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Abstract

This thesis investigates the viability of using Fully Homomorphic Encryption and
Machine Learning to construct a privacy-preserving biometric multi-factor authen-
tication system. The system is based on the architecture described as ”Model K
- Store distributed, compare distributed” in ISO/IEC 24745:2022 and uses the
Torus Fully Homomorphic Encryption scheme proposed by [1] to encode and com-
pare encrypted fingerprint images. A machine-learning-based encoder is designed
using the VGG11 network architecture described by [2]. The encoder is tuned
for one-shot classification as a Siamese network to optimize the Euclidean dis-
tance between fingerprints from different individuals. The network is then made
compatible with TFHE using the Concrete-ml library for Python.

Using a prototype of the system, we show that the system succeeds in pre-
serving users’ privacy with a relatively high authentication success rate. However,
performance benchmarks show that the proposed encoding method is too ineffi-
cient. Finally, we highlight some areas of interest for future work that could make
a system for privacy-preserving biometric multi-factor authentication viable.
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Popular Science Summary

Thanks to scientific and technical breakthroughs over the last decade, applied
Fully Homomorphic Encryption grows closer to maturing into a viable means to
bring privacy-preserving services to the market. In this master’s thesis, we inves-
tigate the viability of leveraging Fully Homomorphic Encryption in conjunction
with Machine Learning to create a privacy-preserving biometric multi-factor au-
thentication system.

In a conventional biometric authen-
tication system, the authenticator has
to be able to read and compare un-
encrypted biometric information during
the authentication process. If the au-
thenticator were to be compromised or
dishonest to begin with, this could pose
a threat to users’ privacy. In this the-
sis, we propose a system that leverages
Fully Homomorphic Encryption (FHE)
to mitigate this threat.

FHE refers to encryption schemes
that allow for computations on en-
crypted data, the results of which can
then be extracted by the data owner.
By encrypting fingerprint images using
FHE, the authentication system pro-
posed in this thesis is able to perform
computations on and compare finger-
prints without the ability to extract any
biometric data belonging to the user.

Before fingerprints can be com-
pared, they need to be encoded from
an image to a numerical representation
that still allows for differentiation be-
tween unique individuals. Our proposed
system uses machine learning on a ded-

icated encoder in a process that can
be described as ”blind” computer vision,
where an encrypted fingerprint is passed
through a convolutional neural network,
resulting in a tensor of encrypted val-
ues that accurately represents the indi-
vidual’s fingerprint. This tensor is then
homomorphically compared with a pre-
viously stored tensor to decide whether
or not to approve the authentication re-
quest.

By implementing a prototype of the
system, we were able to evaluate it
based on both accuracy and perfor-
mance. Initial results indicate that the
system as a whole can be viable from a
security and privacy perspective. How-
ever, we found that the proposed en-
coding method is very inefficient in its
current form, making it too slow to be
used in a deployed system. Instead, we
suggest that future revisions of the sys-
tem remove the dedicated encoder in
favour of encoding unencrypted finger-
prints using the client. Further exper-
imentation with this improvement and
additional modifications could hopefully
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see the proposed system become a real-
ity in the not-too-far future.

iv



Acknowledgements

First, I would like to thank my supervisors, Anders and Qian, for being by my
side throughout my project. It would not have been possible without you. To the
people at Bosch, thank you for the great opportunity to work with you and for
taking me into your fold during these months.

Finally, to my friends and family, you have been my full support and number
one cheerleaders right from the start. I don’t know how I can repay you for your
kindness. Thank you so much. I am very grateful.

v



vi



List of Abbreviations

ACC Accumulator
AiTM Adversary In The Middle [Attack]
CI Common Identifier
CNN Convolution Neural Network
EER Equal Error Rate
FAR False Acceptance Rate
FHE Fully Homomorphic Encryption
FRR False Rejection Rate
GLWE General Learning With Errors
LUT Look-up table
LWE Learning With Error problem
MFA Multi-factor Authentication
NN Neural Network
PBS Programmable bootstrapping
PHE Partially Homomorphic Encryption
PI Pseudonymous Identifier
QAT Quantization Aware Training
SHE Somewhat Homomorphic Encryption
TFHE Torus Fully Homomorphic Encryption
TTP Trusted Third Party

vii



viii



Table of Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Homomorphic encryption . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Fast Fully Homomorphic Encryption over the Torus . . . . . . . . . . 5
2.4 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Biometric Authentication . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Security aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Method 19
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Revoking fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Implementation and Results 25
4.1 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Discussion 33
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 The proposed system in a wider context . . . . . . . . . . . . . . . . 35

6 Conclusions and Future Work 37
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



References 39

x



List of Figures

2.1 Diagram of non-homomorphic fingerprint comparison . . . . . . . . . 4
2.2 Illustration of test polynomial rotation . . . . . . . . . . . . . . . . . 10
2.3 Illustration of look-up table encoded into test polynomial . . . . . . 10
2.4 Illustration of a neuron . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Illustration of a feedforward neural network consisting of; an input

layer accepting input of length two, a hidden linear layer with three
neurons, and an output layer with two neurons. . . . . . . . . . . . . 15

2.6 Illustration of a convolution layer . . . . . . . . . . . . . . . . . . . 16
2.7 Illustration of Siamese network . . . . . . . . . . . . . . . . . . . . . 17

3.1 Overview of proposed architecture . . . . . . . . . . . . . . . . . . . 20
3.2 Diagram showing enrollment phase . . . . . . . . . . . . . . . . . . 22
3.3 Diagram showing authentication phase . . . . . . . . . . . . . . . . 23
3.4 Diagram showing the revocation process . . . . . . . . . . . . . . . 23

4.1 Unedited example image from the L3-SF Database. . . . . . . . . . . 26
4.2 Diagram showing the modified enrollment phase used in the prototype. 28
4.3 Diagram showing the modified authentication phase used in the pro-

totype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



xii



List of Tables

4.1 Network architecture used by encoder . . . . . . . . . . . . . . . . . 27
4.2 List of hardware used for evaluation. . . . . . . . . . . . . . . . . . . 30
4.3 Performance measurements for the encoder. . . . . . . . . . . . . . . 30
4.4 Authentication performance for different encoding sizes. . . . . . . . 30
4.5 Image TFHE encryption benchmarks. . . . . . . . . . . . . . . . . . 31
4.6 Threats and countermeasures related to privacy and security. . . . . 32

xiii



xiv



Chapter 1
Introduction

This chapter presents the motivation and aims for the thesis, research questions,
and an outline of the thesis.

1.1 Motivation

Multi-factor authentication (MFA) is a popular method for preventing unautho-
rized access to systems and user accounts. A system using biometric data as a
method of authentication provides high confidence in the authenticity of the user
without the need for users to memorize complicated passwords or use services that
generate one-time codes.

However, the use of biometric data comes with a high responsibility for the
authentication system to provide confidentiality for the data used during the au-
thentication process. Using sound system design provides security for data in
transit and during storage. However, a compromised system could pose a threat
to data during the authentication process itself. Therefore, additional security fea-
tures should be used to minimize the risk of users’ privacy being compromised. In
this thesis, we propose a solution leveraging fully homomorphic encryption (FHE)
that ensures that users’ privacy is preserved even if a malicious party compromises
the authentication system as a whole.

Thanks to scientific and industrial efforts, the field of applied FHE has seen
a lot of progress over the last decade and a half. Industry leaders predict the
technology will be used in everyday applications within the next decade. Dr Randi
Hindi, CEO of Zama, the company behind the Concrete and TFHE-rs libraries,
goes so far as to state that they expect privacy-preserving end-to-end encrypted
AI to be a reality within the next five year, and quote: "[...] when this happens,
nobody will care about privacy anymore, not because it’s unimportant, but because
it will be guaranteed by design." [3].

1.2 Aim

This thesis seeks to investigate the viability of using FHE for biometric multi-
factor authentication. Additionally, the project will include a prototype for a
client/server architecture using hardware that emulates a real-world implementa-
tion. Once completed, the solution is evaluated based on privacy, security and
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2 Introduction

performance. The aim is also to identify areas in need of more attention to be able
to create a commercial solution.

1.3 Contributions

This thesis investigates the viability of using privacy-preserving machine learning
to encode fingerprints in the context of a biometric multi-factor authentication
system. The system is evaluated based on performance, security, and privacy.
Furthermore, alternative solutions for privacy-preserving biometric multi-factor
authentication are presented and discussed.

1.4 Thesis outline

The theory used to design the proposed solution was collected using a literature
review and is described in chapters 2.1, 2.5, and 2.8. The proposed system for
privacy-preserving MFA is presented in chapter 3. A prototype of the system
was implemented and evaluated as described in chapter 4. The results from the
evaluation, along with alternate solutions, are discussed in chapter 5. Finally, the
thesis’s conclusions and suggestions for future work are presented in chapter 6.



Chapter 2
Background

This chapter presents the results from the literature review conducted as part of
the thesis. It covers the underlying theory regarding encryption, authentication,
and machine learning used in the system described in chapter 3. Additionally, the
chapter presents some challenges and considerations that are related to the use of
biometric data.

2.1 Encryption

On a technical level, the goal of encryption is to take an amount of data and
manipulate it to make it practically infeasible to extract any information about
the contents for any unauthorized parties. This is done by relying on different
mathematical problems and structures that are very computationally expensive to
solve for parties without access to a decryption key. The selection of underlying
problem or structure will greatly impact the algorithm’s security and efficiency.
An example is the so-called factoring problem used by RSA, where the product
of two sufficiently large secret prime numbers is used to generate private and
public keys. Where, in order to break the key, an attacker would have to correctly
factor the product back into these numbers, a task too expensive to perform on a
conventional computer, given that a key of proper size is used [4].

Conventional encryption schemes are generally classified as either symmetric,
where involved parties encrypt and decrypt information using a shared key, or
asymmetric, where different keys are used for encryption and decryption, allowing
for the publication of the encryption key while keeping the decryption key (referred
to as private key) private. [5]

A downside of using conventional encryption for biometric authentication is
that it requires the server to be able to decrypt the fingerprint before validation,
as seen in Figure 2.1. In addition to being harmful to the user in case of a compro-
mised server, the company hosting the fingerprints might face severe consequences
due to privacy laws. Therefore, authentication using computations with encrypted
data, made possible with FHE, could be used to ensure users’ privacy.

3



4 Background

Figure 2.1: Diagram of non-homomorphic fingerprint comparison
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2.2 Homomorphic encryption

The last few years have seen an increased interest in a modern paradigm of cryptog-
raphy called homomorphic encryption. Schemes with this property allow varying
degrees of manipulation and operations on encrypted data. Using these schemes
removes previous hindrances for decentralised data, allowing applications such as
cloud computing on sensitive data and machine learning as a service (MLaaS) [6].

2.2.1 Partially homomorphic encryption

Some commonly used encryption algorithms, such as the RSA and ElGamal[7]
encryption schemes, have some homomorphic properties, allowing for either mul-
tiplication or addition of encrypted data, and can be classified as Partially Ho-
momorphic Encryption (PHE) schemes. RSA for instance is multiplicative homo-
morphic for ciphertexts c1 ← RSAe,N (µ1), c2 ← RSAe,N (µ2) encrypted using the
same parameters (e,N) as follows:

c3 = c1 · c2 := µe
1 (modN) · µe

2 (modN) = µe
1 · µe

2 (modN) = (µ1µ2)
e (modN)

While usable within some areas, these schemes do not allow arbitrary func-
tionality required for more advanced applications, such as the system proposed
later in this thesis [8].

2.2.2 Somewhat homomorphic encryption

Improving upon PHE, Somewhat Homomorphic Encryption (SHE) schemes allow
for both addition and multiplication between encrypted values. However, schemes
falling under this classification only allow for a set amount of operations depending
on the scheme and parameters used. For example, [9] proposes an extension for
the DGHV encryption scheme that allows for up to 8.54 · 103,457 additions or 9
multiplications for the worst-case scenario before plaintext correctness no longer
can be guaranteed.

2.2.3 Fully homomorphic encryption

First described in the late 70s [10], the field of applied fully homomorphic encryp-
tion saw little practical use until Craig Gentry published his article on "Fully homo-
morphic encryption using ideal lattices” in 2009 [11]. Since Gentry’s breakthrough,
multiple FHE schemes have been proposed, such as CKKS[12], FHEW[13], and
BGV[14]. This thesis will focus on a branch of FHE that relies on the Learning
With Errors (LWE) problem, specifically the TFHE scheme described in section
2.3.

2.3 Fast Fully Homomorphic Encryption over the Torus

This thesis’s work is based on the Fast Fully Homomorphic Encryption over the
Torus scheme (TFHE) proposed by [1]. The scheme is based on the LWE prob-
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lem and is further described in this section. The section presents some of the
scheme’s underlying theory as well as properties that differentiate it from other
FHE schemes.

2.3.1 Preliminaries

This section covers some preliminaries for establishing the mathematical back-
ground and operations related to TFHE, such as torus mathematics and the math-
ematical problems that provide security to the scheme.

Torus and Torus polynomials

TFHE relies on the mathematical properties of the real torus T = R/Z to allow for
operations on encrypted data. Such as being additive modulo 1 and multiplicative
given k ∈ Z, and t ∈ T as follows:

k · t = t+ ...+ t (k times)

In addition to single elements, it is possible to define polynomials on the torus,
allowing for additional cryptographic operations [6].

Learning With Errors (LWE) and General Learning With Errors (GLWE)

TFHE relies on the hardness of the following torus-based problems; Learning with
errors (LWE) and General Learning with errors (GLWE). Where LWE and GLWE
denotes the cryptographical implementation of the problems.

Definition 2.1 (LWE problem over the torus). Given n ∈ N, s = (s1, ..., sn)
$←

Bn, and an error sampled from the Gaussian distribution χ = N (0, σ2), the LWE
problem is defined as distinguishing the following distributions [6]:

D1 = {(a, r) |a $← Tn, r
$← T}

and

D2 = {(a, r) |a $← Tn, r =

n∑
j=1

sj · aj + e, e← χ}

Definition 2.2 (GLWE problem over the torus). Given that the assumption of
LWE holds, it can be extended to polynomials on the torus as follows: given N, k ∈
N with N a power of 2, s = (s1, ..., sn)

$← BN [X], and error distribution χ over
RN [X], the GLWE problem is defined as distinguishing the following distributions
[6]:

D1 = {(a, r) |a $← TN [X]k, r $← TN [X]}

and

D2 = {(a, r) |a $← TN [X]k, r =

k∑
j=1

sj · aj + e, e← χ}
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Noise

The main limitation on the number of possible computations on TFHE ciphertexts
is caused by the randomness introduced in the encryption process, also called noise,
growing for each operation performed. For example, the sum c3 = c1+c2 will have
the corresponding noise ec3 = ec1 + ec2. If the level of noise in a ciphertext grows
unhindered, it can cause the ciphertext to be decrypted as an incorrect value.
Thus, managing the growing noise is a key problem within FHE.

A naive and cumbersome method of reducing the noise would be for the key
owner to re-encrypt the data. While completely refreshing the ciphertext, this
would be impractical and counterproductive in real implementations. Instead,
FHE schemes use a process called bootstrapping [6].

Bootstrapping

In his 2009 article, Gentry achieved a breakthrough in the field by introducing the
process known as bootstrapping, a method for reducing the noise level of a cipher-
text. Reducing a ciphertext’s noise enables more operations to be performed upon
it before running the risk of losing information. The implementation of bootstrap-
ping differs between FHE schemes. TFHE’s implementation, called programmable
bootstrapping, is described in section 2.3.5.[6]

2.3.2 Encoding/Decoding messages

Before being encrypted, messages have to be encoded to a format compatible with
the TFHE scheme. This is performed using a function specified as Upper, which
returns the message x̄H

p
q to the given value x̄ = x̄H±x̄L ∈ Z/qZ with 0 ≤ x̄L ≤ q

2p ,
as shown in equation 2.1 [6].

Upperq,p(x̄) =
q

p
⌈p lift(x̄)

q
⌋ (mod q) (2.1)

Where the function lift lifts elements of Z/qZ to Z.

2.3.3 Encryption and Decryption

Using the security assumptions of GLWE, as shown in definition 2.2, [6] defines
the encryption of plaintext µ̄ into ciphertext c̄ using the secret key s as follows:

c̄← GLWE s(µ̄) := (ā1, ..., āk, b̄) ∈ ẐN [X]k+1

with {
µ̄∗ = µ̄+ ē (mod(q,XN + 1))

b̄ =
∑k

j=1 sj āj + µ̄∗ (mod(q,XN + 1))

To decrypt the noisy message µ̄∗, the encryption process is performed in reverse
as follows:

µ̄∗ = b−
k∑

j=1

sj āj (mod (q,XN + 1)),

and extracting the message using µ̄ = Upperq,p(µ̄
∗)
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2.3.4 Leveled operations

As previously mentioned, the purpose of using FHE schemes is the ability to
manipulate the cleartext data by performing operations on a ciphertext. These
operations affect the level of noise in the ciphertexts’ to a varying degree depending
on the operation performed.

Leveled operations are defined as operations that are performed directly on
the ciphertext. This is in contrast to manipulating the encrypted data using pro-
grammable bootstrapping, as described in section 2.3.5. The TFHE is compatible
with the following leveled operations:

Addition. That GLWE ciphertexts under the same key s are additively ho-
momorphic becomes apparent upon observing the encryption process: let c1 ←
GLWE s(µ̄1) and c2 ← GLWE s(µ̄2) with c1, c2 ∈ ẐN [X]k+1 being the respective
encryption of plaintexts µ̄1, µ̄2 ∈ ẐN [X]k+1; i.e.,

ci = (a
(i)
1 , ..., a

(i)
k , b̄i) (i ∈ {1, 2})

with b̄i =
∑k

j=1 sja
(i)
j + µ̄i + ēi. Then

c3 = c1 + c2 = (a
(1)
1 + a

(2)
1 , ..., a

(1)
k + a

(2)
k , b̄1 + b̄2)

is a GLWE encryption of (µ̄1 + µ̄2) ∈ ẐN [X], provided that the resulting noise
keeps small.

Scalar multiplication. Given that GLWE is additively homomorphic, it
follows that scalar multiplication is possible; let K ∈ Z≥0 and c← GLWE s(µ̄) =

(a1, ..., ak, b̄) with b̄ =
∑k

j=1 sjaj + µ̄+ ē. Then

K · c = c + ...+ c (K times)

is an encryption of K ∗ µ̄ ∈ ẐN [X], as long as the resulting noise keeps small. For
K < 0 then K · c = (−K) · (−c).

External product. GLWE does not support products between ciphertexts.
Instead, TFHE relies on a matrix-based approach in the GSW construction, the
general encryption of which is denoted GGSW . [6] shows that by decompositioning
a GLWE ciphertext c2 ← GLWE (µ) using a gadget matrix G, multiplication using
an external product (denoted ·□) is homomorphically computable as follows:

c3 = C1 ·□ c2 := G−1(c2)C1

where C← GGSW s(m1) resulting in c3 = GLWE s(0) + c′2 (where c′2 ≈ m1 · c2).
The CMux gate. By leveraging the external product, it is possible to con-

struct a new leveled operation acting as a homomorphic selector. The ’controlled’
multiplexer or CMux, takes two GLWE ciphertexts c0 and c1 that encrypts the
plaintexts υ0 and υ1 ∈ ẐN [X], and a GGSW ciphertext C encrypting a bit b. The
gate outputs ciphertext c’ encrypting υb according to:

c’← CMux(C, c0, c1) := C ·□ (c1 − c0) + c0

The CMux gate is an integral part of TFHE and is a key component of pro-
grammable bootstrapping.
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2.3.5 Programmable bootstrapping

One of the main advantages of TFHE is its bootstrapping efficiency. It uses a
combination of operations that allow the noise to be reduced while evaluating
any arbitrary function using a lookup table and is therefore called programmable
bootstrapping (PBS). PBS uses a secondary bootstrapping key, also known as an
evaluation key, derived from the key used to encrypt the plaintext to re-encrypt the
plaintext under a ciphertext with a reduced amount of noise. The bootstrapping
process is made possible using the following operations:

Blind rotations. Recall that the decryption of a LWE is performed in two
steps:

1. Reveal noisy plaintext as µ̄∗ = b−
∑n

j=1

2. Extract noise-free message µ̄← Upperp,q(µ̄
∗)

Now construct a test polynomial v̄ of degree q so that its ith coefficient v̄i =
Upperq,p(i mod q). This means that the coefficient at position µ̄∗ will encode the
noise-free value of µ̄. Using this fact, it is now clear that by rotating the polynomial
through multiplication with X−µ̄∗

, the constant coefficient (v̄iX0) will have the
noise-free value of µ̄, which can be easily extracted. Since we now use a polynomial,
GLWE is used to enable homomorphic operations on the test polynomial. Due to
the change in scheme, the ciphertext has to be rescaled to modulo 2N resulting in
the approximation of the rotation factor as follows:

−µ̄∗ ≈ −µ̃∗ = −b̃+
n∑

j=1

sj ãj (mod 2N),

where b̃ = ⌈ 2N(b̃ mod q)
q ⌋ and ãj = ⌈ 2N(ãj mod q)

q ⌋. Similarly, the coefficients for the
test polynomials are scaled as follows:

v̄i = Upperq,p(
q

2N
i mod q) .

To perform the rotation homomorphically, we can use CMux gates and boot-
strapping keys bsk[j] where:

bsk[j]← GGSW s′(sj) for all j = i , ...,n.

This allows us to iteratively rotate the polynomial homomorphically using
an accumulator, essentially undoing the masking of the plaintext step by step
according to:
After the rotation, the accumulator contains the GLWE encryption of

X−b̃+
∑n

i=1 siãi · ῡ = X−µ̃∗
· ῡ

under the key s′, resulting in the underlying plaintext polynomial having the ex-
tractable constant term µ̄. Once extracted, we have a LWE noise-reduced cipher-
text encrypting the plaintext µ̄ as shown in Figure 2.2.

Look-up Table Evaluation. By modifying the test polynomial for the blind
rotation, it is possible to evaluate an arbitrary function f as part of the bootstrap-
ping. This is done by encoding the result of f(vi) as the coefficients for the test
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Algorithm 1 Blind rotation of test polynomial

ACC ← (0, ..., 0, X−b̃ · ῡ)
for i = 1 to n do

ACC ← CMux(bsk[i], ACC,X ãi ·ACC)
end for

return ACC

Figure 2.2: Illustration of test polynomial rotation

polynomial and using the test polynomial as a look-up table (LUT) ῡ as illustrated
by figure 2.3. The result is then extracted using the methodology behind blind
rotations [6].

Figure 2.3: Illustration of look-up table encoded into test polynomial

2.3.6 Limitations

Even though FHE shows much promise for creating privacy-preserving applica-
tions, it still has not seen widespread use. One of the main reasons for this is
the large computational overhead from the operations described in this chapter.
Another is the added development complexity due to a lack of standardisation of
the technology. Especially compared to other forms of encryption, which are often
clearly specified by frameworks such as RFC [RPCDef]. This added complexity
comes in multiple forms, such as a need for each application to implement its key
and security infrastructure, something that is often inadvisable. Another obstacle
is the need for the developers to be familiar with the underlying cryptography
to reduce redundant overhead due to poorly chosen cryptographical parameters.
Both hindrances are expected to be solved as the technology matures and becomes
increasingly adopted; extensive work is already being performed on implementing
efficient accelerators for optimising circuits [15].
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2.4 Authentication

An essential aspect of data security is providing a means of authenticating one’s
peers during communication. Without a means of providing authentication’s two
central aspects, identity and freshness, a system is exposed to a multitude of
possible attacks, such as replay attacks, where previously sent data is used in a
manner that could compromise a system or user[5].

There are many ways of authenticating an entity; these are often grouped into
the following three categories with examples:

• Something the entity has

– Smart card

– Hardware-based digital key

• Something the entity is

– Biometric data (fingerprint, retinal scan)

• Something the entity knows

– Passphrase

– Cryptographic key

The different methods of providing authentication come with their own set
of advantages and disadvantages, often in the form of balancing usability and
security. For this reason, systems often use multi-factor authentication, where the
entity must provide multiple forms of authentication to access the system.

2.4.1 Multi-factor Authentication

Multi-factor authentication (MFA) refers to using two or more authentication
methods. A commonly used MFA solution combines a user password and a one-
time code sent to a trusted device. By leveraging MFA, preferably using methods
from the different groups of proof, it is possible to greatly decrease the risk of
unauthorized access. By intentionally selecting means of authentication that com-
plement each other, such as a pin associated with a smart card, it is possible to
make the MFA seamless for the intended user while making it much harder for
malicious users to exploit the system [16].

This thesis will focus on using biometric data in the form of fingerprints to pro-
vide a high level of confidence in identity for the entity requesting authorization.
Combined with a method that enables confidence in freshness, such as a secure
physical token, this could create a very secure system authentication source, fur-
ther discussed in chapter 3.

2.5 Biometric Authentication

An intuitive method of user authentication is by using an individual’s biometric
characteristics, such as fingerprints or facial scans. When implemented correctly,
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biometric authentication provides a means to confidently authenticate an individ-
ual without sacrificing usability. However, the use of biometric data comes with
its own challenges, such as potentially increasing system complexity and requiring
a higher level of trust from its users [17].

2.5.1 Choice of identifying characteristic

The choice of physiological characteristics for identification affects the system’s
usability and security. ISO 24745 defines desirable properties of biometric charac-
teristics, some of which are listed below:

1. Universality: every individual should have the characteristic;

2. Uniqueness: every individual should have a distinguishable characteristic;

3. Permanence: the characteristics should not show variance over time;

4. Collectability: the characteristics should be easily collectable from the sub-
jects;

5. Repeatability: the property of the minimization of variations of a subject’s
captured biometric data allowing successful recognition over time.

Additionally, the standard lists the following properties as important from an
implementation perspective:

1. Performance: the success rate in recognizing individuals.

2. Acceptability: the level of willingness by the subject to use the biometric
system.

3. Robustness against presentation attacks: the difficulty of using a replica of
the biometric characteristic to circumvent the system.

2.5.2 Fingerprint authentication

A naive approach to fingerprint authentication could be simply overlaying two
images and looking at how much they differ. In practice, the process is more
complex and consists of multiple steps; preprocessing, comparison, and storage.

Preprocessing and data extraction

Before extracting any data from the fingerprint, it has to be scaled and aligned
to a predetermined configuration to ensure that fingers yield a similar result each
time the same finger is scanned. Once complete, the identifying data is extracted
by analysing multiple features within the fingerprint, such as; the fingerprint core,
deltas, pores, and more, as described by [18]. The extracted data can then be
used to generate a pseudonymous identity (PI), an irreversible representation of
the data, which allows the system to identify users without access to their raw
biometric representation.
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Comparison

A common way of comparing fingerprints is the use of mathematical distance func-
tions. For example, the Euclidean distance, as shown in equation 2.2. Due to the
elements’ differences being squared, fingerprints belonging to different individuals
are quickly differentiated, while smaller discrepancies caused during scanning have
a lower impact on the distance.

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2...+ (xn − yn)2 (2.2)

The distance is then compared to a predetermined threshold to determine
whether or not to accept the authentication request. In order to maximize the
accuracy of the system, this threshold is often chosen by minimizing the equal
error rate (ERR), defined as the point where the false acceptance rate (FAR) and
false rejection rate (FRR) coincide. If desired, the FAR can be further reduced by
lowering the threshold at the cost of increasing the risk of false rejections [19].

Storing biometric data

To ensure users’ privacy, a system processing and storing biometric data should
be designed to minimize the risk of compromising user data and limit the conse-
quences if a breach happens. In addition to using PIs in place of raw biometric
references, ISO 24745 suggests separating the storage of user data. For example,
PIs should be stored under a Common Identifier (CI) in place of users’ real iden-
tities. Furthermore, the entity responsible for storing PIs should then not have
access to the mapping between CIs and user identities [17].

2.6 Privacy

Defined by the Cambridge Dictionary as ”the right that someone has to keep their
personal life or personal information secret or known only to a small group of
people” [20]. User privacy is vital to keep in mind when creating a system for
biometric authentication, not only from the users’ perspective but also from a
legal standpoint.

While improving system usability by removing the need for users to remem-
ber passwords or obtain secure tokens, improper handling of biometric data can
result in dire consequences. For instance, if a direct representation of an indi-
vidual’s biometric data were to leak, it could universally compromise the use of
that characteristic. For example, if a raw representation of an individual’s fin-
gerprint were to leak from service ”A”, it might be possible for a malicious party
the use it in service ”B”. An encoded version of the biometric reference, known as
a pseudonymous identifier (PI), is commonly used to combat this risk. In addi-
tion to potential security issues, this would be a severe breach of the individual’s
privacy and could increase the risk of them being the target of crimes such as
impersonation or identity theft [17].
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2.7 Security aspects

Several aspects are listed below to consider when designing any authentication
system and even more so when it relies on biometric data. Some of these aspects
are covered by ISO 24745. If these are not fulfilled, it could lead to a reduction in
system integrity or the compromise of user data.

1. Confidentiality: ensures data secrecy and is referred to as the ”classical”
security aspect provided by encryption [5]. Not only for data in transit but
also when stored, reducing the damage in case of a breach.

2. Integrity: refers to that the data has not been altered from its intended
state. In the case of biometric data, it ensures that biometric references are
trustworthy and usable for comparison.

3. Renewability and revocability: help protect the system in the case of com-
promised data. This is done by providing the ability to remove (revocability)
authorization for an entry and ensuring that the sample can be used again
to create a new uncompromised PI (renewability).

4. Availability: ensures authorized parties can perform the steps necessary to
access the system using their biometric data. For instance, by protection
against DDoS attacks.

2.8 Machine Learning

Machine learning, specifically neural networks, can be used as an alternative to
FHE-incompatible PI generators such as FingerCodes, which would require the
encoder to perform comparisons between encrypted values. This section presents
the theory used to design a neural network-based solution for generating PIs from
fingerprints encrypted under TFHE.

2.8.1 Neural Networks

Originally modelled as an analogy to the human brain [6], neural networks (NN)
are composed of multiple interconnected neurons. A neuron refers to a nonlinear,
parameterized, bounded function, illustrated in Figure 2.4. The neuron takes
n signals as input, which are then weighed and biased before being passed to a
nonlinear activation function f, such as ReLU shown in equation 2.3. The neuron’s
output signal is, therefore, the value y = f(s) of the activation function where
s =

∑n
i=1 wixi + b is the weighted sum of the inputs, with the additional constant

bias b [21].
This thesis focuses on a particular type of neural network called feedforward

networks. Mathematically, feedforward neural networks are defined as a nonlinear
function of its inputs, which is the composition of its neurons. This type of network
is represented as a set of neurons connected together, as illustrated by Figure 2.5
[21].

ReLU (x ) = max(0, x) (2.3)
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Figure 2.4: Illustration of a neuron

Figure 2.5: Illustration of a feedforward neural network consisting
of; an input layer accepting input of length two, a hidden linear
layer with three neurons, and an output layer with two neurons.
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2.8.2 Convolution layers

State-of-the-art neural networks within computer vision leverage convolution lay-
ers to solve problems such as object recognition and lung cancer prediction [22].
Neural networks using this type of layer, known as Convolution Neural Networks
(CNNs), have been proven effective for fingerprint encoding as shown by [23], and
will be used to extract features from encrypted fingerprints.

Convolution layers focus on the use of trainable kernels, which are passed over
the input. For each step, the kernel’s centre is placed over the input, which is then
used to calculate a weighted sum used as output as shown in Figure 2.6.

Figure 2.6: Illustration of a convolution layer

2.8.3 Training

The versatility of NNs comes from the ability to train them using data similar
to their intended use case. The training data is passed through the network over
multiple iterations or ”epochs”. The difference between the output and intended
result, referred to as loss, is then used to adjust the weights inside of the network
according to a predetermined loss function, such as log-loss [24].

2.8.4 Transfer learning

Instead of using a large amount of resources to train a network from scratch, it
is possible to use a pre-trained network as a base for a neural network. This pre-
trained network, such as VGGNet [25], can be altered and fine-tuned to fit the
desired application.

2.8.5 Siamese networks and triplet loss

Unlike regular networks, where the output from a single data point is used in train-
ing, Siamese networks calculate the loss using the result from multiple inferences
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using the same weights, as shown in Figure 2.7. This enables the network to be
specialised in new ways, such as maximizing the difference between fingerprints
belonging to different individuals. This specialization can be done by training the
network using what is known as Triplet Loss [26]. This loss function takes the
output from three different input data points. It minimizes the difference between
the so-called anchor and a positive datapoint (from the same class or individual)
while maximizing the difference between the anchor and a negative datapoint.

Figure 2.7: Illustration of Siamese network

2.8.6 Machine learning for fingerprint validation

Neural networks provide an FHE-compatible solution for fingerprint encoding.
The components to make this possible are discussed in this subsection.

One-Shot Classification

A normal use case of neural networks is classification, where the network selects a
so-called ”class” depending on the input data, for example, classifying what type
of animal is present in an image. If a network were to use normal classification
for fingerprint validation, eg. by outputting the individual whose fingerprint is
used as input, the network would have to be rescaled and retrained for each new
individual enrolled in the system. Due to this, normal classification is not a viable
solution for validating fingerprints. Instead, so-called one-shot classification can
be used.

A network for one-shot classification is trained using data from multiple dif-
ferent classes, such as fingerprints, and outputs a tensor containing the encoded
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data. Using Siamese networks, the network is trained to classify identifying fea-
tures of individuals and encode them into a tensor that is as unlike those from
other individuals as possible [27].

Comparing Fingerprints

Once a one-shot classifying network has generated an encoding in the form of a
tensor, this output can be used to compare fingerprints using one of many math-
ematical definitions of distance. ISO 24745 suggests using either the Hamming or
the Euclidian distance between the encoded fingerprints as a simple comparison
metric.

Choice of threshold

Due to the threshold being a critical factor in the system’s security, it is vital
to choose it accurately. One way to do this is by calculating the equal error rate
(EER), which is the point where it is as likely for the system to reject an authorized
user (FRR) and accept a non-authorized user (FAR). Depending on the system’s
security requirements, it would be possible to make the threshold even lower than
the EER, reducing the risk of unauthorized access at the cost of overall usability
[19].

2.8.7 Machine learning using TFHE

A big advantage of TFHE is the ability to infer encrypted values as described
by [6]. This is possible using weights stored in the clear, resulting in linear and
convolutional layers evaluated using levelled operations. Evaluation of activation
layers can then be performed using programmable bootstrapping, thus resetting
the noise to a manageable level and allowing networks to have theoretically limit-
less depth. While inference time increases when performing inference on encrypted
inputs, [6] shows that networks do not suffer any major loss in accuracy when prop-
erly adapted to TFHE. Adapting the network refers to making it compatible with
TFHE by only using integers as weights using quantization. This also ensures that
the 16-bit value limit is not exceeded [28].



Chapter 3
Method

We propose a system allowing for privacy-preserving multi-factor authentication
that leverages TFHE for encoding and comparison between fingerprints. The
system is designed with ISO 24745 taken into consideration and provides confi-
dentiality, renewability, irreversibility, and unlinkability for users’ biometric data.

This chapter describes the design of the system and the privacy-preserving
components that make it work.

3.1 Architecture

The system uses a client-/server architecture based on a model suggested in ISO
24745 as ”Model K - Store distributed, compare distributed”[17]. Figure 3.1 shows
an overview of the suggested architecture. The server consists of subsystems for
encoding, authorization, and storing fingerprints. The client, on the other hand,
is responsible for collecting the users’ fingerprints and keys. These keys would
be stored on a secure external token exclusive to each user, such as an access
card or car key fob. Communication will be protected using the Signal protocol as
described by [29] to prevent malicious parties from taking advantage of the system.
This protocol, used by applications such as WhatsApp and Facebook Messenger,
protects communication from common attacks like AiTM and replay attacks. In
addition to protection against active attacks, Signal provides both forward and
backward secrecy in case a key is compromised.

3.1.1 Client

The architecture for the client is relatively flexible. The main requirement is that
the CNN used by the encoder has been trained using images from the same type
of fingerprint sensor used by the client. Otherwise, differences in resolution or size
could cause erroneous encodings. In addition to compatibility with the system,
it is important to ensure the hardware is secure against malicious use, such as
tampering or spoofing attacks.

19
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Figure 3.1: Overview of proposed architecture

3.1.2 Server

The authentication service would consist of three subcomponents, an encoder, an
authenticator, and storage. On top of these, some extra infrastructure is needed to
facilitate the system, such as a key server for use by the signal protocol. However,
these fall outside of the scope of the thesis.

Encoding encrypted fingerprints

By leveraging TFHEs Programmable bootstrapping, a CNN can be trained to
encode encrypted fingerprints using one-shot classification. This network would
preferably use transfer learning from a well-established CNN architecture, such
as VGG11 [2]. The pre-trained network could then be tuned as a Siamese net-
work with triplet loss to generate encrypted tensors of a set size to represent the
fingerprint.

In the proposed system, the fingerprints are encoded using a dedicated encoder
as part of an external trusted third party (TTP). The encoder uses encrypted
fingerprints along with the corresponding evaluation key to encode the fingerprints
without gaining access to either the biometric data or the identity of the user. Once
the fingerprints are encoded into an encrypted tensor using the CNN, they are sent
to the authenticator for either enrollment or authentication.
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Comparing encoded fingerprints

Using the fact that fingerprints are encoded to minimise the Euclidean distance
for fingerprint images from the same individual, the same distance function can be
used during comparison. Since this function can be implemented using a TFHE cir-
cuit, encoded encrypted fingerprints can be compared, provided they are scanned
using the same type of sensor and encrypted under the same key. Using a dis-
tance threshold calculated during training, this comparison can then be used to
authenticate users in the system.

3.2 Enrollment

In a non-privacy-preserving biometric system, the enrollment phase is relatively
straightforward. The enrollee presents their biometric characteristic to a sensor
and their identifying data, such as a user ID. The processed biometric data is then
stored along with the identifier for use in the authentication phase.

In the case of a privacy-preserving system, the process becomes slightly more
complex as a result of keeping the users’ identities as hidden as possible. In addi-
tion to preserving privacy, a user needs to enrol their fingerprint encrypted under
the same key used during authentication due to fingerprints being compared ho-
momorphically. This means the users’ encryption keys must be distributed or
generated before the enrollment can proceed. From an implementation perspec-
tive, the easiest solution would be for new users to physically go to a location,
such as the organisation owning the system, where their fingerprint is scanned and
token handed out. While usable on a small scale, for instance, within an organi-
sation’s internal access control, this solution can run into scalability and usability
issues.

Instead, the system proposed by this thesis uses the enrollment procedure
shown in Figure 3.2. The organisation generates a CI for the user, which the TTP
uses as the only user identification method. Once the client has received the CI,
the user’s fingerprint is scanned and encrypted using their encryption key. The
encrypted fingerprint is then sent to the TTP with the CI and evaluation key. To
reduce the network bandwidth used by the client during the authentication phase,
the evaluation key can be stored on the server. This would additionally remove
the need for the evaluation key to be stored on the user’s token, thus reducing its
hardware requirements.

3.3 Authentication

During the authentication phase, the client scans and encrypts the user’s finger-
print. This is then sent with the user’s evaluation key to a dedicated encoding
service equipped with the encoding network. The encoder then generates an en-
crypted tensor without the ability to read the user’s plaintext fingerprint. This
tensor is then sent to the authenticator. The authentication decision is then made
based on the homomorphic comparison between the session fingerprint and the
enrolled fingerprint stored in the database. In order to prevent so-called hill-
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Figure 3.2: Diagram showing enrollment phase

climbing attacks, the authenticator returns the decision, not the distance between
the fingerprints, to the client, as suggested by ISO 24745. An overview of the
authentication phase is presented in Figure 3.3.

3.4 Revoking fingerprints

Per ISO 24745, the system allows the system owner or the user (via the system
owner) to initiate a process to revoke authorization privileges, as shown in Figure
3.4. This includes not only the removal of the CI from the list of authorized users
but also removing all biometric and identifiable data. According to ISO 24745, the
data will be removed from active and archived services and all backups. Depending
on the reason for revoking a user’s authorization, such as removing a user, any
other record of the user, including mapping between CI and identity, should be
removed.
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Figure 3.3: Diagram showing authentication phase

Figure 3.4: Diagram showing the revocation process
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Chapter 4
Implementation and Results

In order to investigate the practical feasability of using FHE in the context of
MFA, a prototype was implemented and evaluated as described in this chapter.

In addition to the features implemented for the prototype, some alternate
solutions are discussed in section 5.2.3.

4.1 Scope and Limitations

Due to a lack of maturity in the field of applied FHE, some compromises have
been made for the prototype’s implementation. To ensure the validity of our
results and conclusions, complementary measurements will be taken in addition
to those generated using the prototype.

4.1.1 Encoder

TFHE-derived limitations

Due to the large performance overhead of TFHE and Concrete’s limitation to 16-
bit integers, the neural network used in the encoder is run with Concrete’s so-called
”Unsafe features”. This allows the network to be run using a simulated circuit,
reducing computation time drastically. Additionally, enabling the unsafe features
allow for experimentation with values that would otherwise cause fingerprint com-
parison to fail due to the limit on integer values. However, some limitations are
still put upon the networks’ size and output values in order to approximate the
architecture for a real-world use case.

4.1.2 Authentication system

Fingerprint storage and encoding

Due to the encoder being run using a simulated circuit, fingerprints are stored
in plaintext. This allows the prototype to use pre-encoded fingerprints. These
fingerprints are instead encrypted before comparison by the authenticator. The
compromise does not affect the authentication phase, which will remain the focus
of the evaluation.
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Key management

Due to fingerprint encodings being pre-generated for the prototype, the client
doesn’t use any TFHE keys. Instead, fingerprints are encrypted at the time of
comparison with the help of Concrete’s built-in key generation. This results in a
key management system not being required.

During the implementation of the prototype, Concrete’s built-in key generation
is used on a session-to-session basis. Therefore, no persistent key management
system is used.

4.2 Prototype Implementation

4.2.1 Encoder

An example provided by Zama on image classification and network fine-tuning was
used as a basis for the prototype. The example makes use of a slightly modified
VGG11 network, as well as a QAT-compatible network for use in FHE. Some
modifications were made to the network for use in the prototype. Namely an
increase of the networks’ input- and output sizes to allow for higher resolution
fingerprint images, and to increase the separation between encoded fingerprints.
In addition to the change in sizes, the fingerprint encoding is clamped to limit
integer values during comparison under FHE.

Dataset

The encoder was trained using the L3-SF Database [30] synthetic fingerprint
dataset. Each of the five subsets contains ten images, as shown in Figure 4.1,
from 148 unique individuals. Two subsets were used during the construction of
the encoder, one for training and the other for validation. Due to the dataset
containing multiple images per individual, it is possible to use triplet loss when
training the network.

Figure 4.1: Unedited example image from the L3-SF Database.
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Training

The network was initially pre-trained using the non-quantized VGG11-like archi-
tecture displayed in table 4.1 over two phases. Firstly to train the fully-connected
final layer and then the whole network, until a satisfactory performance had been
reached. This was done using the PyTorch library for Python. The pre-trained
network was then quantized using the libraries ONXX and Brevitas, to make it
compatible with homomorphic operations. After quantization, a shorter second
round of training was performed to recuperate the loss in accuracy from quanti-
zation.

Layers
Input image - 240x320

Conv2D - 64
AvgPool2D

Conv2D - 128
AvgPool2D

Conv2D - 256
Conv2D - 256
AvgPool2D

Conv2D - 512
Conv2D - 512
AvgPool2D

Conv2D - 512
Conv2D - 512
AvgPool2D

Flatten
FC - Embedding length

Table 4.1: Network architecture used by encoder

4.2.2 Authentication system

Using the functionality of the encoder, the surrounding infrastructure is trivial to
implement. It contains an authenticator for comparing fingerprints, a database
for storing enrolled fingerprints, and a client connecting to the services.

Client

The prototype uses a modified version of the client proposed in section 3.1.1.
Instead of using a physical token and a fingerprint reader, the CIs are generated
on the client before fetching encoded fingerprints directly from the encoder. This
results in an altered communication flow for the enrollment and authentication
phases, as shown in Figures 4.2 and 4.3.
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Figure 4.2: Diagram showing the modified enrollment phase used in
the prototype.

Figure 4.3: Diagram showing the modified authentication phase
used in the prototype.



Implementation and Results 29

Authenticator

Using a compiled TFHE circuit for calculating the Euclidean distance between
two encrypted tensors, is capable of comparing encrypted encoded fingerprints.
This comparison is then used to generate a decision based on the predetermined
threshold. The authenticator is also responsible for querying the database for a
previously enrolled fingerprint. To prevent malicious exploration of the system,
any query made by a client for authentication against a non-existing fingerprint
will be met with a message as if the authentication failed. Thereby preventing
a malicious client from testing whether or not some hash belongs to an enrolled
user.

Database

The final service in the system is the database used for storing enrolled fingerprints.
A regular database is used for the initial prototype, storing fingerprints under
each user’s CI. Improvements could, however, leverage FHE-based databases as
proposed by [31].

Communication

Following the proposed design, the prototype uses the Signal prototype to secure
communication. This mitigates the risk of replay- and AiTM attacks. While
this comes with some overhead and would require additional infrastructure in a
production environment, the benefits from the added security outweigh the costs.

4.3 Results

In this section, measurements from the prototype are presented. First, perfor-
mance benchmarks for both the TTP and the client are evaluated. Finally, an
evaluation of threats and countermeasures related to the proposed system’s pri-
vacy and security is presented.

4.3.1 Performance evaluation

This section presents the results of the performance measurements collected from
the different components of the prototype. Component performance measurements
exclude overhead from communication with other parts of the system unless ex-
plicitly stated. Table 4.2 shows the hardware used for running evaluations.

Encoder

The benchmarks for the encoder were run on an otherwise idle machine, allowing
the CNN to use resources freely. Table 4.3 shows the accuracy, time, and memory
usage for encoding fingerprints. Since Concrete-ml lacks GPU support, the model
for encoding encrypted fingerprints is simulated on the CPU, while the Torch
model is evaluated on both the CPU and the GPU. The model’s accuracy is
measured using the threshold achieving EER. Memory usage shows each model’s
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Model CPU GPU Memory Role
HP Z2 G9 Intel Core

i7-12700k
Nvidia Quadro
T400

32 GB TTP

Raspberry Pi
3B+

ARM
Cortex-A53

- 1 GB Client

Table 4.2: List of hardware used for evaluation.

average virtual memory usage; note that the CPU was the limiting resource for
both models not running on the GPU.

Model Accuracy [%] Time [s] Memory [GB]
Torch (CPU) 94 0.2 8.0
Torch (GPU) 94 0.03 13.2

Simulated TFHE (CPU) 93 517 23.9

Table 4.3: Performance measurements for the encoder.

Authenticator

Due to intermediate values exceeding Concrete’s bit width limit when computing
the Euclidean distance, there is an upper limit to encoding size for the prototype.
Measuring the distance between two fingerprints using smaller encodings yields
the results seen in Table 4.4.

Encoding Length Maximum Value Bit width Time [s] Accuracy [%]
13 4 8 9 83
13 16 12 19 86
13 64 16 23 90
128 255 23 - 93

Table 4.4: Authentication performance for different encoding sizes.

Client

Attempts to encrypt images using the Raspberry Pi specified in table 4.2 proved
unsuccessful due to the limited available RAM. Instead, encryption performance
was measured on the desktop specified in table 4.2. Table 4.5 shows the measured
memory usage and time spent encrypting images of full, half, and quarter reso-
lution. The memory usage reported in table 4.5 shows the increase in allocated
virtual memory in addition to the 2.5GB of memory allocated when not performing
the encryption.
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Resolution [pixels] Memory [GB] Time [s]
320x240 1.9 5.70
160x120 0.9 2.86
80x60 0.5 1.43

Table 4.5: Image TFHE encryption benchmarks.

4.3.2 Privacy and security evaluation

This section presents the evaluation of the proposed system from a privacy and
security perspective. The evaluation is performed using the requirements defined
in ISO 24745. The results in table 4.6 show potential threats to the system, the
related privacy and security aspects, and countermeasures to mitigate the threat.

Brief description of threats and countermeasures

For clarity, brief descriptions of select threats and countermeasures are provided
as follows:

- Adversary in the middle (AiTM) refers to a malicious party intercepting
packets with the ability to read, insert and modify the biometric data in
transit without either party knowing that the established link has been
compromised.

- Encryption key disclosure would allow an attacker to decrypt a user’s PIs
if a PI database becomes compromised. Due to PIs being unlinkable and
irreversible, this scenario would not compromise the user’s raw biometric
data.

- Hill climbing attack refers to a malicious systematic modification of the
scanned fingerprint to obtain progressively lower distance until the decision
threshold is met.

- Channel security is provided using the Signal protocol. Provided that a
secure configuration is used, this gives the system protection against replay
attacks, AiTM, and eavesdropping.
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Threat Privacy-/Security aspect Countermeasure

AiTM
Confidentiality,
Integrity,
Authenticity

Secure channel

Brute force Authenticity,
Confidentiality

Use of strong
encryption

Disclosure of
PI database

Confidentiality,
Irreversibility,
Unlinkability

Data separation,
Revocable and
renewable biometric
references

Eavesdropping Confidentiality Secure channel

Encryption key
disclosure

Confidentiality,
Authenticity

Revocable biometric
references,
Irreversability,
Unlinkability

Fingerprint spoofing Authenticity Presentation attack
detection

Hill climbing
attack Authenticity Comparison

under FHE
Replay attack Authenticity Secure channel

Unauthorized
removal or
modification of PIs

Integrity

Database access
control,
Appropriate recovery
procedures

Table 4.6: Threats and countermeasures related to privacy and se-
curity.
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Discussion

This chapter discusses the results gathered from evaluating the system prototype
based on performance, security, privacy, and practicality. It then brings up the
method and decisions made when implementing the prototype. Finally, privacy-
preserving MFA is discussed in a wider context.

5.1 Results

The results show that creating a secure and privacy-preserving biometric MFA
system with PIs generated from encrypted fingerprint scans is possible. While
fingerprint comparison can be performed relatively efficiently, it is obvious that the
encoding method used in this thesis is too inefficient to be practical in an actual
implementation. This could be solved using an alternative encoding method in
the clear on the client, discussed in section 5.2.3. However, it might be possible
to retain the ability to encode encrypted scans using one or more of the following
suggested solutions:

1. Improve the performance of TFHE operations: In its evaluated state, the
Concrete library has limitations that greatly reduce the efficiency of any
machine learning model. However, regular performance improvements are
being brought to the library that could reduce the encoding time using the
current solution. One feature that would greatly impact the performance of
the encoder would be the ability to run the inference on the GPU.

2. Use of an alternate encoder architecture: Since this thesis aimed to investi-
gate the possibility of implementing privacy-preserving MFA, the architec-
ture for the encoding network was not chosen based on efficiency. Instead,
VGG11 was chosen because it was proven to be migratable to Concrete with-
out any major loss in accuracy. Therefore, an encoder using an alternate
network architecture could improve the encoding efficiency.

3. Reduce fingerprint scan size: Due to the legal restrictions related to working
with biometric data, the choice of a dataset for network training was very
limited. This led to the network being trained on 320x240 pixel images. To
ensure the validity of this thesis’s results, the images were not compressed
or cropped, resulting in the network having a much larger input than might
be necessary. For reference, the example used as a basis for the encoder uses
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a very similar architecture to simulate FHE inference on images with a size
of 30x30 pixels. This takes them 38 seconds per inference, compared to our
517 seconds.∗

5.2 Method

This section discusses the method used to implement and evaluate the prototype.
This includes hardware for evaluation, the dataset used for network training, and
alternate encoding methods.

5.2.1 Hardware

The hardware used to evaluate the prototype was chosen based on the processor
architecture to ensure that the solution would be compatible with a use-case envi-
sioned by Bosch. However, this does not mean that the execution times measured
during evaluation are representative of running the components on its envisioned
hardware. Instead, execution times should be viewed as an approximation of a
real-world use case and an indicator of the computational overhead caused by
running inference on encrypted data.

5.2.2 Dataset

As discussed in section 5.1, the dataset used in this thesis was chosen due to
legal restrictions on non-synthetic fingerprints. This resulted in the encoder being
evaluated on relatively homogenous data. To perform a more thorough evaluation
of the network, it would be beneficial to train and evaluate it using a larger number
of datasets containing fingerprints with higher variations in scan quality.

With access to more datasets, it would be interesting to investigate the possi-
bility of training a network capable of encoding fingerprints taken from different
types of sensors. If successful, this would remove the need for organisations to
use pre-approved sensors. Thus, making organisations more likely to be willing to
adopt the system.

5.2.3 Alternate encoding method

Due to the large overhead when encoding fingerprints homomorphically, it is worth
considering an alternate solution where fingerprints are encoded in the clear using
the client. As long as the encoding can be compared homomorphically and is
not too computationally expensive, it could be used with the rest of the system
proposed by this thesis. The most straightforward solution would be to use the
PyTorch implementation of the CNN used in this thesis. More advanced network
architectures could be possible if the client has enough computational resources.
Using more advanced and specialised networks could lead to higher authentication
accuracy. Additionally, encoding the fingerprints in the clear would allow the client

∗These benchmarks were performed on different hardware and are only meant to
serve as a basis of reference.
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to use non-ML-based encoding methods. For example, [32] proposes a solution
based on Fingercodes and the Pailler cryptosystem. Modernising the Fingercode-
based solution could serve as a basis for future versions of the system proposed in
this thesis.

The downside of generating an encoding in the clear is that it removes the
possibility of distributing PI generation without compromising security and confi-
dentiality, as the user’s raw fingerprint scan would be made available to an external
party. This could result in raw biometric data becoming compromised if the en-
coder were to be breached.

5.3 The proposed system in a wider context

The work presented by this thesis could be adapted for use in various real-world
systems and applications. It could, for example, serve as a method for providing
multi-factor authentication in domains where one-time keys are impractical or
impossible to implement.

The proposed design also provides a method for organisations to reduce their
security management burden by distributing the authentication process to a trusted
third party. Furthermore, with limited user information being sent to the third
party, the organisation can guarantee that no identifiable or unencrypted biometric
information will be shared with external parties.
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Chapter 6
Conclusions and Future Work

In this thesis, we implemented a CNN using transfer learning, capable of encoding
fingerprints encrypted using TFHE. Additionally, a system for privacy-preserving
biometric MFA was designed. The system ensures users’ privacy and biometric
data confidentiality in the case of a data breach in accordance with ISO 24745.

By implementing and evaluating a prototype of the system, we show that the
proposed solution is viable from a privacy and security perspective. However, the
benchmarks show that the system is very inefficient from a performance perspec-
tive, primarily due to the overhead caused by the inference using homomorphic
operations. We propose three solutions to this problem:

1. Improve the performance of TFHE operations

2. Use an alternate encoding solution

3. Reduce the size of fingerprint scans

Additionally, the results show that the client would need a non-trivial amount
of computational resources in the proposed system despite not needing to encode
fingerprints. Therefore, we conclude that a solution where fingerprints are encoded
on the client before encryption is preferable to the method investigated in this
thesis, as discussed in section 5.2.3.

6.1 Future work

Due to the encoder being the biggest bottleneck for the proposed solution, this
would be an interesting area of future work. Chapter 5 includes suggestions on
alternate solutions and future work, such as testing alternative CNN architec-
tures and encoding fingerprints in the clear using the client. We strongly suggest
performing a survey comparing the performance of different encoding methods
on cleartext fingerprints when paired with various privacy-preserving comparison
algorithms, such as FingerCodes and GSHADE [33].

Additionally, usability could be greatly improved by investigating alternate
key management solutions rather than using a physical token. Alternatively, inte-
grating the token’s functionality into devices commonly carried by potential users
could be viable. For example, if the system is used to authenticate a car owner, a
sufficiently advanced key fob could hold the data required by the system.
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Finally, as applied FHE becomes more adopted and FHE-related libraries ma-
ture, it would be beneficial to continually compare viable candidates for imple-
menting a full-scale version of the proposed system.
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