
Surveying inner source adoption in
IKEA

ALEXANDER MALM
BACHELOR´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

A
LEX

A
N

D
ER

 M
A

LM
Surveying inner source adoption in IK

EA
LU

N
D

 2023

Series of Bachelor´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-924
http://www.eit.lth.se

Surveying inner source adoption in
IKEA

By Alexander Malm

Supervisor: Christin Lindholm Examinator: Christian Nyberg

©Alexander Malm, 2023

Department of Electrical and Information Technology
Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

Abstract
Open source has lately been gaining more traction and recognition

in the software industry. The practices are being implemented within
various organisations through an approach known as inner source,
which involves taking the principles and practices that have been
proven effective in open source environments and applying them
within an internal context.

This thesis focuses on an exploration of IKEA's current software
development processes, aiming for assessing the potential of inner
source adoption by surveying several developer teams.

Utilizing the Goal-Question-Metric (GQM) methodology, critical
performance metrics were identified and used to gather the team’s
development metadata from their GitHub code repositories. This data
was then analysed and assessed in combination with the current best-
practices of inner source development.

Recommendations based on the findings include ensuring
comprehensive documentation, fine-tuning testing practices and
adherence to test results, ensuring pull request management processes
and increasing project visibility within the organisation. Addressing
these aspects could help facilitate the adoption of inner source practices
in IKEA, bringing benefits not only to the developer teams but to the
entire organisation.

Keywords: Inner source, GitHub, GrimorieLab, metrics, KPI,
repository analysis

Sammanfattning
Open source-baserad utveckling har senaste åren mött ökat intresse

och erkännande inom mjukvaruindustrin. Dessa metoder anpassas och
implementeras inom olika organisationer, så kallad inner source, vilket
innebär att principer och metoder från open source-utveckling
tillämpas inom en intern kontext.

Detta examensarbete fokuserar på en granskning av IKEAs
nuvarande mjukvaruutvecklingsprocesser genom att undersöka flera
utvecklarteam, med målet att bedöma möjligheten för utveckling med
inner source-metodik

Genom att använda Goal-Question-Metric (GQM)-metodik
identifieras kritiska mätvärden som sedan användes för att samla in
teamens metadata från deras källkod på GitHub. Denna data
analyserades och jämfördes med de nuvarande bästa praxis för inner
source-utveckling efter resultat från litteraturgranskning.

Resultaten leder till en rekommendation för vad IKEA ska ha i
åtanke vid fortsatta inner source-initiativ: säkerställa dokumentation,
finjustering av testrutiner och acceptanskriterier, förbättrad
hanteringen av pull request-processer i delar av utvecklingen, samt
ökat synliggörande av teamens produkter och dess tekniska lösningar.
Med dessa rekommendationer i åtanke har implementering av inner
source-utveckling på IKEA större chans att lyckas, och kan medföra
fördelar för utvecklingsteamen och också för hela organisationen.

Nyckelord: Inner source, GitHub, GrimorieLab, mätvärde, repository
analys

Acknowledgments

Without the invaluable assistance and direction provided by my
supervisors at IKEA, Oihsik Sarkar and Supriya Chatale, along with
the collective efforts of everyone at IKEA who lent a hand throughout
the spring, this bachelor’s thesis would not have been possible. I also
want to thank my supervisor at LTH, Christin Lindholm for providing
critical input and assistance writing the thesis.

Alexander Malm

Contents

1. Introduction... 1

Background.. 1

Purpose.. 2

Goals.. 2

Problem definition... 3

Delimitations ... 3

Motivation for thesis ... 3

2. Technical background.. 5

Inner source and inner source practices 5

Goal Question Metric-methodology ... 6

GrimorieLab... 6

Docker and Docker Compose .. 7

Windows subsystem for Linux... 7

GitHub REST API .. 8

GitHub pull request ... 8

GitHub Actions and GitHub Checks ... 8

Visual Studio Code... 9

3. Methodology ... 10

Thesis work process .. 10

Information gathering and planning ... 11

3.2.1. Literature review ... 11

3.2.2. Understanding IKEA... 12

3.2.3. Thesis planning.. 12

Metric identification and data gathering 12

3.3.1. Interviews with developers ... 12

3.3.2. Identifying development metrics .. 13

3.3.3. Gathering repository metadata... 14

Analysing ... 14

3.4.1. Data analysis.. 14

3.4.2. Recommendation .. 15

Source criticism ... 15

4. Analysis.. 16

Inner source goals ... 16

Understanding IKEA... 17

4.2.1. IKEA’s software development ... 17

4.2.2. Developer teams ... 17

Identified metrics .. 19

4.3.1. Document availability.. 20

4.3.2. GitHub Check failrate on merge .. 23

4.3.3. Time-to-close... 25

4.3.4. Visibility ... 26

Gathering and visualising the data.. 27

4.4.1. Repository and data selection criteria 27

4.4.2. Using GrimorieLab... 28

5. Results ... 30

Results from identified metrics ... 30

5.1.1. Document availability.. 30

5.1.2. GitHub Checks failrate on merge .. 33

5.1.3. Time-to-close... 35

5.1.4. Visibility ... 37

Recommendation for IKEA .. 38

6. Conclusion ... 41

Ethical aspects ... 42

7. Future work ... 43

8. Terminology... 44

9. References... 45

Appendix A: Extended Material .. 48

1

1. Introduction
This chapters describes the goals and purpose of the bachelor’s

thesis work, as well as the necessary background information needed
to understand the scope and delimitations.

Background
IKEA is perhaps mostly known for their furniture, warehouses and

Swedish meatballs. A large organisation with stores all over the world.
The technical aspects of such a global organisation require a significant
investment of time and resources and are an essential element to the
organisation's success in a quickly evolving digital landscape [1].

IKEA consists of numerous subsidiary companies. The focus of
this thesis work is on INKA, which is the largest of these subsidiaries
owning a majority of the warehouse locations around the world. In this
thesis work, the term "IKEA" will be used to refer to INKA, in
accordance with the company's practice of using the parent brand name
when further distinction is not necessary.

In large organisations such as IKEA, many teams of developers
might simultaneously be trying to solve the same problems,
unknowingly of other's efforts. To handle this issue, IKEA has
initiatives to promote internal sharing and contribution of the software
development process. This practice is often called inner source and can
be described as the application of open source development practices
within a local context [2][3]. Common practices in open source
development include collaboration, transparency, peer review of code,
and code reuse, providing benefits such as increased code quality,
faster time-to-market, and improved knowledge sharing across teams
[4].

This thesis work will to some extent be conducted in collaboration
with Mandana Khasayar from Blekinge Tekniska Högskola. The
overreaching purpose will be to examine software development teams

2

in the context of inner source but from two distinct viewpoints,
presented in one bachelor's and one master's thesis. The work presented
in this thesis involves the strategy of identifying key development
metrics, obtaining GitHub repository metadata that corresponds to
these metrics, and analysing the data. The goal is to comprehend the
team’s current development practices and ultimately assess their
potential for adopting inner source methodologies. Meanwhile, the
other work will evaluate the teams' maturity and readiness for inner
source by assessing their team environment, culture, and attitudes, and
present the result in another thesis work.

The outcomes of these studies will offer distinct assessments of the
overall state of several IKEA software development teams, using two
different methods. Each will present recommendations based on our
unique findings, proposing potential strategies that IKEA may
contemplate if they decide to pursue inner source initiatives in the
future.

Purpose
This thesis work will survey the current practices and priorities of

a few developer teams within IKEA, using identified key metrics for
software development goals regarding inner source. The results from
the team’s data will be analysed in order to propose recommendations
for IKEA’s continued inner source initiatives.

Goals
The goal of this thesis work is twofold. Firstly, an understanding of

the current inner source research will be obtained in a literature review.
With an understanding of IKEA’ software developer processes,
interviews will facilitate identification of metrics relating to inner
source.

Secondly, the gathered metrics will be used to compare the teams
and assess a general state within IKEA’s developer team regarding
inner source. With a literature review of current research, an
assessment will be given for how IKEA can proceed with inner source
initiatives.

3

Problem definition

This thesis will answer the following questions:

1. What are the general software development processes within
IKEA?

2. What metrics from the repositories’ metadata can be used to
evaluate teams in regard to inner source?

3. What conclusion can be drawn from the gathered metrics
regarding the current state of software development?

4. What recommendations can be given to IKEA consider future
inner source initiatives?

Delimitations
This work will focus on a select few teams chosen by IKEA to

conduct the survey. IKEA encompasses numerous developer teams
and adheres to relatively lenient guidelines concerning software
development processes, leading to the adoption of various
methodologies across the organisation. Consequently, the repository-
centered approach of this thesis work might not accurately describe the
teams using other tools of some capacity, for example other platforms
for collaboration and communication. Additionally, the development
metrics do not measure the quality or effectiveness of a developer team
or their processes, they are utilised to assess the potential for adopting
inner source practices within the team.

Motivation for thesis
The advantages of inner source development have become more

well established and seen wider usage with positive outcomes, which
IKEA could potentially benefit from. Benefits such as increased
development time and increased developer satisfaction would benefit
the digital progress within IKEA. An increased knowledge of these
processes in professional and academic contexts will also bring the
benefits to the overall society.

4

For the author of this thesis, being able to engage in the early stages
of inner source adoption was a very exciting prospect. Especially in
and global and stimulating environment such as IKEA.

5

2. Technical background
This chapter explain the tools and software used for gathering the

data from the developer team’s code repositories, as well as some of
the important software development practices and methodologies
which are of importance for understanding this thesis work.

Inner source and inner source practices
Inner source is a collaborative software development methodology

that applies the principles of open source development to projects
within an organization. It promotes the sharing of knowledge and
expertise across teams, and have been shown to result in improved
efficiency, innovation, and employee engagement [2][4]. It also fosters
collaboration and breaks down silos, meaning isolated development
with low or little external insight and input [5][6].

Although here’s no exact definition of the practices, Inner sourced
development consists of several key components:

1. Open communication and transparency: Encouraging open
communication and sharing of information helps build trust
among team members and fosters an environment beneficial
for collaboration.

2. Code sharing and reuse: Inner source practices promote
sharing code, libraries, and components across teams, thus
reducing redundancies. This enables teams to build upon
each other's work.

3. Peer review: Emphasizing peer review helps maintain code
quality and ensures that contributions adhere to established
standards. For IKEA, GitHub is the source control system of
choice and a platform for code reviews using pull requests.

4. Meritocracy and contribution-driven culture: Recognizing
and rewarding contributions based on merit.

5. Documentation and knowledge sharing: Providing
comprehensive documentation, guidelines, and best practices
helps ensure that team members understand the expectations
and processes involved in inner source development.

6

Goal Question Metric-methodology
The Goal-Question-Metric (GQM) methodology will be employed

to identify crucial aspects of the teams' software development
processes [7]. Which will be used to identify key development metrics
concerning inner source.

The GQM-approach during the thesis work has been a 4-part
process.

1. Information gathering and planning: Gather information
regarding inner source and IKEA’s software development
practices, as well as planning the course of the survey.

2. Goal: Identifying IKEA’s goals for software development
using inner source practices, from a software developer’s
perspective.

3. Question: Once the goals are defined, the next step is to devise
a set of questions that characterises the current processes of
software development regarding the goals.

4. Metric: The final step involves defining quantitative metrics
that can be used to answer the questions formulated in the
previous step. One metric can correlate to several of the goals.
The metrics provide a means to collect data and assess the
effectiveness of improvement efforts concerning the defined
goals.

GrimorieLab
GrimoireLab is an open source software tool that is designed to

support the analysis of software development and community activity
data [8]. GrimorieLab is the main method of gathering the data for this
thesis work. It provides a set of integrated tools that enables a range of
analyses on data from various sources, including code repositories.

An important feature of GrimoireLab is modular architecture. One
of the more important tools is Perceval, the component used for
retrieving data from various sources and APIs. Two others of its
modules are built on the open source tools Elasticsearch and Kibana.
Elasticsearch is a search and analytics engine that handles large
volumes of data. It provides near real-time search functionality and

7

event data analysis [9]. Kibana is a tool for visualization and
exploration [10].

The key feature of GrimoireLab is the ability to generate a wide
range of visualizations that can help to gain insights into the patterns
and trends that underlie software development, and will be used in this
work to analyse the teams.

Docker and Docker Compose
Docker provides a way to build and manage containers using a

simple command-line interface [11]. The interface can then be used to
build an image from a specification called a Dockerfile, which
describes dependencies and configurations for an application. The
resulting image can be run in a container on any system that supports
Docker. Effectively, this makes individual computer’s operational
system (OS) a non-issue, enabling the images to be used without the
need for different configurations.

Docker Compose is a tool that allows developers to define and run
multiple images [12]. With Docker Compose, developers can define a
set of images that make up an application and specify how they should
be configured and connected to each other, facilitating creation and
management of complex applications.

GrimorieLab can be installed locally by cloning the individual
components from the GitHub repositories and setting them up
individually. For this thesis work however, GrimorieLab’s Docker
Compose image was used [13].

Windows Subsystem for Linux
A prerequisite to run Docker and Docker Compose with a Windows

OS is to use Windows Subsystem for Linux (WSL) [14]. It is a feature
that enables Linux applications to run natively on Windows. It provides
a compatible interface with the capability to run Linux tools and
applications. Essentially, WSL enables developers to access the Linux
command line tools and utilities from within the Windows
environment.

8

GitHub REST API
The GitHub REST API allows developers to work with many

different resources such as repositories, pull requests and issues by
enabling programmatic interaction with GitHub through HTTP
requests [15].

GrimoireLab’s backend tool, Percival, can gather a wide range of
data, however it doesn't encompass the functionality for supporting the
data gathering needed for this thesis work. To address this, custom
Python scripts accessing the GitHub REST API were developed.

GitHub pull request
A GitHub pull request (PR) is a process that allows developers to

propose, review, and merge code changes within a repository [16]. The
process starts by creating a new branch of the repository’s code to work
on a feature or fix a bug. Once the changes are made, the branch with
the new code is pushed to the repository which initiates a pull request.
During the pull request, others can review the proposed changes and
provide feedback. If some part of the suggested PR needs to be changed
after review, a new commit will be made on the branch, Once the
review is complete, and any requested changes are made, the pull
request can be approved, and the branch merged with the source code.

The pull request process is an integral part of IKEA’s continuous
integration/continuous deployment (CI/CD)-pipelines [17], a process
of software development practice aiming for frequent releases with
small updates to the source code.

GitHub Actions and GitHub Checks
GitHub Actions is an automation platform that integrates with

GitHub repositories to enable CI/CD pipeline services and handle tasks
such as executing tests, building, and deploying code. Within the
GitHub Actions platform, a workflow is a predefined series of tasks,
called jobs, that are orchestrated in a specific sequence. Triggered by
events like pull requests, workflows automatically initiate and carry
out the designated jobs such as running tests, building code, and

9

managing other aspects of the pipeline process, such as division of code
reviews [18].

GitHub Checks is an API and user interface integration that allows
developers to view the results of the workflow jobs directly within
GitHub [19]. This simplifies code review and collaboration by
displaying check results in the pull requests menu as shown in Figure
1, a screen dump from GitHub Checks’ official repository [20]. A
check can show a few different statuses on job completion, such as
passed, fail, cancelled and more. For this thesis it’s important to note a
cancelled check counts as a fail when overviewing checks from the PR
menu. A complete log can be found by looking at the individual
commits.

Figure 1. Results from workflow jobs, showing as GitHub Checks on a PR

Visual Studio Code
The IDE Visual Studio Code (VSCode) was used in the process of

developing Python scripts [21]. It is a free source code editor developed
by Microsoft. It supports numerous programming languages and
provides features like syntax highlighting, code completion, and
debugging. For this work, the necessary scripts were written in Python
using VSCode’s Python extension.

10

3. Methodology
This chapter describes the process and methods used during the thesis
work.

Thesis work process
The process of this thesis work has been iterative, however there

have been three major phases, with separate steps as seen in Figure 2
[22]. The phases are:

1. Information gathering and planning-phase

2. Metric identification, and gathering-phase

3. Analysis phase

There has been much overlap of the phases due to the iterative
approach. For instance, the comprehension of IKEA's team’s software
development practices has been a continuous learning experience that
extended well into the third phase.

Figure 2. The iterative process for the thesis work

The first phase, information gathering and planning, can be further
divided into three steps: Literature review on inner source, gaining an
understanding of IKEA’s software development practices, and thesis
planning. The planning included choosing the methodology for
identifying development metric.

11

The second phase, identifying and gathering metrics, consisted of
three stages: interviews with developers, identifying the development
metrics, and gathering the data by configuring GrimorieLab and
writing custom scripts.

In the final phase, the analysis phase, the collected data was
combined with an evaluation of the gathered research material to
present the results of the teams, and finally determine
recommendations for IKEAs continuous inner source initiatives.

Information gathering and planning
The first phase consisted of an information gathering on inner

source, gaining an understanding of IKEA’s software development
processes and company culture, and lastly project planning, including
methodology specification for metric identification.

3.2.1. Literature review
The initial stage encompassed gaining an understanding of the

fundamental principles and practices of inner source. To achieve this,
an information gathering was undertaken. As the concept of inner
source is still new, no books were found. The criteria for choosing the
research are explained in chapter 3.5. The literature review was
conducted by gathering research papers found using Google Scholar
and LUBsearch, or found in reference lists of other papers, 14 papers
were selected based on the criteria. The search words were variations
of “inner source” “inner source practices” and “organisational open
source”. Of the 14 papers, 5 were used for this thesis. While the other
9 fulfilled the criteria, the specific areas of research of the papers were
not aligning with the purpose of this thesis. A significant insight from
the information gathered revealed that although metrics and inner
source have been discussed, such as [2][4], research on inner source
metrics is not yet well-established. Also, no research found mentions
the processes of individual developer teams. This posed a challenge
during the thesis work, as limited guidance was available to determine
the most suitable direction. This situation also granted the flexibility to
explore and experiment with different approaches.

12

3.2.2. Understanding IKEA
This secondary step involved acquiring an understanding of IKEA's

development process, which was partly obtained through accessing
their internal platforms for documentation and communication. Access
to Confluence, IKEA’s main platform for documentation, provided
insight into their internal processes and development guidelines [23].
The company's Slack platform provided valuable insights into various
internal communication channels [24]. This opportunity allowed the
author to gain a deeper understanding of the organizational culture and
dynamics. Moreover, the guidance provided by IKEA supervisors and
others in the organisation greatly contributed to a better understanding
of the day-to-day operations.

3.2.3. Thesis planning
With the initial stages concretised, a project plan was developed

encompassing the major milestones of the thesis work and an
estimation of the time required to complete each stage.

During this stage, the decision of using the GQM-methodology was
also made and planned for, The GQM-approach described in chapter
2.1 was chosen partly because of the author’s familiarity with the
methodology, but also because of practical examples of it being used
for the purpose of identifying inner source metrics [25].

Metric identification and data gathering
The second phase involves utilizing IKEA’s inner source goals, to

develop questions for the interviews, and using the developers’
answers to identify and gather development metrics. This includes
configuring GrimoireLab, writing necessary scripts and ultimately
collecting data from the development team's repositories.

3.3.1. Interviews with developers
Using the GQM-approach, 7 developers were interviewed.

Typically, they were senior DevOps engineers, and all selected by the
supervisors at IKEA. The interviewees were picked based on their
experience in IKEA or open source-related development. Semi-

13

structured interviews were chosen, which implies the interviews
consist of a series of questions that can be flexibly adjusted based on
the interviewee's responses, allowing for a more in-depth exploration
of the participants' perspectives and experiences [26]. The semi-
structured interview method was selected, in part, due to the author's
limited experience with professional software development, which
would make it challenging to ask relevant questions. Open-ended
questions also allowed to prompt follow-up questions on tangents or
topic that needed clarification. An initial interview guide was
developed as seen in appendix A-1. For each of the inner source goals,
one or more questions were asked, allowing developers to describe the
essential aspects of their development in relation to the respective goal.

As outlined in chapter 1.1, the approach of this thesis work was
partially a joint effort. Questions related to Mandana’s readiness
assessment survey were asked during the same interviews. Although
the primary purpose of these questions aimed at metric identification,
they enhanced the understanding of IKEA's general processes and
facilitated the improvement of the interview guide. After each
interview the answers were reviewed, and the guide was continuously
refined as this work’s author's comprehension of the subject deepened.

The interviews were mostly conducted with single developers face-
to-face, online. In addition to providing crucial information for
identifying metrics, the interviews revealed some vital practices that
aided in determining how to gather the data, for example explanation
of their use of automated tests in their CI-pipeline proved essential for
the GitHub Checks-metric which will be described in chapter 4.

One of the interviewed developer’s team was technically part of
one of IKEA's other subsidiaries, Inter IKEA. As a result of the
organisational structure, access to this team's repositories were not
granted and no repository data could be gathered and analysed from
this team.

3.3.2. Identifying development metrics
To pinpoint the metrics, the open-source community CHAOSS's

metrics were referenced to try to enable the use of industry-established

14

standards [27]. This proved however not to always be possible after
analysing the responses from the interviews, and customised metrics
were needed as will be described in chapter 4. These custom metrics
were based on the interviewed developer’s descriptions of their
processes and 2 internal development guidelines:
Engineering baseline, specifies that every repository should contain a
readme-file, containing information and documentation about the
repository. It also specifies that it should contain a link to additional
documentation of the product.
Repository prerequisites, a document from The Open Source
Program Office (OSPO), a department within IKEA responsible for
overseeing open source projects as well as certain internal source
initiatives. Specifies documents in repos teams should have if aiming
to inner source their products.

3.3.3. Gathering repository metadata
The third step consists of setting up the necessary tools and gather

the repository metadata. GrimorieLab, Docker, Docker Compose and
WSL were used as described in chapter 2, as well as using VSCode to
write scripts. 56 repositories belonging to 6 teams were used for the
analysis, the process of sorting the repositories of the teams is
described in 4.4.1. The repositories were obtained through a custom
Python script.

Analysing
The last phase consisted of analysing the gathered data and

combined with the findings from the literature review, conclude in a
recommendation for how IKEA can proceed going forward.

3.4.1. Data analysis
The data gathered from the developer team's repositories were

analysed in order to assess team's performance concerning the
identified inner source goals. Both the average team’s data as well as
interesting observations from repositories will be used for this purpose.
GrimoireLab provides gathering and visualisation capabilities of the
visibility and time-to-close metrics used in this thesis, but to ensure

15

consistency and not disclose the team and repository names, scripts
were utilized for generating all graphs and tables shown in chapter 5.

3.4.2. Recommendation
The combination of data from the metrics, information about IKEA

and the development processes, and research findings from the
literature reviews, helps identify critical success factors, potential
obstacles, and best practices for implementing inner source approaches
for the development teams in IKEA.

Source criticism
The credibility of the sources was based on the following criteria:

First, the credibility of the sources was assessed by assessing the
publisher, prioritising articles that were peer-reviewed. Second, a
preference was given to more recent articles to ensure up-to-date
information.

Sources numbered [8]-[16], [18]-[21], [23]-[24], [27]-[28], and
[32] are directly tied to the respective tools or official documentation
websites, ensuring the accuracy of the information they provide.
Sources [1]-[2], [5], [22], [26], [29] and [31] are valid considering the
publication in peer-reviewed journals, ensuring scholarly merit.
Sources [3]-[4], [6], [14], [17], [33]-[37] are published from
conference papers. Source [7] and [25] are from a book published by a
reputable scientific publisher and a practical, empirical guide. Finally,
the methodologies in references [29]-[30] adhere to the descriptions
provided by their respective originators.

16

4. Analysis
This chapter presents the outcomes and discoveries obtained

through the employed methods, while also providing motivation for the
decisions made throughout the process.

Inner source goals
The process of the GQM-survey involved determining the

expectations IKEA had for inner source development, and how the
goals could be used to determine development metrics. To pinpoint the
goal, the supervisors in IKEA were questioned regarding their
expectations for software development using inner source practices,
yielding the goals as seen in table 1. The goals are numbered without
inherent prioritization and will be used when motivating the metrics in
following chapters.

Table 1. Description of IKEA's inner source goals

Goal Description

1. Reduce silos Removal of barriers that limit
collaboration between teams

2. Reduce bottlenecks Lessening limiting factors that
impedes development

3. Reduce development time Shorten the duration required to
complete a project.

4. Improve quality Increased quality of the product
and the development process

5. Increase reusability Reuse of code and components

6. Increase knowledge sharing Increased communication, ideas,
and expertise sharing among
teams

17

Using the goals, an initial interview guide was developed, seen in
appendix 1-A, with the aim to allow the developers to characterise their
software development processes regarding the different goals.

Understanding IKEA
This chapters describes the effort of understanding the processes in

IKEA and the developer teams. It presents the finding from the
interviews and motivates the identification of the metrics.

4.2.1. IKEA’s software development
An understanding of the principles of IKEA’s software

development was gained by taking part of internal documentation as
described in 3.2.2, as well as information from interviews and informal
discussions with people in the organisation. IKEA’s software
development can be characterised as open and inclusive. An example
of this is the use of an internally open GitHub Enterprise cloud, an
organizational platform within GitHub with project management and
team administration features [28]. The teams and their products as well
as the corresponding source code and documentation is open and
accessible for anyone within the organisation.

The developer teams are working very autonomously, with few
restrictions on the tools, languages, and methods they deploy. The
openness and transparency observed among IKEA's developers and
inside the organisation is crucial for embracing inner source practices
[2][3][5]. However, the variety of tools, processes, and the
organisational structures also present difficulties for inner source
development [3]. This diversity is a challenge considering the need to
take into account the unique characteristics of each team and their
preferred methodologies.

4.2.2. Interviews with developer teams
During the interviews, a few key discoveries appeared that were

integral for the decision made during the thesis. One of these was that
every team employed agile development processes, with some utilizing
scrum, others kanban, and some a blend of both [29][30][31].
Furthermore, all teams used Jira, a project management tool, to

18

implement the agile artifacts, such as planning using scrum boards or
retrospectives at the end of sprints [32]. Another significant
observation from the interviews was the widespread use of DevOps
practices such as CI/CD-pipelines.

Generally, a single team has ownership and responsibility to
maintain one or a few related products, often consisting of several
different repositories to support the functionalities, as seen in Table 2.
The repositories used in this thesis were filtered and gathered using the
criteria mentioned in chapter 4.4.1. Some teams, such as team A and
B, has ownership of repositories that are codeveloped with other teams.

Table 2. The number of members and repositories of the interviewed teams

The different challenges the teams faced became apparent from
their answers during the interviews. Some teams produce services for
internal use while other caterers to other businesses, leading to
different requirement. Development within the organisation was
described by one developer to be able to not have the same emphasis
on deadlines. Another challenge was technical dept, mentioned by two
of the teams. This refers to previous shortcuts and compromises that
hinders further maintainability and productivity. One teams, team E,
recently inherited the ownership of their current product, and at the
time of the interview described they were in the process of
understanding the different functionalities and write new
documentation since it was previously severely lacking.

One of the teams interviewed, here designated as Team F, stands
out as being the biggest of IKEA's inner source initiatives. Among the
six repositories identified for team F, one is inherently inner sourced

19

and vigorously promoted within IKEA. It serves as a cornerstone of the
company's initiative to inner source development.

Many developers shared similar objectives and faced comparable
challenges, such as utilizing GitHub for version control and adopting
many Agile and DevOps methodologies. Nevertheless, they employed
a diverse array of tools and methods for testing, processing pull
requests, and managing other aspects of the product development.
Team C for example, used highly automated pipelines in many of their
repositories. Notably, they were using bots to complete tasks such as
automated updates of dependencies in several repositories, and in
another, used a bot to push all commits as PR drafts. These differences
made it challenging to compare the team’s different development
processes and posed difficulties when determining how to gather the
metrics that were not covered by GrimorieLab’s functionalities.

Currently, there are not much collaboration among developer teams
across organizational units within IKEA, unless the team’s products
had some level of interaction. Teams within the same domain did
however collaborate to some extent or shared repositories, as seen in
chapter 4.4.2. Another interesting finding from the interviews was the
prevalent use of workshops for many of the teams, where they
presented or were invited by others to try their product or some related
technical challenge.

Identified metrics
While determining the metrics, open source metrics from the

organization CHAOSS were used as inspiration as described in chapter
3.2.2. When these were not applicable, the internal specifications
Engineering baseline and OSPO’s inner source documents
specifications were used. The result of the developers' answers during
the interviews, as illustrated in Figure 1, shows how IKEA’s inner
source goal were used to correlate with the 5 identified metrics, which
will be described in following chapters. One metric frequently
corresponds to several of IKEA's inner source goals. The metric can be
used to analyse individual repositories as well as the different teams.

20

Figure 3. Identified metrics relating to IKEA’s inner source goals

4.3.1. Document availability
During the interviews, developers emphasised the significance of

available and up-to-date documentation in relation to questions
concerning IKEA’s inner source goals 1, 2, 5 and 6, seen in Table 1.
This highlights the critical role that comprehensive documentation
plays for the purpose of collaboration and promoting the reuse of code
and resources. They did also mention that documentation is a part of
the development that is often found lacking. Research also notes the
problems with missing and low quality documentation for inner source
initiatives, and the difficulties it brings for such initiatives [3].

21

Document usability was the CHAOSS-metric most closely
correlating to the developers’ answers in the interviews concerning the
importance of documentation. For instance, when describing their
approach of utilising APIs or services from another team, where the
first step was to find and read the documentation to understand the
functionalities. Documentation usability is however a well-defined
metric, measuring requires qualitative methods for effective evaluation
which entails conducting in-depth interviews or monitoring of task
completion [33]. These processes can be time consuming and are
beyond the scope of this thesis.

A model for the metric document availability has been proposed by
Matulevičius et al. [34]. Although this model is not directly applicable
due to differences to IKEA's specified documentation set and the
proposed model’s, it inspired the definition of the metric
documentation availability as used in this thesis.
GrimoreLab lacks the functionality to provide metrics related to
documentation, and a custom Python script was developed using the
internal specifications mentioned in chapter 3.3.1, described below in
Table 3.

Document availability is calculated by searching for the specified
documents in the repositories, for the existence of links in the
README as shown by (1), where dn specifies the found documents
and links.

 (1)

For the calculation of a team’s documentation availability, the
scores of all repositories are summed and divided by the total number
of the team's repositories.

22

Table 3. Description of the documents used when assessing documentation
availability.

File name Description
Readme Introduces a repository, often

containing information such as
project purpose, installation
instructions or dependencies.

License Outlines the legal rights and
restrictions associated with the
project.

Code owners Specifies the individuals or
teams responsible for
maintaining and reviewing
changes in specific within a
project.

Contributing Provides guidelines and
instructions for potential
contributors who wish to
participate in the project's
development.

Pull_request_template Template for how a pull request
shall me constructed.

The documentation available on GitHub does however not provide

a comprehensive understanding of the team's documentation, as more
and better detailed documentation usually can be found on the
product’s Confluence page. It does offer an indication of the team's
current prioritisation regarding documentation, and what can improve
should the team want to inner source their development. Also worth
mentioning is that even though the team’s repositories have been
sorted, described in chapter 4.4.1, the result of the metric Document
availability don’t consider the activity or importance of the different
repositories. It can be assumed that repositories serving more core
functionalities are more prioritised and valued for documentation
purposes. Taking this into account, the individual repositories shown
in chapter 5.1.1 are also analysed using the number of PRs for each

23

repository. For the team’s score, the average of all the team’s
repositories is used.

4.3.2. GitHub Check failrate on merge
The significance of different software tests for ensuring software

quality emerged as one of the most evident findings from the
interviews and was mentioned by every team, aligning mostly with
goals 4 and 5.

Test coverage, a metric measuring the degree to which an
application's source code is covered by test suites, initially emerged as
a potential metric to address the goals. However, collecting this metric
proved challenging due to the need to get access to the testing tools
employed by the developer teams, which was made more complicated
by the fact that many teams utilized multiple tools for various testing
purposes.

The developer’s processes of ensuring quality of their products
through automated pipeline testing using GitHub Actions, described in
2.9, was an alternative approach for assessing these goals. The use of
GitHub Checks facilities a quick overview of the results from the
workflow jobs. The ability to differentiate the teams based on the
outcomes of jobs using GitHub Checks presents a new challenge: To
evaluate the results of the individual commits in a PR or to use the final
Check results of merged PRs. Using the results from checks on merged
pull requests was chosen, and is motivated by two factors:

1) It shifts focus from the individual tests to the unofficial
acceptance criteria established by the developer teams, as seen by the
number of failed tests the allow to be merged with the source code.

 2) The optimization and deployment of test suits is an extensive
subject outside the scope of this thesis [35].

Although research on inner source and testing is limited [2]. Test
results have been shown in open source projects to have a significant
impact on the likelihood of a pull request getting merged [36].
Additionally, the size and scope of test suites affects the merge rate of
PRs. Automated testing in pipelines increases both external and
internal contribution. However, while a large test suite can increase the
merge rate of PRs originating from within a team, it can also decrease

24

the number of external PRs getting merged. This suggests that teams
with extensive test suites in the pipelines have a higher barrier of entry,
leading to reduced external contribution, and would not be optimal in
an inner source context.

Another aspect to take into consideration when using this metric is
that the workflows the teams use varies significantly. Many workflows
are dedicated to CI/CD-pipeline maintenance tasks, such as automating
pull request drafts or sending notifications for code reviews, which are
not directly related to quality tests. Several teams incorporate quality-
related testing jobs within the same workflows that facilitates pipeline
maintenance, making it to distinguish the two. The results from the
GitHub checks as used in this thesis will provide a measure of CI/CD-
pipeline's effectiveness in terms of a team’s failrate acceptance.

To calculate the metric GitHub Checks on merge of a single
repository. The number of failed and cancelled jobs are divided by the
total amount of jobs on merged PRs in the last 90 days, as seen in (2).
Where jf and jc represents failed respectively cancelled jobs, and N is
total number of jobs on the PRs.

(2)

The calculation for an entire team is the sum of all cancelled and
failed jobs in all repositories divided by the number of total jobs. As
described in chapter 2.8, the reason both the number of failed and
cancelled tests are used, is because the PR menu in the GitHub
repositories shows them both as failed.

Merged PRs that have not passed all checks do not necessarily
suggest issues with the code. Within a closed development
environment, it's reasonable to assume that teams comprehend the tests
they implement and their associated significance. A failed test could,
for example, be a failed linting check. Linting, in this context, is a kind
of automated software testing that checks code for stylistic or
formatting errors, as well as certain types of programmatic errors [37].
Not all linting failures indicate functional problems with the code. For

25

instance, a linting failure might be triggered by indentation
inconsistencies or trailing spaces, which do not impact the actual
execution or functionality of the code. Therefore, pull request are often
merged even if linting checks have failed. A failed test can also be the
result of the use workflow jobs not correctly covering the submitted
commit.

Direct comparisons of the number of checks or failure rates is a
complex task due to diverse team circumstances and requirements.
Nevertheless, some factors may signal a team's aptitude for inner
source initiatives. In adherence to inner source principles that
emphasize transparency and efficient information sharing, repositories
should ideally aim for a failure rate of zero or near-zero on merged pull
requests [2][30]. In conclusion, teams with either an abnormally small
or large number of jobs, or those with a high failrate acceptance, may
not be the most suitable candidates for inner source development.

4.3.3. Time-to-close
Time-to-close specifies the amount of time between the creation of

a PR until it is closed. A PR is closed when it either has been merged
or it’s discarded by the team or the submitting developer. Time-to-
close was identified based on the developers' descriptions of their
development using GitHub pull requests, relating to goal 3. Because of
outliners in the data, time-to-close is here calculated as the median
time-to-close of the pull requests.

The metric lead time, the duration between specifying and
designing a feature and putting it into production, was initially
considered after analysing the answers from the interviews. However,
similar to test coverage, collecting the data would require access to the
individual teams' process and planning platform Jira. It can also be
assumed that since team-specific activities such as planning and initial
feature design occurs within a confined context of the team, lead time
is not well-suited as an inner source measurement.

The different challenges and requirements faced by the teams
makes it difficult to draw meaningful conclusions or comparisons
using time-to-close alone. When a team's or repository’s time-to-close
falls within a normal range, not much can be inferred. It can however
serve as a benchmark for monitoring the outcomes of inner source

26

practices over time. In cases when the time-to-close is exceptionally
long or short, some assumptions can be made which highlights
practices of the developers. For example, in some repositories the same
developer both pushes and merges PRs after pipeline tests finished, the
same team also had several repositories where the time-to-close was
extremely small. This indicates code review happens face-to-face or
not at all. For the purpose of inner source, not having a clear review
process indicates lack of transparency. A very long time-to-close could
hint towards a lack of engagement of the GitHub processes or other
development process constraints which likewise would indicate less
inner source compatibility.

The research on inner source mentions time-to-market as one of the
established benefits of inner source development [2][30]. No research
has however been conducted specifically regarding time-to-close or
development increments of similar scale. It is unknown whether the
median time-to-close time in regard to individual PRs would increase,
decrease or stays the same when implementing inner source practices.

4.3.4. Visibility
During the interviews, for questions relating to goal 1, 3 and 5,

developers explained the practice of repurposing code from other
teams, usually by forking a repository with the desired functionality.
Additionally, one of IKEA’s internal guideline documentations,
GitHub Guidelines, encourages developers to use GitHub’s integrated
functionality to interact with repositories as described in table 4.
Table 4. Description of component of the metric visibility

Repository action Description

Fork Creates a personal copy of a repository,
enabling experimentation

Star Serves as a bookmark for easy access and
shows appreciation for a project

Watch Allows users to receive notifications about a
repository's updates and activities

27

The number of forks, stars and watches for a repository can provide
insights into the visibility and activity surrounding the repository and
the team and indicates knowledge sharing in the organisation. A
diversity of stakeholders is necessary for a product to be successfully
inner sourced [3]. These three significators for repositories of the teams
will be equally valued for the calculation of the visibility metric.
However, different aspects of a repository can be inferred depending
on which one that’s analysed. A high number of forks indicates that the
product might have functionality reused in other team’s products as
previously described, pointing to the reusability, while a star and watch
more closely aligns with knowledge sharing.

Gathering and visualising the data
With the metrics identified the next step was to gather and visualise

the data from the repositories. Grimorielab was the main method for
this purpose, complemented with scripts when the functionalities were
lacking.

4.4.1. Repository and data selection criteria
The repositories belonging to the teams could easily be found on

IKEA’s Enterprise GitHub. However, many repositories belonging to
teams were not used for the functionalities of their products and thus
not suitable for gathering when analysis the metrics. In order to account
for this, two criteria were applied when selecting the repositories. To
only select repositories that had been updates in the past year, and to
only get repositories that were not forks. A script was created that uses
the team’s name to produce a JSON file, which was formatted to be
directly utilized for the configuration of GrimorieLab described in
appendix A. While a better selection of repositories could be made by
asking the developer teams what repositories to choose, the decision
was made to filter the repositories in order to get as much data as
possible and not to be influenced by the developers, for example, if
they knew they had repositories they did not used according to set
procedures, there is a possibility the developers would not want this to
be a part of the analysis.

28

For the metrics Time-to-close and GitHub Checks failrate on
merge, the data that will be analysed follows GrimorieLab’s default
time range of 90 days.

4.4.2. Using GrimorieLab
 In the early stages of the thesis, the intention was to solely employ
Python scripts and GitHub REST API for gathering metrics data from
the team’s repositories. During the information gathering,
GrimoireLab was discovered, and its extensive capabilities seemed
valuable considering the insights it could provide about the team's
development processes. Particularly such as the network graph created
and displayed using Kibana, Figure 3. In the graph, the bots pushing
PRs have been removed in order to show the cooperation between
developers. The graph shows pull request collaboration among the
developer teams. The nodes are the highest producing developers based
on the amount of pull requests made, and the size of the edges signify
collaboration between two developers on pull requests. The graph is
not team-member specific, as it also shows other developers who have
contributed to the team’s repositories. Some of the insights gained in
the interviews can also be inferred from the graph. Team D who are
using bots for most of their PRs, teal in the graph, is because of this
seen as a single node. While there is some collaboration between the
teams, they mostly develop independently of each other. Worth noting
is that while Team F, here in tan, expectedly from an inner source
project have more collaboration with other developers than many
teams. Team B, green, has a lot of cooperation with members
originating from other teams, judging by the number of nodes. Looking
into the data shows this is the result of team B having ownership of a
shared repository with many contributors.

29

Figure 4. Pull request collaboration of the interviewed teams

When installing and configuring GrimorieLab, the docker-
compose images were used as described in 2.3-2.4. And are further
specified in Appendix 1-B.
For the metadata which could not be gathered using GrimoreLab, the
metrics GitHub Check failrate on merge ad document availability,
custom Python scripts were developed using VSCode. The graphs and
tables seen in chapter 5 are not from GrimorieLab, for the purpose of
keeping the name of the teams and repositories confidential in
accordance with a signed nondisclosure agreement. Instead, data was
downloaded from GrimorieLab or accessed directly from Elastiscearch
and visualized with development Python scripts.

30

5. Results
In this chapter, the analysis of the team’s gathered metrics will be

presented and conclude in a recommendation for what steps IKEA may
consider going forward with inner source initiatives.

Results from identified metrics
As discussed in 4.2.2, the GQM-methodology and interviews with

7 developers in IKEA resulted in the identification of the 4 metrics seen
in Table 5.

Table 5. Description of the identified metrics

Metric Description

Document availability The presence of documents and
links in repository based on
IKEA’s internal guidelines

GitHub Check failcheck on merge The average amount of failed
workflow jobs, seen at GitHub
Checks, in merged PRs

Visibility Number or forks, stars and
watchers

Time-to-close Median time a PR remains open
until it is closed

5.1.1. Document availability
 Figure 5 plots the average rating of the team's repositories’

document availability according to the criteria detailed in chapter 4.2.1.
Looking at the team's overall performance, it is apparent that most have
not incorporated the described inner source-related documents. This is
not unexpected, given that most teams don’t use inner source

31

methodologies in their development processes. However, ReadMe and
associated links were present in most repositories.

Figure 5. Documentation availability scores of the teams

 Worth noting is however in team F, the inner source initiative,
can be seen to have slightly higher Documentation availability than
most of the other teams. Especially in repository 1 shown below in
Figure 6. Colour coding the numbers enables efficient overview of the
importance the repositories have when considering the team’s focus of
development.

32

Figure 6. Documentation availability of team F

 It’s worth mentioning that Team F’s Documentation availability
spread of the repositories is an outliner among the teams. Team B,
shown in Figure 7, is a more representative view of the distribution of
the activity in the repositories of the different teams.

For teams wanting to adopt inner source practices, available and
up-to-date documentation is a key factor as described in chapter 4.3.1.
From this point it can be seen in the data that almost all team have
potential for improvement considering the documentation they provide
on GitHub.

33

Figure 7. Document availability scores team C

5.1.2. GitHub Checks failrate on merge
 Figure 8 presents the results for the team’s Checks on merged

PRs and average number of Check. As discussed in section 4.3.2,
merges that fail tests do not necessarily indicate faulty code. However,
they do reflect a lack of regard or prioritisation to the importance of
clear and transparent test results. While this might be acceptable within
a closed development team who knows the inherent characteristics of
their product and tests, an inner source project should aspire to
maintain a low failure rate, as exemplified by Team F.

34

Figure 8. Average number of checks per PR and failcheck ratio of the

teams

Using only the average number of failrate and jobs, displayed as
Checks, as a comparison across teams will as discussed not provide a
clear view of the team’s processes. The number of jobs do however
point towards certain characteristics of the teams. Team A, C and E for
example, shows a relatively high acceptance to failed tests when
merging PRs, while also employing fewer tests than the other teams.

Figure 9 highlights the results from the repositories of Team D,
which proved to be particularly intriguing. As stated in chapter 4.2.2,
the developer outlined their extensive pipeline, which is clearly
reflected in the data. Repository 3 has a significantly high number of
jobs in workflows within their pipeline, which by far exceed any of the
other repositories in any of the teams. If cancelled jobs were not
categorised as fails, as described in section 2.8, the failure check ratio
would be even lower in this particular repository. As discussed in
chapter 4.3.2, a comprehensive test suite in the CI pipeline could
potentially deter external contributions.

35

Figure 9. Average number of checks per PR and failcheck ratio for team D

In conclusion, the suitable number of tests can as discussed not be
generalised simply to assess the teams. An assumption can however be
made that in the current state, teams A, D, and E might may need to
reconsider the tests they deploy or how they evaluate test acceptance,
particularly with regards to the number of workflow jobs, would they
implement inner source methodologies in their development.

5.1.3. Time-to-close
Figure 10 shows the median time-to-close for the different teams,

based on the PRs from the last 90 days. As mentioned in 4.3.3, without
knowing the specific context of the team’s development
characteristics, these number do not signify much about the projects.
Most pull requests get closed the same day and except for team C, there
is generally no big difference between the teams.

36

Figure 10. Median time-to-close of the teams

Looking into specific repositories sheds some more lights on the
practices of the teams which is of interest. Most teams’ repositories
have a division among their time-to-close as shown by team C, Figure
11. While there is a repository with very high time-to-close, it doesn’t
affect the median value considering the few PRs. However, the over-
all time-to-close would suggest that there may possibly be some
hinderance in the team’s overall development processes.

Looking into the repositories of team A, B, and D highlights some
practices of these teams. Team D uses bots to automatically update
dependencies in the repositories, leading to many PRs with an
exceptionally quick time-to-close. Team A and D have a few
repositories with particularly short time-to-close, which in some
repositories are the results of a single developer pushing PRs without
review. In other repositories there’s only two or very few developers
cooperating on the development and sometimes merges without review

37

having been done. None of these occurrences are as described in 4.3.3
ideal for inner source purposes.

Figure 11. Median time-to-close of team C

In conclusion, the teams with very low time-to-close exhibit
practices in some parts of their development which might not be
suitable for inner source purposes, and in the case of not having code
reviews, not in accordance with IKEA’s requirements. Should these
teams want to inner source their development, they should reevaluate
the development processes in these repositories, which can start by
increasing the cooperation and contribution of the developers within
the team.

5.1.4. Visibility
As table 6 shows, there’s a large difference in the number of forks,

stars, and watchers for the different teams. Notably here is team F, the
inner source initiative who scores highly in all three categories. Team
F having a high visibility goes is line with the previous assumption that

38

increased visibility as defined by the forks, stars and watchers can
signify a project’s inner source potential. Worth mentioning here is that
a large part of the watchers for the team is a result of a repository used
for a coding event, with the purpose of spreading awareness of the
initiative and increase the collaboration.

Table 6. Visibility metric of the teams

Generally, the data shows that a repository with a high number of
watchers also has many stars and forks. Examining a team’s visibility
can yield different insights. A high fork count, as detailed in Chapter
4.2.4, implies potential functionality reuse across different teams'
products. Conversely, a notable number of stars and watches suggests
knowledge sharing of the repositories. Another point previously
discussed is the importance of a range of stakeholder, and as such,
increasing the overall visibility of the teams is something the teams can
try to achieve if they want to inner source their product. This can be
achieved by events such as the one used by team F, or workshops as
described in 4.2.2.

Recommendation for IKEA
Based on the findings of in this thesis, IKEA will be given a

recommendation for ways to increase the probability of future inner
source initiatives. The scripts for gathering the data as well as an
instruction for configuring GrimorieLab in accordance with this thesis
will be presented to faciliate the analysis of more teams as well as
follow-up of the teams interviewed in this thesis work. Following are

39

a few guidelines, derived from the thesis’ findings, which IKEA can
adopt as a framework when determining the teams to be selected for
future inner sourcing:

1. Improve documentation: The data gathered from the
repositories showed that the Documentation availability in the
repositories was found to be inconsistent across the teams.
Documentation is essential for new team members, or
contributors from other teams, to quickly understand the
project and start contributing. Therefore, IKEA should ensure
that documentation is regularly updated to accurately reflect
the state of the project.

2. Review and adjust test acceptance practices: The findings
suggest discrepancies in the accepted Check failrate on merge
across different teams. Some teams might require a large
number of tests due to the requirements and characteristics of
their products. It is recommended to ensure that results of the
workflow jobs are appropriately addressed, and that the need
for a large number of tests in the pipeline is adequately
justified. Other teams appear to have a higher acceptance
towards test failures, or showcases low numbers of pipeline
tests overall, both of which should be reconsidered.

3. Optimize the PR management process: The data shows
discrepancies in the median time-to-close for different teams.
Teams with very low time-to-close have been seen in some
cases to be skipping important processes such as code
reviews. Almost all teams had repositories with very high
time-to-close, possible indicating lack of engagement or
prioritisation. Therefore, it is suggested that IKEA needs to
further promote proper PR management processes, including
code reviews, to ensure code quality and collaborative
practices.

4. Increase project Visibility: The data and previous research
suggests that teams with higher Visibility, as defined in this
thesis, have a higher potential to be successfully inner
sourced. Teams can increase their project’s Visibility by
organizing coding events, workshops, and other activities that
encourage collaboration, knowledge sharing and information

40

about their product and technical solutions. These activities
will not only promote their projects but also provide
opportunities for developers in different teams to interact and
learn from each other.

In conclusion, IKEA has a strong foundation for adopting inner
source practices due to the transparent and open development
environment. On a developer team level, the key to successful
implementation of inner source strategies lies partly in addressing the
mentioned areas of improvement discovered in this thesis,
documentation, test acceptance practices, PR management, and
project visibility. By focusing on these areas, IKEA will be able to
increase the success rate of developer teams wanting to inner source
their development.

41

6. Conclusion
This thesis has addressed the problem definition described in 1.4,

outlining 4 questions to better understand the software development
processes within IKEA, and by interviewing 7 developer teams,
determine how inner source practices can be assessed and potentially
implemented.

1. What are the general software development processes within
IKEA?

The investigation into IKEA's general software development
processes revealed a transparent and open development
environment, with an emphasis on agile practices and DevOps
methodologies. The teams are operating very much autonomously
and are free to choose the languages, tools and practices when
developing their product. This does however also lead to many
different approaches, making it harder to compare the teams in a
structured manner. The diversity also presents challenges for
inner source adoption.

2. What metrics from the repositories’ metadata can be used to
evaluate teams in regard to inner source?

Several metrics were identified through interviews with
developers as potential indicators of inner source potential: (a)
document availability, (b) GitHub Check failrate on merge, (c)
visibility, and (d) time-to-close. These metrics can serve as a
useful starting point for evaluating the interviewed teams and
other of IKEA’s developer teams' potential for adopting inner
source practices.

3. What conclusion can be drawn from the gathered metrics
regarding the current state of software development?

42

The analysis of the gathered metrics suggests that the current
level of collaboration and co-development between teams at
IKEA is limited. This observation implies that development teams
may not currently be as open to external contributions as they
could be. For instance internal acceptance criteria, as reflected by
the GitHub Check failrate on merge metric, appear to be well-
understood within the teams, but may not be as transparent to
outsiders. Nevertheless, it's evident from the visibility metric that
projects are being acknowledged by others within IKEA,
indicating that there are ongoing efforts to enhance knowledge
sharing across the organization.

4. What recommendations can be given to IKEA consider future
inner source initiatives?

This is answered in chapter 5.2.

Ethical aspects
A non-disclosure agreement was signed during the start of this

thesis. To comply with the agreement, the supervisor of IKEA was
made aware and agreed to the use of description of the organisation,
teams and internal workings as presented in this report. The developers
were made aware of this and accepted the premise that their answers
during the interview were only to be used for the purpose of this thesis
and within IKEA.

During the interviews, one developer with previous experience
with open source talked about some of the challenges she perceived
with inner sourced development. Not all developers are comfortable to
share and invite others to co-develop their code. It can be because of
fear of scrutiny, or that the developer is ashamed to share the code
because it might have had to be written very quickly to keep up with
project schedule. An implemented inner sourced development needs to
take these aspects and the well-being of the developers into
consideration.

43

7. Future work
This thesis work offers insights into IKEA's software development

processes and potential for inner source practices, but also highlights
areas for further exploration.

The focus was largely on repositories, thereby missing out on the
communication and collaboration occurring on other platforms such as
Slack and Google cloud platform (GCP)-groups, where much
discussion also takes place. Also, IKEA used the documentation
platform Confluence, which in this these could be used for more in-
depth research about the state of the documentation of the teams.
Future work could provide a more comprehensive view by integrating
these platforms into the analysis. The broad filtering of the repositories
can be improved to better reflect the functionalities of the teams.

The advanced functionalities of GrimoireLab could be harnessed in
future work to expand upon the current metrics used. Grimorielab
contains the functionality for integrations the API’s of Slack,
Confluence and Jira, and could as a result be used as a platform for
diverse continuous analysis of selected teams.

The Documentation availability metric could be improved upon by
applying weights depending on the importance of the repositories,
providing a slightly easier overview of the results on a team level.

For the visibility metric, getting the traffic and especially number
of clones of repositories would be another variable to take into
consideration when assessing reusability, similar to forks. Getting
access to the traffic requires a personal access token with write-access,
which wasn’t feasible in for the purpose of this thesis.

44

8. Terminology
Metadata - In the context of this thesis, metadata refers to
information about the data in the repository, which could include
details about commit history, contributors, pull requests, test
results,
DevOps - DevOps is an approach to software development that
integrates development (Dev) and IT operations (Ops), with much
focus on the CI/CD (Continuous Integration/Continuous
Deployment) for small, frequent updates to production.
GitHub Actions - Facilitates CI/CD-pipeline tasks in repositories
GitHub Workflow – Specifies autonomation jobs directly in the
repository, can highly customised, often used to build, test and
deploy code.
GitHub Checks – Feature that integrates with workflow to provide
feedback from jobs.

45

9. References
[1] A. di Vaio, R. Palladino, A. Pezzi, and D. E. Kalisz, "The role of digital

innovation in knowledge management systems: A systematic literature
review" Journal of Business Research, vol. 128, pp. 220-231, Feb. 2021.

[2] H. Edison, N. Carroll, L. Morgan, and K. Conboy, "Inner source software
development: Current thinking and an agenda for future research," Journal of
Systems and Software, vol. 163, May 2020.

[3] Stol, K.-J., Avgeriou, P., Babar, M. A., Lucas, Y., & Fitzgerald, B. “A
comparative study of challenges in integrating Open Source Software and
Inner Source Software”. Information and Software Technology, pp. 1319-
1336, Dec. 2011

[4] M. Capraro and D. Riehle, "Inner Source: Adopting Open Source
Development Practices in Organizations”, Proceedings of the 38th
International Conference on Software Engineering Companion, ICSE '16, pp.
472-475, May 2016.

[5] M. Capraro and D. Riehle, "Inner source definition, benefits, and challenge,"
ACM Computing Survey, vol. 49, no. 4, pp. 1-36, 2017

[6] Wan, Z., Xia, X., Zhang, Y., Lo, D., Zhou, D., Chen, Q., & Hassan, A. E.
“What motivates software practitioners to contribute to inner source?” In
Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering pp.
132-144, Nov. 2022.

[7] R. van Solingen et al., "Goal question metric (gqm) approach," in
Encyclopedia of Software Engineering, John Wiley & Sons Inc., 2002

[8] S. Dueñas et al., "GrimoireLab: A toolset for software development
analytics," in Proceedings of the IEEE International Conference on Software
Maintenance and Evolution, ,pp. 679-682, Sep. 2018.

[9] Elastic NV. (2023). Elasticsearch. Available:
https://www.elastic.co/elasticsearch/ [Accessed: April 18, 2023]

[10] Elastic NV. (2023). Kibana. Available: https://www.elastic.co/kibana/
[Accessed: April 18, 2023]

[11] Docker, Inc. (2023). Docker. Available: https://www.docker.com/ [Accessed:
April 16, 2023]

[12] Docker, Inc. (2023). Docker Compose. Available:
https://docs.docker.com/compose/ [Accessed: April 19, 2023]

46

[13] GrimoireLab. (2023). GrimoireLab. Available:
https://hub.docker.com/r/grimoirelab/grimoirelab/ [Accessed: April 19, 2023]

[14] Microsoft Corporation. (2023). Windows Subsystem for Linux. Available:
https://docs.microsoft.com/en-us/windows/wsl/ [Accessed: April 19, 2023]

[15] GitHub, Inc., "GitHub REST API," GitHub Developer, 2021. [Online].
Available: https://docs.github.com/en/rest/. [Accessed: April 16, 2023].

[16] GitHub, Inc., "About Pull Requests," GitHub Docs, 2023. Available:
https://docs.github.com/en/pull-requests/collaborating-with-pull-
requests/proposing-changes-to-your-work-with-pull-requests/about-pull-
requests. [Accessed: Apr. 25, 2023].

[17] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, "What is DevOps? A
systematic mapping study on definitions and practices", Proceedings of the
Scientific Workshop Proceedings of XP2016, New York, USA, 2016, pp. 1-
11

[18] GitHub, "GitHub Actions Documentation," GitHub Docs, 2021. Available:
https://docs.github.com/en/actions. [Accessed: April 13, 2023].

[19] GitHub, "GitHub Checks Documentation," GitHub Docs, 2021. Available:
https://docs.github.com/en/rest/reference/checks. [Accessed: Apr. 13, 2023].

[20] L. Brunner, "GitHub Checks." GitHub. Available:
https://github.com/LouisBrunner/checks-
action/pulls?q=is%3Apr+is%3Aclosed, [Accessed: May 20, 2023]

[21] Microsoft Corporation, "Visual Studio Code Documentation," Visual Studio
Code Docs, 2021. Available: https://code.visualstudio.com/docs. [Accessed:
Apr. 19, 2023]

[22] T. Dybå and T. Dingsøyr, "What Do We Know about Agile Software
Development?," in IEEE Software, vol. 26, no. 5, pp. 6-9, Sept. 2009.

[23] Atlassian Corporation Plc, "Confluence: Team collaboration software,"
Atlassian, 2021. Available: https://www.atlassian.com/software/confluence.
[Accessed: 16-Apr-2023]

[24] Slack, Slack Technologies, San Francisco, CA, 2023. Available:
https://slack.com/. [Accessed: May. 10, 2023]

[25] Izquierdo, D., & López, J. M., Managing InnerSource Project, InnerSource
Commons 2018

[26] H. Kallio, A-M. Pietilä, M. Johnson, and M. Kangasniemi, "Systematic
methodological review: developing a framework for a qualitative semi-
structured interview guide" Journal of Advanced Nursing, May 2016

[27] CHAOSS, "About CHAOSS," 2023. Available:
https://chaoss.community/about-chaoss/. [Accessed: May 14, 2023]

47

[28] "About GitHub Enterprise Cloud." GitHub Docs. Available:
https://docs.github.com/en/enterprise-cloud@latest/admin/overview/about-
github-enterprise-cloud. [Accessed: May 19, 2023]

[29] K. Beck et al., "Manifesto for Agile Software Development," Agile Alliance,
2001. Available: http://agilemanifesto.org/. [Accessed: May 10, 2023].

[30] K. Schwaber and J. Sutherland, "The Scrum Guide," Scrum Guides, 2020.
Available: https://www.scrumguides.org/. [Accessed: May 10, 2023].

[31] M. Lage Junior and M. Godinho Filho, "Variations of the kanban system:
Literature review and classification," Int. J. Prod. Econ., vol. 125, no. 1, pp. 13-
21, May 2010.

[32] Atlassian Corporation Plc, "Jira Software," Atlassian, 2023. Available:
https://www.atlassian.com/software/jira. [Accessed: May 14, 2023]

[33] J. Dumas, "Software Usability: Appropriate Methods for Evaluating Online
Systems and Documentation," in Proceedings of the ACM SIGDOC Annual
International Conference on Systems Documentation, pp. 69-77, Oct. 1990.

[34] R. Matulevicius, F. Kamseu, and N. Habra, "Measuring Open Source
Documentation Availability", Proceedings of the International Conference on
Quality Engineering in Software Technology. pp. 83-102. 2009

[35] M. Kreitz, “Security by design in software engineering,” SIGSOFT
Softw. Eng. Notes, vol. 44, no. 3, p. 23, Nov. 2019.

[36] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, "Quality and
productivity outcomes relating to continuous integration in GitHub”,
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 805-816, Aug. 2015

[37] C. Vassallo, S. Proksch, A. Jancso, H. C. Gall, and M. Di Penta,
"Configuration smells in continuous delivery pipelines: a linter and a six-
month study on GitLab," in Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 327–337. Nov. 2020

48

Appendix A: Extended Material

A1 Table showing initial interview guide

Goal Question
1. Reduce silos Q1: How do you handle external

ideas or collaboration?

2. Reduce bottlenecks Q1: What are the most common
bottlenecks you encounter in
your development?
Q2: What steps do you take to
avoid bottlenecks?

3. Improve knowledge sharing Q1 How do you help new
developers get acquainted with
your repository/software?

4. Improve quality Q1 What steps are you taking
into consideration to make the
process reusable?

5. Increased reusability Q1 What steps are you taking
into consideration to make the
process reusable?

6. Increase development speed Q1 What are the biggest parts of
your work that slows down
development?
Q2 How do you make sure the
tasks are on schedule?

49

A2) Configuration specification for GrimorieLab docker-compose
setup.cfg Specifies the configuration for the back-end data retrieval by
Percival. It also configures the inclusion of necessary API tokens, and
the default panels for the Kibana dashboards. In this thesis, following
default back-end scripts were configured: Git, Github, Github2:issues,
Github2:pull, and Github:repositories
projects.json Specifies desired repositories to be used. The
repositories belonging to a single team and product are grouped
together to facilitate easier Kibana visualization and analysis. For Git
data, the GitHub token needed to be appended to the URL in the format
"username:token@".

Surveying inner source adoption in
IKEA

ALEXANDER MALM
BACHELOR´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

A
LEX

A
N

D
ER

 M
A

LM
Surveying inner source adoption in IK

EA
LU

N
D

 2023

Series of Bachelor´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-924
http://www.eit.lth.se

