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Abstract

As the latest generation of wireless access technology called Fifth Generation (5G)
New Radio (NR) evolves, computational efficiency is key to keep low cost and
flexible deployments for vendors. Understanding how the Digital Signal Processing
(DSP) load behaves in the digital units is one aspect to enable this efficiency. This
thesis investigates how the DSP load in the base station behaves for a cell in high
band, where frequencies are in the range 24.25 GHz - 52.6 GHz, when varying
the number of allocated Resource Blocks (RBs) in both a single and multisector
configuration. The computational behaviour is also characterized using regression
models and implemented into an internal simulator at Ericsson. Additionally, the
investigation is complemented with data from real User Equipments (UEs) and a
more real-life scenario where error occurs in the transmission.

The results show that the load scales with the number of RBs in such a way
that it is possible to have more Connected Users (CUs) by limiting the allocated
RBs for all users. Furthermore, the load generated by the uplink data should be
considered on a Time Division Duplex (TDD) pattern basis. When doing so, it can
be approximated as a linear or higher order function of the number of allocated
resource blocks. When implemented into the simulator, the model is validated
against data from real hardware. The validation showed that the model generates
accurate normal distributed load values: it captures the essential behaviour but
it is hard to predict correct mean values, due to the generated load being too
stochastic in nature.

These insights on the load behaviour provides input and considerations on how to
design solutions that does not exceed the maximum computation utilization. For
future work, the behaviour from downlink data and other traffic scenarios could
be investigated to fully explore the limitations and requirements.
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Populärvetenskaplig sammanfattning

5G NR är den senaste generationen mobilnät och är efterföljaren till Fourth Gener-
ation (4G) Long-Term Evolution Advanced (LTE-A). I mobilnäten kan användare
koppla upp sig mot basstationer med sina enheter som kan vara en mobiltelefon
eller dator. Basstationerna består av antenner som kan både skicka och ta emot
information samt en radioenhet som hanterar trafik till och från stationen. Efter-
som antennen på en basstation placeras högt upp för bäst täckning går det att
känna igen basstationer genom att antennerna ofta sitter på en mast eller höga
hustak i större städer. Från antennen går det sedan en kabel till radioenheten som
placeras på en lämplig plats, men den kan även vara integrerad tillsammans med
antennen. Runtom basstationen delas topografin upp i hexagonformade områden,
ungefär i samma utseende som bins vaxkakor. Alla användare som befinner sig
inom samma hexagon tillhör ur basstationens perspektiv en och samma cell.

För varje cell finns det en viss mängd resurser tillgängliga i både tids- och frekvens-
domänen. I tidsdomänen består en resurs genom att tiden går att dela upp i olika
intervall vilket tillåter att fler användare delar på den. För användarnas enheter
är dessa intervall tydliga men för oss människor märks det inte av utan det up-
plevs ändå som ett jämnt flöde av kommunikation. På samma sätt som att vi inte
märker att glödlampor blinkar 50 gånger per sekund utan ljuset upplevs som kon-
stant. På samma sätt som tiden delas upp kan frekvenser också delas upp i olika
intervall vilket bildar frekvensresurser. Kombineras båda dessa uppdelningar går
det att ha flera användare samtidigt som delar på de olika resurserna. Förutom att
dela in frekvenserna i olika intervall finns det också begränsningar över hur stort
frekvensområde varje cell förfogar över vilket kallas bandbredd. Det begränsar i
sin tur hur många intervall frekvensområdet går att dela in i.

När det är många användare samtidigt i en och samma cell, vilket kan hända
vid större folksamlingar som konserter, idrottsevenemang eller stadsparken i Lund
under valborg, tar resurserna i cellen slut. Om då användarens enhet inte fått
tillgång till resurserna på ett tag kommer den tro att kontakten med basstation har
försvunnit och försöker då koppla upp sig igen mot samma eller en ny basstation.
En lösning för att kunna ha fler användare uppkopplade samtidigt mot samma
basstation utan att tappa dem är att minska de enskilda cellernas områden, vilket
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ger en möjlighet att öka antalet celler runtom basstationen. Att ha flera celler
samtidigt är kostsamt för radioenheten då dess processor måste arbeta hårdare för
att kunna hantera all data som skickas till den från varje cell.

En annan typ av resurs i 5G NR kallas resource block eller på svenska: resursblock.
Enkelt förklarat går det att beskriva antalet resursblock som antalet intervall för
en viss bandbredd som finns i en cell. Genom att begränsa antalet resursblock
som kan användas går det att minska mängden frekvensresurser som används för
en cell trots att det finns mer tillgängligt. I det här arbetet har det undersökts
hur belastningen för processorn i radioenheten har förändrats beroende på hur
många såna resursblock som finns tillgängliga för upplänken. Upplänken är den
kommunikation som sker från användarenheterna till basstationen.

Med hjälp av en särskild testmiljö på Ericsson som kan simulera mobiltelefoner har
belastningen för en verklig radioenhet kunnat undersökas. Genom att begränsa
antalet resursblock har data samlats in för olika antal resursblock, antal celler och
två olika bandbredder. För varje resurblocksvärde som data samlats in för har
en statistik modell skapats. Genom att interpolera parametrarna i den statistiska
modellen för alla resursblocksvärden har en funktion för varje parameter tagits
fram så att värden för dessa kan skapas för ett godtyckligt antal resursblock.

Därefter har den statistiska modellen implementerats i en intern simulator på
Ericsson och data för tre olika resursblocksvärden som inte användes för att skapa
modellen samlades in. I syfte att validera modellen samlades även testdata för
de motsvarande tre resursblocksvärdena in från testmiljön som sedan användes
för att validera simulatorns prestanda. Valideringen visade att modellen i många
fall lyckas fånga utseendet på lastens distributioner men att dessa distributioner i
några fall inte alltid har samma medelvärde som datan från testmiljön.

Med resultaten från simulatorn går det att dra slutsatser om hur belastningen för
radioenheten med upplänkstrafik kommer att se ut och när den infaller. För att
kunna möjliggöra fler scenarion och slutsatser från simulatorn kan även belastnin-
gen från nedlänkstrafik undersökas, modelleras och implementeras i simulatorn.
Detta skulle ge en fullständig bild av hur belastning beter sig i radioenheten.
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Chapter 1
Introduction

1.1 Background and Motivation

Given the increased demand for greater throughput in 5G mobile networks, vendors
of Radio Access Network (RAN) equipment are constantly looking for ways to
increase coverage while remaining efficient both in cost and computation. By
using several Radio Units (RUs), connected to a single Digital Unit (DU), it is
possible to cover a larger geographical area with fewer resources. This generates
higher demand on the efficiency of the baseband software which executes in the
DU. Specifically, the main processing load is generated in the Physical Layer
1 (L1) from processing UL and DL data.

The RUs are often integrated with the antennas forming a system and together
they cover one sector. A sector is thus a geographical area spanned by the trans-
mission angle from the antenna system. When connected to a DU, together with
other baseband equipment, they form a base station. In 4G LTE-A, the base
station is referred to as eNodeB (eNB) and in, 5G NR as gNodeB (gNB). If a
base station has more than one antenna system, it can cover additional sectors
illustrated in Figure 1.1.

Additionally, each sector is a set of cells where the cells can transmit on different
frequencies illustrated in Figure 1.2. Each User Equipment (UE), belonging to
one sector, can use the resources from either one or multiple cells by aggregating
them.

Allocation of computational resources in the base station is controlled by a sched-
uler, which assigns resources based on Scheduling Requests (SRs) from UEs. The
performance of a multisector configuration, where several RUs are connected to
the same DU, is therefore highly dependent on the effectiveness of the scheduler.
Specifically, it is interesting to analyze how certain parameters affect the scheduler
impact on system load, to further improve performance. One of the parameters
of special interest is the number of assigned Resource Block (RB) per cell, which
essentially sets the maximum data rate a cell can achieve.
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2 Introduction
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Figure 1.1: Different sectors around one gNodeB.
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Figure 1.2: How cells relate to one sector from a gNodeB.



Introduction 3

1.2 Objectives

The purpose of this thesis is to explore and model how the scheduler entity in
high band, where frequencies are in the range 24.25 GHz - 52.6 GHz, behaves and
affects the system load depending on the number of RBs that are utilized for each
scheduled entity. To limit the scope of the thesis, only the load generated by the
UL traffic, when data is flowing from the UEs to the base station, is considered.

If a UE goes for a long period without any UL transmission, the synchronization
will be lost and the UE will drop the connection to the base station. To keep a high
number of Connected Users (CUs) it is important to not throttle UL resources in
a such a way that the UEs will believe the link is dead and drop the connection.
More specifically, the following items are addressed:

• How the DSP load generated by UL data scales with the number of RBs
assigned per cell.

• How the number of RBs assigned per cell affects the system load in a mul-
tisector/cell environment. Is it for example possible to support a larger
number of primary cells, and thus more CUs, by assigning a lower number
of RBs per cell in a high load scenario?

• How the system load is affected in a more real-life scenario different from
the high load. For example, how does the Link Adaptation (LA) algorithm
change the processing requirements?

• How data from real-world hardware tests can be used to build a model which
indicates the performance of different configurations.

• How adding model parameters to an internally developed simulation tool
can extend functionality to that tool.

Due to time constraints, the collection of data that were to be analyzed needed
to be limited. Thus, only data from cells with 50 and 100 MHz bandwidth were
collected. Also, due to limitations in the testing software, only configurations with
up to three sectors were investigated.

1.3 Previous Work

Many system providers run their software on special proprietary hardware and thus
considers the DSP load behavior as confidential. Therefore, the open literature
in this area is quite scarce, but there are some articles relating to the work in
this thesis. In [1], Pramanik et al. investigates the computational and memory
requirements of Virtual Radio Access Networks (vRANs) for an LTE-A emulation
system. vRANs lets the operators run their baseband functions as software on
general-purpose hardware. In the article, the authors build a vRAN test bed
using general-purpose computers to profile the computing and memory behavior
when sending DL data. Among other results, the authors show that the CPU
utilization and throughput increases with the MCS index for a single user. They
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also show that the CPU utilization increases with the number of occupied RBs for
a fixed MCS index of 27. They find that these increases in CPU utilization can
be approximated as linear functions of both MCS index and number of occupied
RBs. The last interesting result from their article is that the CPU utilization also
increases for each additional connected UE for a fixed number of RBs and the
MCS index set to 27.

Somewhat similar, Tran et al. [2] look at the processing behavior for a virtual
Baseband Unit (BBU) in a Cloud Radio Access Network (C-RAN) test bed. In
the article the authors investigate and show how the CPU utilization increases with
the MCS index for three different configurations of 25, 50 and 100 RBs sending
DL data. By knowing how many bits there are in each symbol for a given MCS
index value, the CPU utilization was calculated for a given throughput. It was
found that the CPU utilization could be approximated as a linear function of the
DL throughput or the number of occupied RBs.

There are two key differences from these articles comparing to the work in this the-
sis. First, the baseband software is simulated in the articles whereas real hardware
is utilized in this thesis. Secondly, the articles investigate load in the previous
generation telecommunication generation, 4G, whereas this thesis focus on the
current generation (i.e., 5G). Therefore, it is not certain that their results can be
directly compared to the results of the work in this thesis.



Chapter 2
Theoretical Background

2.1 5G NR

5G NR is the successor to the previous telecommunication generation 4G LTE-A.
The technical specifications for 5G are developed by the organization 3rd Gener-
ation Partnership Project (3GPP). Based on the same technology as LTE-A, NR
reuses many features from LTE-A without the restrictions of retaining backwards
compatibility, allowing new features and technical solutions.

One of the main features of NR is that it allows utilization of the mm-Wave fre-
quencies in the range 24.25 GHz - 52.6 GHz [3]. There are also three distinct use
cases for 5G often talked about which are: Enhanced Mobile Broadband, Massive
Machine-type Communication and Ultra-Reliable and Low-Latency Communica-
tion.

2.2 Orthogonal Frequency-Division Multiplexing

Orthogonal Frequency-Division Modulation (OFDM) [4] is a modulation scheme
which divides the data on multiple carrier frequencies. In conventional frequency
division duplex schemes, the spacing between the carriers must be sufficiently large
to avoid Intercarrier Interference (ICI). In OFDM, the subcarriers are orthogonal
to each other and spaced in such a way that when sampled, in theory, only the
contribution from one subcarrier is used, allowing them to be more closely spaced
without interfering with one another and thus increasing the spectral efficiency. In
practice there is always a small (but minimal) interference. Figure 2.1 illustrates
orthogonal carriers in the time- and frequency domains.

However, OFDM still suffers from Intersymbol Interference (ISI) where parts of
the previous symbol(s) are leaking over in the time domain and interfering with
the desired symbol. OFDM symbols is a time domain modulation of a complex
number, representing the amplitude and phase of the modulated bits. One way
to combat ISI is the use of a guard interval in the time domain. With OFDM, a
Cyclic Prefix (CP) is often used. The CP is applied by copying the last part of

5
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the OFDM symbol and attaching it to the front of the symbol.
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Figure 2.1: Orthogonal subcarriers in the time- and frequency do-
mains.

The modulation scheme is what determines how many bits there are in each OFDM
symbol, from one bit per symbol using binary phase-shift keying up to eight bits
per symbol using 256 quadrature amplitude modulation. The modulation order is
controlled by MCS which also determines the coding rate, the latter is a ratio of
how much redundancy there is in the data stream. Typically a 10 % Block Error
Rate (BLER) [5] is targeted by the Adaptive Modulation and Coding (AMC)
algorithm which allocates different MCS values. It may seem paradoxical to allow
errors in the communication to happen but trying to achieve a extremely low error
rate is costly and doesn’t necessarily provide the best performance. A selection of
modulation orders, target code rates and spectral efficiencies are shown in Table
2.1 for PUSCH, recreated from [5, table 6.1.4.1-1]. Spectral efficiency is a measure
of how many bits per second that can be transmitted over a given bandwidth.
Generally both the modulation order and code rate increase with the MCS index.
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MCS Index Modulation Order Target code rate
(R x 1024)

Spectral efficiency
[bit/(s·Hz]

...
...

...
...

15 4 616 2.4063
16 4 658 2.5703
...

...
...

...
26 6 910 5.3320
27 6 948 5.5547

Table 2.1: MCS index Table for PUSCH.

2.3 Time/Frequency Structure in 5G NR

2.3.1 Time Domain

In the time domain the length of one OFDM symbol varies with the numerology.
The numerology is defined by the sub-carrier spacing and the cyclic prefix length
and is given by ∆f = 2µ · 15 kHz [6, table 4.3-1]. Extended CP, which is used to
further minimize ISI, is only supported for numerology two. Table 2.2 shows some
of the different numerologies for NR.

µ ∆f (kHz) CP
0 15 Normal
1 30 Normal
2 60 Normal, Extended
3 120 Normal
4 240 Normal

Table 2.2: Different numerologies in NR.

Also, in the time domain, the OFDM symbols are divided into radio frames, sub-
frames and slots. In NR, one frame is always 10 ms and is divided into ten
subframes of 1 ms each [7, p. 5.3]. These subframes are then divided into slots
where each slot consists of 14 OFDM symbols for normal CP and 12 for extended
CP. Each numerology will have a different OFDM symbol length in time which
in turn corresponds to the number of slots in a subframe. For example, in nu-
merology three, the useful OFDM symbol time is 8.92 µs which means that one
slot is 0.125 ms and one subframe consists of eight slots. Table 2.3 and Figure 2.2
illustrates the number of slots per subframe and frame for different numerologies.

Lastly there is the concept of Transmission Time Interval (TTI), which corresponds
to consecutive OFDM symbols in the time domain [8, p. 5.4.7]. By using different
number of symbols in a TTI, different durations can be defined. One way to
look at TTI is that it is the length of one scheduled transmission. Together with
the numerology, the TTI determines how the transmission is to be made on the
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µ Symbols Slots / subframe Slots / frame
0 14 1 10
1 14 2 20
2 14 4 40
3 14 8 80
4 14 16 160

Table 2.3: Slots per subframe and frame for different numerologies.

physical layer. In this thesis, one TTI is always equal to one slot or 14 OFDM
symbols.

2.3.2 Frequency Domain

Like the time domain, the frequency domain also has subdivisions that are related
to each other. Frequency ranges are grouped into different bands and one carrier is
a contiguous band of 50, 100, 200 or 400 MHz in NR [9, table 5.3.2-1]. Depending
on the numerology, the subcarriers have different widths. For example, numerology
three has subcarriers which are evenly spaced by 120 kHz. These subcarriers lie
next to each other except at the edges of the carrier where guard bands are used
to reduce ICI.

In NR, 12 subcarriers are always grouped into a RB, irrespectively of the numerol-
ogy used [6]. Thus, the carriers will contain different number of RBs depending
on the channel bandwidth used. Ericsson currently uses numerology three in their
NR high band implementation and this report will assume that same numerology
unless stated otherwise. Table 2.4 shows the maximum number of RBs for different
channel bandwidths with 120 kHz sub-carrier spacing [9, table 5.3.2.-1].

Bandwidth [MHz] 50 100 200 400
RBs 32 66 132 264

Table 2.4: Maximum number of RBs for different channel band-
widths with 120 kHz sub-carrier spacing.

2.3.3 Time-Frequency Grid

Combining the time and frequency domains results in a time-frequency grid. Fig-
ure 2.3 shows the combination of those domains in where each block in the fre-
quency axis represents a sub-carrier frequency and each block on the time axis
represents a pulse. This is often referred to as the resource grid.

The smallest unit in the resource grid is 1 OFDM symbol × 1 sub-carrier which is
called a Resource Element (RE). Another unit is 1 slot × 1 RB, that is, 14×12 =
168 REs and in the context of the previous telecommunication generation (4G),
this is often referred to as a resource block, which has the same same frequency-
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Figure 2.2: Frames, subframes, and slots in NR.

domain unit of 12 subcarriers as NR. This is most likely because the definition
of RBs differ between LTE-A and NR [10]. In this report the NR frequency-
domain definition of 12 sub-carrier is implied when referring to RBs unless stated
otherwise.

2.3.4 Physical Channels

There are different physical-channel types defined for NR [11]. The main channels
for unicast data in down- and uplink are called Physical Downlink Shared Channel
(PDSCH) and Physical Uplink Shared Channel. Control information are sent on
the Physical Downlink Control Channel (PDCCH) and Physical Uplink Control
Channel (PUCCH) respectively. There is also the Physical Broadcast Channel
(PBCH) that carries information, for example synchronization data, necessary
for UEs to access the network and lastly, there is the Physical Random-Access
Channel (PRACH) used for random access.

2.3.5 Scheduling

In NR the resource blocks, symbols and slots in Figure 2.3 are dynamically al-
located and shared between users. The entity that controls this assignment of
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Frequency
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Figure 2.3: Time-frequency resource grid

resources in uplink and downlink is called the scheduler and although it is part of
the Medium Access Control (MAC) layer, it is often viewed as a separate entity
operating alongside the layer [11].

The parameters by which the scheduler assigns uplink resources are UE buffer
status, Quality of Service (QoS) requirements and radio conditions [12, p. 10]. It
then signals its decisions to the UEs, who in turn, knows which resources and when
it has been granted. The schedulers strategy to take decisions is not specified by
3GPP and the implementation is specific to the system manufactures. Most sched-
uler implementations favor scheduling users with the most advantageous channel
conditions in both time and frequency, which is referred to as channel-dependent
scheduling [11].

Scheduling and execution can not be performed simultaneously as there is a delay
from when the scheduler has taken a decision to when it has been communicated
to a UE. There are also other considerations such as Random Access (RA), when
new UEs are allowed to enter a cell and reference signals that needs resources.
With a purely reactive scheduler, this planning would become too complex. One
solution is to use a fixed pattern which covers several TTIs so that the scheduler
knows in advance what types of requests it can serve in that specific TTI.

The current pattern that Ericsson uses is called the 4:1 pattern where four con-
secutive download slots (PDSCH) are followed by one uplink slot (PUSCH). This
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pattern is repeated over 160 TTIs and within those 160 TTIs, some of the slots
are allocated for other services such as reference signals or RA. 12 out of the 32
PUSCH slots are shared with RA and might have fewer REs devoted to PUSCH.
This pattern is shown in Figure 2.4.

It is important to understand that the pattern in Figure 2.4 shows the Over-the-
Air (OTA) pattern. The processing for the data that is to be sent in a specific
slot has to be completed before that slots begins. This means that the load that
corresponds to a specific slot has been generated in a previous slot.

2.3.6 Synchronization and Random Access

Periodically the scheduler will send out signals to enable initial access for de-
vices looking to find a cell. This happens through the Synchronization Signal
Block (SSB) which is broadcasted and consists mainly of three parts: Two syn-
chronization signals called Primary Synchronization Signal and Secondary Syn-
chronization Signal and the PBCH. The SSB contains, among other things, infor-
mation such as the cell carrier frequency, frequency offset and the system timing.
After the synchronization is completed a device can begin the RA procedure to
access the found cell.

The RA procedure consists of four steps, often referred to as "Message 1, 2, 3 and
4", where the device and network exchange these messages between each other.
The RA procedure is not only for new devices but can also be used in other
contexts. For example, when there has been a period of no UL transmission, the
synchronization to the base station will be lost and the UE can use the procedure
to reestablish the synchronization [13].

2.3.7 Link Adaptation

LA is a functionality which dynamically matches the current channel conditions
to the modulation order, coding rate and other signal and protocol parameters.
The UEs sends channel quality indicators to the base station as an estimated
recommendation of what MCS that it can reliably receive. In NR there are four
types of LA supported: Adaptive Transmission Bandwidth, Adaptive Transmission
Duration, Transmission Power Control and the previously mentioned AMC [12].
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Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9
DL DL SSB DL UL SSB SSB DL DL UL RA

Slot 10 Slot 11 Slot 12 Slot 13 Slot 14 Slot 15 Slot 16 Slot 17 Slot 18 Slot 19
DL DL SSB DL UL SSB SSB DL DL UL RA

Slot 20 Slot 21 Slot 22 Slot 23 Slot 24 Slot 25 Slot 26 Slot 27 Slot 28 Slot 29
DL DL DL DL UL DL DL DL DL UL RA

Slot 30 Slot 31 Slot 32 Slot 33 Slot 34 Slot 35 Slot 36 Slot 37 Slot 38 Slot 39
DL DL DL DL UL DL DL DL DL UL RA

Slot 40 Slot 41 Slot 42 Slot 43 Slot 44 Slot 45 Slot 46 Slot 47 Slot 48 Slot 49
DL DL DL DL UL DL DL DL DL UL RA

Slot 50 Slot 51 Slot 52 Slot 53 Slot 54 Slot 55 Slot 56 Slot 57 Slot 58 Slot 59
DL DL DL DL UL DL DL DL DL UL RA

Slot 60 Slot 61 Slot 62 Slot 63 Slot 64 Slot 65 Slot 66 Slot 67 Slot 68 Slot 69
DL DL DL DL UL DL DL DL DL UL RA

Slot 70 Slot 71 Slot 72 Slot 73 Slot 74 Slot 75 Slot 76 Slot 77 Slot 78 Slot 79
DL DL DL DL UL DL DL DL DL UL RA

Slot 80 Slot 81 Slot 82 Slot 83 Slot 84 Slot 85 Slot 86 Slot 87 Slot 88 Slot 89
DL DL DL DL UL DL DL DL DL UL RA

Slot 90 Slot 91 Slot 92 Slot 93 Slot 94 Slot 95 Slot 96 Slot 97 Slot 98 Slot 99
DL DL DL DL UL DL DL DL DL UL RA

Slot 100 Slot 101 Slot 102 Slot 103 Slot 104 Slot 105 Slot 106 Slot 107 Slot 108 Slot 109
DL DL DL DL UL DL DL DL DL UL RA

Slot 110 Slot 111 Slot 112 Slot 113 Slot 114 Slot 115 Slot 116 Slot 117 Slot 118 Slot 119
DL DL DL DL UL DL DL DL DL UL RA

Slot 120 Slot 121 Slot 122 Slot 123 Slot 124 Slot 125 Slot 126 Slot 127 Slot 128 Slot 129
DL DL DL DL UL DL DL DL DL UL

Slot 130 Slot 131 Slot 132 Slot 133 Slot 134 Slot 135 Slot 136 Slot 137 Slot 138 Slot 39
DL DL DL DL UL DL DL DL DL UL

Slot 140 Slot 141 Slot 142 Slot 143 Slot 144 Slot 145 Slot 146 Slot 147 Slot 148 Slot 149
DL DL DL DL UL DL DL DL DL UL

Slot 150 Slot 151 Slot 152 Slot 153 Slot 154 Slot 155 Slot 156 Slot 157 Slot 158 Slot 159
DL DL DL DL UL DL DL DL DL UL

Figure 2.4: TDD pattern 4:1.



Chapter 3
Mathematical Background

3.1 Regression Fitting

3.1.1 Linear Least Squares

When modeling a set of data as a linear polynomial function, linear least squares
fitting can be applied. Depending on the underlying data, different formulations
can be applied. The most common estimator, Ordinary Least Squares (OLS),
minimizes the sum of the squared residuals of a model, assuming uniform variance
and no bias in the data. More formally, for n samples of input data X with
corresponding output data y, an overdetermined linear system can be constructed
as,


X1 1
X2 1
...

...
Xn 1


(
β1

β2

)
=


y1
y2
...
yn

 . (3.1)

With the general model as,

y = Xβ + ϵ, (3.2)

where ϵ ∈ N(0, σ2). Approximating β, (given there is no exact solution to the over
determined system in (3.1)), simplifies to minimizing the residual vector

||y −Xβ||2, (3.3)

with respect to β. The problem has a unique closed-form expression, β̂, which can
be obtained by solving, [14]

(XTX)β̂ = XTy ⇔ β̂ = (XTX)−1XTy. (3.4)

13
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The OLS estimator can also be used for interpolating higher order polynomials,
for example quadratic expressions such as,

f(x, β) = β1x
2
1 + β2x1 + β3. (3.5)

3.1.2 Goodness of Fit Metrics

In order to evaluate how well a model applies to a set of observations, it is desirable
to use some sort of evaluation metric. One simple metric is to observe the the sum
of residual squares for the generated model, which sums all of the errors for the
data points as,

SSres =
∑
i

(yi − fi(x, β))
2. (3.6)

This is one of the most basic metrics of model fit, where a high sum of squared
residuals indicates worse model fit compared to low sum of squared residuals. But
it can be deceptive. Since residuals nearing zero often means that the model is
overfitted to the data. Therefore, another metric taking into account how well the
model accounts for the variation in the data is needed. The R2 statistic tries to
do just that, by indicating the proportion of total variation around the mean that
can be attributed to the regression model.

Squares from model SS
Res

Squares from mean SS
Tot

Figure 3.1: Top Figure shows the residual squares from the fitted
regression model on a sample from Fishers 1936 Iris dataset,
lower Figure shows residuals from mean values on the same
data.

More formally, it is defined as,



Mathematical Background 15

R2 = 1− SSres

SStot
, (3.7)

where SSres is the sum of squared residuals from the generated model and SStot

is the summed squared errors around the mean. Intuitively, a value close to one
would mean that a significant amount of the variation can be explained by the
model. Figure 3.1 displays the different quantities SSres and SStot for Fisher’s
1936 Iris data set, and is intended to give the reader better intuition on what the
R2 metric actually measures.

3.1.3 Nonlinear Least Squares

Wanting to fit a nonlinear model, for instance a bimodal distribution on a data set,
is a well studied problem in the field of regression analysis. Since the sought after
model is nonlinear, there seldom exists a closed-form expression for the parameter
estimation, and often iterative, numerical methods converging to a local solution
have to be used. More formally, for the set of n data points (x1, x2, . . . , xn), with
corresponding output data points (y1, y2, . . . , yn), there exists a set of parameters
(β1, β2, . . . , βn) which minimizes the residual vector between the model function
f(x, β) = y for the given data points, where the individual residuals are defined
as ri = yi − f(xi, β).

Specifically for MATLAB’s nonlinear least squares solver, it uses an algorithm
called the Trust-Region method [15], iteratively finding better parameter values
by stepping inside a trust-region, and evaluating the function value at each step,
finally converging at a solution which minimizes the loss function (residual vector
in this case). Mathematically the problem can be formulated as the iteration, [16]

min{1
2
sTHs+ sT g, such that ||Ds|| ≤ ∆}, (3.8)

where the loss function has been approximated with the second order Taylor ex-
pansion using matrix equivalents. H and g denotes the Hessian matrix [17] and
gradient to f at point x with step matrix s. D is a diagonal scalar matrix, and ∆
is a positive scalar, defining the boundaries of the trust region. The minimization
is then given by solving

||s|| −∆ = 0, (3.9)

finding the eigenvalues of the Hessian, and then applying Newtons method for step
direction. The optimization stops after a predefined error threshold is reached.

3.2 Kernel Density Estimation

To estimate a probability density function from sampled data the non-parametric
approach of kernel density estimation can be used. The underlying principle is
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straightforward, for all x ∈ R, weigh the surrounding data points with a kernel
function K, to generate a continuous probability density function. More formally,
the estimated probability distribution at point x, given data [x1, x2, . . . , xi] is,

f̂h(x) =
1

nh

n∑
i=1

K(
x− xi

h
), (3.10)

where K is the kernel function and h the bandwidth. The choice of kernel function
is arbitrary, and is generally a smooth, unimodal function where

∫
K(t)dt = 1, to

ensure that the area under the function is unity. Of all the various kernels available,
Gaussian kernels are most commonly used. Choosing a proper bandwidth is key
to generating a good distribution, since choosing a bandwidth that is too narrow
will create an undersmoothed distribution and vice versa. B. W. Silverman [18]
introduces an adequate choice for initial bandwidth selection as,

hopt = 0.9 · min(σ, IQR/1.34)n
−1
5 , (3.11)

where σ is the standard deviation of the samples, IQR is the interquartile range
(mid spread) and n is the number of samples. This selection strikes a good balance
in being able to properly smooth distributions regardless of uni- or bimodality in
the underlying distribution, this is however no guarantee for optimal bandwidth.

3.3 Kullback-Liebler Divergence

To validate an approximation of an underlying distribution some sort of met-
ric is desirable. The Kullback-Liebler Divergence (KLD) [19] (or relative entropy)
provides an indicator of the information lost in an approximated distribution com-
pared to the underlying distribution. For the discrete distributions P (x) and Q(x),
KLD is defined as,

DKL(p||q) =
∑
x∈X

P (x) log
P (x)

Q(x)
. (3.12)

Due to Gibbs’ inequality [20], the KLD is always nonnegative and only zero if
P (x) = Q(x), meaning a lower value indicates an approximation close to the
underlying distribution. The divergence does not, however, generalize linear dis-
tance in the distribution space, and can therefore not be used as a metric indi-
cating goodness of fit, but rather as a way to compare different approximations
to each other. Also note that the divergence is not symmetric, meaning that
DKL(P ||Q) ̸= DKL(Q||P )



Chapter 4
Experimental Setup

4.1 User Equipment Simulator

To measure DSP load for different numbers of RBs on real DU hardware, an
Ericsson internal UE simulator called Full Stack User Equipment (FSUE) was
used. The FSUE uses multiple simulated components or Component Based Sim-
ulators (CSIM), together with real baseband hardware to realize a digital testing
environment in the context of 5G development. The simulations are performed
with ideal channels, that is, at virtually no loss, since all communication is done
over physical cables rather than OTA interfaces. The testing environment allows
for manually overriding system constants in order to achieve desirable testing con-
ditions. Disabling link adaptation for baseband traffic allows the user to set an
upper limit to the number of RBs as well as fix the MCS index. Currently only
Non-standalone (NSA), where the 5G network depends on the LTE-A network
to operate, is supported. Therefore the FSUE used for data collection was also
configured as NSA. Extraction is only done on the gNB however, since only UL
in NR is investigated in this thesis.

When measuring DSP load, the main interest is the processing load that originate
from the main processing units of the baseband hardware, which are called Ericsson
Many Core Architectures (EMCAs). The EMCA is a proprietary ASIC design,
executing software in Ericsson basebands. It is characterized by a high number
of processing cores performing tasks in parallel, enabling high capacity, which is
critical in real time communication systems. Having a processing load that exceeds
the EMCAs processing capacity, for example during a high traffic scenario, will
result in poor system performance and increased latency, but throttling the system
too much would not utilize full system capacity.

Figure 4.1 illustrates the different subsystems in CSIM FSUE. Being configured
as NSA, the FSUE simulates all components connected to the eNB and gNB
hardware required for full stack testing. Dashed lines indicate logical connection,
thick lines indicate physical connection and interfaces are specified in bold. Among
the simulated components, a traffic generator based on open source software TRex
can be found connected to the simulated core network. From the core network,
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connections to the NSA DUs are established. From these DUs, simulated radio
interfaces are then connected. Finally, the simulated UE is connected via a L1
termination layer.

Core
Network

Traffic
Generator

gNB Radio

eNB Radio

L1
Termination

UE
Simulator

Real eNB
Hardware

Real gNB
Hardware

Simulated components

Figure 4.1: System overview of the Ericsson FSUE and its subsys-
tems.

4.2 Ericsson Internal Simulator

The model from the measurements was incorporated into a Python simulator. This
simulator was originally developed by Ericsson for examining different scheduling
algorithms for DL SRs. Most of the code structure was kept but the simulator
was rewritten to only schedule UL data.

Figure 4.2 shows a flowchart of the Python simulator. The simulator iterates on
a TTI basis since the measured load from the DU in gNB was measured on a TTI
basis. First, it runs the scheduling algorithm and updates the queues. Right after,
the DSP load for each EMCA is calculated before the allocated EMCA resources
(number of allocated UL sector carriers and their corresponding ID) are reset.
Lastly it adds the SRs to the UEs before it starts over on the next iteration/TTI.

When calculating the load the simulator fetches the interpolated distribution pa-
rameters for the specified RB configuration and randomly generates a number
with the Numpy function random.normal, which draws random samples from a
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Gaussian distribution with specified parameters. In order to choose between the
two Gaussian distributions, the interpolated amplitude determines the ratio of
choosing each distribution by setting a threshold equal to the ratio. Then using
the Numpy function random.random, a random float in the interval [0.0, 1.0) is
generated and a distribution is chosen based on the outcome.

Initialization

Loop over TTIs

Run scheduler

Update queues

Reset EMCA
resources

Add schedule
requests

• Create sector carriers
• Create EMCAs
• Create UEs
• Create queues

Figure 4.2: Flowchart of internal simulator.
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Chapter 5
Methods

This chapter describes the different techniques and approaches used in generating
the results and models of this thesis.

5.1 User Equipment Simulator

5.1.1 Choice of Measurements

In order to accurately model the behaviour of the load when changing the number
of RBs, a proper data set had to be collected. The initial decision was to investigate
points spaced with power of two, that is, 2, 4, 8, 16, et cetera. Realizing this did
not fully encapsulate the behaviour of the load distribution, evenly spaced points
on the interval along with points at the outer edges of the range of RBs were
added. For these RB values, a collection of data from one, two and three sectors
was performed. Higher sector count is theoretically possible, but due to limitations
in extracting DSP load on the gNB accurately for higher counts, this thesis will
be limited to the collected sector configurations.

To evaluate the performance of the constructed model, validation measurements
were also collected. These measurements were taken at a low, medium and high
number of RBs, aiming to verify performance representative of the entire RB range.

5.1.2 Comparing User Equipment Simulator Against Real UEs

To verify realistic performance of the simulated environment, data from another
test node with real UEs instead of simulated was UEs used. This node had actual
UE hardware with OTA transmission in a controlled environment. In theory the
channel conditions could vary but due to the controlled environment, the difference
was in practice immeasurable.

5.1.3 Traffic Scenarios

Three different traffic scenarios was investigated. Too high DSP load in the system
is undesirable since it can result in the system running out of computational re-
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sources and might generate undefined behaviour, therefore a worst case scenarios
was sought. Since the link adaptation algorithm could interfere with this scenario
it was determined that it should be disabled and also that the MCS index in Table
2.1 should be set to 27 (highest possible MCS value), maximizing the throughput
and thus, the load. Because of the flexibility in the system constants two addi-
tional scenarios were investigated: One where LA was enabled and another where
LA was disabled with a 10 % block error rate. Since LA is enabled by default it
was of interest to see what difference disabling it would have. With link adaptation
enabled, the AMC algorithm, which allocates different MCS values, should affect
the throughput and thus the DSP load in a nondeterministic way. 10 % BLER
was investigated to see how a "real-life" scenario, where the UE has to retransmit
data, could affect the DSP load in any way. For all traffic scenarios, only one UE
per sector was used to generate the traffic.

5.1.4 Simulator Output Analysis

In the real gNB hardware described in Section 5.1, a Logic Analyzer Tool (LAT),
which tracks and logs program events, was used to record DSP usage. The tool
could separate when individual threads start and stop and on which DSP and
write it to a LAT file. Measurements on the hardware were done by logging the
mean load for the duration of a TTI slot (0.125 µs for numerology three) as time
series data on one of the systems’ EMCAs.

The load measured was a total utilization of the processing capacity, meaning all
threads generated, regardless of origin, affected the total system load. Using a tool
called RealTimeTraces (RTT), the data could be filtered by name specific threads.
This enabled two things: extraction of only the UL generated load in L1, which
is the main interest of this thesis. Secondly, extraction of the load generated by
the signal synchronization blocks, which occurs at predetermined slots, in order
to accurately synchronize measured load and compare the data on a TTI basis.

5.2 Formulation of Statistical Model

The data acquired from the custom end-to-end test was used to create a statistical
model capable of interpolating UL generated DSP load based on system settings,
such as the number of RBs and sector configuration. Initially, MATLAB was used
to study the occurring patterns and load distributions in the data by using plots
and statistical methods such as data variance, mean value etc. Later on, a system
was constructed and used for the duration of the project, which consisted of the
two following main parts:

• A parser, which reads the data from generated files, synchronizes them ac-
cording to a predefined SSB pattern and outputs desired model-parameters.

• A validation script, generating diagnostic plots and testing the generated
model against defined validation data.
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In order to generate a model, probability distributions were first created for the
different load measurements by generating kernel density estimations as described
in Section 3.2. A Gaussian model was then fitted on the resulting distribution
using nonlinear regression techniques described in Section 3.1.3. The statistical
parameters of these distributions were then interpolated according to linear or
cubic methods described in Sections 3.1. Both metrics describing goodness of fit
as well as visual inspection of formulated models were used to determine validity.
The model parameters could then be exported to be used in the internal simulator.

Verifying the simulated values, the KLD between verification data and simulated
data was calculated in order to get an overview of modelling performance. This
was done by binning the samples in order to calculate distribution probability, and
then using (3.12).

5.3 Ericsson Internal Simulator Parameters

Table 5.1 lists the parameters given to the simulator. The parameter Max UL
is the maximum allowed allocated UL Sector Carrier (SC) per EMCA. Each SR
occupies a whole cell and the UEs were always created with a "Full buffer" type
of traffic, that is, occupying all available SCs in a sector. With only one SC per
sector, this meant that a maximum of 4 sectors with UL data per EMCA was
possible. To validate the model, the simulator was given three different RB values
of which the model had not been formulated upon.

Number of iterations: 15 000
Number of sectors: 1, 2 or 3
SCs per sector: 1
Max UL: 4
UEs per sector: 1
Number of EMCAs: 1
Cell BW: 50 or 100 MHz
Number of allocated RBs: Low, mid and high

Table 5.1: Internal simulator parameters.
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Chapter 6
Results and Discussion

In this Chapter, trends of DSP loads for different RB configurations are analyzed,
for one sector and a 100 MHz cell. It would have been advantageous to also
show absolute numbers in the results, but this is unfortunately not possible due
to commercial reasons. For the complete set of Figures over all configurations, see
Appendix A.

6.1 Comparing Real Versus Simulated UEs

Upon testing the difference in DSP load between real and simulated UEs, it was
deemed to be quite small, with mean values being only 1.7 % higher for the real
UEs. When discussing this with others at Ericsson, their experience was that the
difference would be reduced even further when the number of UEs is increased.
From this measurement along with the empirical experience from others, the as-
sumption is made that the simulated results are realistic enough to make conclu-
sions regarding the performance of real UEs.

6.2 Investigating Real-Life Scenarios

Running the test with LA enabled resulted in lower DSP load. This was expected
since the LA algorithm controls, among other things, the MCS index and it was
also the case in the previous works of [1] and [2]. Lowering the MCS affects the
throughput and thus the DSP load. Specifically which other parameters the LA
algorithm changed to lower the DSP load than MCS was not investigated. With
LA disabled and a 10 % BLER enabled the difference in load was insignificant.
Both scenarios were only investigated on a mean basis for the whole data and
further analyses were not pursued.

6.3 Initial User Equipment Simulator Results

After initial gathering of DSP load over a number of different RB configurations
in cell bandwidth, the data were structured and analyzed. Using MATLAB, mean
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values for every data set were calculated in order to interpolate a linear model
for DSP load versus RBs. Figure 6.1 shows the measured mean load and the
interpolated linear model for a one sector, 100 MHz cell bandwidth configuration.
The linear regression lines aligns well with the measured mean values indicating a
linear relationship between the DSP load and number of RBs. This is similar to
what the previous works in [1] and [2] found for DL data.

Number of allocated RBs
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P
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o
a
d

Measured Mean Load

Linear Regression

Figure 6.1: Measured mean load and linear regression versus RBs
for one sector and a 100 MHz cell configuration.

To investigate how the load differed for all sector configurations the load was
divided by the number of sectors and plotted in the same Figure which can be
seen in Figure 6.2. For a higher number of sectors, the DSP load was slightly
lower for a low number of RBs but slightly higher for a high number of RBs
compared to one sector. Expected results would be perfectly linear, since there
is a linear increase in number of threads with similar duration with increasing
sector configuration, meaning linear increase in processing load in an EMCA. The
slight mismatch between regression lines is believed to be random, since the linear
regression is fitted to a selection of points affected by stochastic error terms.

With the assumption that the mismatch between the regression lines are random,
lowering the number of RBs for cells should decrease the load linearly even for a
multisector configuration. Therefore, it should be possible to support more cells,
and thus more CUs, by lowering the number of RBs.
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Figure 6.2: DSP load for different sector and cell bandwidth config-
urations.

6.4 Distribution of UE Simulator Measured Data

Further analysis of the load distribution by plotting the data points in a histogram
indicated that there is a collection of different underlying distributions as seen in
Figure 6.3. This meant that the previous approach of generating mean values for
all of the data in order to model DSP load excluded a lot of the characteristics
in the underlying data. Upon inspecting the time series data, the origin of these
distributions became clear, as a very distinct periodicity emerged. A sample of
the time series data can be seen in Figure 6.4.

To verify the periodicity of the data, the frequency contents was investigated with
spectral density estimation. Since the load was sampled over one TTI, which is
T = 0.125 µs in numerology three according to Table 2.2, the sampling frequency
is fs = 8 kHz. Figure 6.5 shows two peaks, one at f1 = 1.6 kHz and another
smaller at f2 = 3.2 kHz. Since fs/f2 = 2.5 /∈ Z and f2 = 2f1, the second peak
is a harmonic caused by the discrete-time Fourier transform generating amplitude
for all integer harmonics N with frequencies N/T , the only frequency of interest
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Figure 6.3: Histogram for DSP load measurements for one sector
and a 100 MHz cell configuration.
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Figure 6.4: DSP load in the time domain for one sector and a 100
MHz cell configuration.

is 1.6 kHz. This frequency aligns well with the fact that the TDD pattern used is
a 4:1 pattern, meaning four DL slots followed by one UL slot, which results in the
pattern repeating after every fifth slot as in Figure 2.4.

Picking out every fifth element in the slot aligned data allowed isolation of the
different distributions in Figure 6.3. Figures 6.6 and 6.7 show the histograms for
the different slot types with a low and high number of RBs. Comparing the two
TDD separated distributions, a significant increase in DSP load for DL 1, DL 2
and UL can be observed with the increased number of RBs, while DL 3 and DL
4 remains unchanged. This was surprising, since most of the UL processing is
supposed to start in either UL or the first DL slot. This led to the belief that
the threads generated in the UL slot might affect the following slots in some way,
since the load is measured as average DSP core utilization for the duration of the
slot.
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Figure 6.5: Perodicity of the DSP load data for one sector and a
100 MHz cell configuration.
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Figure 6.6: Histograms of DSP load for the different slot types over
the 4:1 TDD pattern for low number of RBs.

Manually looking at the RTT logs in the form of a flamegraph verifies the hypoth-
esis. The UL threads processing time extends from DL 1 into DL 2, causing a very
small increase in load for a low number of RBs, but a substantial increase for high
number of RBs. This also clarifies why the DL 1 slot has a higher load than the
UL slot itself for a high number of RBs, as can be seen in Figure 6.7. Since the L1
processing does not start until some symbols into the UL slot, the average DSP
core utilization is higher for DL 1 as a result of the full slot being occupied with
threads generating UL load. This concept of processed threads having a duration
long enough to occur during the following slot is illustrated in Figure 6.8. This
extension effect causes a non-linear characteristic in generated load in the DL 2
slot, where it has a small, constant load up until a certain number of RBs, then it
starts to increase.
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Figure 6.7: Histograms of DSP load for the different slot types over
the 4:1 TDD pattern for high number of RBs.
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Figure 6.8: Illustration of the load and threads in the flamegraph.

6.5 Statistical Model Formulation

Having thoroughly inspected the generated load data, but now on a time slot
basis, a pattern of mixture distributions started to emerge. Many of the gener-
ated histograms show that the data often have dual Gaussian peaks, but at other
times they converge to unimodal distributions. See Figure 6.9 for six distributions
showcasing this behaviour.

Looking at how the distributions changed for a fixed TDD slot when altering the
number of RBs, a linear increase in distribution were observed in Figure 6.10. This
led to the formulation of a statistical model for the distributions as follows: for a
set number of RBs, interpolate a set of parameters for a mixture of two Gaussian
distributions with the following continuous probability density function,
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y(x) = a1e
−(

x−b1
c1

)2 + a2e
−(

x−b2
c2

)2 . (6.1)

This model was chosen, partly because of the observed bimodality, but also for
its ability to capture unimodal distributions, only requiring equal mean for both
distributions (b1 = b2).

To fit the model onto the data, MATLAB’s fit function from the curve-fitting
toolbox was used. Applying the function directly onto the data yielded non-
satisfactory results, due to noise. Therefore, kernel density estimation was applied
to the data to estimate a smoothed distribution, as described in Section 3.2. Since
the resulting distributions are very sensitive to kernel bandwidth, different values
were tested by trial and error. No better value than the bandwidth described in
(3.11) was found. The consequent continuous distributions could then be used for
actual distribution fitting.

The MATLAB function fit could then, using the trust-region method described
in Section 3.1.3, fit the formulated model in (6.1) to the data. By extracting the
generated model parameters, a data set for interpolation was constructed (See
Figure 6.13 for visualization of the fittings).

The final model was then created by interpolating the parameters for the dis-
tributions, that is, the amplitude (a1, a2), mean (b1, b2) and standard deviation
( c1√

2
, c2√

2
) for the range of RBs over one, two and three sectors. Initial linear re-

gression as described in Section 3.1 was made to investigate linearity. Linearity
seemed to hold for most TDD slots, but upon inspection of characteristics of the
second DL slot, a linear model was deemed incorrect because of the sudden load
increase observed earlier. Therefore, linear parameter models were assumed for
DL slots 1, 3, 4 and UL, but for DL 2, a second degree polynomial model was used
instead.

Plots of mean and standard deviation along with goodness of fit metrics for one
sector and a 100 MHz cell can be seen in Figures 6.11 and 6.12. In the plots, good
R2 values can be observed for the approximation in slots DL 1, 2, and UL, along
with very small residual errors. For the mean load in slots DL 3 and 4, the scores
drop significantly. This is to be expected, since the observed values for slots DL 3
and DL 4 were static regardless of RB configuration. In some cases it would have
almost certainly sufficed using mean values for these slots instead.

These measurements showcase the model on collected data for one sector at 100
MHz, but generally the same behaviour was observed for two and three sectors.
The result for these multi-sector cases can be seen in Section A.5.

For the 50 MHz cell, the same behaviour occurs predominantly, meaning the same
interpolation model could be used. Upon further inspection of the data at 50 MHz,
an unexpected outlier with low UL load at the theoretical maximum RB was ob-
served in Figure A.21, skewing the model and also opposing the initial assessment
of linearity. When investigating the impact on throughput, it was deemed negli-
gible, which was unexpected. Redoing the load measurement confirmed this was
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not a contingency. Discussing this outlier with Ericsson employees, no apparent
reason could be found.
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Figure 6.9: A collection of randomly picked histograms of DSP load
data for all measured sector configurations.
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Figure 6.11: Measured mean data and fitted curves for the mean
parameter over the 4:1 TDD pattern. In the Figure all the
subplots share the same DSP load axis.
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Figure 6.12: Measured mean data and fitted curves for the standard
deviation parameter over the 4:1 TDD pattern. In the Figure
all the subplots share the same DSP load axis.
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6.6 Comparing Model Generated and Real Data

Running the simulator with the parameters given in Table 5.1 and processing the
data in the same way as in Figures 6.6 and 6.7 enabled comparisons between
the simulator and the real data. The resulting comparison between simulated and
validation load distribution for a high number of RBs, 100 MHz and a mid number
of RBs, 50 MHz can be seen in Figures 6.14 and 6.15. The observed simulated
data performs as expected, with general distributions matching relative placement
as in the validation data, with slight offsets in both shape and mean value. The
outliers also disappears as expected, since the model is incapable of picking up
smaller peaks. The same behaviour holds for both plots.
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Figure 6.14: Histograms for different slot types over the 4:1 TDD
pattern of DSP load from the simulator and FSUE. Plotted for
a 50 MHz cell bandwidth and mid RB configuration. The DSP
load axis are the same for both plots.

Since the third and fourth DL slots are almost constant throughout changing
the number of allocated RBs, further analysis of behaviour when increasing RBs
was performed on slots DL 1, 2 and UL. Picking three verification data samples
showcasing the behaviour, the results are shown in Figures 6.16, 6.17 and 6.18.
Generally good approximation of the actual load distributions were observed as
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Figure 6.15: Histograms for different slot types over the 4:1 TDD
pattern of DSP load from the simulator and FSUE. Plotted for
a 100 MHz cell bandwidth and high number of RBs. The DSP
load axis are the same for both plots.

the the RBs were increased. Figure 6.16 specifically showcases the model’s ability
to go from a mixture of two Gaussian distributions, to what almost looks like
unimodal, single Gaussian distribution.

There are however simulation results indicating that the assumption of linearity
in distribution means is not entirely true. Looking at Figure 6.18, it can clearly be
seen how the simulated loads fail to encapsulate the actual validation loads in terms
of distribution placement, although the shape of the distribution seems accurate.
This is caused by the very small standard deviations of these distributions, meaning
that even slight deviations in mean value might result in our model completely
falling outside of the validation distribution.

6.6.1 Measuring Validity of the Model

Having analyzed the previous results, it should be noted that they only represent
a small subset of all the validation measurements taken. In order to make a
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Figure 6.16: Distribution of the validation and simulated data for
the different RB configurations taken on a 100 MHz cell for slot
DL 2.

bigger comparison of all the gathered data, the divergence described in Section
3.3 was calculated for all the distributions obtained in the validation data and
corresponding simulated data. The results can be seen in Tables 6.1 and 6.2.

For the first DL slot, the KLD values seem to change arbitrarily for different sector
and RB configurations. For a 50 MHz cell and one sector, the approximation fits
worst for the mid and best for the low number of RBs. Whereas for two sectors,
the worst fit is for the low and the best is for the high number of RBs. The highest
KLD values probably occur when the simulated distribution does not align well
with the verification data as in Figure 6.18.

For both the 50 and 100 MHz cells the third and fourth DL slot seem to score
most of the low KLD values. This is expected since both the mean and standard
deviation for those slots are more or less constant making them much easier to
model. Generally, a pattern where the simulated distributions of interest (DL 1,
DL 2 and DL 3) score lower for the lower RBs was observed. This could be due
to the load distributions having much lower standard deviations for low number
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Figure 6.17: Distribution of the validation and simulated data for
the different RB configurations taken on a 50 MHz cell, for slot
UL.

of RBs measurements, as seen in Figure 6.12, thus making it more unlikely for the
model to overlap and causing larger divergence. This is further indication that the
hypothesis on linearity for the model parameters is incorrect.

Since the discrete distributions are approximated by binning samples when calcu-
lating the Kullback-Liebler, some of the distribution characteristics could be lost,
and affect the resulting values.
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Figure 6.18: Distribution of the validation and simulated data for
the different RB configurations taken on a 100 MHz cell, for
slot DL 1.

1 Sector 2 Sectors 3 Sectors

RBs RBs RBs
Slot Low Mid High Low Mid High Low Mid High

DL 1 0.869 18.392 1.181 7.998 6.975 0.288 2.735 4.633 1.798
DL 2 5.929 7.852 2.180 8.590 3.885 0.545 6.085 1.536 0.235
DL 3 4.098 7.296 16.917 2.795 1.281 1.640 1.213 10.163 1.019
DL 4 0.467 0.198 8.840 7.348 0.267 2.361 0.748 0.035 5.655
UL 5.496 9.420 0.677 6.776 2.287 0.451 2.696 0.543 0.212

Table 6.1: Kullback-Leibler divergence values for cells with 50 MHz
bandwidth and different sector and RB configurations.
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1 Sector 2 Sectors 3 Sectors

RBs RBs RBs
Slot Low Mid High Low Mid High Low Mid High

DL 1 17.521 12.733 3.452 4.461 4.242 4.843 17.488 16.013 8.031
DL 2 6.935 14.496 0.156 10.888 1.301 0.182 9.690 0.189 0.078
DL 3 0.397 0.775 1.897 0.673 0.512 1.257 3.584 0.610 1.448
DL 4 0.028 0.052 0.136 0.048 0.026 0.020 0.010 0.063 0.112
UL 16.490 7.160 0.814 8.050 9.048 1.254 2.033 1.416 1.127

Table 6.2: Kullback-Leibler divergence values for cells with 100 MHz
bandwidth and different sector and RB configurations.
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6.7 Improvements and Future Work

In order to avoid hitting the limit for processing load, the results show that for
the 4:1 TDD pattern, the UL generated load is generated in the UL and the two
following DL slots. In an ideal scenario, the events that take place in one TTI
should take only one TTI or less to process to avoid a processing debt into the
next TTIs. This "spillover" effect of processing continuing into other TTIs that
has been observed could pose a problem in the future for another pattern with
several consecutive UL slots after each other.

There also needs to be considerations of how the DL load behaves, which has not
been considered in this work. It is desirable to smooth out the load over all the
TTIs and put most of the DL processing in slots where the UL processing is low.
An obvious drawback to this approach is that the latency would suffer, especially
in a case where there are a lot of connected UEs requesting resources. Otherwise,
housekeeping task should be performed in slots with low amount of prioritized
processing which is the third and fourth DL slot for the 4:1 TDD pattern and only
considering UL load.

For future work, the load for different TDD pattern combinations could be studied
for both DL and UL data. It would also be interesting to verify if the results from
the simulator with a different TDD pattern would match data from a real node.
All the UEs in this work has also been of the full buffer type. To be able to more
safely draw conclusions and explore how many CUs there could be with a lower
number of RBs available, studies of how the load would behave if the amount of
UEs is increased but the total load over all UEs is kept the same as for one full
buffer UE should be carried out, similar to what [1] has done.

It is also not certain that for a higher number of RBs, possible in a 200 or 400
MHz cell, that the load or processing will extend over to the third or fourth DL
slot. Because of the software design, where tasks are performed in parallel, the
load could still be generated over three slots but at a higher utilization.



Chapter 7
Conclusions

In this thesis the behaviour of how the DSP load scales with the number of RBs
assigned per cell has been investigated for UL data, both in a single and multisector
configuration. The findings indicate that it is possible to support a larger number
of cells, and thus more CUs, by assigning a lower number of allocated RBs per cell.
Further analyzing the load showed that it should be considered on a TDD pattern
basis, where it could then be approximated as a linear or quadratic polynomial
function of the number of allocated RBs. Analyzing the load on a TDD pattern
basis revealed that the distribution of the load was most often uni- or bimodal in
character.

From the collected data a model was then developed and the parameters imple-
mented into an internal simulator. Verification measurements from the simulator
shows that the generated distribution parameters are too stochastic to be modeled
as strictly linear or quadratic polynomial function. As can be seen in Figure 6.9,
the different plots contains many outliers that cannot be explained without a more
thorough understanding of the Ericsson software execution. The results can how-
ever be seen as a well-founded estimation and could be used in the internal Ericsson
simulator to explore other scenarios, or investigate potential improvements.

To get a full understanding of the DSP load behaviour, DL needs to be investi-
gated as well. If it was also implemented in the simulator, it would enable more
conclusions on the design choices that need to be made in future versions of the
software.
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Appendix A
Additional figures

A.1 Linearity figures for additional sector and cell BW con-
figurations
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Figure A.1: Measured mean load and linear regression versus RBs
for 100 MHz 2 sectors.
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Figure A.2: Measured mean load and linear regression versus RBs
for 100 MHz 3 sectors.
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Figure A.3: Measured mean load and linear regression versus RBs
for 50 MHz 1 sector.
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Figure A.4: Measured mean load and linear regression versus RBs
for 50 MHz 2 sectors.
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Figure A.5: Measured mean load and linear regression versus RBs
for 50 MHz 3 sectors.
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A.2 Histogram figures for additional sector and cell BW con-
figurations
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Figure A.6: Histogram for DSP load measurements. Two sectors
and a 100 MHz cell.
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Figure A.7: Histogram for DSP load measurements. Three sectors
and a 100 MHz cell.
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Figure A.8: Histogram for DSP load measurements. One sector and
a 50 MHz cell.
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Figure A.9: Histogram for DSP load measurements. Two sectors
and a 50 MHz cell.
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Figure A.10: Histogram for DSP load measurements. Three sectors
and a 50 MHz cell.
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A.3 Time series figures for additional sector and cell BW con-
figurations
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Figure A.11: DSP load in the time domain. Two sectors and a 100
MHz cell.
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Figure A.12: DSP load in the time domain. Three sectors and a
100 MHz cell.
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Figure A.13: DSP load in the time domain. One sector and a 50
MHz cell.
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Figure A.14: DSP load in the time domain. Two sectors and a 50
MHz cell.



58 Additional figures

0 10 20 30 40 50

Sample

D
S

P
 L

o
a

d

Figure A.15: DSP load in the time domain. Three sectors and a 50
MHz cell.
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A.4 TDD pattern divided figures for additional sector and cell
BW configurations
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Figure A.16: Histograms for different slot types over the 4:1 TDD pattern
of DSP load for low RB, two sectors and a 100 MHz cell.
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Figure A.17: Histograms for different slot types over the 4:1 TDD pattern
of DSP load for low RB, three sectors and a 100 MHz cell.
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Figure A.18: Histograms for different slot types over the 4:1 TDD pattern
of DSP load for low RB, one sector and a 50 MHz cell.
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Figure A.19: Histograms for different slot types over the 4:1 TDD pattern
of DSP load for low RB, two sectors and a 50 MHz cell.
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Figure A.20: Histograms for different slot types over the 4:1 TDD pattern
of DSP load for low RB, three sectors and a 50 MHz cell.
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A.5 Model parameters for additional sector and cell BW con-
figurations
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Figure A.21: Interpolated model for mean parameter for the distributions.
Configuration: 50 MHz, 1 Sector
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Figure A.22: Interpolated model for standard deviation of the distributions.
Configuration: 50 MHz, 1 Sector
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Figure A.23: Interpolated model for mean parameter for the distributions.
Configuration: 50 MHz, 2 Sectors



66 Additional figures

Number of allocated RBs

D
S

P
 L

o
a

d

Standard Deviation 1 | DL 1

Number of allocated RBs

D
S

P
 L

o
a

d

Standard Deviation 2 | DL 1

Number of allocated RBs

D
S

P
 L

o
a

d

Standard Deviation 1 | DL 2

Linear regression

Second order

Number of allocated RBs

D
S

P
 L

o
a

d

Standard Deviation 2 | DL 2

Number of allocated RBs

D
S

P
 L

o
a

d

Standard Deviation 1 | DL 3

Number of allocated RBs

D
S

P
 L

o
a

d

Standard Deviation 2 | DL 3

Number of allocated RBs

D
S

P
 L

o
a

d

Standard Deviation 1 | DL 4

Number of allocated RBs

D
S

P
 L

o
a

d

Standard Deviation 2 | DL 4

Number of allocated RBs

D
S

P
 L

o
a

d

Standard Deviation 1 | UL

Number of allocated RBs

D
S

P
 L

o
a

d

Standard Deviation 2 | UL

Figure A.24: Interpolated model for standard deviation of the distributions.
Configuration: 50 MHz, 2 Sectors



Additional figures 67

Number of allocated RBs

D
S

P
 L

o
a
d

Mean 1 | DL 1

Number of allocated RBs
D

S
P

 L
o
a
d

Mean 2 | DL 1

Number of allocated RBs

D
S

P
 L

o
a
d

Mean 1 | DL 2

Linear regression

Second order

Number of allocated RBs

D
S

P
 L

o
a
d

Mean 2 | DL 2

Number of allocated RBs

D
S

P
 L

o
a
d

Mean 1 | DL 3

Number of allocated RBs

D
S

P
 L

o
a
d

Mean 2 | DL 3

Number of allocated RBs

D
S

P
 L

o
a
d

Mean 1 | DL 4

Number of allocated RBs

D
S

P
 L

o
a
d

Mean 2 | DL 4

Number of allocated RBs

D
S

P
 L

o
a
d

Mean 1 | UL

Number of allocated RBs

D
S

P
 L

o
a
d

Mean 2 | UL

Figure A.25: Interpolated model for mean parameter for the distributions.
Configuration: 50 MHz, 3 Sectors
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Figure A.26: Interpolated model for standard deviation of the distributions.
Configuration: 50 MHz, 3 Sectors
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Figure A.27: Interpolated model for mean parameter for the distributions.
Configuration: 100 MHz, 2 Sectors
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Figure A.28: Interpolated model for standard deviation of the distributions.
Configuration: 100 MHz, 2 Sectors
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Figure A.29: Interpolated model for mean parameter for the distributions.
Configuration: 100 MHz, 2 Sectors
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Figure A.30: Interpolated model for standard deviation of the distributions.
Configuration: 100 MHz, 3 Sectors
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