,...,s−1

(fi[t]− npt)2/npt,

should be χ2 -distributed with (h− 1)(s− 1) degrees of freedom.

T8 : Entropy estimation
Used for estimating the entropy of the sequence. The bit sequence b1, ..., b(Q+K)L

is segmented into non-overlapping output words w1, ..., wQ+K with the length
L. The distance from wn to its predecessor with the same value is called An
and is determined as:

An =

{
n, if no i < n exist in wn = wn−1;
min{i|i ≥ 1, wn = wn−i}, in all other cases;

2.3 NIST SP800-90B

The recommendation SP800-90B (draft), Recommendation for the Entropy Sources
Used for Random Bit Generation, [6] is published by NIST, (National Institute
of Standards and Technology) in the US and is, together with SP800-90A [7] and
C [8], the requirements for random bit generators. This report focuses only on

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 11 — #23

Requirements 11

SP800-90B because that recommendation regards entropy sources, while A are
requirements for deterministic random bit generators and C for constructions.

In NISTs publications a RBG (random bit generator) is divided into DRBG
(Deterministic RBG) and NDRBG (Non-deterministic RBG), however no recom-
mendations are given for a basic NDRBG, an entropy source without a determin-
istic algorithm.

This leads to some of the requirements that are given depending on which
algorithm is used, this section will try to focus on just the entropy source.

The main difference between NIST and AIS31 is that SP800-90B focuses on
entropy sources used as input to a DRBG, which can be compared to a PTG.3 in
AIS31. However if an entropy source fulfils the requirements for AIS31 it can be
used as input to a DRBG and still pass the evaluation.

Figure 2.2: Entropy Source Model

2.3.1 Requirements

Figure 2.2 shows a model over the entropy source which shall fulfil the following
requirements :

N1 The entropy source should contain the different parts; a noise source, dig-
itization mechanism, health test and optional conditioning, according to
Figure 2.2.

Health test contains three tests; start-up, continuous and on-demand, which
shall be implemented. This component shall fulfil the following requirements:

N2 The health test shall make sure that the entropy source works as expected.

N3 If an error occurs at the health test no more random numbers can be given
and the module must be aware of the error.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 12 — #24

12 Requirements

N4 Start-up tests shall be performed at start up and the test sequence shall pass
before any random numbers can be at the output.

N5 The continuous test detects all known noise source failure modes and runs
while the RBG is operating.

N6 No specified requirements are given on the on-demand test, but it must be
possible to perform such a test.

The requirements define two tests that shall be implemented in both the start-
up and continuous tests. Alternatively other tests may be implemented, if proof
is given that they test the same thing.

N7 Repetition Count Test:
This test shall detect if the noise source is stuck on one value. It shall use the
estimated min-entropy and calculate the probability for repeating values.

N8 Adaptive Proportion Test:
This test shall detect a large loss of entropy, which can occur after a physical
failure or environmental change that affects the noise source.

The estimated min-entropy (see section 8.2) in requirement N9 depends on
which DRBG mechanism, and its security strength is used at the output. This
gives another requirement:

N9 The requested amount of entropy shall be met.

Other given requirements on the noise source are :

N10 The random numbers at the output do not need to be unbiased and inde-
pendent, but they shall show probabilistic behaviour.

N11 It shall be possible to test data directly from the noise source.

2.3.2 How does SP800-90 corresponds to FIPS140

The Federal Information Processing Standards Publication(FIPS) PUB 140-3 (draft),
[10] and previous versions are security requirements for the whole cryptographic
modules, while SP800-9B are recommendations for the entropy source. In FIPS
140 four security levels are specified where the security increases until level 4,
which is the highest.

Requirements in FIPS140 for a true random generator(called Non Determin-
istic Random Number Generator in the newest versions of FIPS140) are specified
in [10] section 4.7.1 and includes the self-tests(specified in section 4.9) and the
conditional Continuous Random Number Generator(specified in implementation
Guidance(FIPS140-2IG) [11] in section 9.8). It also tells that the TRNG shall be
identified in the security policy and a description, including all entropy sources,
should be in the test report. For FIPS140-3 a documentation of the minimum
entropy and the generated method of this entropy is required. If the security lev-
els 3 and 4 are wanted the module has to have an error log which should provide
information of the most recent errors.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 13 — #25

Requirements 13

FIPS 140-2 Section 4.9: The tests Power-up and Conditional self-tests shall be
performed and if a self-test fails the module shall enter an error state. The
documentation shall include proof of this together with what actions that
have to be done to exit the error state.

FIPS140-2IG Section 9.8 The continuous random number test shall be passed and
the conditional test shall be performed when specified conditions occurs
for the tests, such as: pair-wise consistency test, software/firmware load
test, manual key entry test, continuous random number generator test, and
bypass test.

To summarise this more requirements for the entropy source are given:

• (N12) A documentation of the minimum entropy and the generated method
must be included.

• (N13) Information of the most recent errors must be saved and possible to
collect.

2.3.3 NIST test suite

The National Institute of Standards and Technology(NIST) have developed the
test suite, SP800-22 [12], which includes 15 tests and even though they are not a
part of the requirements for FIPS validation, it’s used to verify the randomness of
the output.

1. The frequency(Monobit) Test
Tests the proportion of zeroes and ones in the sequence. The proportion
should be about the same.

2. Frequency Test within a Block
Tests the proportion of ones in a block of size M-bit. For a true random
sequence the frequency of ones is approximately M/2.

3. The Runs Test
Tests the total number of runs in the sequence. A run is an sequence of
identical bits, which starts and ends with the opposite value.

4. Tests for the Longest-Run-of-Ones in a Block
Tests the longest run of ones in a block of size M-bit.

5. The Binary Matrix Rank Test
Determines the rank of a M x Q matrix, where M=Q=32 in the tests, and
compares with statistical properties.

6. The Discrete Fourier Transform (Spectral) Test
Test the peak heights in the Discrete Fourier Transform of the sequence. A
periodic pattern in the test sequence is detected that can indicate a deviation
from the assumption of randomness. The goal is to see whether the number
of peaks exceeding the 95% threshold is significantly different than 5 %.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 14 — #26

14 Requirements

7. The Non-overlapping Template Matching Test
This is a test to detect the number of occurrences of a given non-periodic
pattern. To search for a specific m-bit pattern a m-bit window is used.
The window slides one bit position if the pattern not found, otherwise the
window is reset to the bit after the found pattern and continues the search.

8. The Overlapping Template Matching Test
A m-bit window is used here as well for the non-overlapping template match-
ing test and the idea with this test is to determine the number of runs of ones
for a given length and see how it differentiates from the expected number.

9. Maurer’s ”Universal Statistical” Test
The goal is to determine the number of bits between matching patterns.

10. The Linear Complexity Test
Longer linear feedback shift register (LFSR) can represent random sequences
and the idea with this test is to determine the length of a LFSR.

11. The Serial Test.
This tests the existence of 2m m-bit overlapping patterns and makes sure
that it is approximately the same as for a random sequence.

12. The Approximate Entropy Test
This tests the frequency of overlapping blocks of two close lengths(m and
m+1) and compares it with the result for a random sequence.

13. The Cumulative Sums (Cusums) Test
The digits in the random sequence are adjusted to (−1,+1) and a random
walk is performed, defined as the cumulative sum for the adjusted digits.
This random walk should be near zero for a random sequence.

14. The Random Excursions Test
In a cumulative sum random walk, the number of cycles having exactly K
visits are compared to what’s expected for a random sequence.

15. The Random Excursion Variant Test
In a cumulative sum random walk the number of times a particular state
occurs are compared to what’s expected.

2.4 ISO/IEC 18031

Another standard is the international standard ISO(the International Organi-
zation for Standardization)/IEC(the International Electrotechnical Commission)
18031,[14], published 2011. This standard includes requirements for both non-
deterministic and deterministic random number generators, as well as hybrid
RNGs. A generator is non-deterministic if the entropy source is non-deterministic,
which is a system where any amount of entropy can be extracted by sampling.
Further on, a non-deterministic generator can be divided into physical and non-
physical. A physical non-deterministic RNG (same as TRNG earlier) uses dedi-
cated hardware to produce the random numbers. An example of a non-physical
RNG can be time between keys pressed. As for the other requirements the focus
will be on entropy sources used in physical non-deterministic RNGs.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 15 — #27

Requirements 15

2.4.1 Requirements

To be able to use the entropy source as a random number generator the following
requirements have to be fulfilled.

I1 The principles behind the entropy source shall be well-established, which makes
it possible to identify a statistical model.

I2 The bits shall show probabilistic behaviour.

I3 Bits shall be stationary.

I4 Bits do not need to be unbiased and independent.

I5 A total failure of the entropy source shall be detected.

I6 Other failures or severe degradation shall be detected.

I7 The health tests shall be done at initialisation, at periodic intervals during
operating and on demand.

I8 If a failure occurs the source shall stop generating random numbers and it shall
enter an error state.

I9 In the error state it shall be possible to collect information about the error.

I10 The health tests shall contain statistical tests that correspond to a stochastic
model.

As requirements I10 tells the health tests shall be based on a stochastic model,
but it can be hard to find such a test. If this is the problem it is possible that
instead of finding tests that determine if the data fall into an acceptable range
the test can determine if the data have any existence of values that are known to
be associated with failures. The health test is used to make it possible to detect
manipulations and influences by some unauthorised external body.

2.5 Comparison of requirements from AIS31 and SP800-90B

This section compares the requirements from AIS31 and SP800-90B, which are the
standards that are mandatory in Germany and the US. Both methods use the raw
binary signal(digitized signal) for testing, as well as the post-processed output.
This is done because serious defects in the noise generator can be masked by the
post processing and then pass the statistical tests.

A summary of the requirements is given in table 2.1 for AIS31 and SP800-
90B, with comments and if the requirement direct or indirect is important for the
entropy source. Most of the requirements are more or less the same and are put
on the same line. Requirement A1/A9 and N8 are similar, with the difference that
the requirements from AIS31 are much stricter. N8 can only detect a catastrophic
failure of the noise source.

In AIS31 it is required to have a stochastic model for estimation of the entropy
and statistical tests are made, both on the output of the TRNG and the raw binary
signal (A15, A16, A20) This is not a part of the SP800-90B.

The requirements pose no contradictions.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 16 — #28

16 Requirements

SP800-90B AIS31 Comments Relevant
for entropy
source

N1 A12 Start up, continuous and on-
demand for NIST. Online, total
failure and start up for AIS.

N2 Test the entropy source X
N3 A2 If an error occurs, the output

stops
N4 A4 Must pass start up test. X
N5 A3 In AIS31, detect non-tolerable

statistical defects. Test during
operation to detect all known
failure modes.

X

N6 A7 In AIS31 online test can be trig-
gered at specific events. On-
demand test

N7 Detect if noise source is stuck on
one value

X

N8 A9/A1 Test to detect a large loss of en-
tropy.

X

N9 Requested entropy shall be met X
N10 A13 The output does not need to be

unbiased and independent, e.g. a
entropy defect.

X

N11 The raw data bits shall be possi-
ble to test.

X

N12 A11 Shannon entropy at least 0.997.
Documentation of the min-
entropy and generated method.

X

N13 Save information of most recent
errors.

X

A5 Non-tolerable weaknesses should
be detect soon.

X

A6 Test quality of the raw random
sequence

X

A8 Detect defects on raw random
numbers quickly.

X

A10 Internal numbers do not differ
from the output from an ideal
RNG.

A14/A18/A20 Proof of that post-processing
does not reduce the average en-
tropy per bit.

A15 Stochastic model should provide
evidence that the entropy is large
enough.

A16 A stochastic model should show
that the raw random numbers
are stationary distributed and no
significant dependencies occurs.

A17/A19 Raw and internal random num-
bers shall pass statistical tests.

X

Table 2.1: Comparison of requirements

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 17 — #29

Requirements 17

A summary of the requirements needed for a true random generator according
to the requirements above:

1. Use an uncontrollable physical process as source.

2. It must be possible to use the raw binary signal

3. You need a stochastic model of the entropy source(or documentation). The
stochastic model should estimate the distribution of the raw random num-
bers for focus on the entropy source and are used to estimate the entropy
of the sequence and evaluate what can affect the quality of the raw random
number sequence. (A5,A6,A8,A10)

4. If the entropy per bit are not large enough a post-processing algorithm is used.

5. Internal total failure test

6. Tests of non-tolerable statistical defects

7. Online test on raw binary signal

8. Statistical tests T0-T5 in test procedure A are passed under all relevant
environmental conditions

9. Statistical tests T6-T8 on raw binary signal in test procedure B are passed
under all relevant environmental conditions

10. Verify that the entropy per internal random number is sufficiently large.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 18 — #30

18 Requirements

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 19 — #31

Chapter 3
Implementation of true random number

generators in FPGAs

In [15] the authors introduces a concept, the (absolute) inner testable generator,
that is important when comparing different implementations. This means that
it should be possible to evaluate the entropy of the digitized noise, which can
be compared to the requirements where it should be possible to test the raw
random numbers. If the generator is absolutely inner testable it is sure that
the output does not contain any pseudo-random patterns. When implementing
a random number generator in a FPGA (Field Programmable Gate Array), we
are restricted to available resources, such as LUT (Look up tables) and PLLs
(Phase-locked loop). Two different phenomena are used: the variation of the
delay of logic gates(transition jitter), the analogue behaviour between two logic
levels (metastability).

3.1 Different implementations of TRNGs

While searching for an entropy source that could pass the evaluation criteria men-
tioned in section 2.5, some different designs of random number generators were
studied. This section gives a brief overview of the designs that were studied.
The advantages and drawbacks of each are mentioned together with some short
information about the source of randomness.

Figure 3.1: Sunar et al’s Ring Oscillator, with the design given in
[16]

• Ring Oscillator by Sunar et al’s [16]
Consists of n ring oscillators with 13 inverters, as in Figure 3.1 and the phe-
nomena used is jitter. It is implemented with resources that are available in

19

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 20 — #32

20 Implementation of true random number generators in FPGAs

all FPGAs. The biggest drawback of this generator is that the mathemati-
cal proof given in [16] is said to be unrealistic, which makes it hard to pass
the evaluation criteria given by AIS31 [1]. Otherwise it is said to produce
random numbers with a constant relatively high output bit-rate, according
to [16].

Figure 3.2: Fischer and Drutarovsky PLL RNG, given in [18]

• PLL generator by Fischer and Drutarovsky
Presented in [17] 2002, the randomness is given by the jitter in the clock
signal synthesized in an embedded analog PLL. The jitter is detected by the
sampling of a reference (clock)signal using a correlated (clock) signal syn-
thesized in the PLL. The generator doesn’t use a post-processing algorithm,
it already has a stochastic model, uses few resources and can fit all FPGAs,
even though all does not have analogue PLLs. According to the publication
the generator passes NIST test suite [12]. Design according to Figure 3.2.
A possible drawback is that it requires two PLLs, which can be a large part
of the resources in some FPGAs.

Figure 3.3: Architecture of Vasyltsoc et al’s generator, given in [19]

• Vasyltsov et al’s generator
In [19] Vasyltsov et al’s present a random number generator which consists
of a ring oscillator which has two modes; metastability 1 and oscillation. The
design is totally digital and it can be possible to achieve a high constant bit-
rate. But in their paper, [19] there are details that show that the bit-rate can
change with time and/or temperature. The paper gives no implementation
but the authors claim that it passes FIPS 140 and AIS31 class P1(similar
to PRNG.1) tests, but not AIS31 class P2(similar to PRNG.2).

• Danger et al’s
Proposed in [20]. It consists of a delay line which is composed of a chain of

1For more information about metastability see:
http://en.wikipedia.org/wiki/Metastability in electronics (24 june 2013

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 21 — #33

Implementation of true random number generators in FPGAs 21

Figure 3.4: Danger et al’s generator from [20]

n delay elements. Can be problematic if implemented in an FPGA, if the
delay elements do not have sufficiently small delay. This generator requires
a post-processing algorithm, but it is absolute inner testable. There is no
stochastic model of the generator but it can be derived quite easily, according
to the authors of [15].

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 22 — #34

22 Implementation of true random number generators in FPGAs

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 23 — #35

Chapter 4
Transition Effect Ring Oscillator

The Transition Effect Ring Oscillator, TERO, is proposed by Varchola and Dru-
tarovsky first in [21] and later in the book [22]. It was chosen to be implemented
and tested with regards to the requirements in section 2.5. TERO was chosen
mostly because of three reasons; it was claimed to be able to pass all tests in
FIPS140-2, according to authors of [22], it is small (uses only 6 gates) and because
it is a relatively new publication. A stochastic model is also given in [22] that
describes the entropy source and can fulfil the requirements in AIS31.

Figure 4.1: First published version of TERO

There are various versions of TERO, the first one proposed in [24] consists
of two XORs and two ANDs, according to Figure 4.1. The loop has two control
signals, for starting and reseting. The correct place and routing for this TERO is
important to ensure the same length of the interconnections between XORs.

Figure 4.2: Block diagram over TERO loop with NAND gates

Because of the importance of routing in the first TERO, a simpler TERO loop
was proposed in [23] where the XOR and AND are merged into NANDs as in
Figure 4.2. Inverters are added in the feedback loop. This TERO only has one

23

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 24 — #36

24 Transition Effect Ring Oscillator

control signal, ctrl, which decides the state of operation, either reset or oscillation
phase. The reset phase, which occurs when ctrl is ’0’, resets the loop, to the
same starting conditions before generating each random bit. The same starting
conditions are important when generating random bits to make sure that the bits
are not correlated to each other.

The oscillation phases start when ctrl changes from ’0’ to ’1’. This transition
will make the loop start to oscillate and keep oscillating for a random time.

Figure 4.3: Wave diagrams over TERO loop

Figure 4.3 shows the output from the TERO loop, teroout as in Figure 4.2. The
pulse length of the oscillations will shorten because of timing asymmetry (different
rise and fall time for each gate) according to Figure 4.3 and the oscillations will
eventual stop, when the pulse length is smaller than the reject time in transistors.
As seen in Figure 4.2 a TFF (T-Flip Flop), which is triggered at the falling edge of
teroout is used and its output, tffout, is used as input to an asynchronous counter.
The asynchronous counter counts the number of oscillations and the random bit
will be the least significant bit, LSB, of the counter. A synchronous counter,
which is the most common counter, cannot be used because it is too slow for this
frequency of oscillations.

The randomness comes from jitter in the gates, which will affect the pulse
length which results in a random number of oscillations.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 25 — #37

Chapter 5
Implementation of a Transition Effect Ring

Oscillator

5.1 Tools and Hardware

A TERO was implemented in an ORSoc OpenRISC Development board, ordb2a-
ep4ce22 [27] with an Altera Cyclone IV FPGA. Altera Quartus II 12.1 [26] was
used to develop the design and together with a VirtualBox image [25] the board
was programmed. To simulate the implementation Modelsim Altera 10.1b was
used.

Three individuals were used for implementation.

Some key features of ORSoc OpenRISC Development board:

• Altera Cyclone IV E, 22K LUT

• 4 general purpose PLLs

• 50.000 MHz clock from RMII

• 4 channels USB UART, FTDI FT4232

• Power supply over USB

• 594 kbits embedded memory

• 22320 Logic Elements

5.2 Details on the design

The whole block diagram of the implementation can be seen in Figure 5.1 and
consists of four larger blocks. One for the entropy source, two for the UARTs and
one for communication and control between the two others, called output control.
The module output control includes one counter, two finite state machine and one
module for statistics of the results from the asynchronous counter.

25

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 26 — #38

26 Implementation of a Transition Effect Ring Oscillator

Figure 5.1: Block diagram for design

5.2.1 Entropy source

The entropy source module includes the noise source, the TERO loop and an
asynchronous counter. The only two input signals are Reset and a 50 MHz clock.
The clock is only used as input in a PLL for producing a control signal with a
frequency of 1 MHz, which controls the rest of the logic. The outputs of the
module are the random bit and the count value from the asynchronous counter.

Figure 5.2: Block diagram of Entropy source module

5.2.2 Output control

The output control module is the interface between the entropy source and the
UARTs. The input signals are reset, a 50 MHz clock, the random bit and count
value, the last two from the entropy source. The four output signals are two data
signals and those addressing both UARTs. According to Figure 5.3 the module
includes a counter, a statistics module (TERO stat) and two finite state machines
(FSM). The statistics module makes a histogram of the number of oscillations.

5.2.3 UART 16550

To be able to communicate with the board, two UART 16550 (Universal Asyn-
chronous Receiver Transmitter) were implemented on the board, with a core from
opencores [28]. UART is used for serial communication, sending in this block, one
start bit, 8 data bits and one stop bit. The baud rate, same as the data rate for
binary data, is 115200 bps and no parity bits are used. The baud rate has to be
programmed with a baud rate divisor value using two registers, DLL and DLM

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 27 — #39

Implementation of a Transition Effect Ring Oscillator 27

Figure 5.3: Blockdiagram of Output control

(divisor latch register), L respective M stands for LSB and MSB (most significant
bit).

UART 16550 can be programmed with baud rates up to 115200 bps, which is
the rate used in this design.

Figure 5.4: Data bits for transmitting UART

All settings and more information about UART 16550 can be found in [29].
In this implementation one UART was used to output the random numbers and

the other for test information, such as number of oscillations(from asynchronous
counter) and alarm signals. Both UARTs only have one transmitter part imple-
mented, so it is only possible for the user to receive data from the board, not the
other way around.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 28 — #40

28 Implementation of a Transition Effect Ring Oscillator

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 29 — #41

Chapter 6
Results from the first implementations of

TERO

6.1 Placement and Routing

The first tries implementing the RNG was done with no constraints or assignments
on placement and routing in Quartus II. While evaluating these results it was
easy to see that the number of oscillations and the entropy differed a lot between
placements. To be able to know that the placement and routing were the same in
every implementation the TERO loop, according to Figure 4.2, was hand-placed
as in Figure 6.1. The figure shows a LAB, configurable logic block, which consists
of several logic units. Each unit looks like Figure 6.3, which in this case shows
how a nand gate is implemented in one logic cell.

That the result could differ between implementations was a problem and the
hand-placed loop was placed in a LogicLock region in Quartus II 1 and then as
design partition2 to keep the same placement and routing, when changing the rest
of the design. The routing can be see in Figure 6.2, where both the local and
global routing is shown together with how the cells are connected. An important
lesson learned in finding good placements was that a more symmetric TERO loop
gave more oscillations which means that more jitter is accumulated.

1Logic Lock Quartus, locks region for routing and placement
2 Design partition in Quartus II allows the logic to be synthesised and placed sepa-

rately

29

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 30 — #42

30 Results from the first implementations of TERO

Figure 6.1: Placement of the TERO

Figure 6.2: Routing of the TERO in one LAB

Figure 6.3: Nand gate implemented in LUT

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 31 — #43

Chapter 7
Timing Simulations

A couple of different simulations were performed in Modelsim ALTERA 10.1b
[31], all with the goal of trying to understand the behaviour of the TERO loop.
Quartus II was used to create timing files for simulation, by the function EDA
Netlist Writer, which gave three 1 files with different parameters. The generated
pairs are .vho 2 and .sdo 3 files. The three different files are: 6 0c slow, 6 85c slow
and min 0c fast. In the file name 6 respective min stands for the speed grade of the
device, 0c and 85c are the junction temperature and slow respective fast is for slow
or fast corners. These files correspond to the corner cases for a voltage of 1200 mV
and a surrounding temperature of 25 ◦ C. To get the simulation more like reality in
hardware a normal distribution jitter, VHDL code [30], was implemented to effect
all rising and falling edges in the TERO loop. This means that the simulation will
show the expected behaviour in the FPGA.

7.1 Impact of placement and routing

To get the best performance when implementing TERO in hardware the basic
idea is to only let the jitter affect the randomness, which leads us to determine
the importance of the routing and placement on gates. In this part the loop was
divided into the upper and the lower part, as in Figure 7.1.

If Tp1 = Tp2, the loop is symmetric and the TERO will not stop oscillating
until a falling edge of the ctrl signal appears, which initiates reset phase. The
result of this simulation is shown in Figure 7.2.

Keeping the same total delay through the loop, simulations are done for Tp1 ≤
Tp2 and for Tp2 ≤ Tp1.

7.2 Impact of jitter

To get an idea of what size of jitter is needed to fulfil the entropy requirements
N12/A11, from the requirement in section 2.5, simulations were performed for

1uart 6 1200mV 0C slow, uart 6 1200mV 85C slow and uart min 1200mV 0C fast
2VHDL Output File is a standard netlist file, compiled from Quartus II
3Standard Delay Format Output file

31

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 32 — #44

32 Timing Simulations

Figure 7.1: Loop divided into upper and lower part and showing the
corresponding delay

Figure 7.2: Wave diagrams of the symmetric TERO loop

different sizes of jitter. Starting with a jitter of size 0 ps (equals the standard
deviation σ in N (0, σ2), gave no oscillation at all and a Shannon entropy of 0.

sigma [ps] 0c slow 85c slow 0c fast

0 0 0 0

0.5 0.9999 0.9995 0.9387

1 0.9999 0.9999 0.9918

2 0.9999 0.9999 0.9999

Table 7.1: Entropy for different jitter sizes

sigma [ps] 0c slow 85c slow 0c fast

0 51 28 13

0.5 45-58 26-32 11-16

1 41-62 24-33 11-16

2 35-68 23-34 9-18

Table 7.2: Number of oscillation for different jitter sizes

While sweeping the size of jitter for the three different timing files it can be
seen, according to table 7.1, that all files fulfil the entropy criteria of 0.997, as the
requirement for AIS31 A11, at a jitter of size 2 ps. The entropy increases with a

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 33 — #45

Timing Simulations 33

higher jitter, as seen in table 7.1. In [22] it was proven that the TERO was effected
by a jitter as small as 0.5 ps. But with regards to the entropy criteria in AIS31
this cannot be confirmed for this implementation of TERO.

The authors of [22] assumed the jitter in hardware to be around 7ps. Even
though this TERO is implemented in a different family of FPGAs the jitter is
assumed to be in that region even for this project. The results of the timing
simulations for sigma = 7 can be shown in Figure 7.3, 7.4 and 7.5

Figure 7.3: Number of oscillations for 0c slow with sigma 7 ps.

Figure 7.4: Number of oscillations for 85c slow with sigma 7 ps.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 34 — #46

34 Timing Simulations

Figure 7.5: Number of oscillations for 0c fast with sigma 7 ps.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 35 — #47

Chapter 8
How does TERO fulfil the requirements

To be able to see if TERO would be able to meet the requirements summarised in
section 2.5, the requirements are divided into three major parts, statistical tests,
entropy and embedded tests and stochastic model.

The TERO loop described earlier was implemented on three FPGAs of the
same sort, named A, B and C , to be able to see the possible difference and if the
TERO behaves differently.

8.1 Statistical test suites

One important part of the requirements from AIS31 and an extra part in NIST
900-80B was the statistical test suite [12]. The mandatory statistical tests are
described in section 2.2.3, and the random bits from the TERO loop were tested.
Both the random data from FPGA A and C were tested by the statistical test
suite from AIS31. The bits from FPGA B was not tested because of very bad
entropy. Test T0 to T5 was tested 257 times on the data and part of the results,
from FPGA A, can be studied in Figure 8.1 and- 8.2. The results are in german
but it can be seen that the data from FPGA A pass tests T0 to T7 and that T8
is not passed. For more information about the result, compare these results to [1]
and [2].

8.2 Requirements for entropy

Shannon entropy is a requirement in AIS31 and this entropy are calculated from :

H(x) = −
∑
ω∈Ω

P (X = ω)log2(P (X = ω)).

Where P (X = ω) is the probability. In AIS31 the entropy requirements are passed
if the Shannon entropy > 0.997.

For NIST the requirements for entropy depend on the security degree of the
deterministic algorithm afterwards. NIST uses min entropy, which is defined as:

H(x) = −log2(max(pi)).

Where pi is the probability. The min entropy is stricter than the Shannon entropy.

35

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 36 — #48

36 How does TERO fulfil the requirements

Figure 8.1: Result from T0 to T5 from BSI testsuite for FPGA A

Figure 8.2: Result from T6 to T8 from BSI testsuite for FPGA A

One easy way to get an approximate value of the Shannon entropy is to use
Linux command function ent. Otherwise as told in section 2.2.3 this requirement
is met if T8 is passed in test suite from BSI. The results from the Linux command
ent can be studied in table ??. It can also be said that because FPGA A passed
test T8 in AIS31 the entropy will be large enough.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 37 — #49

How does TERO fulfil the requirements 37

A B C

0.9930 0.0 0.6432

Table 8.1: Table over entropy for A, B and C in bits per bit

8.3 Embedded tests and stochastic model

The part regarding the stochastic model and self test were the major part of the
requirements, especially for AIS31. A stochastic model was given in [22] that
described the function of TERO as:

TS − TM =

YTj∑
i=1

(TD + ∆Tij) = TDYTj +

YTj∑
i=1

∆Tij .

TS and TM are the times for a logical one for the first respective the last oscillation,
TD is the time the pulse shortens each oscillation. ∆Tij is the periodic jitter which
follows N (0, σ2). YTj is the number of oscillations.

Figure 8.3: Part of wave diagrams of the TERO oscillation

Figure 8.3 shows the out signal from the TERO loop and it is possible to see
the shortening of the logic ’1’. This stochastic model is supposed to be used for
online testing and to be able to understand how the test should be performed, all
statistics behind the entropy source must be understood. Part of this is made in
section 7 and the goal is to add an online test based on number of oscillations.
This will be one easy way to test the entropy source in an acceptable time, as the
requirements dictate. An acceptable bound for the number of oscillations is given
by the three different timings in section 7 and the online test shall, according to
the simulations in this report, fail if the numbers of oscillations are outside this
boundary.

So according to these simulations, assuming a jitter of 7 ps the boundary shall
be 8 to 69 number of oscillations. This will just be an easy online test giving an
approximate result.

The results from the implementations on FPGAs were as said before incon-
clusive so the numbers of oscillations differed. For FPGA A, that passed the
statistical tests the oscillation was 20 to more than 75. For FPGA B, that did not
give any entropy the numbers of oscillations were 83 to 87 and finally FPGA C
had all its oscillation in the interval 20 to 35.

A B C

20-75+ 83-87 20-35

Table 8.2: Number of oscillation for FPGA A,B and C

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 38 — #50

38 How does TERO fulfil the requirements

8.4 Discussion of the results

In table 8.3 a summary of how the requirements given in section 2.5 are fulfilled. It
can either be fulfilled by what the authors of [22] claim or by theoretical, simulated
or experimental means. Regarding the stochastic model it is only given by the
authors of [22]. A total failure test has not been discussed so much earlier but it
shall detect a total failure of the noise source. This can be done easily because
when a total failure occurs the number of oscillations will be zero. The requirement
regarding the online test is fulfilled by the authors of [22] but cannot be confirmed
by the results given in this report. The last requirement, the entropy, can be said
to be fulfilled if the jitter in hardware is large enough.

Claimed
by au-
thors

Theoretical Simulated Reality

Uncontrollable source YES X X N/A N/A

Use raw signal YES X X X X

Stochastic model YES X N/A N/A

Total failure test YES X

Online test YES? X

Pass statistical tests NO X X

Entropy large enough YES? X X

Table 8.3: Table over entropy for A, B and C in bits per bit

As mention earlier the simulation results differed from the result from the
implementation. This discussion tries to explain what can be the problem.

If the stochastic model given by the authors of [22] is assumed to be true,
the parameters that are unknown are the timing and the size of the jitter. The
timing for this implementation is given by Quartus II and if this is assumed to be
true the problem must be the jitter. The simulations described earlier showed the
expected behaviour for different jitter sizes. This leads to the conclusion that if
reality does not correspond to the simulations, the jitter must be too small. The
jitter size cannot be affected in such a way that it can be used in generation of
random bits, so then this design cannot be used.

But if the timing is assumed to be incorrect or that it can differ a lot from
the timing files from Quartus II, the jitter can have a size close to what is given
in this report. If this is the case it is possible to change the timing of the loop, by
trying to find a better placement.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 39 — #51

Chapter 9
Conclusions and future work

While comparing the mandatory requirements, AIS31 and SP800-90B it was inter-
esting to see their different approaches to evaluating an entropy source. In AIS31
it was possible to use the entropy source alone for generation while in SP800-90B
it had to be used together with an approved deterministic algorithm to generate
random numbers. The largest difference between the methods is the stochastic
model in AIS31, where it is used to prove statistics of the random numbers. An-
other difference was also that AIS31 had statistical tests and no such test was
mandatory for SP800-90B, even though the organisation NIST has another pub-
lication for the statistical tests. Even though there is a lot of difference between
the two methods, they both had the same basic idea with embedded tests and
to access the raw random numbers. It can also be said that SP800-90B is just
a draft and contains questions regarding basic NRBGs (without a DRBG) and
how to assure a good output. This means that NIST can add information and
requirements for this later on. Even though ISO/IEC 18031 was not a large part
of the requirements in this report it is important to know that there exist other
standards. While comparing this standard to the other two it seems like it is closer
to AIS31 than SP800-90B, because of the importance of a stochastic model and
embedded tests based on the model.

The simulations sweeping the jitter and calculating the entropy from it, showed
that a jitter as small as 2 ps gave an entropy large enough to pass the requirements.
And if the jitter in reality is assumed to be around 7, according to authors of [22],
it is shown that this implementation shall have an entropy large enough.

So while summing up the result of the implementation of TERO shows that it
is supposed to give an high entropy, according to the timing simulations. But it is
hard in reality to get a proper result and it can change a lot depending on FPGA
and probably external disturbances.

The result of these tests and simulations showed that it was not easy to take
this particular design and make it pass the evaluation schemes. The hardest part
was the stochastic model and the online test. The problem was that it took a lot
of time trying to understand the performance, which probably would be easier if
a more experienced, both with implementations and statistics, person did it. But
according to the simulations and result in this report it was shown that TERO was
dependent on a lot of parameters to make it work properly. Both that the results
differed while changing the placement and also that the three implementations
on FPGAs gave such a difference. Why the result from the implementations was

39

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 40 — #52

40 Conclusions and future work

so different was hard to know, but it can be because of external disturbance, as
difference in power supply or other small differences on the FPGAs.

9.1 Future work

There is still some parts left to be able to take an entropy source from academic
literature and implement it so it passes the requirements from BSI and NIST. A
more proper online test has to be implemented, with more studies of the boundary.
Especially the lower bound has to be studied more, to get information on how many
oscillations are needed to get an entropy large enough. More things that have to
be studied in the future are:

• Understand why the implementation does not correspond to the simulated
behaviour.

• Understand the complete behaviour of the entropy source, to be able to
understand the importance of, for example, placement and routing.

• Implement TERO in such a way that it passes the statistical test suites in
AIS31 and NIST 800-22.

• Invent and implement a proper online test.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 41 — #53

References

[1] Killmann, W., Schindler, W.: A proposal for: Functionality classes
for random number generators, version 2.0. Tech. rep., Bundesamt fur
Sicherheit in der Informationstechnik (BSI), Bonn (September 2011),
https://www.bsi.bund.de/EN/ Home/home node.html

[2] Killmann, W., Schindler, W.: A proposal for: Functionality classes and evalu-
ation methodology for true (physical) random number generators, version 3.1
Tech. rep., Bundesamt fur Sicherheit in der Informationstechnik (BSI), Bonn
(25 september 2001), https://www.bsi.bund.de/EN/ Home/home node.html

[3] Schindler, W.: Functionality Classes and Evaluation Methodology for De-
terministic Random Number Generators Tech. rep., Bundesamt fur Sicher-
heit in der Informationstechnik (BSI), Bonn Version 2.0 (2 December 2011),
https://www.bsi.bund.de/EN/ Home/home node.html

[4] Schindler, W. : A Stochastic Model and Its Analysis for a Physical Ran-
dom Number Generator Presented At CHES 2002 In Cryptography and Cod-
ing. Lecture Notes in Computer Science Volume 2898, 2003. Pages 276-289.
Springer Berlin Heidelberg.

[5] Schindler, W. , Killmann W. Evaluation Criteria for True (Physical) Random
Number Generators Used in Cryptographic Applications In Cryptographich
Hardware and Embedded Systems-CHES 2002. Lecture Notes in Computer
Science Volume 2523, 2003. Pages 431-449. Springer Berlin Heidelberg

[6] Barker, E. , Kelsey, J.: Recommendation for the Entropy Sources Used for
Random Bit Generation, NIST DRAFT Special Publications 800-90B(August
2012) http://csrc.nist.gov/publications/PubsSPs.html

[7] Barker, E. , Kelsey, J.: Recommendation for Random Number Generation
Using Deterministic Random Bit Generator NIST Special Publications 800-
90A (January 2012) http://csrc.nist.gov/publications/PubsSPs.html

[8] Barker, E. , Kelsey, J.: Recommendation for Random Bit Generator (RBG)
Constructions NIST DRAFT Special Publications 800-90C (August 2012)
http://csrc.nist.gov/publications/PubsSPs.html

[9] NIST Federal Information Processing Standards publication FIPS PUB 140-2,
(May 25 2001) http://csrc.nist.gov/publications/PubsFIPS.html

41

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 42 — #54

42 REFERENCES

[10] NIST Federal Information Processing Standards pub-
lication FIPS PUB 140-3(Revised DRAFT 09/11/09)
http://csrc.nist.gov/publications/PubsFIPS.html

[11] National Institute of Standards and Technology Communications Secu-
rity Establishment Canada Implementation Guideance for FIPS PUB 140-
2 and the cryptographic Module Validation Program, (December 21, 2012)
http://csrc.nist.gov/groups/STM/cmvp/index.html

[12] A Rukhin et al. Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications NIST Special Publication 800-22
revision 1a,(April 2010). http://csrc.nist.gov/publications/PubsSPs.html

[13] W. Schindler. Efficient Online Tests for True Random Generators In C.K.
Koc et al. (Eds.) Cryptographic Hardware and Embedded Systems 2001,
LNCS 2162, pages 103117, Berlin, Germany, 2001. Springer Verlag.

[14] International Standard ISO/IEC 18031:2011(E) Information technology-
Security technique- Random bit generation. Second edition 2011-11-15

[15] Fischer, V., Aubert, A., Bernard, F. , Valtchanov, B., Danger, J.L.
and Bochard N. True Random Number Generators in Configurable Logic
Devices Project ANR ICTeR, version 1.02. February 12, 2009. Online,
http://www.lirmm.fr/ w3mic/ANR/PDF/D2.pdf (2013-01-23)

[16] Sunar, B, Martin W.J, Stinson D.R : A Provably Secure True Random Number
Generator with Built-In Tolerance to Active Effect Proc. of IEEE Transaction
on Computers, 2007.

[17] Fischer, V., Drutarovsky, M.: True Random Number Generator Embedded
in Reconfigurable Hardware In Cryptographich Hardware and Embedded
Systems-CHES 2002. Lecture Notes in Computer Science Volume 2523, 2003.
Pages 415-430. Springer Berlin Heidelberg

[18] Simka, M., Fischer, V., Drutarovsky, M. : Testing of PLL-based True Random
Number Generator in Changing Working Conditions In RADIOENGINEER-
ING, 20 (2011). Pages 94-101.

[19] Vasyltsov Ihor , Hambardzumyan Eduard, Kim Young-Sik, Karpinskyy Bo-
hdan : Fast Digital TRNG based on Metastable Ring Oscillator In Cryp-
tographich Hardware and Embedded Systems-CHES 2008. Lecture Notes in
Computer Science Volume 5154, 2008. Pages 164-180. Springer Berlin Heidel-
berg

[20] Danger, Jean-Luc , Guilley, Sylvain and Hoogvorst, Philippe Fast True Ran-
dom Generator in FPGAs In Circuit and Systems, 2007. NEWCAS 2007.
IEEE Northeast Workshop on. Conference 5-8 Aug. 2007. Pages 506-509.

[21] Varchola, M,, Drutarovsky, M. : New FPGA based TRNG Principle Using
Transition Effect with Built-In Malfunction Detection Processings of the 7th
International Workshop on Cryptographic Architectures Embedded in Recon-
figurable Devices-CrytArchi 2009, Prague, Czech Republic, June 24-27, 2009
pages 150-155.

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 43 — #55

REFERENCES 43

[22] Varchola, M., Drutarovsky, M.: Cryptographic True Random Number Gen-
erator with Malfunction Detector-Mathematical Model of the Noise Source,
Synthesis and Testing in FPGAs, and Built-In Malfunction Detector Archi-
tecture LAP LAMBERT Academic Publishing 2011

[23] Varchola, M., Drutarovsky, M. : Analysis of Randomness Sources in Transi-
tion Effect Ring Oscillator Based TRNG In Proceedings of 8th International
Workshop on Cryptographic Architectures Embedded in Reconfigurable De-
vices (CrytArchi), Gif sur Yvette-Paris, France, June 27-30, 2010, pages 102-
107.

[24] Varchola, M., Drutarovsky, M. : New High Entropy Element for FPGA based
True Random Number Generators In Proceedings of 12th International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES), Santa
Barbara, CA, USA, August 17-20,2010, Springer,2010, pages 351-365.

[25] OpenCores OpenRISC Ubuntu VirtualBox image details On-
line. Available at: http://opencores.org/or1k/Ubuntu VirtualBox-
image updates and information

[26] Altera Altera Quarus II download Online. Available at:
https://www.altera.com/download/software/quartus-ii-we

[27] OpenCores The NEW OpenRISC System-on-chip FPGA development board
Online. Available at: http://opencores.org/or1k/Ordb2a-ep4ce22

[28] OpenCores UART 16550 core :: Overview Online. Available at:
http://opencores.org/project,uart1655

[29] National Semiconductor PC16550D Universal Asynchronous
Receiver/Transmitter with FIFOs Online. Available at:
http://www.ti.com/lit/ds/symlink/pc16550d.pdf

[30] Gnanasekaran Swaminathan Random Number Gener-
ator, package RNG. VHDL Online. Available at:
http://read.pudn.com/downloads111/sourcecode/asm/459855/random1.vhd .htm

[31] ModelSim Altera Modelsim Altera Starter Edition Software 10.1b Download
Online. Available at : http://www.altera.com/products/software/quartus-
ii/modelsim/qts-modelsim-index.html

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 44 — #56

44 REFERENCES

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 45 — #57

Appendix A

VHDL Code

−−
−−−
−−− VHDL code f o r TERO module
−−− Emma Hilmersson , 2013
−−−
−−
l i b r a r y i e e e ;
l i b r a r y a l t e r a ;
l i b r a r y wysiwyg ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use wysiwyg . cyc lone ive components . a l l ;
USE ALTERA.ALTERA PRIMITIVES COMPONENTS.ALL;

e n t i t y t e ro i s
port (c t r l : in s t d l o g i c ;
t f f o u t : out s t d l o g i c
) ;

end e n t i t y ;

a r c h i t e c t u r e s t ruc o f t e ro i s
s i g n a l teroout , nand1 out , nand2 out , inv11 out : s t d l o g i c ;
s i g n a l inv111 out , inv22 out , inv222 out : s t d l o g i c ;
s i g n a l t e r o o u t i , t e r oou t o : s t d l o g i c ;
s i g n a l c t r l i : s t d l o g i c ;

a t t r i b u t e keep : boolean ;
a t t r i b u t e keep o f c t r l i : s i g n a l i s t rue ;
begin

c t r l i <= c t r l ;

nand1 gate : c y c l o n e i v e l c e l l c o m b

45

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 46 — #58

46 VHDL Code

g e n e r i c map (
dont touch => ”on ” ,
lut mask => ”0011001111111111” ,
sum lutc input => ” datac ”)
port map(datab => inv22 out ,
datad => c t r l i ,
combout => nand1 out) ;

nand2 gate : c y c l o n e i v e l c e l l c o m b
g e n e r i c map (
dont touch => ”on ” ,
lut mask => ”0011001111111111” ,
sum lutc input => ” datac ”)
port map(datab => inv11 out ,
datad => c t r l i ,
combout => nand2 out) ;

inv111 gate : c y c l o n e i v e l c e l l c o m b
g e n e r i c map (
dont touch => ”on ” ,
lut mask => x”00FF” ,
sum lutc input => ” datac ”)
port map (
datad => nand1 out ,
combout => inv111 out) ;

i nv11 gate : c y c l o n e i v e l c e l l c o m b
g e n e r i c map (
dont touch => ”on ” ,
lut mask => x”00FF” ,
sum lutc input => ” datac ”)
port map (
datad => inv111 out ,
combout => inv11 out) ;

inv222 gate : c y c l o n e i v e l c e l l c o m b
g e n e r i c map (
dont touch => ”on ” ,
lut mask => x”00FF” ,
sum lutc input => ” datac ”)
port map (
datad => nand2 out ,
combout => inv222 out) ;

i nv22 gate : c y c l o n e i v e l c e l l c o m b
g e n e r i c map (
dont touch => ”on ” ,

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 47 — #59

VHDL Code 47

lut mask => x”00FF” ,
sum lutc input => ” datac ”)
port map (
datad => inv222 out ,
combout => inv22 out) ;

i n v t e r o g a t e : c y c l o n e i v e l c e l l c o m b
g e n e r i c map (
dont touch => ”on ” ,
lut mask => x”00FF” ,
sum lutc input => ” datac ”)
port map (
datad => inv22 out ,
combout => t e roout) ;

t11 : e n t i t y work . t f f 1 (s t ruc) port map (’ 1 ’ , teroout , c t r l i , t f f o u t) ;
end a r c h i t e c t u r e ;

−−−
−−−
−−− VHDL code f o r TFF f l i p f l o p
−−− Used in TERO and Asynchronous counter
−−− Emma Hilmersson , 2013
−−−
−−−
l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

e n t i t y t f f 1 i s
port (T : in s t d l o g i c ;

t e roout : in s t d l o g i c ;
c t r l : in s t d l o g i c ;
Q : out s t d l o g i c
) ;

end e n t i t y ;

a r c h i t e c t u r e s t ruc o f t f f 1 i s
s i g n a l q next , q reg : s t d l o g i c := ’ 0 ’ ;

begin

proce s s (teroout , c t r l)
begin

i f (c t r l = ’0 ’) then
q next <= ’ 0 ’ ;

e l s i f (f a l l i n g e d g e (t e roout)) then

“AISFIPSKRAV” — 2013/8/12 — 19:15 — page 48 — #60

48 VHDL Code

i f T = ’1 ’ then
q next <= not q next ;

end i f ;
end i f ;

end proce s s ;
Q <= q next ;

end a r c h i t e c t u r e ;

	Table of Contents
	List of Figures
	List of Tables
	Introduction to random number generators
	Entropy Source
	Post processing algorithm

	Requirements
	Introduction
	AIS31
	NIST SP800-90B
	ISO/IEC 18031
	Comparison of requirements from AIS31 and SP800-90B

	Implementation of true random number generators in FPGAs
	Different implementations of TRNGs

	Transition Effect Ring Oscillator
	Implementation of a Transition Effect Ring Oscillator
	Tools and Hardware
	Details on the design

	Results from the first implementations of TERO
	Placement and Routing

	Timing Simulations
	Impact of placement and routing
	Impact of jitter

	How does TERO fulfil the requirements
	Statistical test suites
	Requirements for entropy
	Embedded tests and stochastic model
	Discussion of the results

	Conclusions and future work
	Future work

	References
	VHDL Code

