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Abstract  
The complex permittivities of some liquid and solid samples have been measured using a 
reflection coaxial method in the first part of this thesis. The coaxial probe was modeled as an 
antenna and a calibration procedure with four standards was used. The complex permittivities 
and permeabilities of epoxy samples were determined using reflection and transmission data 
from a measurement using a filled rectangular waveguide in the second part of the thesis. This 
determination was based on data from measurements, simulations and mathematical 
calculations and evaluated with the Nicolson-Ross-Weir algorithm. Some Comsol 
Multiphysics models and data from partially filled waveguides are also presented.  
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Chapter 1 

1. Introduction 

With the term microwaves the electromagnetic waves with wavelength from 1 cm to 1 m are 
commonly known. These wavelengths correspond to the frequency range from 300 MHz (for 
1 m wavelength) to 30 GHz (for 1 cm wavelength). This range covers the Ultrahigh 
Frequency (UHF) and Superhigh Frequency (SHF) bands [Collin 2001, pp. 1-2].  

Some typical services in these frequencies are Television, satellite communications, 
radiosondes, surveillance radars, navigation aid, airborne radars, microwave communication 
links, common-carrier land mobile communications, radar astronomy, Bluetooth and Radio 
Frequency Identification (RFID). Also microwave components are used in microwave ovens 
and radio telescopes [Collin 2001, pp. 2-6]. 

In all these applications microwave materials have been used. The development of these 
materials and the study of their properties at microwave frequencies are very active areas in 
materials science, solid-state physics and electrical and electronic engineering. The 
development of high-frequency circuits require complete understanding of the properties of 
materials operating at microwave frequencies [Waser 2003]. Therefore a very important area 
in microwave electronics for many industries and scientists is the characterization of 
materials properties [Chen, Ong, Neo, Varadan, Varadan 2004, p. xi]. The term 
electromagnetic characterization or simply characterization refers  to  the  full  knowledge  of  
the electromagnetic parameters -complex permittivity and permeability- of a material as 
functions against frequency.  

Beyond the academic importance of the study of the electromagnetic properties at these 
frequencies [Solymar and Walsh 1998, Kittel 1997, Von Hippel 1995a,b, Jiles 1994], in 
microwave engineering the accurate constitutive properties are demanded [Ramo, Whinnery, 
Van Duzer 1994]. 

Since the early 1950’s the characterization of materials properties at microwave frequencies 
has introduced and used. The ability of tailoring the properties of composite materials has 
been very important for the design and development of radar absorbing materials since World 
War II [Knott, Shaeffer, Tuley 2004]. Huge steps have been made during the last decades and 
many methods and techniques have been developed. As the clock speeds of electronic devices 
are approaching microwave frequencies the development of electronic circuits requires 
precise knowledge of the properties of materials, such as permittivity and permeability. 
Special materials are needed to ensure Electromagnetic Compatibility (EMC) since the 
Electromagnetic Interference must be taken into consideration in the design of circuit and 
packaging [Montrose 1999]. Nowadays the study of electromagnetic materials is also helpful 
for agriculture, food engineering, bioengineering, medical treatments [Thuery 1992], and in 
monitoring the fabrication procedure and nondestructive testing of samples and products 
[Zoughi 2000, Nyfors and Vainikainen 1989]. 



7 
 

This Thesis is dedicated to two kinds of methods of materials characterization, reflection and 
transmission/reflection. The goals of this Thesis are to use two experimental methods and 
some simulations to derive the properties of some materials, to highlight the advantages and 
disadvantages of one reflection and one transmission reflection method and to use the Comsol 
Multiphysics program to investigate its possibilities to produce scattering parameters similar 
to the measured ones -for both filled and partially filled waveguides. Another goal is to check 
the evaluation of the scattering parameters from a partially filled waveguide with the Nicolson 
Ross Weir algorithm and also to implement some algorithms and a calibration procedure with 
the Matlab software. 

This short chapter is a general Introduction to the reader. In Chapter 2 the theoretical 
principals are being presented so that any person who knows the fundamental of 
Electromagnetism can read this Thesis. Chapters 3 and 4 are presenting the methods, models 
and algorithms that have been used. In Chapter 5 the experiments, the simulations and their 
results are being quoted. The conclusions are summarized in Chapter 6 and in Chapter 7 some 
future work is being suggested. At last in Chapter 8 all the references are being given. 
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Chapter 2 

2. Theoretical Background 

2.1 Electromagnetic Materials 

Materials are primarily divided in insulators, semiconductors and conductors regarding the 
number of the free electrons of their atoms. According to the responses of the magnetic 
moments of their atoms to an external magnetic field, materials can be classified into 
diamagnetic, paramagnetic and ordered magnetic materials. Materials that are negligibly 
affected by magnetic fields are known as nonmagnetic. Usually is assumed that insulators are 
nonmagnetic and they are called dielectrics. 

The electric and magnetic behavior of a low-conductivity material is determined by two 
complex parameters, permittivity ( ) and permeability ( ) 

      (2.1) 

    (2.2) 

Permittivity describes the interaction of a material with the electric field applied on it and 
respectively permeability describes the interaction of a material with the magnetic field 
applied on it. The electric and magnetic fields interact with materials in two ways, energy 
storage and energy dissipation.  

Energy storage describes the lossless portion of the exchange of energy between the field and 
the material. Energy dissipation occurs when electromagnetic energy is absorbed by the 
material. The real parts of permittivity and permeability ( ) express the storage while the 
imaginary parts ( ) express the dissipation.  

Permittivity unit in SI (International System of Units) is Farads per meter  and 

permeability unit is Henry per meter . 

In microwave electronics are often used the dimensionless quantities relative permittivity ( ) 
and relative permeability ( ) 

 = =    (2.3) 

= =    (2.4) 

where = 8,854 10  is  the  permittivity  of  the  free  space,  = 4 10  is the 
permeability of free space,  is the relative dielectric constant and  is the loss factor [Chen 
et al. 2004, pp. 8-9]. 
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Another quantity that also used is the electrical conductivity ( ) which expresses a material’s 

ability  to  conduct  an  electric  current.  It’s  unit  in  SI  is  Siemens  per  meter  . Related to 
permittivity is 

 =    (2.5) 

and so 

     (2.6) 

2.2 Dielectric Materials 

Permittivity and permeability are not constants but functions of frequency. The main 
mechanisms that contribute to the permittivity of a dielectric material are conduction, dipolar 
relaxation, atomic polarization and electronic polarization. In low frequencies  is 
dominated by the influence of ion conductivity and in microwave frequencies the variation of 
permittivity is mainly caused by dipolar relaxation. In the infrared region and above the 
absorption peaks are mainly due to atomic and electronic polarizations. 

 

Figure 1. The permittivity of a hypothetical dielectric against frequency. Image used with the consent of Prof. 
Kenneth A. Mauritz, from the Wikimedia Commons (source page: http://www.usm.edu/polymer). 

In Figure 1 the permittivity of a hypothetical dielectric against frequency is shown. At 
frequencies, up to 10 , the permittivity of a dielectric material can be considered as 
constant against frequency. At microwaves it’s decreasing and beyond 10  there are some 
peaks and variance but in narrow range. More details on this diagram can be found in the 
literature [Ramo et al. 1994, Chen et al.2004, p. 12].  

Electronic polarization occurs in neutral atoms when an electric field displaces the 
surrounding electrons with respect to the nucleus. Atomic polarization occurs when adjacent 
positive and negative ions stretch under an applied electric field. Electronic and atomic 
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polarizations are of similar nature. If only these two polarizations are present the materials are 
almost lossless at microwave frequencies. 

At microwave and millimeter-wave ranges the variations due to mainly dipolar relaxation and 
the Debye equations can be applied. The relative permittivity according to Debye theory is 
[Robert 1988, Chen et al. 2004, p. 13] 

+    (2.7) 

with 

= lim    (2.8) 

   = lim    (2.9) 

      (2.10) 

where  is the angular frequency = 2 , with  the frequency, and  is the relaxation time. 
Permittivity due to Debye relaxation is determined by three parameters , , .  

At sufficiently low frequencies there is no phase difference between the polarization and 
electric field and thus  is a real number. But the static permittivity  decreases as 
increasing temperature because of the increasing disorder and the relaxation time  is 
inversely proportional to temperature as all the movements become faster at higher 
temperature. As at sufficiently high frequencies, as the period  of electric field is much 

smaller than the relaxation time of the permanent dipoles, the orientations of the dipoles are 
not influenced by electric field and remain random and thus the permittivity at infinite 
frequency  is a real number.  

The relaxation phenomenon may be caused by different sources, in some cases, and the 
dielectric material has a relaxation-time spectrum. A moist material for example contains 
water molecules bound with different strength. The material exhibits a distribution of 
relaxation frequencies, depending on the moisture and the strength of binding water [Chen et 
al. 2004, pp. 13-14]. 

2.3 Microwave Methods 

The microwave methods of measurements for materials characterization are divided in two 
types, resonant and nonresonant. Resonant methods give more accurate knowledge of 
dielectric properties over a limited frequency range or a single frequency, while the 
nonresonant methods give a general knowledge of electromagnetic properties over a 
frequency  range.  The  resonant  methods  are  the  resonator method and the resonator-
perturbation method [Chen et al.2004, pp. 40-42]. Nonresonant methods are the reflection 
methods and the transmission/reflection methods [Chen et al.2004, pp. 38-40]. This project is 
dedicated to two nonresonant methods. 
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2.4 Nonresonant Methods 

In nonresonant methods from the impedance and the wave velocity in the material, the 
electromagnetic properties, permittivity  and permeability , can be derived from the partial 
reflection of an incident wave from the interface between two materials. 

In such a method a transmission line is needed to direct the wave to the material under test 
and then collect the reflected and/or the transmitted energy. This line can be coaxial, metallic 
waveguide, dielectric waveguide, planar transmission line and free space. In this project 
coaxial line and metallic rectangular waveguide has been used.  

2.5 Microwave Network and Scattering Parameters 

The concept of microwave network is to represent the responses of a microwave structure to 
external signals. The responses of a network to external circuits can be described by the input 
and output waves. A two-port network is presented in Figure 2. 

 

Figure 2. A two-port microwave network. 

The input waves are  waves and  are the output waves. From port 1 we have input  and 
output  and  from  port  2   and  respectively. Parameters  ,  may  be  voltage  or  
current. 

The relations between the input [ ] and output waves [ ] are described by scattering 
parameters [ ], using matrices 

   [ ] = [ ][ ]   (2.11) 

or 

  =    (2.12) 

where 

 [ ] = ,  [ ]=   and  [ ] =   (2.13) 

If = 0 ( = 1 2), the scattering parameters can be expressed as ratios (with = 1, 2 and 
) 
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=     (2.14) 

=    (2.15) 

Equation (2.14) shows that when port  is  connected  to  a  source  and  the  other  port  is  
connected to a matching load, the reflection coefficient at port  is equal to   

 =    (2.16) 

Equation (2.13) shows that when port  is connected to a source and port  is connected to a 
matching load, the transmission coefficient from port  to port  is equal to  

=   (2.17) 

2.6 Network Analyzers, Errors and Calibration 

To measure the four elements in a scattering matrix network analyzers are used. A network 
analyzer consists of a source, signal separation devices and detectors. Such a device can 
measure the four waves independently, two forward travelling waves  and , and two 
reverse travelling waves  and . By the combinations of these waves according to 
equations (2.14), (2.15) the scattering parameters can be obtained. 

Measurements using network analyzers may have three kind of errors, systematic, random 
and drift. Random errors are unpredictable and they can be removed by making several 
measurements and taking the average values. Drift errors are caused by the change of working 
conditions and require a stable environment in terms of temperature, humidity etc to be 
suppressed. Systematic errors mainly include directivity, match, cross talk and frequency 
response. These errors are caused by imperfections in the measurement systems and most of 
them do not vary with time. They can be characterized through a calibration procedure and 
mathematically removed during the measurement process.  

Calibration is a process which computes the systematic errors from measurements on known 
reference standards. When subsequent measurements are made the effects of the systematic 
errors are mathematically removed. There are two types of error corrections that can be done, 
response corrections and vector corrections. Response calibration is simple to perform but 
corrects only a few of the systematic error terms. Vector-error calibration can account for all 
major sources of systematic errors but requires more calibration standards and also requires 
that the network analyzer can measure both magnitude and phase data [Chen et al. 2004, pp. 
119-123]. With further calibrations drift errors can be removed. In this Thesis the vector-error 
calibration has been used. 
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Chapter 3 

3. Reflection Methods 

In a reflection method the sample of the material under test is connected to a certain position 
of a transmission line and so the impedance loading to the transmission line is changed. From 
the reflection because of this impedance discontinuity, electromagnetic properties can be 
derived, the relative permittivity  and the relative permeability   . There are two types of 
reflection methods corresponding to the type of reflection that is used, the open-reflection 
method for open-circuited reflection and the shorted-reflection method for short-circuited 
reflection. This project focuses on the open-reflection method. 

The measurement fixture is called probe, or sensor, and is made from a transmission line. The 
measurement probes are specially designed to increase accuracy and sensitivity and to satisfy 
special requirements. In the most cases coaxial line is used, due to their broad frequency band, 
and so coaxial probes also [Chen et al. 2004, p. 142].  

3.1 Open Circuited Reflection 

In an open circuited reflection the material under test directly contacts the open end of the 
coaxial line. The impedances at the two sides of the interface are different and there is a 
reflection when electromagnetic wave incidents to the interface. The reflectivity is determined 
by the impedances of the media at the two sides of the interface. The impedance of the 
sample’s  side  is  related  to  the  properties  of  the  sample,  and  from  the  reflectivity  at  the  
interface, the properties of the sample can be obtained. 

Both the permittivity and permeability can be obtained provided sufficient independent 
reflection measurements are made. However, in most cases only one independent 
measurement is made, so only one material property can be obtained. To obtain both 
permittivity and permeability, more complex experimental setups are needed [Chen et al. 
2004, pp. 164-168]. 

As shown in Figure 3, the equivalent circuit of a reflection method consists of a transmission 
line of impedance , terminated to a load of impedance . The impedance  is  a  
function of the relative permittivity  of the sample. From the reflection measurement,  
can be obtained and so  can be derived from that.  

 

Figure 3. A transmission line of impedance Z0 terminated to a load of impedance Z(  r). 

An objective function is defined as [Chen et al. 2004, p. 143] 

      (3.1) 
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where ( ) is the admittance calculated by using an aperture model and  is the measured 
aperture admittance. The permittivity of the sample can be calculated by finding the zero of 
the function. There are four models of the of the open-ended coaxial probe for the calculation 
of ( ). 

3.2 Coaxial Line Reflection Method 

Although all kind of transmission line can be used in the reflection method, mostly coaxial 
line is used and thus coaxial probes. This method is broadband, simple and convenient (non-
destructive), has limited  accuracy and is most accurate for liquids or semi-solids. The 
measurement fixture is called coaxial dielectric probe. The probe is usually into a flange, to 
provide suitable capacitance and ensure the repeatability of sample loading [Chen et al.2004 
pp. 144-145, Li and Chen 1995, Stuchly and Stuchly 1980]. Such a probe is shown in Figure 
4. 

 

Figure 4. A coaxial probe with flange. 

The open-ended coaxial probe is a cut off section of transmission line. The material is 
measured by immersing the probe into a liquid or touching it to the flat face of a solid (or 
powder)  material.  The  fields  at  the  probe  end  “fringe”  into  the  sample  and  change  as  they  
come into  contact  with  the  material  [Agilent  2006].  This  method assumes  the  sample  to  be  
non-magnetic,  isotropic  and  homogenous  and  to  have  a  flat  surface  if  it  is  a  solid.  Also  the  
sample must be thick enough, “semi-infinite”, much larger than the diameter of the aperture 
of the open-ended coaxial line, because this method assumes that interactions of the 
electromagnetic field with the non-contacting boundaries of the sample are not sensed by the 
probe. No air gaps must be between the probe and the sample. 

The disadvantage of the coaxial line reflection method is the limited accuracy, under some 
conditions when compared to other methods like the transmission line method and resonator 
method. 
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3.3 Models of the Open-Ended Coaxial Probe 

There are four typical models to describe the open-ended coaxial probes terminated by semi-
infinite homogenous materials [Chen et al.2004 pp. 145-149, Pournaropoulos and Misra 
1997, Bérubé et al.1996, Stuchly et al.1982, Athey et al.1982, Brady et al. 1981, Ghannouchi 
and Bosisio 1989, Stuchly et al.1994, Anderson et al.1994] 

3.3.1 Capacitive model 

The equivalent circuit of this model consists of two capacitances connected in parallel. The 
one, ( ),  is  related  to  the  dielectric  properties  of  the  sample  while  the  other,  ,   is  the  
fringe field capacitance independent of these properties. When a dielectric sample with 
complex relative permittivity  is connected to the probe, the equivalent capacitor will be 
changed and the reflection coefficient is given by 

 =
[ ) ]
[ ) ]

  (3.2) 

where )= ,  is the capacitance of the air-filled parallel plate capacitor,  is the 
measurement angular frequency ( = 2 ) and  is the characteristic impedance of coaxial 
line. 

The complex relative permittivity is given by 

=
)

   (3.3) 

Parameters  and  must be obtained to calculate  and . Calibration of the open-ended 
probe with a standard sample with known dielectric permittivity can derive  and . 
[Bérubé et al. 1996, Chen et al.2004 p. 146] 

3.3.2 Radiation model or Antenna model 

The coaxial probe is considered as a radiation source [Chen et al 2004 p. 146]. The equivalent 
circuit consists of two capacitors ( )  and a conductance ( ), all connected in parallel. 
The capacitance  is  independent of the material  under test  and is resulting from the fringe 
field inside the air-filled coaxial line. The capacitance  expresses the presence of the 
material under test and is dependent on the permittivity of the test sample. The conductance  
is the radiation conductance and is representing the power radiated from the end of the line 
[Pournaropoulos and Misra 1997, Stuchly and Stuchly 1980, Chen et al.2004 p. 146]. 

The normalized admittance is  

 )   (3.4) 
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where  and  are the characteristic admittance and impedance of the line respectively,  is 
the complex permittivity and  the angular frequency.  

For an infinitesimal antenna is [Burdette et al. 1980, Deschamps 1972] 

  ( ) )    (3.5) 

and so is 

  )   (3.6) 

The admittance can be expressed as  

    (3.7) 

The factors , ,  are complex and they can be determined by using three known media 
in the calibration procedure. The complex admittance refers to the plane of the end of the 
coaxial geometry. 

A more accurate model is [Gajda and Stuchly 1983,] 

    (3.8) 

where the frequency dependence of  has been considered. 

Another approximation is [Staebell and Misra 1990,] 

    (3.9) 

using quasi-static analysis. 

An approximation for very low frequency is [Staebell and Misra 1990,] 

     (3.10) 

For all models, determination of parameters  is achieved with calibration. 

The model (3.10) is the model used in this project. 
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3.3.3 Virtual line model 

In an open-ended method using a coaxial probe, the material under test where the probe is 
terminated, can be modeled as a virtual part of transmission line. The transmission line 
consists of a part of physical line with length  and a part of visual line with length , which 
models the material under test [Ghannouchi and Bosisio 1989, Chen et al.2004 pp147-148]. 

The complex permittivity of the material under test related to the measured  is  

  = cot    (3.11) 

where  is the measurement frequency and   is the speed of light,  is the complex 
reflection coefficient measured at the reference plane before the physical line (at the analyzer 
port),  is the propagation constant in the coaxial probe and  is  the  permittivity  of  the  
material inside the physical coaxial line. 

 The values  and  can be derived by calibration using two well-known dielectric materials 
like air and deionized water.  

3.3.4 Rational function model 

In this model, the coaxial probe is immersed in the material under test. The energy storage in 
the  near-field  region,  the  evanescent  mode  of  the  guide  and  the  radiation  effects  have  to  be  
considered [Chen et al. 2004 pp148-149, Stuchly et al. 1994, Anderson et al. 1994]. 

The admittance of the probe is 

 =
( ) )

( ) )
   (3.12) 

where  is the admittance at the end of the coaxial probe,  is the characteristic admittance of 
the coaxial probe,  is the complex relative permittivity of the sample,  is the inner diameter 
of the line and  and  are the coefficients of the model. 

To derive the complex permittivity of the sample from the measured complex admittance 
values referred at the end of the probe we solve the inverse problem [Anderson et al. 1994] 

 ) ( ) = 0   (3.13) 

with  = )   = 1,2 … 8)  (3.14) 

  = 0    (3.15) 

 = )   = 1,2 … 8)  (3.16) 

 = 1 + )    (3.17) 
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No calibration parameters are needed, and the model parameters  and  have been 
established and optimized [Bérubé et al.1996]. 

The virtual line model gives the best results for permittivity measurements, while the results 
obtained with the antenna model are also accurate except at low frequencies [Bérubé et 
al.1996]. The high accuracy of the antenna model (3.10) in combination with the easy 
implementation of the calibration procedure in [Staebell and Misra 1990] were the reasons for 
the choice of this model.  

3.4 Calibration for the Coaxial Probe 

The quasi-static formula (3.9) that was given above, can be approximately expressed like 
[Staebell and Misra 1990] 

 
[ )] [ )]

+
)

  (3.18) 

where  is the angular frequency,  is the permeability of the free space,   is the relative 
permittivity of the material,  is the inner and  the outer radius of the coaxial aperture 
respectively and ,  are triple integrals dependent only on the radii [Misra 1987]. 

The first term of the equation (3.18) represents a capacitance, the second a frequency-
dependent capacitance and the third a radiation conductance. 

An equivalent two port network (error box) between the meter (analyzer) and the coaxial 
opening is being considered. The admittance of the aperture terminated by a sample is 
evaluated from the measured reflection coefficient after calibrating the system. The 
calibration is done using three standard materials [Staebell and Misra 1990, Marsland and 
Evans 1987, Chabbra et al. 1989] 

 =    (3.19) 

where , , , are aperture admittances with standards respectively,  is the desired 
aperture admittance terminated by the sample material and 

    (3.20) 

with  representing the measured reflection coefficient for the th material. 

From the measured data ( ) the right-hand side of (3.19) is determined. The admittances 
, ,  are calculated from (3.18) for known values of  for the three standards. 

To avoid calculating the radii  and , and the integrals and  a fourth standard is used.  

The equation (3.18) can be written as  

    (3.21) 
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which is equivalent to the (3.9) and where  and  are constants dependent on the frequency 
and the dimension of the aperture, and  is a normalized parameter of aperture admittance 

. 

At low microwave frequencies the radiation from the coaxial aperture can be neglected, so the 
equation (3.21) can approximately be written as 

    (3.22) 

which is equivalent to (3.10). 

The aperture parameter  can be determined from equations (3.19) and (3.22). If the third 
standard is short calibration circuit the parameter  can be used to calculate the complex 
permittivity  

 =
( )

   (3.23) 

where    =    (3.24) 

From the equation (3.22) the values  and  are calculated for known relative permittivities 
of the standards 1 and 2 respectively at the operating frequency. 

From the measured reflection coefficients ( ) and known complex permittivities for 
standards 1, 2 and 4, the constant  of (3.22) is calculated 

 = ( )
( )

   (3.25) 

and     =     (3.26) 

The relative complex permittivity  is then calculated from (3.22). That is a second order 
equation which gives two roots. The selection of the root is made by the sign of the imaginary 
part. This has to be negative in order to express the loss and so the root with the negative 
imaginary part is chosen. 
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Chapter 4 

4. Transmission/Reflection methods 

The transmission/reflection methods consist a category of nonresonant methods. In this kind 
of method, the sample under test is placed in a segment of transmission line, usually a 
waveguide or a coaxial line. The electromagnetic properties of the material under test, its 
permittivity and permeability, can be derived from the scattering parameters. In such a 
method all the four scattering parameters can be measured. The complex permittivity and 
permeability,  the  sample  length  and  the  positions  of  the  two  reference  planes  are  the  main  
variables contained in the relevant scattering equations of a transmission/reflection 
measurement. Although for a coaxial line the cutoff wavelength is infinity, the more difficult 
placement  of  a  sample  in  such  a  line  leads  to  more  often  use  of  waveguides  and  especially  
rectangular ones. 

4.1 Basic Principle 

A segment of a rectangular waveguide where a sample has been placed, filling the line and 
leaving no air gaps is a typical measurement configuration.  

 

Figure 5. Incident, transmitted and reflected electromagnetic waves in a filled transmission line. 

In Figure 5 is shown such a segment whose axis is in x-direction same with the propagation 
direction.  The electric fields at the three sections of the transmission line are ,  and . 
For a normalized incident wave is [Baker -Jarvis 1990, Chen et al. 2004 pp. 175-176]  

 )    (4.1) 

   )    (4.2) 

   )   (4.3) 

with  

  (4.4) 

    (4.5) 
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the propagating constants in the line filled with air and the sample respectively, where  is 
the complex permeability,  is the complex permittivity  is the speed of light in vacuum,  
is the angular frequency and  is the cutoff wavelength, with = 2  where  is the width 
of the waveguide. The constants = 1,2,3,4) can be determined from the boundary 
conditions on the electric and the magnetic field [Chen et al. 2004 p. 176] 

The total length of the transmission line can be expressed as 

    (4.6) 

where   is the length of the sample and  and  are the distances from the respective ports 
to the sample faces corresponding to the three sections defined. 

The scattering parameters of this two-port line can be obtained, and as the scattering matrix is 
symmetric ( ), we have [Baker-Jarvis 1990, Chen et al. 2004 p 176] 

    (4.7) 

    (4.8) 

    (4.9) 

where  and  are the reference plane transformations at two ports: 

 ) = 1,2)   (4.10) 

The reflection coefficient is  

   = ) )
) )

   (4.11) 

and the transmission coefficient is  

 )    (4.12) 

For the empty sample holder we have 

 )   (4.13) 

The unknown quantities are usually seven , , , , , ,  and we have nine 
equations (4.6 - 4.13).  The overdetermined system of equations can be solved in many ways. 
Usually the length  of the sample is known. ,  are also often known, and thereby  and 

. If the material is nonmagnetic = 1, so = 1 and = 0. 



22 
 

4.2 Nicolson-Ross-Weir algorithm  

The Nicolson-Ross-Weir (NRW) algorithm [Nicolson-Ross 1970, Weir 1974, Chen et al. 
2004 pp. 177-178] combines the equations (4.7), (4.8) and derives formulas for the calculation 
of permittivity and permeability. 

The reflection coefficient is 

 ± 1    (4.14) 

with 

   =    (4.15) 

and the appropriate sign is chosen so that | | 1 in  order  to  express  the  passivity  of  the  
sample. 

The transmission coefficient is 

 = ( )
( )

   (4.16) 

The complex permeability is calculated from 

 =
( ) )

   (4.17) 

and the complex permittivity from  

 = +   (4.18) 

with  

 ln   (4.19) 

where  is the cutoff wavelength of the transmission line section,  the free space 

wavelength and =  where  is the transmission line guide wavelength. 

The equation (4.19) has an infinite number of roots since the imaginary part of the logarithm 
of  a  complex  quantity  ( )  is  equal  to  the  angle  of  the  complex  value  plus  , where  is 
equal to the integer of ( ). This equation is ambiguous because the phase of the 
transmission coefficient  does not change when the length of the material is increased by a 
multiple of wavelength.  

The unwrapping method [Chen et al. 2004 pp. 177-178], can be used to solve the problem of 
phase ambiguity. Determination of the initial phase is needed and then phase unwrapping. For 
a sample with constant permittivity over a wide frequency range, the phase of T fluctuates 
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between . Phase ambiguity arises from the phase wrapping effect. Equivalent to phase 
unwrapping is to obtain the correct additive constant of . 

A simple and common way to unwrap the phase is by detecting a jump in phase value of more 
than  from one measurement frequency to the next and then shifting all the subsequent 
phases by  in the opposite direction. 

Another important observation on permittivity and permeability are spurious peaks when the 
sample is a multiple of half wavelength of the microwave within the sample. In terms of small 
reflection data this can be explained. For low loss, multiple of half-wavelength slabs the 
reflection is ideally zero and so only transmission data are available for the computation of  
and . If is known that = 1,  can be calculated accurately from Equation (4.18). 

4.3 Transformation of Reference Planes 

In the case of a rectangular waveguide filled with a sample, the reference planes of the 
scattering parameters have to be transformed. The waveguide consists of two parts connected 
with a sample holder between them. The sample is placed in the sample holder, which has 
edges at planes 3 and 5 as it shown in Figure 6.  

 

Figure 6. A filled waveguide. The reference planes 1, 2 are transferred to sample’s edges 3, 4. 

The calibration planes 1, 2 are defined by a calibration procedure inside the network analyzer 
to  which  the  waveguide  is  connected.  These  planes  have  to  be  transferred  to  the  sample’s  
edges which are the planes 3 and 4. This transformation is very important especially when the 
phase of the scattering parameters is studied. This procedure has been illustrated [Larsson, 
Sjöberg and Elmkvist 2011] as a function of temperature.    

4.4 Correction for Air Gaps  

In the case of an air gap existence between the sample and the waveguide, the measured 
electromagnetic properties (the output of the NRW algorithm) are [Larsson, Sjöberg and 
Elmkvist 2011] 

 = +    (4.20) 

 = ( )    (4.21)
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where  and  are the sample properties, and  are  the  gap  properties  and  the  volume 
fraction  of  the  air  gap  is  = ( ) . The sample and waveguide heights  and  
respectively are shown in Figure 7. 

 

Figure 7. A sample partially filling a rectangular waveguide leaving a small air gap. 
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Chapter 5 

5. Experiments and Results 

5.1 Experiments with a Coaxial Probe 

In this part of the Thesis the experiments where a coaxial probe used are presenting 

5.1.1 The Measurement Procedure 

The experimental setup that was used is shown below. It consists of the coaxial probe, an HP 
8720C Network Analyzer, a personal computer equipped with the control software and a 
coaxial cable. The coaxial probe is attached to a stable arm in order to remain motionless 
throughout the experiment. The coaxial probe is an Agilent 85070E high temperature probe, 
with frequency range 200 MHz – 20 GHz. The software that was used is the “Labview: 
Virtual  Array  System Control  Software”.  The  frequency  range  of  the  measurements  was  50  
MHz – 20 GHz with 401 points. The IF Bandwidth of the analyzer was settled 30 Hz and the 
output power was 10 mV. 

The  experiment  took  place  in  the  Chemistry  Lab  of  Electrical  and  Information  Technology  
(EIT) department of Faculty of Engineering (Lunds Tekniska Högskola - LTH) of Lund 
University.  

The measured elements were the air (open standard), the short standard, deionized water, pure 
ethanol (99%), isopropyl alcohol and saline (0.9% g/l). Each element was measured three 
times. The calibration standards were water ( ), air (open) ( ), short ( ) and ethanol ( ). 

For known permittivities of water and ethanol, the Debye model as described in [Kaatze 1989, 
Debye 1929] was used. The complex permittivity as a function of frequency  is  

 ( ) ( ) ( ) )    (5.1) 

where (0) is the low frequency permittivity, ( ) is the extrapolated high-frequency 
permittivity,  is the relaxation time and  is the angular frequency.  

For room temperature (25 oC) for the water is [Kaatze 1989]  

 (0) = 78.36 ,  ( ) = 5.2,    = 8.27 ps 

and it is shown in the Figure 8 
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Figure 8. Permittivity of water according to the Debye model. 

One can observe that the real part of permittivity of water is decreasing while the negative 
imaginary part is increasing against frequency. Both the decrease of the real part and the 
increase of the negative imaginary part are not sharp against frequency and this is due to the 
relatively small relaxation time. The real part begins at 78.36 and becomes 40.37 at 20 GHz. 
The negative imaginary has values from 0.19 until 36.56. This behavior due to the dipolar 
relaxation at microwave and millimeter-wave ranges.  

For the ethanol is [Grant et al. 1989, Frellner-Feldegg 1969, Suggett et al. 1970] for room 
temperature 

 (0) = 24.4,   ( ) = 4.8,    = 140 ps 

The permittivity of ethanol is presented in Figure 9. The real part has values from 24.36 until 
4.86 and the negative imaginary has range from 0.86 to 1.11. The relaxation time for ethanol 
is 17 times bigger than the water’s and so the reduce of the real part is sharp. After 8 GHz it is 
approximately 5. The negative part is increasing from 0-1.15 GHz where has its maximum 
value 9.8 and then decreases till 1.11. These data are used for the calibration. 

For the calibration the air permittivity is assumed  = 1. 

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

Frequency (GHz)

P
er

m
itt

iv
ity

 

 
Re( )
-Im( )



27 
 

 

Figure 9. Permittivity of ethanol. 

In the photos in Figures 10 and 11 the whole experimental setup is shown, the arm where the 
probe was stabilized, the network analyzer, the short standard, the short standard on the probe, 
and a liquid under measurement. 

a.  b.  

Figure 10. The experimental setup for the coaxial reflection measurements, a. The whole setup consists of the network 
analyzer, a computer, the coaxial probe with the short standard on it, b. The short standard. 
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a.  b.  

Figure 11. a. The short standard on the probe and b. The coaxial probe in a liquid sample. 

5.1.2 Results of the Reflection Experiments 

In Figure 12 the permittivity of saline as it measured is shown. The behavior of saline in 
frequencies lower than 2 GHz is due to its ionic conductivity. At the imaginary part of 
Equation (2.6) when the frequency is very small –tends to zero- this term is dominated by 
conductivity term  which takes extremely high values –tends to infinity.  

From 2 GHz and above the permittivity of saline is similar to water’s. The real part has values 
from 75.4 to 40 and the imaginary from 21.1 up to 36.8.    

 

Figure 12. The permittivity of saline 0.9 up to 80. 
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Figure 13. The permittivity of isopropyl alcohol. 

In Figure 13 the permittivity of isopropyl alcohol as it measured is shown. It is similar to that 
of ethanol which is expected since they are both alcohols and have similar chemical 
composition. The real part has maximum value 18.1 and minimum 3.58. From 5 GHz and 
above is approximately 3.6. Similarly the negative imaginary part of isopropyl alcohol has 
range from -0.74 to 0.3 with maximum value 7.06 at 0.4 GHz. The relaxation time of 
isopropyl alcohol can be calculated from the maximum of the imaginary part and by using the 
Equations (2.7) and (2.10) at 400 ps, higher than ethanol’s. 

To have a view on the noise, a plot of air’s permittivity is given in Figure 14 although this 
material has been used as a calibration standard. Two different measurements have been used, 
one for the calibration and one for permittivity calculation.  
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Figure 14. A view of noise at the measurements, here on the measured permittivity of air. 

The real part of air’s permittivity is above 1 and this is reasonable since lower value than 1 
would correspond to a speed of light greater than that in vacuum.  

Afterwards, measurements using a plastic foil around the coaxial probe were made. The 
plastic foil is used to protect the probe when measuring solid surfaces which can scratch and 
damage the probe.  

Below are presented some measurements on solid samples of materials like (Expanded 
Polystyrene)  EPS,  Rohacell,  and  wood.  EPS  and  Rohacell  are  soft  materials  and  the  touch  
with the probe can be considered good enough. The permittivity of these two materials is 
similar to permittivity of air.  
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Figure 15. The permittivity of Rohacell and EPS. 

In Figure 16 the permittivity of the wood sample is shown. For the hard wood the connection 
with the probe cannot be considered very good. A very little increase in real part and a 
decrease in the negative imagine exist. The real part is approximately 1.25.  
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Figure 16. Permittivity of a wooden sample. 

Some measurements on the EPS and rubber samples took place without the plastic foil since 
these materials are not dangerous for the probe (Figures 17 and 18).  

 

Figure 17. Permittivity of EPS measured without using the plastic foil on the probe. 
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Figure 18. The permittivity of a rubber sample. 

For the EPS some differences with the other measurement can be observed due to the 
presence of air between the sample and the probe. In the rubber measurement there are many 
abnormalities due to the not good touch of the surface with the probe. Its permittivity constant 
is approximately 2.1.  

Below  are  given  two  diagrams  to  show  the  problem  of  choice  between  the  two  roots  of  
Equation (3.22). The measured water’s permittivity using the plastic foil on the probe together 
with its theoretical value is given. In Figure 19 the first root is presented and in Figure 20 the 
second. 
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Figure 19. The first root of Equation (3.22) for measurement of water using the plastic foil on the probe. 

 

Figure 20. The second root of Equation (3.22) for measurement of water using the plastic foil on the probe. 

At 1.7 GHz is the change frequency. Below 1.7 GHz the first  root is  correct and above that 
point the second root.  
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In the next Figure 21 the permittivity of water is given using data for calibration measured 
without  the  foil.  In  this  case  there  is  a  systematic  error  since  the  effect  of  foil  is  in  the  
measured data but it hasn’t taken under consideration in calibration.  

 

Figure 21. A measurement for water using the plastic foil on the probe but calibration data measured without the foil. 
The systematic error is obvious. 

5.2 Experiments with rectangular waveguides 

At this part of this Thesis a rectangular waveguide completely or partially filled with an epoxy 
slab has been examined, in order to measure its permittivity and permeability using the NRW 
algorithm. 

5.2.1 Filled Waveguide 

Firstly the filled rectangular waveguide was simulated with the Comsol Multiphysics 
program. The results were compared with the measured data from experiments of Daniel 
Sjöberg and Christer Larsson [Private Communication]. The material parameters of epoxy, as 
they used for simulations, are  = 2.8 0.015 , = 1 and = 0. 

Two epoxy slabs were measured, one with thickness 9.61 mm and one with 5.11 mm. The 
waveguide is a WR-90 X-band with cutoff frequency 6.56 GHz designed for the frequency 
range 8.2-12.4 GHz [Damaskos Inc, Sjöberg and Larsson 2011]. The measure frequency 
interval is 6.6-12.9 GHz. For the measured data the TRL calibration method was used [Engen 
and Hoer 1979]. The operating mode is . 
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The measurement setup consisted of a network analyzer connected to two waveguide 
segments, joined by a sample holder containing the sample under test. Here the importance of 
the  sample  holder  has  to  be  emphasized,  where  without  it  there  are  no  line  and  reflect  
standards. The reflect standard is a short that is given by the manufacturer together with the 
sample holder. 

In the photos in Figure 22 are shown the sample holder filled, the epoxy slab, the short 
standard and how the sample holder is connected to the two waveguides. 

a.  b.  

Figure 22. a. The sample holder filled with a sample and the short standard, b. The sample holder placed on the 
rectangular waveguide. 

In Figure 23 the 9.61 slab as designed with the Comsol Multiphysics is presented. 

 

Figure 23. A rectangular waveguide filled with a sample designed with the Comsol Multiphysics program. 

At  this  part  of  the  Thesis  the  diagrams  from  the  Transmission/Reflection  Experiments  are  
given. In Figures 24 and 25 comparisons among measured and simulated data for the 9.61mm 
slab are shown. For the simulations the electromagnetic parameters of the sample are assumed 
to be = 2.8 0.015  and  = 1. 
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Figure 24. S11 from simulation and measurement. 

 

Figure 25. S21 from simulation and measurement. 

In Figure 24 the S11 for both cases is shown. It begins from zero at 6.6 GHz and decreasing 
until 10.13 GHz where takes its minimum value -42.5 dB ant then increases logarithmically 
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until -6.5 dB at 12.86 GHz. At 10.13 GHz all the electromagnetic field is propagating through 
the slab. This behavior of the half-wavelength thick slab is the behavior of a band pass 
microwave filter. This is also shown in the Figure 25 of S21 against frequency. 

The  S21 begins at -15 dB and increases until 10.1 GHz where it becomes zero and then 
increases a little until -1.25 dB at 12.9 GHz. 

Both the measured results and the simulated ones agree with the calculations of the 
mathematical equations which describe this phenomenon. These data can be used as input for 
the NRW algorithm to determine the electromagnetic parameters of the sample. 

In Figure 26 some views of the electromagnetic field are given. The electric field norm  at 
10  GHz is  shown.  At  the  part  before  the  sample  at  the  propagation  axis  (y  at  these  photos)  
concentrations and dilutions can be observed. Theses concentrations and dilutions are due to 
the superposition of the transmitted and reflected wave at this part of waveguide. At the part 
after the sample there is only the transmitted wave. The electric field norm is maximum 
around the propagation axis of the waveguide and zero at the walls of the waveguide. In 
Figure  26a  one  can  see  the  wave  at  the  plane  xy and  in  the  Figure  26b  the  wave  at  the  yz 
plane.  

a.  b.  

Figure 26. The electric field norm at 10 GHz inside the waveguide a. at the xy plane, b. at the yz plane. 

A view of the electromagnetic field (electric field norm) at 6.6 GHz is shown in Figure 27a. 
This is the lowest frequency value used here. It is seen that the wave does not propagates 
inside the waveguide.  

In Figure 27b a view at 9 GHz is given. Here the concentrations and dilutions are very intense 

and the electric field norm is around 4000   at the center of the y axis while at the other 

side of the sample at the same axis the norm is lower, around 3000 . This means that the 
bigger part of the wave is reflected at the sample and only a little part is transmitted through 
it, high S11 and low S21. 
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a.  b.  

Figure 27. The electric field norm inside the waveguide a. at 6.6 GHz, b. at 9 GHz. 

A view of the propagating electromagnetic wave at 10.125 GHz is shown in Figure 28. At this 
frequency all the wave is transmitted through the sample and practically no wave is reflected 
back. The S11 is minimum (-42.25 dB) and the S21 (0 dB) is maximum and the electric field 
norm is the same at the two sides of the sample.  

 

Figure 28. The electric field norm inside the waveguide at 10.125 GHz. 

In Figures 29 and 30 the transmission and reflection coefficients of the rectangular waveguide 
filled with the 5.11mm slab are shown. This sample is shorter than a half-wavelength in the 
whole frequency band and so the behavior of the scattering parameters is different than that of 
a band pass filter. The S11 start from zero and smoothly decreases until 12.9 GHz where it has 
its minimum value of -6.8 dB. In the simulated data a slight ripple exists and there is a little 
difference between the simulated and the measured coefficient. Similarly the transmission 
coefficient is increasing smoothly from -13.77 dB at 6.6 GHz up to -1.1 dB at 12.9 GHz. Here 
there is no perfect transmission of the wave through the slab but always there is a part that is 
reflected.  
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Figure 29. S11 from simulation and measurement on the 5.11mm slab. 

 

Figure 30. S21 from simulation and measurement on the 5.11mm slab. 
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5.2.2 Partially Filled Waveguides 

In this part of this Thesis all the possible cases of the waveguide partially filled with the 9.61 
slab was simulated and some of the data extracted were compared with some measured and 
calibrated data. The 5.11 slab is too small to partially fill the waveguide and out of the scope 
of this work. 

The first case (Case A) is shown in Figure 31a where the slab is turned 90o around the x axis. 
In Figure 31b the case B is shown where the sample after the 90o turn around the x axis is also 
turned 90o around the z axis.  

a.  b.  

Figure 31. Two different cases of partially filled waveguides a. Case A, the slab is turned 90o around the x axis, b. Case 
B, the slab is additionally turned 90o around the z axis. Note the small air gap between the slab and the waveguide at 

the top. 

In the B2 case (Figure 32) the slab is turned around x and z axis and also moved at the center 
of the waveguide. For this case there are no available measured data. 

a.  b.  

Figure 32. Partially filled waveguide, Case B2, the axis of the sample is parallel to propagation axis and between its 
upper side and the waveguide there is an air gap, a. bottom view, b. upper view. 

In  the  Figure  33a  the  case  C  is  presented,  the  slab  from  the  original  filling  the  waveguide  
position has turned directly around the z axis. A view of the electromagnetic field propagating 
in the waveguide for this case is given in Figure 33b. The wave propagates in the epoxy slab 
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and not in the air gap, since the epoxy has dielectric constant 2.8 while the air 1. In the slab 
transmitted and reflected wave propagates and the superposition is clear. This image 
illustrates the principle shown in Figure 5. 

a.  b.  

Figure 33. A partially filled waveguide, the sample is placed at the side of the waveguide (Case C), a. A view of the 
sample in the waveguide, b. The electric norm in the waveguide. 

Similarly the case C2 where the slab after the turn around the z axis has moved also at the 
center of the waveguide is shown in Figure 34 and respectively an image of the 
electromagnetic wave in the same figure. Here the electromagnetic field propagates also in the 
sample for the same reasons as previously only but in more narrow space. 

a.  b.  

Figure 34. The Case C2 of the partially filled waveguide, a. A view of the sample in the waveguide and b. The electric 
norm in the waveguide. 

5.2.3 Results of the Transmission/Reflection Experiments 

Following, the phase against the frequency is given. At the simulated data there is the problem 
of phase ambiguity. The phase changes between  and – . This happens because the 
measuring ports are at the edges of the waveguide (planes 1 and 2) and not at the edges of the 
sample (planes 3 and 4) (Figure 6). For the magnitude of S parameters there is no difference 
but  for  the  phase  there  is.  So  the  planes  have  to  be  transferred  from  the  planes  1,  2  to  the  
planes 3, 4 in order to measure S33 and  S34. A plane transfer has presented by Larsson, 
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Sjöberg and Elmkvist [Larsson et al. 2011] and this method has been used here to transfer the 
planes for the simulated data, Figure 35. 

 

Figure 35. The phase of S33 for measured data is the same as S11 but the simulation results needs to be transformed. 
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Figure 36. The phase of S43 for all the available data. For the data from the simulation and the measurement needs to 
be transformed from S21. 

 

In Figure 36 is presented the transfer of the transmission coefficients for the measured data 
and the simulation results. The scattering parameters S21 has transformed to S43. 

Continuing, the evaluation of available data with the Nicolson Ross Weir algorithm takes 
place in order to determine the electromagnetic properties of the sample. In the Figures 37 and 
38 the permittivity and the permeability of the epoxy are shown after evaluating all the data 
(measured and simulated) for the 9.61mm sample.  
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Figure 37. Epoxy permittivity after the evaluation of all the available data from 9,61mm slab with the NRW 
algorithm. 

It is clear that at 10.13 GHz the values of the electromagnetic parameters have an unexpected 
peak for the measured especially but also for the simulation’s data.  

For the permittivity (Figure 37) below 10.13 GHz the dielectric constant of the permittivity 
(real part) according the measured data is 2.8, ignoring the instability at 10.13 GHz. From 9.7 
to 10.8 GHz, the dielectric constant is different than 2.8, and specifically around 10.13 GHz 
takes values from 2 to 3.1.  Above 10.8 GHz the permittivity is 2.8. 

In the resulting permittivity from the simulation’s data there is inconsistency at 10.13 GHz but 
the values are close to the real ones especially for the loss factor. At the permittivity constant 
a ripple is observed and gives values from 2.7 up to 3. 

As for the permeability (Figure 38) the measured data give value 1 from 6.6 up to 9.8 GHz 
and from 10.3 up to 13 GHz, and for a nonmagnetic material is expected = 1. Around 10.13 
GHz the permeability takes values between 1.3 and 0.9. The loss factor is 0 as is expected, 
except the frequencies around 10.13 where the instability exists and results a value of 0.4.  

The simulation’s data give similar results. The ripple at the permeability is between 1.035 and 
0.92.   
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Figure 38. Epoxy permeability after the evaluation of all the available data from 9,61mm slab with the NRW 
algorithm. 

At the measured results some oscillations can be observed. To have more smooth curves the 
reflection coefficient from the right side (S22) can also be used and by taking the 
geometrically mean of S11 and S22 these oscillations can be avoided.  

To avoid this instability the permeability can be settled to 1 ( = 1), Figure 39.  

The measured data give perfect results and the simulations much better than before. The 
simulated results have a slight but ignorable ripple up to 7.4 GHz.  
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Figure 39. Epoxy permittivity after the evaluation of all the available data from 9,61mm slab with the NRW algorithm 
and by setting permeability equal to 1 ( ).  

The evaluation of the results for the 5.11mm sample is given in Figures 40 and 41.  
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Figure 40. Epoxy permittivity after the evaluation of all the available data from 5,11mm slab with the NRW 
algorithm. 

 

Figure 41. Epoxy permeability after the evaluation of all the available data from 5,11mm slab with the NRW 
algorithm. 
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Here  there  is  no  peak  at  10.13  GHz.  The  data  from  the  simulation  again  give  a  ripple  
especially in the permeability. The difference between the measured and simulated results is 
due to the permittivity of this sample. For the simulations the same value as before was used 
( = 2.8 0.015 )  but  the  real  value  of  this  sample’s  permittivity  is  the  one  that  is  shown  
here, = 2.9 0.03 . 

The sample’s permeability is = 1. The measurements give perfect results but the 
simulations again a ripple. 

By setting the permeability to one ( = 1) (Figure 42) the resulting permittivity is = 2.9
0.05 .  This  value  is  more  correct  since  the  algorithm is  more  stable  after  the  assumption  of  
non magnetic sample. 

 

Figure 42. Epoxy permittivity after the evaluation of all the available data from 5.11mm slab with the NRW algorithm 
and by setting permeability equal to 1 ( ). 

The problems at frequencies below 7 GHz for the measured data are due to the fact that WR-
90 waveguides are designed to operate at frequency range 8.2-12.4 GHz. 

Considering the conclusions of Sjöberg and Larsson (Sjöberg and Larsson 2011) one can 
conclude that there is no problem on the algorithm but the problem is in the data and 
especially when the sample has thickness of half-wavelength. On the other hand, since these 
data give correct scattering parameters the problem can be found in how these data function in 
NRW, namely what is in the nature of these data that result the problem.  
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In the Figures 43-47 the reflection scattering parameter S11 of the data from the partially filled 
waveguides are given. The Comsol Multiphysics Models are seem to work very well and can 
extract very trustable data.  

 

Figure 43. S11 from simulation and measurement on partially filled waveguide, Case A. 

In  Figure  43  the  reflection  coefficient  for  the  case  A  is  shown.  At  10  GHz  the  entire  
electromagnetic wave propagates and there is no reflection. Between 11 and 12 GHz some 
peaks are shown in the curves due to the small air gap between the sample and the top of the 
waveguide. These results can be used in NRW algorithm and give some notable results.  

In Figure 44 the reflection of the case B is shown. The wave is primarily transmitted at 7, 11 
and 12.3 GHz. The peaks between 11 and 12 GHz can be occurred from the existence of high 
order modes. 

The mismatches between data in Figures 43 and 44 can be due to mechanical problems in 
fitting the sample in the waveguide or limitations of Comsol Multiphysics.  
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Figure 44. S11 from simulation and measurement on partially filled waveguide, Case B. 

 

Figure 45. S11 from simulation on partially filled waveguide, Case B2. 
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The scattering parameter S11 for the B2 is shown in Figure 45. The sample is centered in the 
waveguide. The electromagnetic wave mainly propagates at 9.7 GHz. Some peaks exist 
around 11 and 12.8 GHz.  

In Figure 46 reflection coefficient from the case C is shown. The electromagnetic wave 
mostly is reflected from 7.5 to 10 GHz and mostly transmitted at 7, 10.93 and 12.2 GHz and 
there are a few similarities with the case B. 

A  very  interesting  case  for  a  partially  filled  waveguide  is  the  case  C2  and  the  S11 for  it  is  
shown in Figure 47. The curve is very smooth with minimum at 9.475 GHz where the 
electromagnetic wave has an almost perfect transmission through the sample. This case was 
used for determination of the complex permittivity (Catalá-Civera et al. 2003) and using 
algorithm different than NRW can give some good results. 

 

Figure 46. S11 from simulation on partially filled waveguide, Case C. 
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Figure 47. S11 from simulation on partially filled waveguide, Case C2. 

5.2.4 NRW and Partially Filled Waveguides 

The data from partially filled waveguides cannot be evaluated using the NRW except the case 
A. In the case A the air gap between the sample and the waveguide is small and the 
electromagnetic parameters can be derived with the difference of the real ones described in 
Equations (4.20), (4.21). 

The resulting parameters after using the data from the Comsol Multiphysics simulation of 
case A and the corresponding measured are shown in Figure 48. The permeability has been 
defined 1 ( = 1). The peaks at 11.13 and 11.93 GHz are due to the air gap. These peaks are 
much higher for the simulations than the measurements which mean that the measured data 
are more accurate. The inconsistency at frequencies below 9 GHz is due to the instability of 
the implementation which can be avoided by using the S44 additionally.  

The measured permittivity by observing Figure (48) is approximately = 2.6 0.013 . By 
using the Equation (4.20) with = 2.8 0.015 , = 1, = 9.61 mm and = 10.16mm 
the measured permittivity is calculated = 2.55 0.0118  which is very close to the value 
above.  
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Figure 48. Epoxy permittivity after the evaluation of all the available data from partially filled waveguide (Case A) 
with the NRW algorithm by setting permeability equal to 1 ( ). 

 

The evaluation with NRW of the data from the simulation cases B2 and C2 are shown in 
Figure 49. 
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a.  b.

 

Figure 49. Some results from NRW when using as input data from partially filled waveguides, a. Case B2 and b. Case 
C2. 

Figure 49 clearly shows that the NRW cannot be used on partially filled waveguides to 
determine the electromagnetic parameters, permittivity and permeability. It was shown in this 
Thesis that full wave simulations can produce scattering parameters similar to the measured 
parameters even for partially filled waveguides. Thus, an optimization algorithm could be 
devised, where the permittivity used in the simulation is changed until the S-parameters of the 
simulation match the S-parameters of the measurement.  
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Chapter 6 

6. Conclusions 

A reflection and a transmission/reflection method have been used in this Thesis to determine 
the electromagnetic parameters of some materials. The reflection method to determine the 
permittivity of some deep enough liquid and solid samples and the transmission/reflection 
method was used to determine both the permittivity and permeability of some slabs. 

With the coaxial probe modeled as antenna and calibrated using four known standards the 
permittivity of saline, isopropyl alcohol, Rohacell, EPS, wood and rubber was determined 
over a frequency range 0-20 GHz.  

This procedure is working very well and mostly for liquid samples where the air gaps can be 
eliminated and the probe can perfectly touch the sample. In this respect it is suitable for “in 
vivo” measurements. 

As for the methods using partially filled waveguides it has been clearly presented that Comsol 
Multiphysics can simulate with high accuracy the filled and partially filled rectangular 
waveguides and the measuring process is also of the same quality.  

Nicolson-Ross-Weir algorithm can determine complex permittivity and permeability from 
scattering parameters from filled waveguides but some parameters must be taken into account. 
The data -rather the NRW algorithm- cannot give good results when half-wavelength samples 
are measured. At frequencies where the sample length is a multiple of half wavelength in the 
material there are abnormalities on resulting parameters. At these frequencies there is no 
reflection data but only transmission, and regarding that a Transmission/Reflection method to 
work  needs  both  the  transmission  and  reflection  coefficients  to  derive  two  parameters  –
permittivity and permeability-, one can conclude that at these frequencies the 
Transmission/Reflection method becomes only Transmission method and thus can derive only 
one parameter. 

For the partially filled waveguides NRW algorithm does not work and other algorithms must 
be used to determine the electromagnetic parameters. But still NRW can give notable results 
when the air gaps between the sample and the waveguide are relatively small. 
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Chapter 7 

7. Future Work 

For the coaxial reflection method that was used here other models of the open-ended coaxial 
probe can be used (Pournaropoulos and Misra 1997, Bérubé et al.1996, Chen et al.2004 pp. 
145-149) and other calibration procedures (Nyshadam et al. 1992).  

Other methods must be investigated and implemented for partially filled waveguides as the 
work presented on [Catalá-Civera et al. 2003]. 

More experiments, more simulations and more data process have to be done on partially filled 
waveguides and an optimum algorithm to be found.  
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