
Right fit Database Technology for Discounts

ALEXANDRA GALONJA & ANNELIE SINANDER
BACHELOR´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2022

A
LEX

A
N

D
R

A
 G

A
LO

N
JA

 &
 A

N
N

ELIE SIN
A

N
D

ER
R

ig
h

t fi
t D

atab
ase Tech

n
o

lo
g

y fo
r D

isco
u

n
ts

LU
N

D
 2022

Series of Bachelor´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2022-877
http://www.eit.lth.se

Right fit Database Technology for Discounts

Alexandra Galonja
Annelie Sinander

Department of Electrical and Information Technology
Lund University

Supervisor: Christin Lindholm, Suchit Gupta

Examiner: Christian Nyberg

June 16, 2022

© 2022
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

This thesis has been conducted in order to compare how four different database
management systems (DBMSs) perform in a limited number of areas, in order to
draw conclusions about which one works best for storing discount data at IKEA.
The DBMSs being evaluated are MongoDB, MariaDB, Neo4j and PostgreSQL.
To enable a comparison, a form of testing was performed - a benchmark. The
benchmarking consists of setting up a database for each DBMS to be compared.
Discount data is then stored in each database and the execution time is measured
for each test database. To accumulate information about how the database is set
up but also about the different discounts used by IKEA, two interviews were con-
ducted where this information was able to emerge.

The results from the testing and the interviews showed that PostgreSQL, which
is the DBMS used today, performed the best overall. This was the case for the
licensing metric, for instance, where Postgres was the only DBMS that does not
come with a licensing cost. The results from one of the DBMSs, MongoDB, only
consisted of estimates and not exact measurements and therefore the conclusion
is not completely unambiguous. Furthermore, Neo4j’s results when it came to the
latency and scalability were deviating compared to the remaining DBMSs, which
may have been due to an disadvantageously configured database.

Lastly, a number of development opportunities are presented which show that
there is an immense potential to further explore the question of how the discount
data should be stored. However, IKEA is proposed to continue to use the clear
winner PostgreSQL as a DBMS.

i

ii

Keywords

Database Technologies, Discounts, SQL, NoSQL, Latency, Signal-to-noise-ratio

iii

iv

Sammanfattning

Detta examensarbete har utförts i syfte att jämföra hur fyra olika databashanter-
are (DBMS) presterar inom ett begränsat antal områden för att därigenom dra
slutsatser kring vilken som fungerar bäst för att lagra data om rabatter på IKEA.
De databashanterare som testas är MongoDB, MariaDB, Neo4j och PostgreSQL.
För att åstadkomma en jämförelse utfördes en form av testning - en benchmark.
Benchmarken består av att en databas sätts upp för varje DBMS som ska jäm-
föras. Därefter lagras rabattdata i respektive databas och exekveringstiden mäts
för varje testdatabas. För att ackumulera information kring hur databasen sätts
upp men också kunskap om rabatterna som finns hos IKEA, utfördes två inter-
vjuer där denna information framkom.

Resultaten av testningen och intervjuerna visade att PostgreSQL, den databashanter-
are som används idag, presterade bäst överlag. Postgres uppvisade lägst latens och
är den enda av de testade databashanterarna som inte medför några licenskost-
nader. Resultaten från en av databashanterarna, MongoDB, bestod endast av
uppskattningar och inte exakta mätningar och därför är inte slutsatsen helt en-
tydig. Fortsättningsvis visade det sig att Neo4j hade väldigt avvikande värden
jämfört med resterande databashanterare, vilket kan ha berott på en ofördelaktigt
konfigurerad databas.

Slutligen presenteras ett antal utvecklingsmöjligheter som visar på att det finns
en stor potential att vidare utforska frågan kring hur rabattdatan ska lagras.
IKEA föreslås emellertid att även fortsättningsvis använda den klara vinnaren
PostgreSQL som databashanterare.

v

vi

Nyckelord

Databasteknologier, Rabatter, SQL, NoSQL, Latens, Signal- brusförhållande

vii

viii

Table of Contents

1 Introduction 3
1.1 Introduction . 3
1.2 IKEA IT . 4
1.3 Purpose . 4
1.4 Goals . 4
1.5 Questions . 5
1.6 Scope . 5

2 Technical Background 7
2.1 Discounts . 7

2.1.1 General trends 7
2.1.2 Discounts at IKEA 8

2.1.2.1 Discount strategies 8

2.1.2.2 Discount types 9

2.2 Database theory . 9
2.2.1 ACID 9
2.2.2 CRUD 10
2.2.3 Latency 10
2.2.4 Signal-to-Noise ratio 11

2.2.4.1 JOIN statements & SNR 11

2.2.4.2 Graph databases and SNR 11

2.2.4.3 Indexing 12

2.3 Database Management Systems . 12
2.3.1 MongoDB 12
2.3.2 MariaDB 13
2.3.3 Neo4j 13
2.3.4 Postgres 13

2.4 Benchmark testing . 14
2.4.1 Metrics determination 14

3 Methodology 17
3.1 Literature Study . 17
3.2 Preparing & Conducting Interviews 17

3.2.1 Preparatory Work 18

ix

3.2.2 Make use of the results 18
3.2.3 Structured versus Open interview 18

3.3 Benchmark Preparations . 19
3.3.1 Logs 19

3.3.1.1 System mode & Kernel mode 19

3.3.1.2 Postgres Logs 20

3.3.1.3 MariaDB Logs 20

3.3.1.4 MongoDB Logs 20

3.3.1.5 Neo4j Logs 21

3.3.2 Computer specifications 21
3.3.3 Database tools 21
3.3.4 Queries evaluation 22

3.4 Benchmarking . 22
3.4.1 Postgres Benchmarking 23
3.4.2 MariaDB Benchmarking 23
3.4.3 MongoDB Benchmarking 23
3.4.4 Neo4j Benchmarking 23

3.5 Results . 24
3.6 Source criticism . 24

3.6.1 Articles 24
3.6.2 Books 24
3.6.3 IKEA IT Employees 25
3.6.4 Websites 25

4 Analysis 27
4.1 Decision making . 27

4.1.1 Database setups 27
4.1.2 Database Management Systems 27
4.1.3 Database tools 28
4.1.4 Licenses 28

4.2 Interview decisions . 28
4.3 Interview Processing . 29
4.4 Problems & solutions . 29

4.4.1 Database setups 29
4.4.2 Database tools 29
4.4.3 Conduction of interviews 30
4.4.4 Data retrieval 30
4.4.5 Execution time, MongoDB 30
4.4.6 Benchmarking, Neo4j 31

5 Result 33
5.1 Interview result . 33

5.1.1 Interviewee 1 33
5.1.2 Interviewee 2 34

5.2 Latency . 36
5.2.1 MongoDB Latency 37
5.2.2 MariaDB Latency 38

x

5.2.3 Neo4j Latency 39
5.2.4 Postgres Latency 40
5.2.5 The Most Performance Demanding Queries 40

5.3 Signal-to-noise ratio results . 41
5.3.1 SNR-ratio in relational databases results 41
5.3.2 SNR-ratio in Graph DBMSs 41
5.3.3 Amount of Processed Data 41

5.4 Scalability . 44
5.4.1 MongoDB Scalability 44
5.4.2 MariaDB Scalability 44
5.4.3 Neo4j Scalability 46
5.4.4 Postgres Scalability 49

5.5 Licensing . 51
5.5.1 MongoDB 51
5.5.2 MariaDB 52
5.5.3 Neo4j 52
5.5.4 Postgres 53

6 Conclusion 55
6.1 Discounting trends . 55
6.2 Data handling at IKEA . 56

6.2.1 Usage of discount data 56
6.2.2 Storage of discount data 56

6.3 What makes a DBMS good for storing discounts 56
6.3.1 Big Community 57
6.3.2 Fast responses (low latency) 57
6.3.3 Cost Effectiveness 57

6.4 Benchmarking results . 57
6.5 Performance . 58

6.5.1 Signal-to-Noise Ratio Reflections 58
6.5.2 Scalability results 59
6.5.3 Performance Demanding Queries 60

6.6 Thesis Purpose Fulfillment . 60
6.7 Ethical aspects . 61

6.7.1 Interviewee anonymity 61
6.7.2 The effect of discounts 61

6.8 Development opportunities . 62

7 Terminology 65

References 67

A Interview Questions 71
A.1 Respondent 1 . 71
A.2 Respondent 2 . 71

B Queries 73

xi

xii

List of Figures

3.1 The five phases in chronological order. 17

5.1 An overview of the execution times of the queries that were executable
in all DBMSs except for Neo4j. 43

5.2 The before and after results of MariaDB. 46
5.3 The before and after results of Neo4j. 48
5.4 The before and after results of Postgres. 50

xiii

xiv

List of Tables

5.1 An overview of the query execution time for each DBMS. 37
5.2 A table of MongoDB’s execution times. 38
5.3 A table of MariaDB’s execution times. 39
5.4 A table of Neo4j’s execution times. 39
5.5 A table of PostgreSQL’s execution times. 40
5.6 An overview of MongoDB’s execution times. 44
5.7 An overview of MariaDB’s execution times. 45
5.8 An overview of Neo4j’s execution times. 47
5.9 An overview of Postgres’ execution times. 49
5.10 An overview of the most fitting licenses. 51

B.1 The most commonly executed queries compiled in a list with no spe-
cific order or prioritization. Each query is numbered for ease of refer-
encing. 74

xv

xvi

Foreword

After many months of arduous work with this thesis and lots of moments of pure
frustration, it is finally completed. We would like to thank our supervisor from
IKEA, Suchit Gupta, who guided us and helped us every week with the thesis. In
addition, we would like to thank Christin Lindholm for all her support and guid-
ance, along with her feedback that helped us tremendously. Lastly, we would like
to thank our examiner, Christian Nyberg, who was also helpful with his guidance
and feedback.

1

2 LIST OF TABLES

Chapter 1
Introduction

1.1 Introduction

Database technologies are under a constant development which makes it pivotal
for companies to utilize and manage the technology that is accessible to them.
In the case of IKEA IT, due to historical reasons, there has been a continuous
use of the same database technology for storing discounts (see chapter 1.2 for fur-
ther information). The database management system (DBMS) that is currently
in use belong to the row-oriented RDBMS group. Examples of these are Oracle
and Postgres. RDBMS is an acronym for relational database management, the
actual database is one that contains different data that are associated with each
other [15]. Due to this database technology being row-oriented, the information is
structured into rows.

There are, however, problems that exist within the current database technology
which makes it crucial to find a technology that is more suitable. The current
problems consist of the fact that it is inefficient from a time and performance
point of view to store discounts in a hierarchical way.

There is a possibility that better and more suitable technologies have been devel-
oped through these years that the current one has been in use. As a result, it
could be considered worthwhile to investigate other options in the pursuit of find-
ing the most efficient one in terms of computational performance, time-efficiency,
infrastructure cost and memory usage.

A solution to the aforementioned problems is to investigate other technologies that
could be more suitable for the traversal of discount data. Conducting investiga-
tions and learning more about other technologies but also about how discount data
is being stored and used by IKEA today – and conducting various tests to see if
the results are in fact as anticipated – will enable the possibility of finding the best
solution to the ones that are under investigation. Several technologies should be
investigated and compared to the row-oriented database technology. These include
a graph-based database technology storing data in graphs, a document-oriented
technology where data is stored in documents and a column-based technology us-
ing columns for storing data.

3

4 Introduction

1.2 IKEA IT

This thesis work was executed in cooperation with IKEA, a global furniture com-
pany established in 1943, with more than three hundred stores worldwide [16].
Ingka Group (IKEA Retail) is a franchise with IKEA being the commercial name
for the company [17]. Ingka Group is one of 12 other franchises within the com-
pany [18]. The objective for each year when concerning the franchise is to enable
more than two thousand products to be brought to the market [18].

In conjunction with always trying to launch new products, there is at times nec-
essary to incorporate the usage of discounts in the old products as well as in the
new ones. When concerning IKEA, these discounts mainly come into existence on
specific occasions due to IKEA always striving to have some of the lowest prices
on the market, which does not make it necessary at all times. These discounts
occur when it comes to various deals on their membership plan IKEA Family,
offers that are time restricted, personalised vouchers, coupons, rewards, best be-
fore dates, end date sales, just to name a few. Since there are several occasions
where the discounts come into place, it is of foremost importance to manage these
discounts in effective ways, starting with having a database that is able to manage
this.

1.3 Purpose

The purpose of this thesis is to investigate whether any of a few chosen contempo-
rary database technologies is better suited for storing discounts than the currently
in use database technology. The technologies that were investigated consisted of
graph based, document-oriented, columnar based and the technology currently in
use - row based. The aim was for IKEA IT to use the most suitable database
technology out of those that would be examined in this thesis, to save as much
resources as possible. These resources consist of processing time and memory but
also licensing costs and maintenance.

1.4 Goals

The thesis investigated the advantages and disadvantages associated with four
contemporary database technologies in the context of managing discounts. An
evaluation, based on measurements from testing, of how the database technologies
perform in terms of efficiency, was performed. After the technologies had been
evaluated, they were compared to one another and one of them was deemed most
suitable and therefore suggested for IKEA IT to use.

Introduction 5

1.5 Questions

This thesis will answer the following questions:

1. How is discount data being stored and used at IKEA today?
2. What are the trends regarding discounts, both at IKEA and in the retail

industry in general?
3. What are the advantages and disadvantages associated with different database

technologies on a general level?
4. What criteria are to be considered useful in a database technology handling

discounts?
5. How does the four different database technologies perform in relation to the

criteria answered in the previous question?

1.6 Scope

The scope was limited to four database technologies: graph based, document-
oriented, columnar based and the technology currently in use - row based. Only
one DBMS out of each of these database technologies was assessed; it should be
emphasized that the goal is not to find the best DBMS but to conclude which
technology is best suited for the management of discounts.

6 Introduction

Chapter 2
Technical Background

2.1 Discounts

According to the Cambridge Dictionary [26], discounts are defined as: "a reduc-
tion in the usual price" with the example of receiving the discount in the case of
buying numerous duplicates of the same item [26]. Discounts usually occur with
the intention of being incorporated as a business strategy to encourage more peo-
ple to buy a company’s products.

The world of discounts has increased, especially during the recent years due to the
uprise of new companies. Due to this, there has been a trend among many of these
companies to incorporate and heavily invest in a variety of discount strategies
with the goal of acquiring more customers. With more companies comes a lot
of competition which is the reason why it is now more important than ever to,
through the use of discounts, entice people into purchasing products.

2.1.1 General trends

Discounting trends generally tend to fluctuate. Companies such as Foodora [36],
a food delivery company, has tried and is still trying to entice their customers
through different types of discounts. The types of discounts usually offered by
Foodora vary. Sometimes free delivery is offered when ordering from a restaurant
from a particular range, if the order meets a certain price criteria or price thresh-
old. Other times, if the customer invites a friend, both the customer and the friend
get a certain percentage off. The offer can also consist of different kinds of vouch-
ers. These kinds of discounts appeal to many people, hence Foodora encourages
visitors of their website to place an order by displaying discounts.

In addition to IKEA, which is the subject of this thesis, Mio is another rather
big company in Sweden specialized in selling furniture [35]. Mio could be consid-
ered a competition to IKEA and has similarly to Foodora incorporated the use
of discounts in their selling scheme. The most often occurring type of discount
on their website consists of reduced prices on certain furniture. Some furniture is
discounted as much as 50 percent. Potential customers might feel eager to place
an order while the item is still in stock and the discount is still valid. When these

7

8 Technical Background

types of discounts are happening, they are usually not applied on all the furniture
(except for on special occasions). In general, the discounts are applied to one
certain type of furniture. One week the discounts could be applied to e.g., beds,
while the week after sofas are the furniture that are being discounted.

Moreover, discounts are more likely to occur during certain occasions. These oc-
casions consist of Black Friday sales and after Christmas sales, e.g. The strategies
that are incorporated during these special occasions usually begin with a teaser on
the companies’ websites and with the help of advertisement on the products that
are discounted. These two strategies allow the company to reach out with their
offers to a lot of different people, which might encourage these people to put in
orders from that store opposed to other stores that do not incorporate this kind
of strategy in their selling scheme.

2.1.2 Discounts at IKEA

The discount strategy that IKEA has incorporated for years is not that massive
compared to some other companies. Their goal is not to heavily discount their
items but to instead ensure that they have among the lowest prices on the market
compared to other companies, making these heavy discounts redundant.

2.1.2.1 Discount strategies

IKEA, as well as other companies, have incorporated well thought out discount
strategies. Depending on the situation and what the desired achievements are, a
strategy may be more or less suitable to use. It is important to think about which
strategy works best in which situation.

Family rewards: When a customer acquires a membership in IKEA Family, they
receive a membership card through which they get access to various rewards, i.e.,
discounts, which are exclusive to them [27]. Whenever the card has been used, the
card owner receives the possibility of winning a gift card. This possibility occurs
in the form of a raffle, a raffle that occurs every month at IKEA [27]. This is one
way of enticing the customers into becoming members.

Markdown: Markdowns are probably what first comes to mind when people are
thinking about discounts, and they are part of a markdown strategy at IKEA. A
markdown is a price reduction on an article. The reason behind the price reduc-
tion varies. One reason behind a markdown is when a collection gets obsolete and
therefore is offered at a lower cost for it to get purchased quicker.

Personalized coupons: A personalized coupon is a personal coupon that is in-
tended to be used by one person. When such a coupon has been used, it gets
invalidated. These coupons can be created for several reasons. One of these rea-
sons could be that the company wants to compensate the customer.

Vouchers: A gift card is an example of a voucher that is offered at IKEA. When

Technical Background 9

purchasing one, the gift card can either be digital or physical.

2.1.2.2 Discount types

A couple of discount types have already been introduced, but there are additional
types incorporated in the general discount strategy at IKEA. The most important
ones are listed in this section.

Amount based discounts: An amount-based discount arises when a customer
spends above a certain price point and receives a reduction on the purchase, e.g.
spending 400 SEK and getting a 40 SEK reduction.

Combined discounts: A combined discount means that a customer gets a re-
duction on the purchase when combining certain items. A customer could, for
instance, be offered a certain percentage off when buying a bed and a mattress
together.

One time use coupons: These kinds of coupons are limited to one use per
coupon.

Public coupons: Public coupons are meant for public use, meaning they could
be used by anyone.

Quantity discounts: Quantity discounts appear when a customer buys a certain
number of items and gets one of them at no cost.

Tiered discounts: Tiered discounts are also dependent on the quantity pur-
chased by the customer. In the case of tiered discounts case, however, the discount
comes in the shape of a percentage and only when a certain amount of items are
purchased. E.g., when buying four items or more, a discount of 15% is applied.

2.2 Database theory

In the following section, information that is relevant to the databases and the
DBMSs is presented and explained.

2.2.1 ACID

ACID is an acronym and a highly relevant concept in databases. The letters rep-
resent the following words: Atomicity, Consistency, Isolation and Durability. Each
of these four words represent an important quality for guaranteeing the validity of
the data in a database. All databases should be able to attain the ACID proper-
ties which is why it is crucial that the people who are implementing the systems
incorporate them [7].

10 Technical Background

Atomicity: Atomicity is a word that means that if changes are about to occur to
the data, either the whole transaction or no part of the transaction is permitted
to occur [24].

Consistency: Consistency entails that only consistent data can be inserted into
the database [24]. All data that is introduced must follow the rules of valid data
for the database in question.

Isolation: Isolation means that a transaction has to be kept isolated in regard
to other transactions [24], meaning that the execution of the transactions has to
occur separately [7]. The transactions might be executed concurrently but must
logically appear as if they were executed sequentially.

Durability: Durability entails that the data should be irreversible after a change
has been committed [24]. Even in the case of failure there should not occur changes
of any kind.

2.2.2 CRUD

CRUD is an acronym that plays an essential role in the world of data. It is a term
that describes the four basic operations that can be performed on the data in a
database. Each letter represents one of the following words (operations) respec-
tively: Create, Read, Update and Delete. When concerning a database and the
data being stored in that database, the following definitions can be uncovered:

Create: The creation of new entries added to existing data [3].

Read: The retrieval of data that is currently stored in the database [3].

Update: The editing of data that is currently stored in the database [3].

Delete: The removal of data that is currently stored in the database [3].

2.2.3 Latency

According to the Cambridge Dictionary [40], latency, when it comes to computing,
is defined as: "the delay between an instruction to transfer (= move) computer
information and the information being transferred, for example over the internet".
By combining latency with the aforementioned CRUD, it allows for a very funda-
mental metric that plays an essential role in this thesis. When comparing several
different DBMSs, among the most crucial aspects to compare is how the execution
times vary. That is where latency comes in, which allows for a comparison to occur
by measuring the execution time. When latency is henceforth mentioned, what is
meant is the time for a query to be executed.

Technical Background 11

2.2.4 Signal-to-Noise ratio

Signal-to-noise ratio is a measure that is used for expressing a desired signal or in-
formation in relation to the background noise needed to generate said information
or signal. To calculate it, both the signal or information and the background noise
need to be quantified. Signal-to-noise-ratio is calculated by dividing the quanti-
fied signal or information by the quantified background noise. The result is thus
a quota or percentage.

A high signal to noise ratio is considered bad. The goal should be to keep the
SNR at a minimum. The noise can be viewed as the cost of producing a certain
amount of data, the cost being computational power.

When referring to signal-to-noise-ratio in this thesis, what is meant is the amount
of data that must be processed for the execution of a query. The phenomenon
will be discussed, and the signal-to-noise-ratio will be estimated for the DBMSs
mentioned in chapter 2.3 in a broad sense but no exact calculations will be made.

2.2.4.1 JOIN statements & SNR

The biggest signal-to-noise ratio in a relational database is produced by compli-
cated queries with one or multiple JOIN statements, performed on multiple big
tables [5]. This is due to the big amount of data that must be processed for such
a query.

2.2.4.2 Graph databases and SNR

Depending on what type of data is stored and how the data is being stored, the
migration from a relational database to a graph database can decrease or increase
the signal-to-noise ratio. Graph databases are particularly suitable for databases
with a lot of connections between the data points [48]. Simply explained, it is
sufficient to just follow the relationships, or the edges, to find data that is inter-
connected. There is thus no need to search through an entire dataset, i.e., table,
until the sought out data has been found, as would have to be done in a relational
database [48].

For example, imagine there are two different databases: a graph database and a
relational database. These databases store information about people and infor-
mation about friendships between these people. In a relational database it would
be customary to use one table to store information about people and one table to
store the friendships between people. Bob is one of those people. In a relational
database, one would have to search through the friendship table to find all of Bob’s
friends and then search for those friends in the people table to be able to retrieve
information about them. In a graph database, Bob’s node already has the con-
nections to Bob’s friends stored. They do not have to be detected in a friendship
table and then searched for in a people table, it is possible to go directly to where
the data about the friends is stored and retrieve the information. This is a simple

12 Technical Background

example, but it displays the benefits of a graph database compared to a relational
database when there is a need to traverse a lot of connections.

2.2.4.3 Indexing

If a table in a relational database is indexed on a particular attribute that is also
the target for searching, it can be a game changer for the performance. This is due
to the DBMS now knowing where to look for the information. It does not have to
search top to bottom through entire tables in the database to find the information
it is looking for.

Graph databases can also use the method of indexing and the performance depends
on the type of indexing service being used by the DBMS. Neo4j works best for
full-text indexing and does not perform quite as good on other data types [5].

2.3 Database Management Systems

This chapter is a short presentation of the four different database management
systems that will be tested, evaluated and finally compared to one another, along
with an introduction to the technology each DBMS is using.

A DBMS is needed to access the data in a database and to make use of the
database. Teorey, Lightstone and Nadeau define a database management system
as "a generalized software system for manipulating databases" [11]. IBM defines it
as "essentially nothing more than a computerized data-keeping system", explain-
ing it as a system where operations can be performed to change the structure of
the database or manipulate the data inside [25].

In this thesis, four database management systems are compared to one another
and evaluated in relation to the metrics later mentioned in chapter 2.4.1.

2.3.1 MongoDB

The intention of developing MongoDB was not to satisfy the requirements of the
masses, but to develop a DBMS that had the ability of working efficiently with
documents, making it document based [6]. For this to be possible, it was neces-
sary for the developers to exclude certain functions as these could lead to a decline
in efficiency within the system [6]. As a result, the recovery time after a system
has failed has increased tremendously [6]. According to the developers, this is
something that falls within their concept since their philosophy consists of the
databases not carrying only one but several backups [6].

The way MongoDB is structured is similar to the way JSON files are structured,
essentially meaning that the documents differ from each other due to them hav-
ing different data structures, e.g. [23]. Additionally, their usage of storage is
interchangeable since both consist of one individual document [6]. Despite their
similarities, JSON is not being used by MongoDB, BSON is what is being used

Technical Background 13

instead (this stands for Binary-JSON). As a result of the usage of BSON, it has
allowed MongoDB to substantially increase the speed in regard to processing and
searching for various documents [6]. Furthermore, additional features have been
included that do not exist in JSON, e.g., being able to manage other data such as
binary data [6].

2.3.2 MariaDB

As opposed to MongoDB, MariaDB was developed with the intention of pleasing
everyone [8]. MariaDB initially started its development after MySQL started get-
ting controlled by Oracle which resulted in it getting developed in the form of a
fork of MySQL [8]. Many went over to using MariaDB instead of MySQL due to
its interconnection with quite big companies [8]. Despite this, the actual transition
from MySQL to MariaDB is quite easy since no code must be changed [8].

Like MySQL, the model that is being used by MariaDB is a client and server
model [2]. What this model does, with the help of a server program, is that it
keeps managing the incoming requests from one or multiple clients [2]. Moreover,
MariaDB is a DBMS that is completely free for private use, the same goes for its
source code, making it open source [9]. Making it completely free is something
that is of value to the creators of MariaDB and therefore they have created a
foundation to help them keep it free [10]. The purpose of this foundation is to
protect the actual code by allowing it to stay the same even in the future [10].

2.3.3 Neo4j

Neo4j is the world’s leading graph DBMS [19]. Neo4j offers a cloud license, a
community edition license and three different enterprise licenses. For a company
with the size of IKEA, the enterprise edition comes at a cost.

Inside a graph database, data is stored as nodes and the connection between two
nodes in a database is called a relationship [20]. Each node holds a list of all
its relationships [21], and this way of storing data cleverly eliminates the need
for costly JOIN operations and search-and-match computations [20]. This is due
to there not being a need to search for connections that are already stated and
accessible, as is the case in a graph database where each node holds a list of
each and every one of its relationships. The way a graph DBMS is managing
relationships is what many consider the biggest advantage of the graph DBMS
technology compared to the RDBMS technology.

2.3.4 Postgres

Postgres, or PostgreSQL, is an object-relation database management system [22].
It is an open-source DBMS, meaning it is completely free to use and entails no
costs in licenses for commercial use either.

In a relational database, data is stored as tuples in tables [1]. One tuple equals a
row in a table and a tuple has one or more attributes. Each attribute makes up a

14 Technical Background

separate column in the table. The object part in the term object-relation suggests
that there is an object-oriented aspect to the technology. It is possible to create
complex objects with attributes in Postgres. These objects can in turn be related
to each other in different ways.

2.4 Benchmark testing

It is not easy to put the method of performing a benchmark into one single defini-
tion. Broadly speaking, benchmarking is a tool for comparing performance levels
between participants and it can be applied to many areas [13].

In the context of databases, in this thesis, benchmarking is the method of compar-
ing how four database management systems representing four different database
technologies perform in relation to one another. To measure the performance, the
metrics defined and explained in the subsection below are used.

2.4.1 Metrics determination

A prioritization of the metrics have been established through a discussion with the
supervisor at IKEA. The supervisor has in turn prioritized based on what is most
important to investigate. The metrics are as follows, given in a prioritized order,
along with points of suggestions for what to explore when performing a benchmark
on the metric:

1. Licensing

• Identify the various kinds of licensing available for each DBMS (see
chapter 2.3).

• Identify what functionality each kind of licensing offers and pick the
most fitting license for each DBMS (see chapter 2.3).

• Identify the costs for the licenses chose the best fit for IKEA.

2. Latency

• Identify the most used, i.e., the most often executed, queries (create,
read, update, delete) in the currently used Postgres database for stor-
ing discounts at IKEA.

• Identify for each DBMS (see chapter 2.3) which of the queries being
most used are the most performance demanding.

• Establish the response time for each DBMS (see chapter 2.3) to per-
form the most used queries.

3. Signal-to-noise ratio

• Determine for every DBMS (see chapter 2.3) respectively the amount
of data that must be processed to perform the most used queries (cre-
ate, read, update, delete).

Technical Background 15

• Identify which of the most commonly used queries produce the highest
signal-to-noise ratio.

4. Scalability

• Identify how well the DBMSs (see chapter 2.3) respond to the incre-
ment and decrement of the amount of data.

• Establish the impact on the performance, i.e., the response time, for
each DBMS (see chapter 2.3) when increasing or decreasing resources.

5. Memory

• Identify the amount of memory each DBMS (see chapter 2.3) requires
storing the database.

• Establish how much cache memory is used by each DBMS (see chapter
2.3) in the CPU.

• Identify how much RAM, i.e., working memory, is used by each DBMS
(see chapter 2.3) when performing the most commonly used queries
executed in the currently in use Postgres database for storing discounts
at IKEA.

• Establish for each DBMS (see chapter 2.3) which of the queries iden-
tified as being most used require the most RAM.

16 Technical Background

Chapter 3
Methodology

The following chapter describes all the necessary information regarding the method-
ology. It describes the five separate phases the thesis underwent, phases that were
mainly following the waterfall model but with one exception. This exception in-
volves the first phase, Literature Study, since it was necessary to revisit this phase
due to the addition of new information that had not been thought of prior to
proceeding to new phases. Writing this thesis was an integral part of the process
that occurred every week during all of these phases. The phases can be seen in
figure 3.1.

Figure 3.1: The five phases in chronological order.

3.1 Literature Study

The first phase consisted of a literature study. It was crucial for this to occur in the
beginning since a lot of information was still unknown. Moreover, the aim of this
phase was to collect the correct and relevant information and understanding how
to put the facts into practice. The information that was collected consisted of facts
about the technologies covered in this thesis as well as results and conclusions from
previous research and testing. In addition, a lot of time was invested in learning the
best and proper ways of conducting interviews, but even more time was invested
in preparing the benchmark testing.

3.2 Preparing & Conducting Interviews

The interview phase consisted of interview methodology studies based on Annika
Lantz’s book Intervjumetodik [12]. In the book, the interview work is divided into

17

18 Methodology

three phases: the preparatory phase, the interplay during the interview and lastly
how the answers are processed. These three phases determine the outcome of the
interviews. Furthermore, the initial questions must cover important background
info, such as asking the person being interviewed their occupation and education.
Questions must be asked in an order that seems logical to the person being inter-
viewed. Therefore, this order may or may not be the order that the interviewer
finds logical. During this second phase, the interviews are prepared and conducted,
though the answers are only transcribed and not processed. The processing takes
place in the fifth and last phase.

3.2.1 Preparatory Work

Drawing conclusions from figures and statistics is easier than doing the same from
the result from an interview, and therefore it is of importance that the interviews
are highly qualitative ones [12]. The quality can be increased by constantly improv-
ing the interview methodology. Lantz emphasizes that it is beneficial to determine
what type of analysis should be done based on the data, prior to conducting the
interviews.

Research has shown beginners prepare more and conduct better interviews than
experienced interviewers, stemming from the fact that experienced interviewers
overestimate their own capabilities. There is thus an attitude-based aspect to the
quality of an interview.

During the preparations, the purpose of the interview or interviews should be
determined. The problem should also be linked to the existing theory to enable
the formulation of what problems are to be solved and thereby formulate what
questions should be answered. Both knowledge and skill are, according to Lantz,
needed to perform an interview [12].

3.2.2 Make use of the results

Lantz claims that a well-conducted interview must achieve a certain level of relia-
bility and validity [12]. The conclusions must be able to be reviewed by outsiders
for the data to meet certain requirements for usability. To maintain a high quality,
it is important not to fill in information gaps in the interviews with assumptions
based on the answers the person being interviewed has given to other questions.
The gaps should only be noted and not filled with made up information. The first
step in processing the data is to reduce the amount of raw data. It is important
this step is performed in a well thought out way to ensure that the data most
relevant to the question at issue is not lost and less important data consequently
being kept.

3.2.3 Structured versus Open interview

There are many ways in which an interview can be executed. Depending on the
level of structure, a variety of different results and conclusions can be derived from

Methodology 19

the interview. A fully open interview and a fully structured interview should be
viewed as structural opposites, each on one end of the spectrum.

A completely open interview allows the person being interviewed to give their own
full picture. As a result, it is less of a discussion and more based around letting
the person think aloud and reason with themselves. The answers in such an inter-
view are about the qualities of a phenomena. A structured interview, on the other
hand, is based on some phenomena in some form of delimited context established
in advance, as opposed to an open interview where the context is determined by
the person being interviewed. The aim of the structured interview is to discover
something quantitatively by asking certain questions and hopefully receive a quan-
titative answer.

A directed open interview is a form of an open interview, but more structured
than a fully open one. In a directed open interview, the questions are grounded
in receiving qualitative answers regarding a phenomenon, but instead of letting
the person being interviewed decide which direction the interview shall take, the
interviewer decides which question areas are to be covered.

A semi-structured interview is a more open form of a structured interview. In
such an interview, the question areas are to be decided beforehand and followed
up in a manner determined in advance. Unlike a structured interview, a semi-
structured interview allows follow-up questions. Instead of only receiving answers,
the interviewer also gets an appreciation of how meaningful the questions are to
the person being interviewed.

3.3 Benchmark Preparations

The third phase consisted of making the preparations that were necessary for the
actual benchmarking to be able to happen. These preparations consisted of look-
ing for and deciding on which database tools to be incorporated in the actual
testing and receiving the laptop the testing would be conducted on from IKEA.
Additionally, scripts had to be written and sorted out in all the DBMSs.

3.3.1 Logs

Incorporating the use of logs to track the execution time and determine the la-
tency in all DBMSs, enables the possibility of not including a software developed
specifically for benchmarking. By analysing the log entries and the time it takes
for the queries to fully execute, the latency can be determined.

3.3.1.1 System mode & Kernel mode

A processor running on Windows can either use user or kernel mode. User mode is
used for running applications and kernel mode is used for running core operating
system components [37]. When executing a query, the database software is working

20 Methodology

in user mode and the query operations are being performed in kernel mode. It is
preferable that the database handler does not impact the result and therefore logs
measuring the execution time in kernel mode are the ones that have been used.

3.3.1.2 Postgres Logs

A Postgres server can be configured through its postgresql.conf file to log certain
data. By setting specific parameters, it is possible to define what kind of infor-
mation should be logged and where the log output should end up. With the right
parameters, both kernel and user execution time are logged [38].

An alternative way of finding out the execution time for a specific query performed
on a Postgres database is to use a profiling tool such as EXPLAIN ANALYZE [44].
EXPLAIN ANALYZE is built on top of the EXPLAIN tool and can be used to
show the time spent on the different steps in the execution of a query, along with
the total execution time in kernel mode. The tool is used by putting the text
"EXPLAIN ANALYZE" (without quotation marks) before the query that is to be
analysed. Along with the query result, the result from EXPLAIN ANALYZE is
also returned. Example: EXPLAIN ANALYZE SELECT X FROM Y.

3.3.1.3 MariaDB Logs

To be able to measure the execution time and to log other data required for
benchmarking MariaDB, the easiest solution found was to use the SHOW PRO-
FILE statement [41]. The first step in being able to use it is by setting the profiling
session variable to one in the MariaDB console with the following command:

SET profiling = 1;

This enables the activation of the statement SHOW PROFILES, which shows
a list of the most recently executed queries along with their execution times [41].

3.3.1.4 MongoDB Logs

When it came to the logging regarding MongoDB, this was found to be more
difficult than the rest of the DBMSs. After a lot of research, the best way of
conducting the logging was found to be through applying the following method on
every query [42]:

explain("executionStats")

For this to work, similarly to MariaDB, the profiling level variable had to be
changed by writing out the following statement either in the console of MongoDB
or in the database tool of one’s choice [43]:

db.setProfilingLevel(2)

Methodology 21

By setting the profiling level variable to 2, the Database Profiler logs the data and
can write out the execution time of the query when applying the aforementioned
method on every query, explain("executionStats") [43]. Furthermore, when
executing the query and the method, two different time measurements show up:
"executionTimeMillis" and "executionTimeMillisEstimate". The first measure-
ment states all the time that is required, from selecting the most suitable query
plan to the actual execution [42]. Since only the kernel mode execution times of
the other DBMSs were measured, it was decided this was not suitable for the pur-
pose of this thesis. Therefore, the second measurement was found to be the more
appropriate one since it gives an estimate of how fast the queries are executed.
This is not ideal in comparison to the logging measurements the other DBMSs
had to offer, but it was the best alternative the thesis workers were able to find.

3.3.1.5 Neo4j Logs

Instead of reading the logs of Neo4j and trying to decipher which execution time
was the appropriate one to use, it was decided to download a plugin that visual-
ized all the values. The name of the plugin is: "Query Log Analyzer" and it was
developed and released by an Neo4j employee [45]. For it to show the kernel mode
execution time, the following statements had to be added in the neo4j.conf file [4]:

dbms.track_query_cpu_time=true

dbms.logs.query.time_logging_enabled=true

When these two statements had been enabled, it was possible to verify the exe-
cution time by searching for the executed queries in the plugin and look at the
number that showed under the "Avg CPU". This number shows the execution
time of the CPU [4].

3.3.2 Computer specifications

To conduct a benchmark testing that is as reliable and consistent as possible, the
testing was carried out on one and the same laptop. The specifications for the
laptop that was used is specified below.

• Processor: Intel(R) Core(TM) i5-6300U CPU @ 2.40 GHz 2.50 GHz

• System type: 64-bit operating system, x64-based processor

• Installed RAM: 16,0 GB

3.3.3 Database tools

Initially, the plan was to use the same database tool for all the DBMSs to avoid
simple yet possibly very impactful mistakes such as confusing different types of
execution times given by the DBMSs’ different logging systems and methods. The
right database tool might have been able to streamline the process and it is also
probable that a database tool, developed specifically for benchmarking, would

22 Methodology

make the competition between the DBMSs fairer. This kind of database tool was,
however, never used due to it not being preferred by the supervisor at IKEA.

DBeaver Version 22.0.4.202205011839 [39] was the tool that was used in conjunc-
tion with PostgreSQL and MariaDB since both DBMSs are supported by this
tool. It was initially decided to use this tool for all the DBMSs, but as mentioned
earlier, it was later discovered that this was not possible. It does, however, sup-
port MongoDB as well but only when upgrading the license that is used with it.
Since the upgrade only enables one more DBMS to be used it was decided by
the thesis workers to use two completely different tools with the ones that were
not supported. Instead, Studio 3T was the database tool that was chosen to be
used with MongoDB, due to it being very user-friendly but also it being one of
the most popular database tools when it comes to MongoDB. Lastly, the database
tool that was used with Neo4j was Neo4j’s own tool, Neo4j Desktop, which can be
downloaded on the Neo4j website. It was an obvious choice since it is their own
tool, and it therefore enables the possibility of getting support directly from the
company if problems would arise.

3.3.4 Queries evaluation

As explained in section 3.5.3, the most used queries were obtained through a re-
quest to one of the software engineers involved in working with the database. All
the queries were SELECT statements, with one UPDATE statement as an excep-
tion. In conjunction with the basic operations of a database, CRUD, read is the
most prevalent operation (with one exception of update). Thus, there will be no
investigation into create and delete in relation to the metrics.

Fifteen queries were received from interviewee 2 (a complete list can be viewed
in table B.1, appendix B). About a third of the queries (query 10-15) were alike
and trivial in the sense that all of them were queries in the form of SELECT x
FROM y WHERE z = b, where the information was retrieved from primary key
indexed tables where z was the primary key. Moreover, three queries (query 9-11)
operated on tables with less than two hundred rows.

3.4 Benchmarking

In the fourth phase, the benchmarking was conducted which enabled the data
retrieval to fulfil the metric requirements. This phase was divided into two parts
- the first one consisted of the execution of the most used queries in all of the
DBMSs and the second one consisted of the retrieval of information on the inter-
net that was not able to be retrieved through testing, e.g., the licensing metric.
The queries that were the most used had been given by the software engineer em-
ployed by IKEA who had participated in the second interview. The benchmarking
of each DBMS is explained in more detail in the corresponding section of this
chapter.

Methodology 23

3.4.1 Postgres Benchmarking

When benchmarking Postgres, a local database server was set up along with a
database for testing. A data definition language (DDL) SQL script was easily
created in the database tool DBeaver. The skeleton of the database (i.e., schemas,
tables, dependencies, indexes and functions, etcetera) was created by executing
a modified version of such a script. The tables were thereafter filled with data
from the testing environment’s discount database. Since it was not possible to
get access to the actual production data, the data that was used came from the
pre-production environment.

3.4.2 MariaDB Benchmarking

A local MariaDB database server was set up for benchmarking, and a database
for testing was created. To create the schemas, tables, dependencies, indexes and
functions needed to set up the database, the Postgres create script was altered
to be executed in the MariaDB database. To enable such alterations, Postgres
specific data types had to be replaced with MariaDB specific data types. Lastly,
the database had to be filled with data. This data was downloaded from the
original database as CSV files and uploaded to each table respectively, with the
original mapping being kept.

3.4.3 MongoDB Benchmarking

A local MongoDB database server was set up for benchmarking, and a database
was created. To create the schemas, or collections as they are called in MongoDB,
the original Postgres schemas were downloaded as CSV files and later loaded into
the MongoDB database for testing. Postgres’ specific data types had to be re-
placed with MongoDB’s specific data types. Since keys do not exist in MongoDB
but provide an important indexing function which had to be considered when eval-
uating the latency, indexes were created for the tables based on the primary keys
from the original database.

3.4.4 Neo4j Benchmarking

A local Neo4j database server was set up in Neo4j’s own database tool, "Neo4j
Desktop". The setup occurred with the help of a tutorial that was described in
depth on Neo4j’s website [46]. After the setup was completed, the importing of
CSV files begun which thereafter continued with the conversion of data types.
When CSV files are imported in Neo4j, all the different data types are set as
strings by default. Therefore, it is necessary to convert the ones that are not in
fact strings. These could be easily changed by applying the following conversion
function in the case of integers: toInteger().

The Postgres discount database was migrated to the Neo4j database used for
testing by transforming every row to a node, without creating any connections
between the nodes. Every node coming from the same original Postgres table was
created to be of the same type. Thus, it was possible to search within a specific

24 Methodology

type of node, as an equivalent for searching an entire table. The original columns
were turned into attributes of the nodes. Lastly, indexes had to be added since
indexes have been incorporated in all the DBMSs that have been used throughout
the thesis.

3.5 Results

In the fifth and final phase, a finalization of the end results that had been es-
tablished in the previous phase occurred. The results were compiled in various
tables and the percentage differences regarding the Scalability metric were calcu-
lated. This was the main purpose of the following phase, in addition to enabling
the possibility of drawing the necessary conclusions based on the results. These
conclusions consisted of the ones that had to be drawn due to the metrics that had
been established in 2.4.1 and the questions from 1.5 that had to be answered in
the conclusion chapter. Additionally, the interview results were also compiled in
this phase. During this process, the thesis workers had to review the interviewees’
answers that had been written down in phase two. This was completed to be able
to write the summaries of the two interviews, enabling additional conclusions to
be drawn.

3.6 Source criticism

The various sources have been able to be found by using the internet. These
sources range from different articles and research papers to books written by the
actual developers of some of these DBMSs, with MariaDB being an example of
this. Most of these sources have, however, been found on various websites. Due
to this, it has been crucial to incorporate a high level of source criticism when
looking for sources in order to be able to find the most reliable ones.

3.6.1 Articles

A couple of articles were used, covering some of the DBMSs with MariaDB being
one of them [1][2][3][4][5]. When it came to these sources and which information
was included in the thesis, the information was only factual and no comparisons
to other DBMSs had been made. One way of making this source more dependable
could have been to include other sources that were making the same claims. The
same goes for the other articles that were referred to, the information could have
also been strengthened with other sources. With the use of articles, however,
the sources in the articles are known. Due to this, an option could have been to
investigate these sources as well, to confirm whether the sources are truly reliable.

3.6.2 Books

Books have been used as much as possible, due to it being harder in some ways
to spread false information this way. The reasoning behind this statement is that

Methodology 25

using books, the authors’ names are printed out while on the internet, e.g., it is
easier for people to be anonymous. Additionally, before printing the final version of
books they have already undergone multiple stages and been proofread by several
people. Despite these statements, it is still crucial to be careful when it comes
to the purpose of the books, who the people who have authored the books are
and how credible they are. Information about the authors is, for the most part,
included in books. This makes it easier to investigate and see how dependable the
books actually are. Based on this information, one can realize whether someone
is biased. One sign of this could be that the author of the book is the same as the
person who has created something. This holds true when it comes to the book
written by R. J.T Dyer, who was one of the creators of MariaDB and MySQL. In
these situations, it is of importance to not include certain opinions when deciding
to include these kinds of sources or to at least include other sources besides the
one that has the potential of being biased. This was not the case, however, and it
could have been done to ensure a higher reliability.

3.6.3 IKEA IT Employees

One of the phases consisted of conducting interviews with two IKEA employees.
During these interviews, information about the various discounts that exist at
IKEA were uncovered and how they are currently being used at said company.
Due to the information coming directly from the source, it made it highly depend-
able. Besides these two interviews, two other meetings with two other employees
occurred where information about discounts were presented as well. Due to the
information coming from diverse sources at the same company, information with
no inconsistency, has made it even more reliable. In addition to these sources, the
IKEA website has been used as a source as well, which has further strengthened
the reliability of these sources.

3.6.4 Websites

Due to the easy access of the internet, this kind of source has been the most used
one throughout this thesis. This has made it even more important to be careful
when it comes to deciding which sources are more dependable than others. There
are several reasons for why this is important, especially since the internet consists
of plenty of people, one of these reasons is that the information that is presented
can be biased. This can even include raw data due to how it is being presented
[14]. Presenting certain data, or other information, without including other useful
information that can have influence on what is presented can change the entire
opinion of a person when it comes to a certain subject. Rumours are another
factor to be conscious of, since these can be easily spread through the internet
rather than through e.g., printed books. Usually, these rumours start with some
kind of truth to then be turned and twisted into something that does not reflect
the truth anymore [14]. Due to this, it is crucial to look at information that come
from various sources and based on that information decide whether what has been
stated is to be viewed as truthful or not [14].

26 Methodology

The sources regarding the various DBMSs have been deduced dependable since
most of the information came from the official websites of the DBMSs. The in-
formation that has been collected from these websites are factual and the various
features can be controlled using the DBMSs mentioned. Due to this, the informa-
tion cannot be considered biased since the information was not presented regarding
comparing them to other technologies on the websites or to highlight them in cer-
tain ways that reflect the companies in good ways. These comparisons were made
in the thesis by comparing them to each other, based on the information given on
each website.

Chapter 4
Analysis

The following chapter consists of an analysis of the results and the reasoning
behind certain decisions that were made throughout the entire process.

4.1 Decision making

During the thesis process, through all the phases, multiple decisions had been
made in order for the process to move forward in the desired direction. Everything
from deciding on which tools to choose all the way to deciding on what kind of
techniques to incorporate in the conducted interviews, are all decisions that have
been made and are presented in the following section.

4.1.1 Database setups

To set up the Postgres database for benchmarking, a DDL script was created
using a built-in feature in DBeaver. A script had to be created since there was no
existing script offered by IKEA. A script could have been created manually but it
was decided to use DBeaver to speed up the process.

4.1.2 Database Management Systems

The reasoning behind which database technologies to include had its basis in the
thesis description, and the choice of DBMSs was based on the individual DBMS’s
popularity among users as well as companies. It was suggested in the thesis de-
scription that in addition to the currently in use relational technology graph based,
document based and columnar based technologies were the ones of interest. It was
not specified, however, which DBMS to use from each technology, which led to
the investigation of which ones to choose. After some research of several types of
DBMSs, it was deduced which ones to choose. The main reason for deciding on the
most used ones in each technology was due to the DBMSs’ big communities which
enabled the possibility of getting provided with a lot of support in case something
would go wrong. Therefore, if an error would have occurred during the setups,
it would have been a lot easier to get the support that was needed compared to
other, smaller communities. When it comes to bigger companies, such as IKEA,
it is also of importance that the communities are big.

27

28 Analysis

4.1.3 Database tools

The choice of using DBeaver as a database tool for manipulating the MariaDB and
Postgres databases came naturally since this tool was introduced by a software
engineer at IKEA in the beginning of the thesis. It was therefore deemed user
friendly while no other alternatives had any obvious advantages, and therefore
DBeaver continued being used. The reason for why not much work went into the
choice of database tool is that the database tool itself should not impact the result,
just ease the thesis work. Also, the database handler would for the most part only
be used for executing SQL scripts and importing and exporting data, which can
be considered a rather basic feature of a database tool, and thus there was no need
to search high and low for a database tool with rare features.

4.1.4 Licenses

When it came to the licensing, it was quite an easy decision to make. Since IKEA
is a big company, the Enterprise Licensing was deemed to be the license of interest
in this thesis, regarding all the DBMSs. The reasons behind this were due to
the advantages that came along with it but also, in order for everything to go as
smoothly as possible, the Enterprise Licensing seemed to be the obvious choice.
The advantages that came with it differed among all of the DBMSs mentioned,
the result of these is presented in chapter 5.5. The other types of licenses were
not able to support that big of a company and were therefore only recommended
for uses by smaller companies and individuals, which is another reason for making
this decision.

4.2 Interview decisions

During phase two of the thesis, two interviews were prepared for and thereafter con-
ducted. The two interviewees come from different professional backgrounds. One
of them has a technical background and is working as a software engineer while the
other one is working as a pricing leader. Along with the two diverse backgrounds
comes two different inputs, which is the reason interviewing two people with di-
verse backgrounds felt more convenient than interviewing two people from the
same background. Moreover, due to the differences, the interview questions were
adjusted accordingly. The reason for why the interview with the software engineer
was important was due to it being crucial to find out how the discount databases
were being used at IKEA, to be able to test the kinds of queries that were most
commonly used, for instance. Additionally, help was needed with setting up the
database that is used for discounts to be able to conduct the necessary testing,
which was also given by the same person. This ended up being espacially useful
since all of the questions were answered which made the practical side of the the-
sis work easier. Furthermore, the other interview was of significant importance as
well, due to questions about discounts being answered and the selling scheme that
exists within IKEA being uncovered. It was necessary to obtain this knowledge
since a lot had not been known prior to this.

Analysis 29

4.3 Interview Processing

It was decided to transcribe the interviews right after they had been executed in
the second phase. The transcription was done to get an overview of what had
been established in the interviews, and to create a good foundation where no
information was left out for the processing to be performed correctly. Since the
answers from the interviews were considered by the thesis workers to be intelligible,
there was no rush to process the results. The raw data was thought to be easy to
understand and it was thus possible to move forward in the process. The raw data
was processed during the last phase, when finalizing the thesis. The thesis workers
sifted out what they considered to be most relevant for the question at issue, and
left out what was irrelevant, in accordance with the methodology described by
Lantz [12]. The thesis workers were adamant in making sure that no information
gaps were filled so that good interview methodology practices could be followed.

4.4 Problems & solutions

In conjunction with making various decisions, both advantages and disadvantages
arise. With disadvantages, however, problems usually come about and can have
big effects on the process as well as the end results. Due to this, it is of importance
to take these into account and reflect on, for development to occur. The problems
that occurred during the thesis are therefore presented in the following section
along with their solutions.

4.4.1 Database setups

Problems arose when the Postgres DDL script would be adjusted for the setup
of the MariaDB database. One of the issues was that certain data types in the
script were Postgres specific data types meaning they did not exist in MariaDB.
The solution to the issue was to replace the affected data types with MariaDB
approved data types. In some cases, this was easy. In others, the number of bits
within a variable changed with the data type substitution.

Another problem that occurred when setting up the MariaDB database was that
there were tables that did not have a primary key in the Postgres database. When
these tables would to be set up in MariaDB, MariaDB did not accept a table
without a primary key. Because of this, a primary key had to be created on what
seemed to be the most fitting column (i.e., the id column in one case).

4.4.2 Database tools

One problem occurred when the MongoDB database would be set up. MongoDB
drivers were not included in the DBeaver Community Edition, which was the
software that had been used for the previously tested DBMSs. No functional
MongoDB drivers that could be imported and used were found for free online.
Instead, another database tool was used: Studio 3T. The DBeaver license could
be upgraded for a certain amount of money but since the database tool itself should

30 Analysis

not impact the result, it was decided to simply use another free tool. The same
can be said about Neo4j where it was later decided to choose Neo4j’s own tool, for
the reasons mentioned in 4.1.2.

4.4.3 Conduction of interviews

Two main problems occurred during the interviews: language confusion and bad
audio. Language confusion arose from the fact that English was not the mother
tongue of the people who conducted the interviews, and only the native language
of one of the interviewees. On one hand, this language confusion had a negative
impact on the interplay and made the interview go more in the direction of being
a questioning than being an easy conversation. On the other hand, it eventually
led to some of the right questions not being asked. There were two reasons for the
right questions not being asked. One was that information did not get picked up in
real time and therefore the questions arose afterwards during a listening through
the recorded audio. The other was that the interviewers produced questions to
ask but did not know how to phrase it. Both two main problems mentioned was
of course worsened by the fact that not much was known about the subject in
question yet and by the fact that the interviews leaned towards being of the open
type.

The interviews were conducted online over Microsoft Teams instead of in person
due to the pandemic restrictions still being in place at IKEA. The audio quality had
a substantial impact on the interviews. Bad audio quality, on top of the language
confusion problem already explained, added to the arising confusion. There was,
however, one great benefit to conduct the interviews over the internet; it made the
recording of the interviews easy through the built-in recording features in Teams.
Even the video from the interviewees screen sharing could be recorded, which was
of much use and would not have been done just as easily in real life.

4.4.4 Data retrieval

There were some problems regarding getting access to the proper data that was
tested. It was necessary to get access to the production data since the testing
would have to occur on the data that is being used by the employees at IKEA,
otherwise it could be considered meaningless to conduct the testing. Additionally,
it would not be possible to find the most used queries without it. It was not
possible, however, to get access to the production data in the end. As a result,
the testing had to be conducted on the data in pre-production which contained
less data points than the production one. Due to only getting access to this data,
it was not possible to retrieve the most used queries. Therefore, help was received
from the IKEA employee with whom one of the interviews had occurred with, and
the most commonly used queries were sent, and the testing could thereafter begin.

4.4.5 Execution time, MongoDB

Everything went well when it came to measuring the execution times in all the
DBMSs, except for when it came to MongoDB. A lot of research was conducted

Analysis 31

to be able to retrieve the most accurate execution time when it came to this
DBMS. The problem was, however, that MongoDB does not provide any values
for the execution time in certain situations. The best and only way to find out
the execution time is to do as explained in section 3.3.1.4. The problem that arose
with doing it this way was that the execution time is always measured as 0 if the
execution time is below 1 millisecond, which was the case for all of the queries
except for one. The main reason behind this problem was that pretty much all of
the tables, or documents as MongoDB is a document-based DBMS, were indexed.
Therefore, the correct document could be found straight away with no problem.
Unfortunately, a solution could not be found, and the exact execution times are
still unknown. However, it is safe to say that the queries last for less than 1
millisecond.

4.4.6 Benchmarking, Neo4j

There were several issues in relation to the benchmarking of Neo4j. The first issue
was the fact that Neo4j was blocked on the laptop that was received from IKEA
and it took quite some time to get it unblocked. When it finally was unblocked
and everything was set up within Neo4j, additional problems showed up, with one
being finding the execution time. After multiple hours of searching the web, it was
finally found that the execution time could be read using an analysing tool that was
developed by an Neo4j employee. Lastly, when the execution times were verified,
it could be clearly seen that something was wrong. All the execution times showed
extremely high values in comparison to the other DBMSs and there was therefore
a high possibility of the Neo4j database setup being wrongly configured. There
were attempts in trying to sort this out, but nothing ended up being successful in
the brief time that was left within the time frame for this thesis. One reason to
this could have been that the strongest advantage with the use of Neo4j had not
been incorporated - the usage of nodes. Viable solutions to this could have also
been to contact Neo4j directly and ask for their help regarding this.

32 Analysis

Chapter 5
Result

In the following chapter, the results are presented; the end results that are derived
from the benchmarking and the results that came from the conducted interviews.

5.1 Interview result

In this thesis, the interview technique that was deemed most suitable was a semi-
structured interview technique, meaning that the questions were determined prior
to the interviews. Additionally, follow-up questions were asked as well, which were
dependent on the answers that were given by the interviewees. Two interviews
were conducted in the second phase and all the interview questions that were
asked are compiled in Appendix A. Due to the interviewees having their expertise
in two different areas, the questions that were asked differed.

5.1.1 Interviewee 1

The first interview involved an individual with a role in pricing. Due to this, they
possessed a lot of knowledge when it comes to the discounting at IKEA and how
these were incorporated in their selling scheme. The interview contributed to a lot
of information getting obtained when it came to the discounts and pricing but also
information about IKEA. The information that was considered the most useful for
the purposes of this thesis was the information about the discounts, what kind of
discounts that exist, which are described in chapter 2.1. The information that was
shared consisted of in-depth descriptions of discounts such as the IKEA Family
Discounts, but also about a less common discount that can be applied in the case
of buying a dining table, e.g. In the case of buying a dining table, the average
customer tends to look for four chairs that match the table. Instead of offering
a discount in the form of a percentage, an offer in the form of "buy four chairs,
pay for three" can be implemented instead. Additionally, another useful piece of
information that was shared involved the current trends regarding discounts. One
trend that is on the uprise, especially in the US, is the various types of bundles
that are being offered at IKEA. One example of this kind of bundle is the bed-
in-a-bag bundle. This bundle includes a bed together with a couple of items that
are considered customary to have in a bed, e.g., duvet and pillows. This comes to

33

34 Result

show that the discounts that exist within IKEA, but also within other companies,
can be a lot more complex than a simple percentage off.

5.1.2 Interviewee 2

The interviewee in the second interview explained that their job title was software
engineer and that they are working within a subdomain under the customer do-
main. The team they belong to are responsible for developing, maintaining and
supporting a discount managing tool named SDM (short for Sales Discount Man-
agement) according to the base and business requirements that come from the
product team. The interviewees team delivers the product to the co-workers who
in turn use the tool for creating discounts. They continued explaining that there
are several databases in use but the discount database relevant for this thesis is a
Postgres database hosted on Google Cloud Platform.

The co-workers, typically responsible for campaigns and doing promotions, use
the SDM tool to create discounts for certain markets and channels. A market
could, for example, be a country, but the discounts can also be store specific. The
discount can be created for the website and mobile app or be created as a store
level discount. About two or three people in each market can create a discount
for their own market.

According to the interviewee, there are not any apparent problems when it comes
to the currently used database management system. When collecting data for re-
porting purposes, the searches might take a couple of seconds, but otherwise the
room for improvement is about optimization. Elksearch is the tool being used for
searches. It was explained that Elksearch is particularly good for searching the
items and details from their database, but it was not explained nor questioned
in which way it was good. Any kind of delay cannot be seen, but it can be said
that the tables containing the prices could be slow when querying the BigQuery
for thousands and thousands of records. The system that is sitting on top of the
database can manage millions and millions of records. For example, when working
with BigQuery, all that data can easily be handled with the data being very fast
as well.

When asked about if they have explored other alternatives to Postgres the fol-
lowing was explained. Regarding the relational technology, both PostgreSQL and
SQL are being used. Different types of databases are used by different teams, and
this is possible since work is executed in Google Cloud Platform where several
database technologies are supported. Many teams are using Postgres though, and
Postgres can be used at an enterprise level and is also open source. There are peo-
ple at IKEA who are well experienced with Postgres. The interviewee describes it
as being a very mature database in a sense.

The team responsible for developing the SDM tool has tried to optimize the total
flow, since the flow is quite big. The information is coming from different environ-
ments and there is an internal latency when the data is flowing through different

Result 35

channels and different systems. For example, whenever a coupon is used there is
a desire for information about all the details, but that would take some time to
provide. First, the basic information, order number and coupon number, is pro-
vided so the coupon can be marked as resolved. Then, later on, the whole data is
provided so that all information can be appended which is one way of optimization.

Another kind of optimization is the way the data will be stored before the process-
ing has been done. There is not a lot of things done to the data when it is received.
The most important task is to update the database. Later on, the other processes
can take over the work of different jobs that needs to be done. This is another type
of optimization that is possible to do. Whenever one is working with a transaction
type of data, time is essential. It is important in an optimization point of view to
get the information as soon as possible, according to the interviewee.

The most common extraction of data is discount related data. Discount informa-
tion is stored in discount tables, and the coupons are stored in their corresponding
coupon tables. Data is extracted whenever somebody is modifying the data. For
example, DATE is one important field that indicates if the discount is valid or not.
Searches are made to the database to answer these questions (among others): what
is the status of the discount, what is the qualification type, on what items should
the discount be applied? This is more like a business perspective, they said. The
team responsible for developing the SDM tool are providing the discount informa-
tion to another team who then uses this information when calculating the pricing.
If there are any changes made to the discount, the other team is updated about
the changes allowing them to do the right adjustments for the price calculations.

Whenever a discount is set up or changed, inserts and updates are made. Coupon
data is often updated since updates are made when a coupon is used. For the
database, transactions per seconds (TPS) is somewhere between 2000 to 5000.
Since the system is hosted on Google Cloud Platform, it can scale to that number.
The scaling is based on the requirements Google Cloud platform has. The inter-
viewee can’t point at an exact number, but the database can cater to thousands of
requests per seconds, especially for the coupon related information because that is
more of a transactional or live thing since the coupon has to be killed once it is used.

When asked about the most frequent searches, the interviewee emphasized that
SDM is for the co-workers. They use it to get discount information or coupon
information, those are the most common objects of business items that would
be fetched. There are searches within the tool itself, but those searches mainly
concern item information; when a discount is created, a search for which items
the coupon or discount is valid for has to be done. If a specific discount is being
searched for, the search is done based on the discount name or discount ID, the
status of the discount or some other information. The search will not be very much
like NLP or language-based text - it is mainly directed. With respect to discounts
or coupons, the users of the SDM system know what they are looking for so they
directly set for the right information. The users know the system and the business
domain, making their searches quite different from if it was customers doing the

36 Result

searches.

The challenges that are faced when developing the SDM tool concern the integra-
tion with the other systems. For example, when a software engineer is working
with SDM, they cannot sit by themselves. Instead, they need to talk with the peo-
ple who are developing other tools within the IKEA ecosystem. This is because it
is all intricately connected. Integration is an issue because the integration must be
in place with the right kind of authentication and authorization, the interviewee
explained. With a big company like IKEA, where thousands of tools are being
used, there are always these kinds of challenges.

Finally, questions were raised whether they would benefit from using other database
technologies, like graph databases. About Graph databases, the interviewee claimed
there are tools for capturing the BPM and not for creating. It is for the coupons
and how data is coming to BigQuery which can be exported from there. They
can be exported to different BPM utilized by finding out the trends and how the
discounts are performing.. It can show how the discounts are performing, the to-
tal amount of items, and the number of orders that are using a specific discount.
Business users who are looking at the long-term trends take this information into
other tools. The data can be supported by other tools, graph databases or other
BPM tools, where it can be used for analysing and studying the trends.

5.2 Latency

For determining the latency of each one of the DBMSs mentioned throughout the
thesis, benchmarking was conducted and the execution time of all those DBMSs
was hence determined. The most used queries were initially identified with the
help of the software engineer who was interviewed for this thesis, and these are
listed in Appendix B. Thereafter, the testing was able to be conducted and the
execution time for every DBMS was established and listed down below. Due to the
establishment of the execution time of each DBMS, it was possible to determine
which of the queries were the most performance demanding.

None of the DBMS’s were able to execute query #1, #2, #7 or #8. Query #1 and
query #2 could not be executed because those queries require encryption functions
the thesis workers did not have access to. Query #7 and query #8 could not be
executed since the thesis workers did not have access to the tables on which the
queries were to be performed. Query #4 could not be performed on the Mon-
goDB database nor the MariaDB database since no corresponding functions could
be found for the Postgres specific array_agg() function. Query #10 could not be
performed on the MariaDB database due to problems migrating the data. The
queries that could not be executed are marked with "-". An overview showing the
execution times of each DBMS can be seen below, in table 5.1.

Result 37

Table 5.1: An overview of the query execution time for each
DBMS.

MongoDB MariaDB Neo4j Postgres
1 - - - -
2 - - - -
3 < 1 ms 0.7684 ms 254 ms 0.497 ms
4 - - - 0.792 ms
5 11 ms 0.8266 ms 3 ms 0.360 ms
6 < 1 ms 0.6975 ms 46 ms 0.7862 ms
7 - - - -
8 - - - -
9 < 1 ms 0.7125 ms 140 ms 0.175 ms
10 < 1 ms - 328 ms 0.208 ms
11 < 1 ms 0.7862 ms 217 ms 0.195 ms
12 < 1 ms 8.7665 ms - 0.163 ms
13 < 1 ms 0.6892 ms 145 ms 0.171 ms
14 < 1 ms 0.7183 ms 117 ms 0.320 ms
15 < 1 ms 0.8266 ms 8 ms 0.7862 ms

5.2.1 MongoDB Latency

A list of the execution times from the MongoDB benchmarking for the most ex-
ecuted queries. In table 5.2, the executed queries are lined up from fastest to
slowest. There were a couple of queries that were not able to be run for assorted
reasons, these are therefore marked with "-".

38 Result

Table 5.2: A table of MongoDB’s execution times.

Execution time
3 < 1 ms
6 < 1 ms
9 < 1 ms
10 < 1 ms
11 < 1 ms
12 < 1 ms
13 < 1 ms
14 < 1 ms
15 < 1 ms
5 11 ms
1 -
2 -
4 -
7 -
8 -

Additionally, for some of the queries being evaluated in the MongoDB benchmark-
ing, no exact value for the execution time was provided by the DBMS. This is due
to MongoDB not being able to estimate the exact duration when the execution
time is less than 1 millisecond. Therefore, it is known that the queries were exe-
cuted faster than 1 millisecond, but the exact duration is unknown.

5.2.2 MariaDB Latency

A list of the execution times from the MariaDB benchmarking for the most ex-
ecuted queries. In table 5.3, the executed queries are lined up from fastest to
slowest. A couple of queries were not able to be run for assorted reasons, these
are therefore marked with "-".

Result 39

Table 5.3: A table of MariaDB’s execution times.

Execution time
13 0.6892 ms
6 0.6975 ms
9 0.7125 ms
14 0.7183 ms
3 0.7684 ms
11 0.7862 ms
15 0.8266 ms
12 8.7665 ms
5 9.0706 ms
1 -
2 -
4 -
7 -
8 -
10 -

5.2.3 Neo4j Latency

A list of the execution times from the Neo4j benchmarking for all the most ex-
ecuted queries. In table 5.4, the executed queries are lined up from fastest to
slowest. There were a couple of queries that were not able to be run for assorted
reasons, these are therefore marked with "-".

Table 5.4: A table of Neo4j’s execution times.

Execution time
5 3 ms
15 8 ms
6 46 ms
14 117 ms
9 140 ms
13 145 ms
11 217 ms
3 254 ms
10 328 ms
1 -
2 -
4 -
7 -
8 -
12 -

As can be seen in the table, the final execution times coming from benchmarking
Neo4j showed to be extremely high in comparison to the other DBMSs.

40 Result

5.2.4 Postgres Latency

A list of the execution times from Postgres’ benchmarking for the most executed
queries. In table 5.5, the executed queries are lined up from fastest to slowest.
There were a couple of queries that were not able to be run for assorted reasons,
these are therefore marked with "-".

Table 5.5: A table of PostgreSQL’s execution times.

Execution time
15 0.051 ms
6 0.103 ms
12 0.163 ms
13 0.171 ms
9 0.175 ms
11 0.195 ms
10 0.208 ms
14 0.320 ms
5 0.360 ms
3 0.497 ms
4 0.792 ms
1 -
2 -
7 -
8 -

5.2.5 The Most Performance Demanding Queries

When it came to MongoDB, MariaDB and Postgres, none of the results from ex-
ecuting the queries showed that any of the DBMSs performed exceptionally bad.
When it came to Postgres, all the execution times were distributed within a small
range. MariaDB, by contrast, had two queries that were a lot slower than the
rest: #5 and #12. The fastest execution times ranged from 0.6892 milliseconds to
0.7862 milliseconds while the two slowest execution times were more than 8 mil-
liseconds for MariaDB. Ninety percent of MongoDB’s execution times were below
1 milliseconds while one of the queries, which was query #5, had an execution
time of 11 milliseconds. When comparing the execution time of this query to how
the same query performed with MariaDB and Postgres, it was also MariaDB’s
most performance demanding query while it was the third slowest one when it
came to Postgres. Since this query acted similarly in three of the DBMSs, it can
be deduced that query #5 is most likely the most performance demanding query,
despite it not performing exceptionally bad.

Lastly, Neo4j was the one DBMS that was performing the worst regarding every
one of the queries that it could be evaluated for. The query that was the most
performance demanding in the other DBMSs, query #5, was the one that per-
formed the best when it came to Neo4j, with an execution time consisting of 3

Result 41

milliseconds. Query #10 was the one that was the most performance demanding
in Neo4j and when comparing it to the other DBMSs it had one of the better
execution times.

5.3 Signal-to-noise ratio results

In this section, the signal-to-noise ratio for the most used queries will be discussed
in relation to the DBMSs on which the benchmarking has been carried out in this
thesis.

5.3.1 SNR-ratio in relational databases results

The biggest signal-to-noise ratio in a relational database is produced by compli-
cated queries with one or multiple JOIN statements, performed on big datasets.
This is due to the big amount of data that must be processed for such a query.
Luckily, no such queries were found in the list of most executed queries. Instead,
almost every one of the queries were performed using indexing. Those that were
not performed using indexing were performed on small tables and, most impor-
tantly, these tables could be optimized by applying indexes. Due to the possibility
to apply indexing on an attribute being the subject to SELECT x WHERE y =
z statements, the SNR can be kept low when using a relational DBMS for storing
discount data at IKEA.

5.3.2 SNR-ratio in Graph DBMSs

Since the Postgres discount database was migrated to the Neo4j database used
for testing by transforming every row to a node, without creating any connections
between the nodes, the graph technology method of significantly reducing SNR
by traversing related nodes was not used. This, in combination with the fact that
Neo4j is bad at indexing other types of data than full-text, makes it probable that
Neo4j has to travel through all nodes of a specific type when looking for a node,
or multiple nodes, with a certain attribute. In a dataset with thousands of nodes,
as is the case for a couple of the queries, this, in theory, makes the SNR quite high
and a lot higher than the SNR for the relational database.

5.3.3 Amount of Processed Data

MariaDB, MongoDB and Postgres all use the same way of keeping the amount of
data that must be processed to a minimum, by indexing the data. Since all the ta-
bles are indexed, except for the table in query #5, it might not come as a surprise
that query #5 is exceptionally slow using all of the three DBMSs. In relation to
the examined database in this thesis, this exceptionally slow query could easily be
optimized to perform at a fraction of the time measured just by indexing the table.

There are no join operations occurring among the most used queries. Considering
all the most used queries are operations performed on data that can easily be sifted

42 Result

out from a big set of data points by using indexed tables, the signal-to-noise ratio
can be kept at a minimum.

Result 43

3 5 6 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

Query [number]

E
xe

cu
ti

on
ti

m
e

[m
ill

is
ec

on
ds

]

MongoDB MariaDB Postgres

Figure 5.1: An overview of the execution times of the queries
that were executable in all DBMSs except for
Neo4j.

44 Result

5.4 Scalability

In this section, the results of how well the various DBMSs responded to the incre-
ment and decrement of the amount of data are presented. The data was increased
by a factor three and are presented with the final execution times of each DBMS
and a percentage difference.

5.4.1 MongoDB Scalability

A table displaying the normal execution times from the MongoDB benchmarking
for the most executed queries, along with the execution times when increasing the
data by a factor three. Additionally, the difference between these two execution
times have been calculated and divided by the old execution time and are pre-
sented as percentages. The executed queries are lined up from fastest to slowest.
A couple of the queries were not able to be run for assorted reasons, these are
therefore marked with "-". An overview of the execution times for each query is
shown in table 5.6.

Table 5.6: An overview of MongoDB’s execution times.

Execution time Execution time (3x data) Difference
3 < 1 ms 3 ms > 200 %
11 < 1 ms 3 ms > 200 %
6 < 1 ms < 1 ms ?
9 < 1 ms < 1 ms ?
10 < 1 ms < 1 ms ?
12 < 1 ms < 1 ms ?
13 < 1 ms < 1 ms ?
14 < 1 ms < 1 ms ?
15 < 1 ms < 1 ms ?
5 11 ms - ms -
1 - - -
2 - - -
4 - - -
7 - - -
8 - - -

5.4.2 MariaDB Scalability

A table displaying the normal execution times from the MariaDB benchmarking
for the most executed queries, along with the execution time when increasing the
data by a factor three. Additionally, the difference between these two execution
times have been calculated and divided by the old execution time and are pre-
sented as percentages. The executed queries are lined up from fastest to slowest.
A couple of queries were not able to be run for assorted reasons, these are therefore
marked with "-". An overview of the execution times for each query is shown in

Result 45

table 5.7 and a visual overview is presented in figure 5.2.

Table 5.7: An overview of MariaDB’s execution times.

Execution time Execution time (3x data) Difference
11 0.7862 ms 5.6061 ms 613.1 %
14 0.7183 ms 2.6865 ms 274.0 %
9 0.7125 ms 2.5853 ms 262.8 %
15 0.8266 ms 2.8767 ms 248.0 %
3 0.7684 ms 2.594 ms 237.6 %
6 0.6975 ms 1.5889 ms 128.0 %
13 0.6892 ms 0.9284 ms 25.8 %
12 8.7665 ms 10.3208 ms 17.7 %
5 9.0706 ms 4.574 ms -49.6 %
1 - - -
2 - - -
4 - - -
7 - - -
8 - - -
10 - - -

46 Result

3 5 6 9 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

Query [number]

E
xe

cu
ti

on
ti

m
e

[m
ill

is
ec

on
ds

]

MariaDB Before MariaDB After

Figure 5.2: The before and after results of MariaDB.

5.4.3 Neo4j Scalability

A table displaying the normal execution times from the Neo4j benchmarking for
the most executed queries, along with the execution time when increasing the data
by a factor three. Additionally, the difference between these two execution times
have been calculated and divided by the old execution time and are presented as
percentages. The executed queries are lined up from fastest to slowest. A couple
of the queries were not able to be run for assorted reasons, these are therefore
marked with "-". An overview of the execution times for each query is shown in
table 5.8 and a visual overview is presented in figure 5.3.

Result 47

Table 5.8: An overview of Neo4j’s execution times.

Execution time Execution time (3x data) Difference
5 3 ms 51 ms 1600 %
15 8 ms 126 ms 1475.0 %
6 46 ms 136 ms 195.7 %
11 217 ms 257 ms 18.4 %
3 254 ms 298 ms 17.3 %
14 117 ms 129 ms 10.3 %
13 145 ms 150 ms 3.4 %
9 140 ms 132 ms -6.1 %
10 328 ms 294 ms -10.4 %
1 - - -
2 - - -
4 - - -
7 - - -
8 - - -
12 - - -

48 Result

3 5 6 9 10 11 13 14 15
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

Query [number]

E
xe

cu
ti

on
ti

m
e

[m
ill

is
ec

on
ds

]

Neo4j Before Neo4j After

Figure 5.3: The before and after results of Neo4j.

Result 49

5.4.4 Postgres Scalability

A table displaying the normal execution times from Postgres’ benchmarking for
the most executed queries, along with the execution time when increasing the data
by a factor three. Additionally, the differences between these two execution times
have been calculated and divided by the old execution time and are presented as
percentages. The executed queries are lined up from fastest to slowest. A couple
of the queries were not able to be run for assorted reasons, these are therefore
marked with "-". An overview of the execution times for each query is shown in
table 5.9 and a visual overview is presented in figure 5.4.

Table 5.9: An overview of Postgres’ execution times.

Execution time Execution time (3x data) Difference
3 0.497 ms 14.947 ms 2907.4 %
5 0.360 ms 7.923 ms 2100.8 %
13 0.171 ms 1.280 ms 648.5 %
4 0.792 ms 2.811 ms 254.9 %
11 0.195 ms 0.625 ms 220.5 %
14 0.320 ms 0.529 ms 65.3 %
10 0.208 ms 0.315 ms 51.4 %
6 0.103 ms 0.117 ms 13.6 %
15 0.051 ms 0.055 ms 7.8 %
9 0.175 ms 0.188 ms 7.4 %
12 0.163 ms 0.042 ms -74.2 %
1 - - -
2 - - -
7 - - -
8 - - -

50 Result

3 4 5 6 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Query [number]

E
xe

cu
ti

on
ti

m
e

[m
ill

is
ec

on
ds

]

Postgres Before Postgres After

Figure 5.4: The before and after results of Postgres.

Result 51

5.5 Licensing

In this section, the licensing costs are compiled. For each DBMS, the most fitting
licensing has been chosen, i.e., the Enterprise Licensing. The reasoning behind the
choice of this kind of license is due to the fact that the thesis has been made in
cooperation with IKEA IT. Considering IKEA is a big company, the Enterprise
Licensing was decided to be the best fit; that is if an enterprise license actually
exists in each one of the DBMS. For more information about the basis for choosing
the Enterprise license, see chapter 4.1.4. A concise summary of the chosen license
and the licensing costs can be viewed in table 5.5, and an explanation of what is
included in the license is given below.

Table 5.10: An overview of the most fitting licenses.

DBMS License name Link
MariaDB MariaDB Enterprise mariadb.com/pricing/
MongoDB MongoDB Enterprise Advanced mongodb.com/pricing

Neo4j

Neo4j Enterprise Edition:
1. Neo4j Commercial License
2. Neo4j Developer License
3. Neo4j Evaluation License

neo4j.com/licensing/

Postgres - postgresql.org/about/licence/

5.5.1 MongoDB

MongoDB offers only one type of enterprise licensing, called Enterprise Advanced.
The service is described as "a collection of products and services that drive security,
efficiency, and put you in control of your MongoDB databases" [28]. This licensing
consists of three segments:

1. Database management

2. Data and Business Protection

3. Support and services

Database management includes automation, monitoring, optimization and back-
ups. Data and Business Protection include auditing, encryption, authentication
and commercial license. Finally, Support and services include technical support
and additional MongoDB services.

An across-the-board cost for the MongoDB enterprise licensing is not printed on
the website. Instead, they encourage those who are interested in buying the en-
terprise license to request a quote.

52 Result

5.5.2 MariaDB

There are several features included when taking the decision of incorporating Mari-
aDB with the database of one’s choice, especially when it comes to the MariaDB
Enterprise License. The differences that come with choosing this license over the
Community License include getting better support, e.g. The support that is in-
cluded in this one and not in the Community version is technical support, alerts
when it comes to security, bug fixes, among others [31]. Besides these features,
one other big component that is included in this license is the actual Enterprise
server. These include both row- and columnar storage, object storage, backups,
clusters, audits, etcetera [31]. The pricing for this license varies and can only be
found out when requesting a quote through the MariaDB website.

5.5.3 Neo4j

The Enterprise Licensing scheme Neo4j offers consists of the following three li-
censes:

• Neo4j Commercial License.

• Neo4j Developer License.

• Neo4j Evaluation License.

With the use of the Enterprise License, the size restriction when it comes to the
graphs is that it has no upper boundary. Besides the absence of size limitations,
support is also included in this type of licensing [32]. The Commercial License
is essentially the full version of the Neo4j Enterprise License. Due to this, all of
the features are included in the Commercial License, including the backup being
updated on an hourly basis, role-based access control and an one hour customer
support response [33].

Neo4j Developer License is free when creating an account through the registration
on their website [32]. Additionally, receiving a development license makes it pos-
sible to use Neo4j Enterprise on one’s own desktop [32].

Neo4j Evaluation License consists of the full Enterprise License, but the license is
only valid during a trial period [32]. Besides this, one can also receive help from
Neo4j when needed with the use of this license [32].

The price of the Enterprise Licensing can differ depending on if the applications
are of high or medium scale, as well as if they are cloud based or hosted on a
local machine [33]. When it comes to medium scale on cloud-based databases, the
price starts at $65 per month [33], while there is not a specified price when it is
concerning high scaled. Self-hosting does not have a specified price on the website
either. Meaning, in order for one to find out the price they would have to contact
Neo4j directly for a price assessment.

Result 53

5.5.4 Postgres

As stated on the Postgres website, Postgres is released under the PostgreSQL
License. The PostgreSQL license is described as "a liberal Open Source license,
similar to the BSD or MIT licenses" [29]. This means that the Postgres software,
along with its documentation, is completely free to use, copy, modify and distribute
[30]. It must be emphasized that the use of Postgres as a DBMS does not under
any circumstances entail any licensing costs for IKEA.

54 Result

Chapter 6
Conclusion

In the following chapter the conclusion of the thesis is presented. The end results
have been summarized with answers to the questions stated in chapter one along
with ethical aspects and development opportunities for the work in this thesis to
be continued in the future.

6.1 Discounting trends

What are the trends regarding discounts, both at IKEA
and in the retail industry in general?

As explained in chapter 2.1.1, discount trends tend to fluctuate, and they can
change overnight. The companies that have been exemplified in this thesis are
Foodora and Mio. Both different kinds of vouchers companies, along with IKEA,
can be viewed as companies that are always trying to incorporate current trends
into their selling scheme. With Foodora, various kinds of vouchers are usually of-
fered to their customers. Vouchers including those where a percentage is deducted
from the price of an order after the invitation of friends. When it comes to Mio,
which is another big furniture company in Sweden, the discounts that exist within
this company are usually in the shape of heavily discounted furniture. Some of
these discounts can be as high as 50 percent which usually occurs during specific
time-limited periods a number of times a year.

Lastly, the trends regarding discounts at IKEA consist of many different ones.
These trends include different discount strategies such as Family rewards that can
be obtained after becoming a member and receiving a IKEA Family Card, through
vouchers that can be either digital or physical. Furthermore, personalized coupons
and markdowns are also included. Markdowns are typically characterized by im-
plementing reductions on certain articles. In addition, diverse kinds of discount
types are being used at IKEA as well. These consist of amount-based discounts,
combined discounts, quantity discounts and tiered discounts, along with various
bundles.

55

56 Conclusion

6.2 Data handling at IKEA

The conclusion after researching and conducting interviews to learn about how
the discount data is being handled at IKEA, i.e., how it is being used and stored,
are presented in the following section.

6.2.1 Usage of discount data

How is discount data being used at IKEA today?

The usage of the discount data was uncovered through the help of the software
engineer who was interviewed in one of the interviews. This help enabled the
possibility of receiving the most used queries, which are listed in Appendix B,
being executed in the production database for storing discount data at IKEA.
Several of the most used queries consisted of non-complex ones, such as finding
out all the discounts or coupons belonging to a certain ID but also finding out the
time zone for a specific country, among others. The conclusion that can be drawn
from this is that the discount data that is used by IKEA today is not for the most
part used in order to find out the various discounts, but to find out other aspects
that have to do with these discounts.

6.2.2 Storage of discount data

How is discount data being stored at IKEA today?

As emerged in the interview with the software engineer (interviewee #2), discount
data at IKEA is stored in a Postgres database hosted on Google Cloud Platform.
Due to Postgres being a relational database, data is stored as records, or rows,
inside a schema. The database in question is made up of several schemas, closely
connected through the use of primary and foreign keys.

6.3 What makes a DBMS good for storing discounts

What are the advantages and disadvantages associated
with different database technologies on a general level?
What criteria are to be considered useful in a database

technology handling discounts?

The advantages and disadvantages associated with the different DBMSs on a gen-
eral level differ depending on the DBMS itself and the context in which it is used.

Conclusion 57

There are several criteria considered useful in a database technology handling
discount. The most important ones are brought up in this section, along with
reasons behind why they are to be considered useful.

6.3.1 Big Community

It is important that a DBMS for storing discounts at IKEA is backed up by a
big community. A big community facilitates the work of storing and using the
discount data as of today in several ways. It makes it easier to find competent
people as in people who master the technology, and it also makes the work easier
since it should be easier to find information and useful solutions when encounter-
ing problems if the technology itself is prevalent.

As established in the interview with the software engineer at IKEA, the IT systems
at IKEA are made up of smaller systems that are integrated with one another into
a big ecosystem. A bigger community should make this integration smoother,
since a more prevalent DBMS should have more ready-made solutions than a less
prevalent one. Also, it is of importance the DBMS does not get outdated and
that the technology itself keeps getting used by a large number of people. It is
important the DBMS keeps getting updated and patches keep getting addressed.

6.3.2 Fast responses (low latency)

As the interviewed software engineer at IKEA explained, time is essential when
it comes to discount information. When a coupon has been used, for instance, it
must die instantly. If not, the coupon can be used several times which is something
that is not desired. Therefore, it is important that the system responds as fast as
possible, allowing the information to get updated or fetched quickly.

6.3.3 Cost Effectiveness

There is an economical aspect to what makes a database technology useful. Since
a big community enables the software engineers to work more efficiently, a DBMS
being backed up by a big community should be more cost effective, at least re-
garding resources such as workforce.

Other than workforce, there are two major categories of resources that are inter-
esting to look into from an economical perspective - licensing and hardware. For
big companies like IKEA, an enterprise licensing is needed and as concluded in
section 5.5.4, such a licensing is only without cost for Postgres and none of the
other DBMS mentioned in this thesis.

6.4 Benchmarking results

Due to there not being a definite execution time to be derived from the MongoDB
testing database, the benchmarking result is inconclusive. What can be estab-
lished, however, is that Postgres is faster, i.e., has a lower extent of latency, than

58 Conclusion

MariaDB. It is not possible to draw any conclusions about how fast MongoDB is in
relation to MariaDB and Postgres other than when observing the result for query
#5 where both MongoDB and MariaDB prove to be a lot slower than Postgres.
Moreover, the query that had the best performance in Neo4j was the query that
was the slowest in the others, query #5, while query #10 was the slowest. Due to
MongoDB not providing the exact duration for an execution, there is not enough
basis for an overall picture.

There could be at least two reasons for why query #5 is exceptionally slow for
MongoDB and MariaDB, that query #10 was the slowest in Neo4j and that query
#12 is exceptionally slow for MariaDB. The easiest explanation is probably that
MariaDB and MongoDB is much slower than Postgres. But if that is the case,
does this only show when executing these queries? Another possibility is that
something failed in the setup of the MongoDB and MariaDB databases, possibly
some indexing that got lost.

6.5 Performance

How does the four different database technologies
perform in relation to the criteria answered previously?

Based on what was mentioned in the previous subsection about what makes a
DBMS good for storing discounts, the performance of the four different technolo-
gies in relation to these criteria vary depending on the DBMS in question. When
it comes to having a big community, all these DBMSs fulfil this criterion. All of
them are among the most popular ones in their own technology and the ones that
are the most frequently used on a general DBMS level. As a result, a big commu-
nity exists within all of them with loads of forum threads that are there to help
if any kind of problem would occur. Furthermore, speaking about having a low
latency and fast responses really depends on the expectation. All these DBMSs
are pretty fast, generally speaking, but comparing all of them to each other re-
flects a completely different aspect as there are clear winners when it comes to this
criterion. The same can be said about the economical aspect to it. Depending
on what each DBMS costs with respect to what features are offered in the actual
costs can have major impacts when it comes to deciding which ones are the most
worthwhile ones. As mentioned in 5.5.4, Postgres is the only DBMS that does not
have a cost at all, making it the clear winner regarding this.

6.5.1 Signal-to-Noise Ratio Reflections

As concluded in the result chapter, the Neo4j database should have a higher SNR
than the relational databases. It was not part of the result, but the thesis workers
noted that the query did not run faster after appropriately indexing the node type.
A high signal-to-noise ratio is strongly connected to the performance. Therefore,

Conclusion 59

a high SNR may be the reason for the Neo4j database to be many times slower
than all the relational databases that had been tested.

In Neo4j’s defence, the test was not fair. A fairer experiment would have been to
set up a database that utilizes the advantages of the graph technology. On the
other hand, for the test to be completely fair, all the other databases should in that
case undergo corresponding optimization, if there is room for it. Optimization was
not within the scope of this thesis and was not included for that reason.

6.5.2 Scalability results

The end results when it comes to the scalability metric, which are shown in section
5.4, could arguably be inconclusive. As shown in 5.4.1, which is concerning the
scalability of MongoDB, the percentage differences were only able to be calculated
in two instances: for query #3 and #11. With only having two values, it is not
possible to give a clear picture of how MongoDB performs in general, which is
the reason it could be said that the results are inconclusive. In the case of the
few queries that were able to be estimated and presented, the differences show
remarkably high percentages: >200%. Meaning, based on only these two queries,
MongoDB does not handle increments very well when it comes to increasing the
amount of data points. In comparison to the other DBMSs, Postgres also has
query #3 as the one with the biggest difference with a percentage of 29074.4%
while MariaDB has query #11 as their top query that showed the worst results.
Furthermore, Neo4j had query #5 as the one with the worst result while Postgres
had it as their second worst one while MariaDB had the same query in last place,
as a difference below zero. Meaning, it went faster with this query after the in-
crement of data points compared to the execution of the fewer data points. The
reason for why this happened can be due to several factors, one could be that it
showed a result that was too high on the first execution with the fewer data points.
There is a possibility for this to happen when there are other programs working
on the computer simultaneously. The same happened to both Neo4j and Postgres
on one and two queries respectively and the same can be said about them when
it comes to this.

In conclusion, all the DBMSs have mixed results when it comes to their ability
of being able to handle increments and decrements well. Some queries ended up
getting better results than others with various patterns being able to be detected
when it came to a couple of the queries, making it seem like some of these were
executed with something happening in the background. In order to improve this,
what could have been able to be incorporated would have been to execute all of
the queries the same number of times and to thereafter calculate the mean values.
Additionally, these queries could have been executed on several different days to
minimize the possibility of something else running in the background during these
executions. A software for reducing interference from other programs running on
the computer could also have been used.

60 Conclusion

6.5.3 Performance Demanding Queries

As mentioned in section 5.2.5, query #5 was the most performance demanding
query in two out of four DBMSs and on the less demanding side in Postgres. In
Neo4j, by contrast, it was the least performance demanding query. The conclu-
sion that can be drawn by this circumstance is that, considering this query is an
UPDATE statement, it is highly likely that MariaDB, MongoDB and Postgres are
slower when it comes to this kind of statement in comparison to the SELECT
statements. The opposite can be said about Neo4j which seems to handle UP-
DATE statements better than SELECT statements. Since the databases in all
the DBMSs were indexed, it is likely to assume that some of these could have
been more performance demanding if they would have not had the indexes they
had. Especially considering some of the queries were executed on tables that had
many more data points than the rest. Query #15 is an example of this, where the
table coupon_campaign_t contains approximately 30 000 data points, making it
the largest table of them all. Despite this, it performed the best in Postgres and
among the best in Neo4j, in comparison to MariaDB where it performed among
the worst. Without the indexing, it would be highly likely that the performance
would have been worse since in that case it would not know where to look for the
value and therefore traverse through the entire table until it found the correct one.

Furthermore, Neo4j was by far, the worst performing DBMS. The difference in
execution time when it came to 80% of the queries were abnormally high. The
reason for this is most likely due to it not being configured properly, hence not
allowing it to show the correct execution times. Additionally, it showed the average
execution times and since the first execution time was always extremely high it
was therefore necessary to execute the same query multiple times to be able to
present the fairest execution times. It can therefore be stated that the answers are
inconclusive even on this one, in comparison to the other DBMSs. It is, however,
possible to compare the queries in Neo4j and draw conclusions from that. In
this case, the most performance demanding queries consisted of the ones where
the AND operator was present. Indicating that Neo4j responds badly when such
statements are included, assuming the differences in execution times are somewhat
correct despite the execution times as a whole being most likely wrong.

6.6 Thesis Purpose Fulfillment

The conclusions that are derived from the results of both the initial questions
that were presented in the beginning of the thesis in section 1.5 and the metrics
determination that were presented in 2.4.1, have had major contributions to ful-
filling the purpose of this thesis. The main purpose was to investigate and find out
if there is a database technology that is better suited for storing discounts than
the one that is currently in use. With the help of the initial questions and the
various metrics, the results have been helpful in determining this. Incorporating
the determined metrics, enabled the execution of the benchmarking. Moreover, it
contributed to the knowledge of what to explore in an effort to discover the correct
answers to fulfill the purpose. In addition, the questions were helpful due to it

Conclusion 61

being possible to move forward with quantitatively measuring each metric thanks
to the information that came from the answers to the questions. One instance
that shows this is the handling of data at IKEA, how it is being used and stored.
After finding out this information, it was possible to determine the metrics and
execute the actual benchmarking. The results indicated that Postgres, which is
the one that is currently being used when it comes to storing discounts, is the one
that came out on top when it came to most of the metrics. In this case, the results
can be used by not transferring to a different database technology, but to keep
using the existing one. This was also supported by the software engineer who in
the interview stated that Postgres worked well and did not see a reason for them
to switch to a different database technology.

6.7 Ethical aspects

The ethical aspects regarding the subject of this thesis have been reflected on and
are presented in the following section.

6.7.1 Interviewee anonymity

For ethical purposes, certain measures have been taken to keep the anonymity of
the interviewees. Before acting, a definition of what is an acceptable minimum
level of anonymity had to be decided. The thesis workers define it as acceptable
if people outside the company should not be able to identify the persons being
interviewed.

To uphold this level of anonymity, naturally, none of the interviewees are named
in this report. Information about gender and other attributes that enable identifi-
cation are left out. Another way of anonymizing the interviewees is to not attach
a transcription of the interviews, but to summarize the most important parts of
the discussions and leave out what is irrelevant or unnecessarily disclosing.

6.7.2 The effect of discounts

Discounts on products gives the customers an incentive and makes their desire
for buying these products even greater. Thus, their incline for impulse purchases
can become higher, leading them to buy products they in fact do not actually
need or really want. This can lead to negative implications in their private lives,
where buying discounted items becomes a vicious circle that keeps them purchas-
ing products for no reason and possibly for money they do not have, leading them
into debt. Even though the example just described is of the more severe type,
it does not take away from the fact that discounts can be damaging to people
who are more susceptible to that kind of selling scheme. Even though it is not
something that happens to all people or affect them in negative ways, the effects
of discounts are something of importance that should be kept in one’s mind.

Moreover, one of the many visions that exists within IKEA is the incorporation of
a so-called democratic design. What is considered a democratic design by IKEA

62 Conclusion

is when a product fulfils the following five criteria [47]:

• Function

• Form

• Quality

• Sustainability

• Low price

There are thus multiple criteria that every product must fulfil, and therefore there
has to be some kind of balance where some criteria are more important than
others, in order to achieve all of them. One product that is the prime example
of this balance is the FLISAT desk that is designed for children. It is sold for a
decent price and the height of it can be adjusted and it can therefore continue to
be used by the child for many years ahead [47]. Additionally, it is made of wood
that is renewable but also sustainable, hence making it the perfect example of a
democratic design [47]. Even though the severe consequences of discounts that was
mentioned in the previous paragraph has a possibility of happening to individual
people, the vision IKEA has can still give some additional advantages.

6.8 Development opportunities

The developmental opportunities for investigating the best DBMS for discounts
are many. One of these opportunities is to conduct testing for additional metrics.
In the initial stages of this thesis, two metrics were formulated that were down-
prioritized and unfortunately did not fit into the time scope. These metrics are:

3. Signal-to-noise ratio

• Determine for every DBMS (see chapter 2.3) respectively the amount
of data that must be processed to perform the most commonly used
queries (create, read, update, delete).

5. Memory

• Identify the amount of memory each DBMS (see chapter 2.3) requires
to store the database.

• Establish how much cache memory is used by each DBMS (see chapter
2.3) in the CPU.

• Identify how much RAM, i.e., working memory, is used by each DBMS
(see chapter 2.3) when performing the most commonly used queries
executed in the currently in use Postgres database for storing discounts
at IKEA.

• Establish for each DBMS (see chapter 2.3) which of the queries iden-
tified as being most used in the current database require the most
RAM.

Conclusion 63

Another way of investigating further is to conduct the same type of testing for
different DBMSs belonging to the same technology, preferably belonging to the
technology from which the DBMS that is deemed the best fit in this thesis belongs
to, to find the best fit DBMS and not only the best fit technology.

For an even better evaluation and to better answer the question of the best fit
database technology for discounts, the same testing that had been done in this
thesis could be conducted but with several DBMS alternatives competing for the
same technology. This would ensure a better representation of each technology.

Lastly, this thesis is restricted to determine the best fit database technology for
discounts from only four database technologies. The best fit database technology
might not be one of these four, but some other technology that was not evaluated
in this thesis. Therefore, one development opportunity is to broaden the search
for the best fit database technology.

64 Conclusion

Chapter 7
Terminology

DDL DDL, which stands for Data Definition Language, is defined by
IBM as "a language for describing data and its relationships in a
database" [49].

NLP NLP, which stands for Natural Language Processing, is defined as
the following by IBM as "[...] the branch of artificial intelligence
or AI—concerned with giving computers the ability to understand
text and spoken words in much the same way human beings can"
[50].

ORDBMS Object-relational database management system

RDBMS Relational database management system

TPS TPS, which stands for Transactions per second, is the number of
transactions that occur each second.

65

66 Terminology

References

Articles

[1] Cl.cam.ac.uk. 2022. A Gentle Introduction to Relational and Object Oriented
Databases. [online] Available at: <https://www.cl.cam.ac.uk/ fms27/db/tr-
98-2.pdf> [Accessed 1 February 2022].

[2] Tecmint.com. 2020. What is MariaDB? How Does MariaDB Work?. [on-
line] Available at: <https://www.tecmint.com/what-is-mariadb-how-does-
mariadb-work/#:∼:text=Just%20like% 20MySQL%2C%20MariaDB%20also
,can%20be%20on%20different%20hosts> [Accessed 2 February 2022].

[3] Ieeexplore-ieee-org.ludwig.lub.lu.se. 2021. Designing User Inter-
face with UML and CRUD Concept for IoT-Based Water Qual-
ity Analysis Tool. [online] Available at: <https://ieeexplore-ieee-
org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=arnumber=9650608> [Accessed 3
February 2022].

[4] Medium.com. 2018 Meet the Query Log Analyzer - Analyz-
ing Neo4j Query Log files on your Neo4j Desktop. Available at:
<https://medium.com/neo4j/meet-the-query-log-analyzer-30b3eb4b1d6>
[Accessed 10 May 2022].

[5] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins, “A
comparison of a graph database and a relational database,” Proceedings of
the 48th Annual Southeast Regional Conference on - ACM SE ’10, 2010.

Books

[6] E. Plugge, P. Membrey, T. Hawkins The Definitive Guide to MongoDB: The
NoSQL Database for Cloud and Desktop Computing New York: Springer-
Verlag, 2010.

[7] J. Gray, A. Reuter Transaction processing: Concepts and techniques. San
Mateo: Morgan Kaufmann, 1993.

67

68 References

[8] R. J.T Dyer Learning MySQL and MariaDB: Heading in the Right Direction
with MySQL and MariaDB. Newton: O’Reilly Media, Inc, 2014.

[9] D. Bartholomew Getting Started with MariaDB. Birmingham: Packt Pub-
lishing, 2013.

[10] F. Razzoli Mastering MariaDB. Birmingham: Packt Publishing, 2014.

[11] Teorey, T., Lightstone, S., Nadeau, T. and Jagadish, H., n.d. Database Mod-
eling and Design, 4th Edition.

[12] A. Lantz Intervjumetodik. Lund: Studentlitteratur, 2013.

[13] T. Stapenhurst The benchmarking book. Amsterdam: Elsevier, 2009.

[14] K. Alexanderson Källkritik på Internet: .SE:s Internetguide, nr 25. Ödeshög:
DanagårdsLiTHO, 2012.

Websites

[15] Oracle.com. 2022. What is a Relational Database (RDBMS)?. [on-
line] Available at: <https://www.oracle.com/database/what-is-a-relational-
database/> [Accessed 8 February 2022].

[16] Britannica.com. 2022. IKEA Swedish company. [online] Available at:
<https://www.britannica.com/topic/IKEA> [Accessed 8 February 2022].

[17] Ingka.com. 2022. Ingka Group governance. [online] Available at:
<https://www.ingka.com/this-is-ingka-group/how-we-are-organised/>
[Accessed 8 February 2022].

[18] Inter.ikea.com. 2022. One brand, many companies – the IKEA franchise sys-
tem. [online] Available at: <https://www.inter.ikea.com/en/this-is-inter-ikea-
group/the-ikea-franchise-system> [Accessed 8 February 2022].

[19] DB-Engines. 2022. DB-Engines Ranking. [online] Available at: <https://db-
engines.com/en/ranking/graph+dbms> [Accessed 1 February 2022].

[20] Neo4j Graph Database Platform. 2022. What is a Graph Database? - De-
veloper Guides. [online] Available at: <https://neo4j.com/developer/graph-
database/> [Accessed 1 February 2022].

[21] Neo4j Graph Database Platform. 2022. Concepts: Relational to Graph - De-
veloper Guides. [online] Available at: <https://neo4j.com/developer/graph-
db-vs-rdbms/> [Accessed 1 February 2022].

[22] Postgresql.org. 2022. PostgreSQL: About. [online] Available at:
<https://www.postgresql.org/about> [Accessed 1 February 2022].

[23] Mongodb.com. 2022. What is MongoDB?. [online] Available at:
<https://www.mongodb.com/what-is-mongodb> [Accessed 1 February
2022].

References 69

[24] Ibm.com. 2021. ACID properties of transactions. [online] Available
at: <https://www.ibm.com/docs/en/cics-ts/5.4?topic=processing-acid-
properties-transactions> [Accessed 31 January 2022].

[25] Ibm.com. 2021. What is a database management system?. [online] Avail-
able at: <https://www.ibm.com/docs/en/zos-basic-skills?topic=zos-what-is-
database-management-system> [Accessed 31 January 2022].

[26] Dictionary.cambridge.org. 2022. Meaning of
discount in English. [online] Available at:
<https://dictionary.cambridge.org/dictionary/english/discount> [Accessed
15 February 2022].

[27] Ikea.com. 2022. IKEA Family. [online] Available at:
<https://www.ikea.com/us/en/ikea-family/> [Accessed 16 February
2022].

[28] MongoDB. 2022. MongoDB Enterprise Advanced. [online] Available at:
<https://www.mongodb.com/products/mongodb-enterprise-advanced> [Ac-
cessed 15 April 2022].

[29] Postgresql.com. 2022. License. [online] Available at:
<https://www.postgresql.org/about/licence> [Accessed 18 April 2022].

[30] Opensource.org. 2022. The PostgreSQL License (PostgreSQL). [online] Avail-
able at: <https://opensource.org/licenses/postgresql> [Accessed 18 April
2022].

[31] Mariadb.com. 2022. Pricing. [online] Available at:
<https://mariadb.com/pricing/> [Accessed 18 April 2022].

[32] Neo4j.com. 2022. Neo4j Licensing. [online] Available at:
<https://neo4j.com/licensing/> [Accessed 18 April 2022].

[33] Neo4j.com. 2022. Neo4j Licensing. [online] Available at:
<https://neo4j.com/pricing/> [Accessed 18 April 2022].

[34] Mio.se. 2022. Mio. [online] Available at: <https://www.mio.se/> [Accessed
27 April 2022].

[35] Mio.se. 2022. Mio - Soffor, Möbler och Inredning | Mio. [online] Available at:
<https://www.mio.se/> [Accessed 27 April 2022].

[36] Foodora.com. 2022. Home | Delivery Hero. [online] Available at:
<https://www.foodora.com/> [Accessed 27 April 2022].

[37] Docs.microsoft.com. 2022. User mode and kernel mode - Windows
drivers. [online] Available at: <https://docs.microsoft.com/en-us/windows-
hardware/drivers/gettingstarted/user-mode-and-kernel-mode> [Accessed 27
April 2022].

[38] Postgres.org. 2022. 20.1. Setting Parameters. [online] Available at:
<https://www.postgresql.org/docs/current/config-setting.html> [Accessed
27 April 2022].

70 References

[39] Dbeaver.io. 2022. DBeaver Community | Free Universal Database Tool. [on-
line] Available at: <https://dbeaver.io/> [Accessed 3 May 2022].

[40] Dictionary.cambridge.org. 2022. Meaning of latency in English. [online] Avail-
able at: <https://dictionary.cambridge.org/dictionary/english/latency> [Ac-
cessed 6 May 2022].

[41] Mariadb.com. 2022. SHOW PROFILE. [online] Available at:
<https://mariadb.com/kb/en/show-profile/> [Accessed 6 May 2022].

[42] Mongodb.com. 2022. Explain Results. [online] Available at:
<https://www.mongodb.com/docs/manual/reference/explain-results/>
[Accessed 6 May 2022].

[43] Mongodb.com. 2022. db.setProfilingLevel(). [online] Available at:
<https://www.mongodb.com/docs/manual/reference/method/db.setProfilingLevel/>
[Accessed 6 May 2022].

[44] Dev.mysql.com. 2022 MySQL :: MySQL EXPLAIN ANALYZE. Available at:
<https://dev.mysql.com/blog-archive/mysql-explain-analyze/> [Accessed 8
May 2022].

[45] Community.neo4j.com. 2020 Query Log Analyzer 1.0.2 is released.
Available at: <https://community.neo4j.com/t/query-log-analyzer-1-0-2-is-
released/30752> [Accessed 10 May 2022].

[46] Neo4j.com. 2022 How-To: Import CSV Data with Neo4j Desktop. Available
at: <https://neo4j.com/developer/desktop-csv-import/> [Accessed 10 May
2022].

[47] About.ikea.com. 2022 Democratic Design. Making great design available to
everyone. Available at: <https://about.ikea.com/en/life-at-home/how-we-
work/democratic-design> [Accessed 13 May 2022].

[48] Neo4j.com. 2022 Concepts: Relational to Graph - Getting Started. Available
at: <https://neo4j.com/docs/getting-started/current/graphdb-vs-rdbms/>
[Accessed 16 May 2022].

[49] IBM.com. 2022 Generating DDL scripts. Available at:
<https://www.ibm.com/docs/en/radfws/9.6.1?topic=scripts-generating-
ddl> [Accessed 18 May 2022].

[50] IBM.com. 2022 What is Natural Language Processing?. Available at:
<https://www.ibm.com/cloud/learn/natural-language-processing> [Ac-
cessed 18 May 2022].

Appendix A
Interview Questions

A.1 Respondent 1

1. What is your job title?

2. What does your job entail?

3. What do the most common discounts look like?

4. Are the discounts incorporated differently depending on the department?

5. What are the current trends regarding discounts?

6. Do the discounts differ online compared to the ones in the stores?

7. How does IKEA differ in comparison to other retail stores?

8. How often do the discounts get updated?

9. How are the environmental values incorporated in the discounts?

10. What are the challenges when it comes to discounts?

11. What kind of tools are used when searching for different discounts?

12. When searching for discounts, which is the most common one?

13. How can we get access to a snapshot of currently available discounts glob-
ally?

A.2 Respondent 2

1. What is your job title?

2. What does your job entail?

3. What tools are being used in regards to the databases?

4. How do you use the data?

5. How is the SDM typically used?

6. Could you tell us a bit about the algorithm that calculates discounts?

71

72 Interview Questions

7. Are there any problems when it comes to the currently used database man-
agement system? Do the searches take a long time for instance?

8. Have you explored or considered any other DBMS’s than the relational?

9. What is the most common extraction of data that is performed?

10. How often is data inserted or deleted in the database?

11. How have you tried to optimize?

12. What do the most commonly used searches or reads look like?

13. What are the challenges concerning the database, the DBMS and the work
in general?

14. Do you think you would benefit from using another database technology,
like graph DB?

Appendix B
Queries

Query

1

SELECT CONVERT_FROM(decrypt(CAST(email_encrypted AS bytea),
CAST(:passCode AS bytea), ’aes’), ’utf-8’) AS emailEncrypted
FROM auth.user
WHERE email = :email;

2

SELECT id,
email_id_hash,
CONVERT_FROM(decrypt(CAST(email_id_encrypted AS bytea),

CAST(:passCode AS bytea), ’aes’),
’utf-8’) AS email_id_encrypted,

insert_dtime
FROM auth.user_t
WHERE email_id_hash = ?;

3

SELECT *
FROM auth.user_role AS userRole
WHERE userRole.user_id = :userId

AND userRole.active = true;

4

SELECT (ARRAY_AGG(country.cty_name
ORDER BY CasE lang_code_iso WHEN :langCode THEN

1 WHEN ’en’ THEN 2 ELSE 3 END))[1] AS data,
cty_code AS

value
FROM (SELECT lang_code_iso, cty_code, cty_name

FROM common.cty_lang_t
WHERE cty_code IN (:authorizedCountries)
ORDER BY cty_code) country

GROUP BY country.cty_code;

5 UPDATE auth.user set last_login_dtime=:currentDateTime WHERE
email=:emailIdHash;

6 SELECT discount_id FROM coupon.coupon_campaign_t WHERE id =
:campaignId AND status_code=30 AND type=’PRIVATE’;

73

74 Queries

7

SELECT ct.code, ct.schedule ->> ’startDate’ AS startDate, ct.schedule
->> ’endDate’ AS endDate
FROM coupon.coupon_campaign_t cct

JOIN
coupon.coupon_t ct on cct.id = ct.campaign_id AND cct.schedule ->>

’endDate’ >= :endDateValue
WHERE cct.id = :campaignId

AND cct.status_code = 30
AND cct.type = ’PRIVATE’
AND ct.status_code = 30
AND ct.remaining_redemption_limit > 0
AND ct.schedule ->> ’endDate’ >= :endDateValue;

8

SELECT ct.code, ct.schedule ->> ’startDate’ AS startDate, ct.schedule
->> ’endDate’ AS endDate
FROM coupon.coupon_campaign_t cct

JOIN
coupon.coupon_t ct on cct.id = ct.campaign_id

WHERE cct.id = :campaignId
AND ct.code in (:couponCodes);

9
SELECT *
FROM auth.user_preference_t
WHERE user_id = :id;

10

SELECT *
FROM auth.user
WHERE active = true

AND email = :email
AND delete_dtime is null;

11 SELECT * FROM common.country_t AS country WHERE coun-
try.cty_code = :countryCode AND country.active=true;

12
SELECT *
FROM discount.discount_t
WHERE id = :id;

13 SELECT timezone FROM common.TIMEZONE_T WHERE LOCALE =
?;

14 SELECT parent_bu_code FROM common.business_unit_t WHERE
bu_code= :buCode limit 1;

15 SELECT * FROM coupon.coupon_campaign_t WHERE id = :id;

Table B.1: The most commonly executed queries compiled in
a list with no specific order or prioritization.
Each query is numbered for ease of referencing.

Right fit Database Technology for Discounts

ALEXANDRA GALONJA & ANNELIE SINANDER
BACHELOR´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2022

A
LEX

A
N

D
R

A
 G

A
LO

N
JA

 &
 A

N
N

ELIE SIN
A

N
D

ER
R

ig
h

t fi
t D

atab
ase Tech

n
o

lo
g

y fo
r D

isco
u

n
ts

LU
N

D
 2022

Series of Bachelor´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2022-877
http://www.eit.lth.se

