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Abstract

Memory IPs are important components in SoC designs. Hence, making sure that
the memory IPs are functioning as expected is crucial for any organization. In
order to do so, memory IPs must be tested. In addition, the testing capabilities
can be enhanced by integrating a processor to the memory test chip. In this
project, an open-source PULPissimo platform based on RISC-V ISA (Instruction
set architecture) is used as this gives freedom to the system designer and the
organization to configure the processor core as per the requirements. Further
in this project, various checksum algorithms such as MD5, SHA-1 and SHA-256
are implemented in RTL which can be used to test the organization’s ROM IPs.
Subsequently, each of the algorithms are integrated to the PULPissimo to provide
a platform for testing the ROM IPs. Finally, various comparisons are made using
synthesized results. The three implemented algorithms are compared with respect
to the number of gates used and latency to identify the suitable algorithm for the
organization. Similarly, the cores in the PULPissimo are also compared to identify
the preferable core to be used by the organization.
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Popular Science Summary

21st century is a new chapter in human development enabled by extraordinary
technology advances. The speed, breadth and depth of these advancements de-
mand the organizations to create value. In the domain of semiconductor industries,
advances in technology have had a massive impact with numerous electronic de-
vices. According to Moore’s law, the number of transistors on a chip doubles every
two years. This has made drastic increase in cost per unit area while delivering
a lot more functionality within that area. A large portion of the silicon area of
many digital designs is dedicated to the storage of data. More than half of the
transistors in today’s designs are devoted to memories and this ratio is expected
to increase further. Hence, memories are very important and crucial components
to store data in the chips. To ensure their functionality and reliability, they need
to be tested and verified thoroughly.

Electronic memories come in many different formats and sizes. They are most
often classified as read-only (ROM) and read-write (RWM) memories based on
memory functionality. The RWM structures have the advantage of offering both
read and write functionality. Whereas ROMs are encoded and hardwired with
data that cannot be modified. Among the various testing techniques, MBIST is
the most popular one used by the organizations. However, MBIST algorithms
include steps which involve writing and reading. Hence, they are mostly suited for
read-write memories. Read-only memories, on the other hand, are tested for bit
functionality using various algorithms like checksum.

In this project, three checksum algorithms namely MD5, SHA-1 and SHA-256
were implemented to test the bit functionality of ROMs. In addition, these al-
gorithms were implemented in such a way that they could test any size of ROM.
Further, these algorithms were compared with respect to various parameters such
as area used and time taken to test the ROM. As a result of this comparison,
MD5 was chosen as it uses less area and also less time to verify. To further im-
prove the testing capabilities, a testing platform was considered for integrating the
developed algorithm modules. In this project, PULPissimo platform which is an
open-source platform was used to test the memories. Finally, the outcome of this
project provides a testing platform for the organization to test their memories.

iii
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Chapter ]_

Introduction

Development of SoC(System-on-Chip) is a complex and time-consuming process
for any organization. Having the resources and manpower to design and develop
every component in a SoC is not preferable for many organizations to be sustain-
able. Instead, they rely on the third party components, also referred to as IPs
(Intellectual Property). The licensing cost of the IPs can be avoided by using
open-source IPs to build the system and to exploit the flexibility of tailoring the
existing design to meet the organization’s requirements.

In the space of well-structured and matured open-source processor 1P, PULPissimo
designed by ETH Zurich is the most popular one. PULPissimo|2| is a microcon-
troller architecture of the more recent PULP (Parallel Ultra Low Power) chips.
This architecture uses open-source RISC-V ISA and is available completely with-
out any license cost on Github[6]. Making use of this open-source processor 1P
against other commercial licensed processor IPs such would be advantageous in
terms of license cost and flexibility in integrating new modules to the test chip
such as accelerators.

Testing and verifying the memory IPs is one of the rigorous processes carried
out by all the organizations. By having a processor core inside a test chip, the
testing of the memory IPs becomes flexible as it can be evaluated using various
algorithms besides mBIST|[3](Memory built-in self-test) which is currently used in
the semiconductor industry. Apart from the advantage of flexibility of customiza-
tion, one can also test the memories with real-time applications by integrating a
processor.

With the freedom to integrate new RTL modules to the PULPissimo, it will pro-
vide an opportunity to bring in a way to test the memory IPs. To test ROM IPs
in particular, various checksum[5] algorithms can be considered. A checksum algo-
rithm performs numerous mathematical operations to create an unique checksum
value for a given data. Typical checksum algorithms are MD5[13], SHA-1[14] and
SHA-256[15]. These algorithms can be used to measure the quality of the ROM
IPs.
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2 Introduction

1.1 Goal of the project

Memory IPs are important components in the current SoC designs. Making sure
that the memory IPs are functioning as expected is crucial for the organization.
In order to do so, they must be tested. At present, in Xenergic, the memory IPs
are tested using mBIST to ensure the functionality of the memories designed by
them. With the possibility of integrating a processor to the memory test chip,
the testing capabilities would be enhanced. In this project, this will be done using
open-source PULPissimo platform based on RISC-V ISA (Instruction Set Architec-
ture). This gives freedom to the system designer and the organization to configure
the processor core as per the organization requirements. The PULPissimo has two
different configurable cores namely Ibex(zero-riscy)[12] and RISCY. RISCY(11] is
an in-order, single-issue core with 4 pipeline stages whereas Ibex is an in-order,
single-issue core with 2 pipeline stages. It would be an interesting process to evalu-
ate these two cores as there could be a difference in the PPA (power-performance-
area) numbers and critical path due to the difference in the way the cores are
configured. This would help the organization to draw conclusions on which core
would be suitable for testing their memory IPs.

Further in this project, various checksum algorithms will be implemented in RTL
to test the ROM IPs. Checksum algorithms are used to verify the correctness of
the data bit stored in a memory location. To verify that the ROM IPs are func-
tioning as expected without a change in bit location value, testing the ROM IPs
with checksum algorithm plays a vital role. In this regard, RTL modules will be
designed for different checksum algorithms such as MD5, SHA-1 and SHA-256 for
verifying the ROM IPs. The designed RTL modules of the algorithms will further
be compared by using various parameters such as area, latency and critical path.
These modules will then be integrated to the PULPissimo platform to test the
ROM IPs.

Physical implementation of the PULPissimo with the integrated modules (algo-
rithms) will be performed and verified through post-synthesis simulation and post-
PnR simulation. The PULPissimo SoC will be programmed using the JTAGI4]
ports available on the PULPissimo.

1.2 Previous work

Past studies have been done in the comparison of various checksum algorithms
with respect to area, power and latency. In one of the study[9], M. Feldhofer, and
J. Wolkerstorfer made a comparison of Low-Power Hardware Implementations of
MD5, SHA-1 and SHA-256 algorithms. The summary of the results from this
study has been given in Table 1.1.
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Algorithm | Tech Area Power(uW) | Latency
(pm/V) | (gates) | @Q100kHz (cycles)
MD5 0.35/1.5 8001 4.74 712
SHA-1 0.35/1.5 8120 5.9 1274
SHA-256 0.35/1.5 10868 8.79 1128

Table 1.1: Checksum algorithms comparison - 1

In another study|[10], A. Satoh and T. Inoue made an ASIC-Hardware-Focused
comparison of checksum algorithms. Table 1.2 shows the comparison of different
checksum algorithms with respect to area and latency. These results provide the
required numbers to validate the work that will be carried out in this master thesis

project.
Algorithm | Tech(pum) | Area(gates) | Latency(cycles)
MD5 0.13 10332 68
SHA-1 0.13 7971 85
SHA-256 0.13 11484 72
Table 1.2: Checksum algorithms comparison - 2
1.3 Thesis Outline

The thesis is organized in the following chapters.

Chapter 1: Introduction - This chapter describes the main objective of
the thesis and why it is important to test the memory IPs.

Chapter 2: Theoretical Background - In this chapter, all the back-
ground information relevant to the present study is explained and the algo-
rithms used for testing ROM IPs are also discussed.

Chapter 3: Design of Checksum algorithms - Implementation of the
algorithms is explained in this chapter.

Chapter 4: Customization of PULPissimo - Here, the process of inte-
grating the algorithms to the PULPissimo is explained. Also, the changes
required for the PULPissimo to be synthesizable and the process of the
physical implementation are discussed in this chapter

Chapter 5: Results - In this chapter, the simulation results of the algo-
rithms are presented, and various results are compared.

Chapter 6: Conclusion - In this chapter, conclusions regarding this mas-
ter thesis and future work of the same are discussed.
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Chapter 2

Theoretical Background

2.1 Checksum Algorithm

Checksum algorithm is an algorithm that performs numerous mathematical op-
erations to create an unique checksum value for a given data. Checksum[5] is a
small-sized block of data derived from another block of digital data for the pur-
pose of detecting errors that may have been introduced during its storage. By
themselves, checksums are often used to verify data integrity but are not relied
upon to verify data authenticity. However, checksum does not indicate exactly
where in the data there was a problem, nor does it provide any error correction.
There are various checksum algorithms which include MD5, SHA-1 and SHA-256
algorithms. Each algorithm is explained in detail in the following sections 2.1.1,
2.1.2 and 2.1.3.

2.1.1 MD5

MD5[13] is a checksum algorithm that takes an input data of any length and
changes it into a fixed-length message of 128-bits(16 bytes). MD5 algorithm stands
for the message-digest algorithm. It is widely used for file authentication and to
verify data integrity of any system that stores data.

In this algorithm, all values are considered to be in little endian. Primarily, the
input data is broken up into blocks of 512-bits. Then, the data is padded so that
its length is divisible by 512. The padding is done in two steps. First, a single bit,
"1", is appended to the end of the data(LSB) which is followed by as many zeros
as are required to bring the length of the data up to 64 bits fewer than a multiple
of 512. Second padding step includes the padding of the size of the original data.
The length of this size is 64 bits long. After the padding stage, the input to the
next stage will be exact multiple of 512-bits. Each of these 512-bit blocks will
go through a process and finally give an output of 128 bit checksum as shown in
Figure 2.1.
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Pre-processed data - N x 512 bits
Chunk 1 Chunk 2 Chunk N
512-bits 512-bits [ T 512-bits
\ 4 \ 4 4
Buffe'rs MD5 MD5 L— 3y -ee... MD5
128-bits updated updated updated
buffers buffers buffers
128-bits 128-bits 128-bits

Figure 2.1: MD5 algorithm overview

Y

MD5 checksum
128-bits

The main MD5 algorithm operates on a 128-bit state which is divided into four
32-bit buffers, denoted by A, B, C, and D. These are initialized to specific fixed
constants. The main algorithm then uses each 512-bit data block in turn to modify
the 128-bit state. The processing of a data block consists of four rounds where
each round is composed of 16 similar operations based on a non-linear function, a
modular addition, and a left rotation as illustrated in Figure 2.2.

|

Data Block - 512-bits

Buffers initialized - 128-bits

By Cy Dy

Round 1

)
By Cy Dy

Round 2

)
By Cv Dy

Round 3

)
By Cy Dy

Round 4

)
By Cy Dy

sy oy oy

MD5 checksum - 128-bits

Figure 2.2: MD5 algorithm - Processing of a data block
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In each round, a different non-linear function is applied namely F, G, H and
I. For calculating these functions, OR, AND, XOR, and NOT operations are per-
formed on the three buffers B, C and D. These functions are given below as
equations|14].

F = (B and C) or ((not B) and D) (2.1)
G = (D and B) or ((not D) and C') (2.2)
H = B xor C xor D (2.3)
I = C xor (B or (not D)) (2.4)

The output of these functions is then added with sum of buffer A, a 32-bit word
of the 512-bit data WJi] and a predefined 32-bit constant K[i]. Lastly, a left shift
operation by s-bits, which is predefined, is performed. This result is then fed to
the buffer B. The buffers A, C and D are fed with the values of buffers D, B and
C respectively as shown in Figure 2.3.

A B C D
W[i] \ 4
; ( /1
4 + < Fn. 5_/;
Kli]
A B C D

Figure 2.3: MD5 algorithm - Update of buffers

After all the four rounds, i.e. 64 operations have been performed, the resulting
buffers A, B, C and D are added with the initial values of the same as shown in
Figure 2.2. This process iterates until the pre-processed data is exhausted. The
resultant buffers appended together is the MD5 checksum of the given data.

2.1.2 SHA-1

SHA-1[14] or Secure Hash Algorithm 1 is an algorithm which takes an input of
any size and produces a 160-bit(20 bytes) checksum value. It is a U.S. Federal
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8 Theoretical Background

Information Processing Standard and was designed by the United States National
Security Agency. This algorithm is used for cryptography and data integrity of a
system.

All values in this algorithm are in big endian. Similar to the MD5 algorithm ex-
plained in section 2.1.1, the data is initially broken into blocks of 512-bits. Then,
this is pre-processed by appending a bit "1" to the end of data(LSB) and followed
by zeroes such that the resulting data length in bits is 64 bits short of a multiple
of 512. The size of the original data is then padded making the total length of the
pre-processed data a multiple of 512 bits.

The next step is to process the data in successive 512-bit blocks. For each block,
break the block into sixteen 32-bit big endian words, W[0] to W[15]. Following
this, the sixteen 32-bit words are extended into eighty 32-bit words using the below
equation[14], where i’ ranges from 16 to 79.

Wil = (Wi — 3] xor W[i — 8] xor Wi — 14]xor Wi — 16]) leftrotate 1~ (2.5)

Next, five 32-bits buffers are initialized and stored as A, B, C, D and E. These
buffers are updated until there’s no more 512-bits blocks of data left. For each
512-bit block, the buffers undergo 80 iterations. Figure 2.4 illustrates the way the
buffers are being updated.

=

Fn. N

vy WLi]
é N N > + {

K[i]

Figure 2.4: SHA-1 algorithm - Update of buffers

In each iteration, the buffers E, D and B are updated with the values of buffer
D, C and A. Whereas, the buffer C is updated with value of buffer B left rotated
by 30-bits. However, the buffer A is updated using the below equation[14].

A = (Aleftrotate 5) + F' + E + k + Wi (2.6)

where, k is a 32-bits constant and F is the output of a function which vary after
every 20 iterations. The definitions of F' and k in each set of iterations are given
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below
1st 20 iterations - F = (B and C) or ((not B), and D) and k = 0x5A827999
2nd 20 iterations - F' = B xor C xor D, and k = 0x6ED9EBA1

3rd 20 iterations - F = (B and C) or (B and D) or (C' and D), and k =
0x8F1BBCDC

4th 20 iterations - F' = B xor C xor D, and k = 0xCA62C1D6

After performing 80 iterations, the resulting buffers are added with the buffers
stored in the initial step as shown in Figure 2.5. The sum of these buffers are then
read together as a 160-bit checksum value.

Data Block - 512-bits

Buffers initialized - 160-bits —

Ay By Cy Dy Ey
4>[ 20 iterations

Ay By Cy Dy Ey
4>[ 20 iterations ]
Ay By Cy Dy Ey
4>[ 20 iterations

Ay By Cy Dy Ey
4>[ 20 iterations ]
Ay By Cy Dy Ey

Y BY oL oy )

SHA1 checksum - 160-bits

Figure 2.5: SHA-1 algorithm - Processing of a data block

2.1.3 SHA-256

SHA-256[15] is a part of the SHA-2 family of algorithms, where SHA stands for
Secure Hash Algorithm. Published in 2001, it was a joint effort between the United
States National Security Agency(NSA) and National Institute of Standards and
Technology(NIST) to introduce a successor to the SHA-1 family. The significance
of the 256 in the name stands for the final checksum value, i.e. irrespective of the
size of input data, the checksum value will always be 256-bits. SHA-256 is used
for digital signature verification, password hashing and data integrity.
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The pre-processing of the data which includes padding of bit "1", zeroes and
the size of data is equivalent to the pre-processing of data in SHA-1 explained in
section 2.1.2. At the end of the pre-processing stage, the data length is a multiple
of 512-bits. The values used in SHA-256 are also in big endian.

Similar to SHA-1, SHA-256 also processes the data in successive 512-bit blocks
which are further broken into sixteen 32-bit big endian words, W[0] to W[15].
However, unlike SHA-1, SHA-256 extends the sixteen 32-bit words into sixty four
32-bit words using the below equations|15], where ’i’ ranges from 16 to 63.

S0 = (Wi — 15] rightrotate 7) xor (Wi — 15] rightrotate 18) xor
(Wi — 15] rightshift 3) (2.7)

S1 = (Wi — 2] rightrotate 17) xor (Wi — 2] rightrotate 19) xor
(Wi — 2] rightshift 10) (2.8)

Wil = Wi —16] + SO + W[i—7] + S1 (2.9)

In SHA-256, eight 32-bits buffers A, B, C, D, E, F, G and H are used. These
are then updated until there’s no more 512-bits blocks of data left. For each 512-bit
block, the buffers undergo 64 iterations. In each iteration, the buffers are updated
using the below equations[15].

S1 = (E rightrotate 6) xor (E rightrotate 11) xor (E rightrotate 25) (2.10)

ch = (FE and F') xor ((not E) and G) (2.11)
templ = H + S1 + ch + k[i] + Wi (2.12)
S0 = (A rightrotate 2) xor (A rightrotate 13) xor (A rightrotate 22)  (2.13)
maj = (A and B) xor (A and C') xor (B and C) (2.14)
temp2 = SO + maj (2.15)
H=0G (2.16)
G=F (2.17)
F=E (2.18)

E = D + templ (2.19)
D=C (2.20)
C=B (2.21)
B=A (2.22)

A = templ + temp?2 (2.23)
(2.24)

At the end of 64 iterations, the updated buffers are added to the initial values of
buffers and read together as 256-bits checksum value.
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2.2 PULPissimo

PULPissimo|2] is a 32 bit RI5SCY single-core System-on-a-Chip. PULPissimo is
the second version of the PULPino system and it can be extended with the multi-
core cluster of the PULP project.

Unlike the simpler PULPino system, PULPissimo uses a more complex memory

subsystem, an autonomous I/O subsystem which uses the uDMA, new peripherals
(eg. the camera interface) and a new SDK.

Bank | Bank Bank § Bank Bank | Bank Bank § Bank

Tightly Coupled Data Memory Interconnect

Event Unit

APB / Peripheral Interconnect

Clock / Reset
Generator

FLLs

Figure 2.6: Block Diagram of PULPissimo

Figure 2.6 shows a simplified block diagram of the SoC. Similar to PULPino,
PULPissimo can be configured at design stage to use either the RISCY or ibex.
The peripherals are connected to the uDMA which transfers the data to the mem-
ory subsystem efficiently. JTAG and AXI plug have also access to the SoC. AXI
plug can be used to extend the microcontroller with a multi-core cluster or an
accelerator. GPIO, timers, event unit and event generator, debug and FLLs are
not connected to the uDMA instead to the APB bus. In PULPissimo, the ad-
vanced debug unit is used to access to system and core registers, memories and
memory-mapped IO via JTAG. A logarithmic interconnect allows to link the core
and the uDMA to the memory banks simultaneously.
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2.2.1 Memory Map

Figure 2.9 shows the default memory-map of PULPissimo. PULPissimo out of the
box has 512kB of RAM in L2 memory bank and 8kB boot ROM.

0x1A00 0000

8kB ROM Boot ROM
0x1A00 2000
0x1A10 0000
FLL R

0x1A10 1000

GPIO
0x1A10 2000

uDMA
0x1A10 4000

SoC Control

0x1A10 5000
Advanced Timer

0x1A10 6000

SoC Event Generator >_ Peripherals

0x1A10 9000
Event/Interrupt Unit

0x1A10 BOOO

Timer
0x1A10 C000
HWPE
0x1A10 FO0O0
Stdout
0x1A11 0000
Debug Unit
_J
0x1C00 0000
512kB RAM L2 Memory

0x1C08 0000

Figure 2.7: Memory-map of PULPissimo
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2.2.2 CPU Cores

PULPissimo supports both the RISCY and the Ibex core. These two cores have the
same external interfaces and are thus plug-compatible. For debugging purposes,
all core registers have been memory mapped which allows them to be accessed over
the logarithmic-interconnect subsystem. The debug unit inside the core handles
the request over this bus and reads/sets the core registers and/or halts the core.

RISCY is an in-order, single-issue core with 4 pipeline stages which are Instruc-
tion Fetch(IF), Instruction Decode(ID), Execution and Write to memory stages.
Whereas, Ibex, formerly Zero-riscy, is an in-order, single-issue core with 2 pipeline
stages which are Instruction Fetch(IF) and Execution stages.

223 FLL

A frequency-lock, or frequency-locked loop (FLL), is an electronic control system
that generates a signal that is locked to the frequency of an input or "reference"
signal. This circuit compares the frequency of a controlled oscillator to the ref-
erence and automatically raises or lowers the frequency of the oscillator until its
frequency is matched to that of the reference.

PULPissimo contains 3 FLLs. These FLLs are meant for generating the clock
for

(i) the peripheral domain
(ii) the core domain which includes core, memories, event unit, etc.
(iii) the cluster

The latter is not used. All the three FLLs can be bypassed and an external clock
can be used.

2.2.4 APB Protocol

Figure 2.8 shows the state diagram of the APB protocol[16]. There are three states
on which the APB protocol works: IDLE, SETUP and ACCESS. These 3 states
are explained below.

IDLE : This is the default state of the APB.

SETUP: When a data transfer has to be made the bus moves into SETUP state
after assertion of the appropriate select signal PSLEx. The bus stays in this state
for one clock cycle and moves to ACCESS state on the next rising edge of the
clock.

ACCESS : PENABLE is an enable signal that is asserted in the ACCESS state.
The address, write,select, and write data signals must remain stable during the
transition from the SETUP to ACCESS state.

Exit from this state is controlled by the PREADY state from the slave:
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e If the PREADY signal is held LOW by the slave, the peripheral bus re-
mains in ACCESS state.

e If the PREADY signal is driven HIGH by the slave, the ACCESS state is
exited and the bus returns to IDLE state if no more transfers are required.
The bus moves directly to SETUP state if another transfer of data has to
be made.

No transfer

IDLE
PSELx =0
PENABLE =0

Transfer

PREADY =1 SETUP
and no PSELx =1
transfer PENABLE =0

PREADY =1
and transfer

ACCESS
PSELx =1
PENABLE =1

Figure 2.8: APB State Diagram

225 JTAG

Joint Test Action Group (JTAG)[4] which is also known as boundary scan is a
commonly used industry-standard on-chip hardware interface. JTAG provides
a solution to serially communicate between the chip and external devices. It is
commonly used to program and debug on-chip components through a small number
of test pins. Basic JTAG implementation requires at least four different ports with
one optional pin. These pins and their functionality are explained in Table 2.1.
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Pin

Description

TCK (Test Clock Input)

TCK is an input pin used by an exter-
nal device to synchronize the serial data
stream at input and output pins with the
JTAG test access port state-machine

TDI (Test Data Input)

TDI pin is used as an input for the external
devices to transfer a serial stream of data.
The test data is loaded at the rising edge
of TCK.

TMS (Test Mode Select)

TMS input is used to control the move-
ment in JTAG test access port state-
machine. TMS signal is loaded at the ris-
ing edge of TCK.

TDO (Test Data Output)

TDO is an output pin to a serial stream of
data to external test devices. Output data
is returned at the falling edge of TCK.

TRST (Test Reset)

TRST is an optional input pin used to
asynchronously reset the JTAG regardless
of the state of other signals.

Table 2.1: Description of all the main pins used to implement the
industry standard JTAG
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Chapter 3

Design of Checksum algorithms

Each of the checksum algorithms, viz. MD5, SHA-1 and SHA-256, are imple-
mented in RTL. A wrapper module reads data from the ROM IP and pre-processes
the data into 512-bits block of data. This block of data is fed to a sub-module
which implements the algorithm. The wrapper module is developed for all the
three algorithms. It is to be noted that the pre-processing of the data for all the
three algorithms is same. However, the sub-module is unique for each of the three
algorithms. The developed modules are made to be flexible to work with ROM
IPs of any address width and data width.

3.1 Worapper module

The wrapper module reads data from the ROM and pre-processes the data into
512-bits block which includes the padding of bit "1", zeroes and size to the end
of data which was explained in section 2.1. This module has five input ports
which include CLK, RESET, start_addr, stop_addr and config mem. The input
ports start _addr and stop addr will receive the range of addresses for which the
algorithm needs to calculate the checksum. In case of error in the data of the ROM,
this particular implementation with start addr and stop addr as input ports
helps in identifying the location of the error by adopting brute force approach.
Among the input ports, the config mem port inputs the configuration of the
ROM IP. In case of the output ports, viz. data_out and data_ valid, the calculated
checksum is fed to the output port data out.

CLK data_out
—)
RESET Wrapper data_valid

start_addr module

stop_addr

config_mem

Figure 3.1: Wrapper module overview

17
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A few parameters are also defined namely address width and data_ width.
Figure 3.1 illustrates the overview of the module. The wrapper module works on
a history transition hierarchical type state machine in which when it enters the
parent state, it resumes from the last known child state. In the implemented state
machine, the parent state machine works with four states, viz. wait_state, pro-
cess_data, data_read and finish_state, where the process data is refined further
into another child state machine. These state machines are depicted in Figure 3.2
and Figure 3.3.

In this module, the data is an array of words of length data_width. The length
of the array is calculated as 512/data_ width. The initial state of the parent state
machine(refer Figure 3.2) is the wait state where it waits for the input trigger
from the config mem/[0] port. Upon receiving the trigger from config mem/[0]
port, it moves to the process data. In the process data state, the data is read
from the ROM and padded to form a 512-bit block. This process further works as
another state machine which will be explained later in this section. When a 512-bit
block is formed it moves to data_ read state. In this state, the sub-module is trig-
gered. Then, it will be checked for the last block. If the last block is processed, it
moves to the finish_state else, it moves back to the process data state. In the fin-
ish state, the final checksum is received from the sub-module and fed as an output.

As mentioned earlier, the process  data state is further refined into a child state ma-
chine(refer Figure 3.3) with four states, viz. read data_ from mem, read last
data_ from__mem, pad_bit_one and pad_ zeroes_size. As it is a history transition
type state machine, in the parent state machine, the process data state moves
to the data_read state upon forming a 512-bit block irrespective of the current
child state. However, it resumes from the last known child state upon entering the
process__data state.

In the child state machine, the initial state is read_data_from mem. In the
read_ data_ from_mem state, the data is read from the ROM as words of length of
the data width from the start addr to the stop addr. While the address reaches
the stop addr, the read_ data_ from_mem state moves to read_last data_ from
__mem state where the last data from the ROM is read. Subsequently, it moves
to the pad_ bit_one state. In the pad_bit_one state, a word of length data width
with MSB as "1" and others as "0" is padded. Further, it moves to the pad_ zeroes
_size state where it pads words of zeroes until it reaches 64-bits less than 512-bits.
At last, the size of length of 64-bits is padded to the end of the data and triggers
the last_block _received signal. Then, it moves out of the parent state.
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On Reset

wait_state

data_read

finish_state

Receive start
signal

Read data from memory and
process data into 512-bits
block

512-bits block
processed

Trigger the sub-module

Last 512-bits
block is
processed

Finish

False

Figure 3.2: Wrapper module parent state machine
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On Reset

read_data_from_mem

Read data from the memory

False
End address reached

True

read_last_data
_from_mem

Read last data from memory

E Y E
i Pad bit "1" to the data :
pad_zeroes_size

Y

Pad zeroes and size to the
data and trigger '
last_block_received signal H

Figure 3.3: Wrapper module child state machine
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3.2 Sub-module

3.2.1 MD5

The MD5 sub-module takes an input of 512-bit block and outputs a 128-bit check-
sum value. The input ports of this sub-module are CLK, RESET, start in and
data_in. The output ports of the sub-module include data _out and data_wvalid.
The input port data_in receives the 512-bit block of data and outputs a checksum
of 128-bits through the output port data_out. Figure 3.4 illustrates the overview
of the sub-module.

CLK data_out [127:0]
MD5 )
RESET data_valid
sub_module
start_in

data_in [511:0]

YVVYVYY

Figure 3.4: MD5 sub-module overview

At the beginning, all the initial buffers, viz. A, B, C and D, and other con-
stants are initialized. This sub-module works on a state machine of three states
which are store_inp, loop _thro _rounds and checksum_ calc. Figure 3.5 illustrates
the state machine of MD5 sub-module. The initial state of this sub-module is
store_inp state where the input block of 512-bits is stored as an array of 32-bit
data. When the start in port receives a bit value "1", it moves to the next state,
loop_thro _rounds. In the loop thro rounds state, 64 rounds of specific opera-
tions(refer section 2.1.1) are performed by updating the four buffers. After all the
64 rounds are performed, the state shifts to the checksum_ calc state. In this state,
the updated buffers are added with the initial buffers and fed to the data_ out port
and triggers the finish_out port. At last, it returns to the store inp state.
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On Reset

A

store_inp

Store the input 512-bit block
as an array of 16 words

Receive start
signal

Perform operations (Refer
section 2.1.1)

False
64 rounds performed

checksum_calc

Calculate the checksum of
128-bits and trigger
the finish_out signal

Figure 3.5: MD5 sub-module state machine
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3.2.2 SHA-1

The SHA-1 sub-module takes an input of 512-bit block and outputs a 160-bit check-
sum value. The input ports of this sub-module are CLK, RESET, start in and
data_in. The output ports of this sub-module include data_out and data_wvalid.
The input port data_ in receives the 512-bit block of data and outputs a checksum
of 160-bits through the output port data_out. Figure 3.6 illustrates the overview
of the sub-module.

CLK data_out [159:0]
SHA-1 )
RESET data_valid
sub-module
start_in

data_in [511:0]

YVVYVYY

Figure 3.6: SHA-1 sub-module overview

At the beginning, all the initial buffers, viz. A, B, C, D and E, and constants
are initialized. This sub-module works on a state machine of four states which
are store_inp, full arr_calc, loop thro rounds and checksum_ calc. Figure 3.7
illustrates the state machine of SHA-1 module. The initial state of this sub-module
is store__inp state where the input block of 512-bits is stored as an array of 16 words
of 32-bit data. When the start_in port receives a bit value "1", it moves to the next
state, full arr_calc. In the full arr calc state, the array of 16 words is extended
to an array of 80 words by performing a few specific operations(refer section 2.1.2)
on the input data. After this array of 80 words is calculated, it enters the next
state loop thro rounds. In the loop thro rounds state, 80 rounds of specific
operations(refer section 2.1.2) are performed by updating the five buffers. After
all the 80 rounds are performed, the state shifts to the checksum_ calc state where,
the updated buffers are added with the initial buffers and fed to the data_ out port
and triggers the finish _out port. At last, it returns to the store inp state.
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store_inp

checksum_calc

On Reset

Store the input 512-bit block
as an array of 16 words

Receive start
signal

Extend the array to an array
of 80 words

80 words calculated

False

Perform operations (Refer
section 2.1.2)

80 rounds performed

Calculate the checksum of

False

160-bits and trigger
the finish_out signal

Figure 3.7: SHA-1 sub-module state machine
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3.2.3 SHA-256

The SHA-256 sub-module takes an input of 512-bit block and outputs a 256-bit
checksum value. The input ports of this sub-module are CLK, RESET, start_in
and data_ in. The output ports of this sub-module include data_ out and data_ valid.
The input port data_in receives the 512-bit block of data and outputs a checksum
of 256-bits through the output port data_out. Figure 3.8 illustrates the overview
of the sub-module.

CLK data_out [255:0]
SHA-256
RESET data_valid
sub-module
start_in

data_in [511:0]

YVYVY

Figure 3.8: SHA-256 sub-module overview

At the beginning, all the initial buffers, viz. A, B, C, D, E, F, G and H, and
constants are initialized. This sub-module works on a state machine of four states
which are store_inp, full _arr_cale, loop _thro_rounds and checksum__ calc. Figure
3.9 illustrates the state machine of SHA-256 module. The initial state of this sub-
module is store_inp state where the input block of 512-bits is stored as an array of
16 words of 32-bit data. When the start in port receives a bit value "1", it moves
to the next state, full _arr_calc. In the full arr_calc state, the array of 16 words
is extended to an array of 64 words by performing a few specific operations(refer
section 2.1.3) on the input data. After this array of 64 words is calculated, it enters
the next state loop thro_rounds. In the loop thro rounds state, 64 rounds of
specific operations(refer section 2.1.3) are performed by updating the eight buffers.
After all the 64 rounds are performed, the state shifts to the checksum_ calc state.
In this state, the updated buffers are added with the initial buffers and fed to
the data_out port and triggers the finish out port. At last, it returns to the
store_inp state.
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On Reset

A

store_inp

Store the input 512-bit block
as an array of 16 words

Receive start
signal

Extend the array to an array
of 64 words

False
64 words calculated

Perform operations (Refer
section 2.1.3)

False

64 rounds performed

checksum_calc

Calculate the checksum of
256-bits and trigger
the finish_out signal

Figure 3.9: SHA-256 sub-module state machine
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Customization of PULPissimo

4.1 Integration of algorithm to PULPissimo

The implemented checksum algorithms are integrated to the PULPissimo. This
integration is done using the APB available in the PULPissimo. The first step
of the integration includes provision of an address range to the new module. As
shown in Figure 2.7, it is clear that addresses upto 0x1A110000 are used. Hence,
the algorithm module that was developed is given an address range of 0x1A 121000
to 0x1A121FFF. A new bus for this developed module is created and a new pe-
ripheral is also instantiated in the PULPissimo. In the peripheral module, the
developed module is instantiated. The address 0x1A121000 is used for sending
the configuration of the ROM IP and address 0x1A121004 is used for sending the
range of addresses the algorithm needs to process. The output ports of the algo-
rithm, viz. data_out and data_ wvalid, are port mapped to the top most module of
the PULPissimo for verification purposes.

4.2 Physical Implementation

For further study, the PULPissimo needs to be synthesized by making a few mod-
ifications. Firstly, the generic technology cells, viz. clock gating cells and SRAM
models, need to be replaced with the technology cells used for synthesis. The
generic memory in the PULPissimo is replaced with the organization’s SRAM
macros. Since both the size of the generic memory used in the PULPissimo and
the SRAM macro of organization are equal to 32kB, the generic memory is directly
replaced with the SRAM macros. By replacing them, all the interleaved banks(L2
cache) and the private banks(instruction and data memory) use the SRAM macros.

Secondly, the FLLs used in the PULPissimo are bypassed as they are not syn-
thesizable. These FLLs are bypassed by writing the JTAG register before the
reset signal is asserted. Hence, the peripheral clock, core clock and the cluster
clock use the external clock. Figure 4.1 depicts the PULPissimo architecture after
the checksum algorithm module is integrated and FLLs are removed.

27
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Bank | Bank Bank § Bank

Tightly Coupled Data Memory Interconnect

Event Unit

APB / Peripheral Interconnect

Clock / Reset Checlgsum
Generator algorithm

Figure 4.1: Block Diagram of customized PULPissimo

After these modifications are made to the PULPissimo, RTL level simulation
was performed and verified. The whole design was then synthesized with effort
level high for synthesis generic, mapping, and optimization to achieve best possible
optimized hardware at this stage. By performing a few rounds of optimizations
a better QoR was achieved. The synthesized netlist was then verified through
simulation. Further, PnR was performed on the synthesized netlist with zero
timing violations. At last, post-PnR simulation was performed to verify the final
netlist. The results of the synthesis and PnR stage are discussed in Chapter 5.
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Chapter 5

Results

5.1 Results of Simulations

For the developed checksum algorithm RTL modules, behavioral and post-synthesis
simulations have been carried out in Cadence Xcelium with a ROM IP of size
0.5kB. For both the simulations, the inputs are fed through a RTL test bench.
The simulation waveforms of the behavioral and post-synthesis were found to be
same for each of the algorithms as shown in Figures 5.1, 5.2 and 5.3. These simu-
lations have further been verified with an online tool[8], which calculates various
checksums, by feeding the same data stored in the ROM IP. The used ROM IP
stored 32-bit words in 16 addresses which are given in Appendix A.1.

CLK

data_out

data_valid

9A86C46F_D7AF53B5_8B4CBCC5_F667DE7B

Figure 5.1: MD5 sub-module waveform

Figure 5.1 shows the simulation waveform of the developed MD5 algorithm.
The data_ out signal value obtained when the data_ wvalid signal goes high is com-
pared with the output of the online tool and are found to be same.

29
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CLK

data_out 8A64EO0ED_01C6COEB_7FDOES9E_491F60C8_E02A9984

data_valid

Figure 5.2: SHA-1 sub-module waveform

Figure 5.2 shows the waveform of the developed SHA-1 algorithm. The data
_out signal value obtained when the data_ wvalid signal goes high is compared with
the output of the online tool and are found to be same.

CLK
0E822F5E_9D1C7106_5358FCA5_0ED6D731_F71C6A41_3087245F
data_out _518B4E47_1A884342
data_valid

Figure 5.3: SHA-256 sub-module waveform

Figure 5.3 shows the waveform of the developed SHA-256 algorithm. The
data_ out signal value obtained when the data_wvalid signal goes high is compared
with the output of the online tool and are found to be same.

Subsequently, each of the developed algorithms were integrated to the PULPis-
simo as explained in section 4.1. Further, the PULPissimo integrated with the
algorithm was verified with the same ROM IP considered in the previous verifi-
cation process. Instead of feeding the input through a testbench, here, the input
is fed to a C-program which is compiled for generating a stimulus file. Then, this
stimulus file is fed through the JTAG ports available in the PULPissimo. The
output waveforms of each of the integrated algorithms were observed to be same
as those given in Figures 5.1, 5.2 and 5.3.
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5.2 Results of Synthesis

5.2.1 Comparison of Checksum Algorithms

Each of the developed checksum algorithms was synthesised using Cadence Genus
tool with 22nm standard cell technology. They were synthesised at a clock period
of 3000ps. The results of various metrics, viz. number of gates used, time slack
and clock cycles(latency) to calculate a checksum for an input data of 0.5kB, have
been tabulated in Table 5.1. Results of each of the algorithms are compared with
the results of Study 1[9] and Study 2[10] reported in section 1.2 which also used
an input data of 0.5kB.

Tech | Gates | Latency | Time
(nm) (cycles) | Slack(ps)
MD5
Study 1[9] 350 8001 712 -
Study 2[10] 130 | 10332 68 -
Present study 22 6482 84 363
SHA-1
Study 1[9] 350 8120 1274 -
Study 2[10] 130 7971 85 -
Present study 22 | 17416 164 407
SHA-256
Study 1[9] 350 | 10868 1128 -
Study 2[10] 130 | 11484 72 -
Present study 22 | 17085 132 471

Table 5.1: Comparison of checksum algorithms synthesis results

Generally, a fair comparison with the literature study is difficult to achieve
because all published works use different standard cell technologies and have dif-
ferent design goals. In the case of Study 1, the goal was to reduce the power
consumption at the cost of extended latency. Whereas, in Study 2, the motivation
was to compare various checksum algorithms and achieve a higher throughput,
ie. lower latency. The goal of present thesis is to read data from the ROM IP,
calculate the checksum and assess the latency.

It is evident from Table 5.1 that the number of gates used by different algorithms
in every study varied significantly as the goals are different and the technologies
used are also different. It is to be noted that the latency results of Study 1 for
each of the checksum algorithms are significantly higher than those of Study 2 and
present thesis. This observation is expected as Study 1’s goal was achieved at the
cost of latency. Hence, the latency of the present thesis can be compared with
Study 2 results as their goals are similar. Even though, the latency results are in
comparable range, the current thesis results are higher than Study 2 results. The
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primary reason for higher latency in all the three algorithms is that the current
thesis reads data from ROM IP and pre-processes the data by padding which was
not part of Study 2. Further, in case of SHA-1 and SHA-256, it can be observed
that the present study’s latency results are almost twice that of the Study 2’s
results. The reason for this observation is, apart from reading from ROM IP and
padding, due to the additional processing of extending the array as explained in
sections 3.2.2 and 3.2.3 which was not part of Study 2.

While comparing the results of the present thesis among the three checksum al-
gorithms, it is noticed that the number of gates used by MD5 algorithm is almost
one-third of that of SHA-1 or SHA-256. Also, the computational cycles used by
MDS5 is significantly lesser than the other two algorithms. Even though, the time
slack in MD5 is observed to be marginally lower than those in SHA-1 and SHA-
256, MD5 is a good choice in the present study by considering the results of the
other two metrics.

5.2.2  Comparison of cores in PULPissimo

Out of the box PULPissimo was synthesised with each of the two cores (RISCY and
Ibex) available using 22nm standard cell technology. Their performance(speed)
and area(number of gates) obtained based on the synthesis are tabulated in Table
5.2. Although, PULPissimo with RISCY core is bigger than with Ibex core, it is
observed that the former is faster than the latter. Hence, RISCY core is considered
for the testing platform. Further, modules and peripherals such as SPI, 12C,
12S, Camera and Advanced Timer in PULPissimo, which are not essential for
the organization, were removed to save area. The chosen MD5 algorithm was
then integrated and synthesised for final synthesis results. These results are also
tabulated in Table 5.2. Due to the removal of various unessential modules and
integration of MD5 algorithm, the number of gates are observed to be reduced to
46%. However, the speed is observed to be bound by the speed of the core which
is 135MHz.

Design Gates Speed(MHz)
Ibex core 170503 90
RISCY core 208448 135
Present study 96443 135

Table 5.2: Comparison of PULPissimo synthesis results

5.3 Results of PnR

PULPissimo with RISCY core that was synthesized, after the removal of unessen-
tial modules and integration of MD5 algorithm, is fed to the PnR flow in order
to realize the ASIC layout and discuss the resource utilization. Cadence Innovus
tool was used for the PnR flow. After routing of the whole design, the layout is
obtained as shown in Figure 5.4. This floorplan resulted in the best QoR (Qual-
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ity of Result) for the PULPissimo SoC with 22nm technology node. Further, the
design was clean with zero timing violations and congestion free. The core height
of the layout was bounded by the height of the memory banks as shown in Figure
5.4. The core area was designed with a width of 1300um and height of 925um.
The standard cells were placed in 964 site rows. It was also observed that 82% of
the area was occupied by the memory banks and the remaining 18% was occupied
by the logic. Such huge area percentage of memories is due to the memory macro
size and their count in the design.

Figure 5.4: Layout of PULPissimo SoC
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Chapter 6

Conclusion

Memory IPs are an important component in the current SoC designs. Making sure
that the memory IPs are functioning as expected is crucial for any organization. In
this thesis, to test the ROM IPs, various checksum algorithms, viz. MD5, SHA-1
and SHA-256, were implemented in RTL. The developed checksum algorithm RTL
modules were verified through behavioral and post-synthesis simulations. Further,
the synthesis results of each of the algorithms were compared, with respect to
metrics such as number of gates used and latency, to analyse and to choose a
suitable algorithm for the organization. Based on these comparisons, MD5 was
considered as the suitable choice. Further, testing capabilities were enhanced by
integrating a processor to the memory test chip. In this project, an open-source
PULPissimo platform based on RISC-V ISA (Instruction set architecture) was used
as this gives freedom to the system designer and the organization to configure the
processor core as per the requirements. Further, PULPissimo was synthesised with
each of the available cores, RISCY and Ibex, to make a comparison with respect
to area and performance. Based on this comparison of speed results, RISCY was
chosen for the final design. In addition, to save area, unessential modules such as
SPI, 12C, 128, Camera and Advanced Timer in PULPissimo were removed. Then,
the developed MD5 RTL module was integrated to the PULPissimo through the
APB protocol available in PULPissimo. This design was synthesised for further
results. The synthesis netlist was fed to the PnR flow in order to realize the
ASIC layout and to discuss the resource utilization. Finally, the SoC was verified
through post-layout simulation. The verified SoC provides a testing platform for
the organization to test their ROM IPs.

6.1 Future work

The following are the future scope of work identified:

e Various other algorithms such as SHA-384, SHA-512, SHA3, etc. can be
implemented to identify a more suitable algorithm.

e The developed SHA-1 and SHA-256 RTL modules or any other algorithms
existing in the organization can also be integrated to the PULPissimo which
can improve the reliability of testing the ROM IPs.

35
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Appendix A

Values stored in the ROM |P

A.1 Values stored in the ROM |IP

Address | Value

1 0x63FECT95
2 0xD47A476C
3 0xAAbB451FE
4 0xBC6109A7
5 0x8A3CO006F
6 0xEE3BEG66C
7 0xE0C93E0D
8 0xD25C6A92
9 0x6D1AA1C4
10 0xB749A94B
11 0xE8E482D5
12 0xD58AEE44
13 0x6FC0933A
14 0x97CF7526
15 0x18340E33
16 0xB4B0DC97

Table A.1: Values stored in the ROM |IP
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