
Near-Memory Computing Compiler for Neural
Network Architectures

ALEX ALLFJORD
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

A
LEX

 A
LLFJO

R
D

N
ear-M

em
ory C

om
puting C

om
piler for N

eural N
etw

ork A
rchitectures

LU
N

D
 2023

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-911
http://www.eit.lth.se

Near-Memory Computing Compiler for Neural
Network Architectures

Alex Allfjord
alex.allfjord@gmail.com

Department of Electrical and Information Technology
Lund University

Supervisor: Joachim Rodrigues

Examiner: Pietro Andreani

February 21, 2023

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

With an increased popularity of machine learning, both higher performance and
more energy-efficient circuits are needed to meet the demands of increasing work-
loads. This master’s thesis focuses on convolutional neural networks and imple-
ments a compiler that generates an accelerator architecture that can be tailored to
performance needs. The implemented architecture utilizes near-memory comput-
ing to gain increased performance and higher energy efficiency. This report gives
an overview of the implemented architecture. Area and performance results for an
example use-case are presented and ideas for future improvements are listed.

i

ii

Popular Science Summary

Speeding up the Development of Machine Learning
Accelerators
The world has in the last decade seen an increased use of machine
learning and computer vision. With this comes a need for increased
performance, lower energy usage, and shorter development times. This
thesis provides a stepping stone in the right direction to achieve this.

Machine learning is an ever more popular way to let computers or computer mod-
els learn and perform complex tasks. An application area closely coupled with
machine learning is computer vision. Computer vision involves letting computer
models see visual information (like images and video), by interpreting and extract-
ing information out of a given input. One popular area that can perform such a
task is convolutional neural networks.

These convolutional neural networks are structured in layers and process a
set of input data. The data moves through the layers, and various mathematical
operations are performed on the data. At the output, information or a conclusion
about the data is provided. One of the layers is the convolutional layer, this layer
"moves" a filter over the input. The filter itself is a set of predetermined weights
that multiplies with the input. These multiplications are then summed. The
subsequent result can then be handed over to the next layer. For increased perfor-
mance, the convolutional operations can be performed by a hardware accelerator
specialized for this purpose.

A hardware accelerator is separate from a computer’s processing unit. Placed
near the computer’s memory it can be called near-memory computing. Being
physically closer to memory has two advantages: less energy is required to transfer
the data and the data transfer can be faster. Memories are often made up of many
smaller memories, called "macros". Placing an accelerator near the memories
allows us to connect to all the individual macros inside the memory. This has
the advantage of accessing many parts of memory at once and increasing data
throughput, letting us process more data if we have the resources to compute it.

Designing a hardware accelerator is a complex and time-consuming task, as
it needs to be implemented, tested for functionality in simulation, and integrated
into a bigger system. When everything is working properly it can be translated

iii

into a physical design and manufactured.
Involving the described areas above, the produced thesis aims to speed up the

design of hardware accelerators for convolutional neural networks. Providing a
compiler that takes a set of input parameters and tailors an accelerator architecture
from these parameters allows users to choose the performance of the accelerator,
fast and easily integrate it, and test it. Computations performed by the accelerator
are the convolutional operation/filter operations mentioned. The architecture is
envisioned to be placed near memory by the user to take advantage of near-memory
computing, increasing energy efficiency and performance. A use case with statistics
of an example generated with the compiler is also provided.

iv

Acknowledgements

I want to express my gratitude to my supervisors for the opportunity and help
with this thesis. You have given me much freedom with this work which has made
it a lot of fun and I thank you for that. I also want to take this opportunity to
say thank you to my partner for always supporting me no matter what.

v

vi

Acronyms

ASIC Application Specific Integrated Circuit
AW Address Width
BBA Bias Base Address
CIM Compute In Memory
CNN Convolutional Neural Network
CPU Central Processing Unit
DW Data Width
FBA Filter Base Address
FRA Filter Result Accumulator
FS Filter Size
FSO Filter Sum Out
HDL Hardware Description Language
HW Hardware
IBA Input Base Address
ID Input Depth
IP Intellectual Property
IS Input Size
MAC Multiply Accumulate
MFS Maximum Filter Size
MID Maximum Input Depth
MIS Maximum Input Size
ML Machine Learning
MNF Maximum Number of Filters
MS Maximum Stride
NF Number of Filters
NMC Near-Memory Computing
NN Neural Network
PF Parallel Filters
PD Parallel Depth
PDK Process Design Kit
PI Pick Input
RD Read Depth

vii

RDI Row Data In
ReLU Rectified Linear Unit
RRO Row Result Out
RSA Result Save Address
RTL Register-Transfer Level
SSD Solid-State Drive
TSB Truncation Start Bit
VHDL Very High Speed Integrated Circuit Hardware Description Language
WPC Weights Per Clock
WDI Weight Data In

viii

Table of Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Project Aim . 2
1.3 Report Disposition . 2

2 Background Theory 3
2.1 Near-Memory Computing . 3
2.2 Hardware Compiler . 3

2.2.1 HDL 3
2.2.2 Synthesis 4

2.3 Neural Networks . 4
2.4 Convolutional Neural Networks . 5

2.4.1 Layers in a CNN 6
2.4.2 Convolution Layer 6
2.4.3 Activation Function 7
2.4.4 Quantization 7
2.4.5 Truncation 8

3 Accelerator Architecture 9
3.1 Compiler Parameters . 9

3.1.1 Hardware Parameters 9
3.1.2 Run Time Parameters 11

3.2 Generated Architecture . 13
3.2.1 An Overview 14
3.2.2 Basic Multiplier Block 14
3.2.3 Filter Row 14
3.2.4 Filter Slice 15
3.2.5 Filter Core 15
3.2.6 Computation Block 17
3.2.7 Weight Loading 17
3.2.8 Loading Inputs 20
3.2.9 Filter Result Accumulator 23
3.2.10 Writeback Unit 24
3.2.11 Overview of Top Module and Memory Connections 27

ix

4 Compiler Generated Example 29
4.1 Hardware Specification . 29
4.2 Runtime Specification . 29
4.3 Extracted Results . 30

4.3.1 Run Time Operation 30
4.3.2 Area 32
4.3.3 Timing 32
4.3.4 Power Consumption 33

5 Conclusion 35
5.1 Limitations and Future Work . 35

References 37

x

List of Figures

2.1 A basic neural network example with circles representing neurons and
lines representing weighted connections. The input layer takes a vec-
tor of numbers and the output layer outputs a vector representing
information or a conclusion about the input. 5

3.1 Architecture overview of module connections. 14
3.2 BM block. 14
3.3 Row filter, BM denotes the basic multiplier. Computes one row of one

filter over one row of inputs. 15
3.4 Filter slice, sums results of multiple filter rows. 16
3.5 Filter core, groups together multiple filter slices. 16
3.6 Computation block, that sums the results from the filter cores. . . . 17
3.7 Overview of the different weight management blocks and their con-

nections. 18
3.8 Weight structurer, alignes filter data form memory with buffers. . . . 18
3.9 Row buffer, register chain of configurable length. 20
3.10 Row buffer connections to the computation block and to each other. 21
3.11 Input link, reads input memory data and outputs the data to the row

buffers. 22
3.12 Filter result accumulator, selects a partial result from a buffer memory,

sums it with the latest computed result and stores back to buffer memory. 23
3.13 Writeback unit, reads results from buffer memory to then add bias,

truncate, and save result to memory. 25
3.14 Truncation unit, truncates result at wanted bit position and applies

activation function. 26
3.15 Bias and multiplication radix point line up for addition. 27
3.16 Architecture top module with memory connections. 27

xi

xii

List of Tables

3.1 Names for all the needed memories. 9
3.2 Hardware parameters to specify compiler configuration. 10
3.3 Run time parameters for convolutional layers and their ranges. 12
3.4 Weight memory space, shows the general structure of weight data in

memory. 20
3.5 Input memory space, shows the general structure of input data in

memory. 23

4.1 Specified hardware parameters supplied to the compiler. 29
4.2 Specified runtime parameters supplied to the compiler. 30
4.3 Computation time in clock cycles for layer one. 31
4.4 Computation time in clock cycles for layer two. 31
4.5 Computation time in clock cycles for layer three. 31
4.6 Synthesis area in relation to the base case of PF, PD equal to one. . 32
4.7 Critical path in relation to the base case of PF, PD equal to one. . . 32

xiii

xiv

Chapter 1
Introduction

Machine learning (ML) has seen increased use in recent years thanks to the im-
proved performance of circuits and the availability of big data sets [1]. A popular
ML technique is the use of neural networks (NNs). Neural networks are used for
many different tasks such as classification, pattern recognition, filtering, data com-
pression, regression analysis, etc. The use of NNs is both computationally heavy
and memory-intensive.
Computations on a classical central processing unit (CPU) architecture, like the
Harvard or Von Neumann, are inefficient with memory being the main bottleneck
resulting in slow data transfers. A possible technique is to develop a dedicated ML
accelerator on application specific integrated circuits (ASICs) for improved energy
efficiency and performance. The complexity of developing hardware (HW) coupled
with that different NNs have different requirements. Thus, designing, developing,
and testing new accelerators is costly and time-consuming. While dedicated ASICs
are a promising solution for the problem a way of simplifying or generalizing the
development is needed.
NNs are memory intensive, and a lot of performance and power is lost in the
memory accesses and memory transfer of data [2]. One approach to improve this
is placing the logic and memory near each other, called near-memory computing
(NMC) allowing for a great reduction of power from data transfers and a decrease
in latency. To aid in the development of NMC accelerators for ML this master’s
thesis details a technique to generate a HW description of a near-memory ML
architecture easily and automatically, by giving just a few input parameters. This
will speed up the process of designing and testing an architecture with different
parameters for optimal performance given a particular problem while taking ad-
vantage of the benefits of NMC.

1.1 Background and Motivation

With the rising popularity of ML usage, the need for energy-efficient implementa-
tions has increased as well. Autonomous cars, augmented reality, voice automa-
tion, computer vision, etc., benefit from the use of ML. These computing areas
require high-performance HW, and would benefit greatly from power-efficient HW
since available energy (battery-operated) usually is limited.
In NNs, neurons perform computations and are integrated by interconnected lay-

1

2 Introduction

ers. The output from a neuron is a weighted sum of its inputs, which are the
outputs of the previous layer. This process is realized by multiplication and ac-
cumulation (MAC) operations, and poses a memory-heavy task, with inputs and
weight loaded from memory and the result stored back in memory. The facts,
coupled with the problem of the increasing latency gap between processors and
memory, the memory/bandwidth wall [3] has made traditional CPU-based archi-
tecture inadequate to handle the memory-heavy tasks required for NNs.
Together with the rise of ML, NMC has also seen an increase in popularity. With
technological advancement it is now possible, for example, to use solid-state drives
(SSD) with computational capabilities for data processing near memory [1]. While
other approaches exist, such as compute in memory (CIM), this approach intro-
duces limitations in what computations can be implemented and requires changing
the structure of current already optimized memories, resulting in increased power
usage [4]. The NMC approach enables good energy efficiency without changing
the already efficient memories while offering increased performance in memory-
intensive computations, and for that reason, it plays an important part of the
accelerator design in this work.

1.2 Project Aim

The goal of this master’s thesis is to create a platform to enable the auto-generation
of near-memory NN accelerator HW from a set of input parameters for configu-
ration. The parameters allow the HW to be tailored to the performance needs of
the HW user.

1.3 Report Disposition

The report is structured in the following way:

Chapter 2, Background Theory gives a short overview of the theoretical knowl-
edge needed to understand the developed architecture.

Chapter 3, Accelerator Architecture introduces the compiler parameters and
shows the basic structure and components of the compiler generated archi-
tecture.

Chapter 4, Compiler Generated Example shows performance statistics for
some synthesized versions of the compiler generated HW description and a
discussion about the generated results.

Chapter 5, Conclusion concludes the project and provides some examples of
improvements that could be carried out in the future.

Chapter 2
Background Theory

This chapter introduces the basic theory which is relevant for the understanding
of this project and the developed architecture.

2.1 Near-Memory Computing

NMC is an architecture type that places the computational elements and mem-
ories physically close to each other [5]. This helps to reduce latency, improve
throughput bottlenecks, and increase energy efficiency. In a traditional architec-
ture, data transfers to and from memory utilize a bus. This increases energy usage,
latency and reduces the bandwidth. Memories utilizing a bus for data transfers
see a reduction in the possible throughput since the bus might be utilized by mul-
tiple entities. Connecting computational HW directly to the macros inside the
memory allows the usage of the full throughput of the macros, while at the same
time eliminating the extra power inefficiency of using a bus. This project pro-
vides an architecture that takes advantage of the NMC benefits, such as increased
bandwidth. This is achieved by connecting directly to the memory macros and by
operating mostly independently from the main CPU, further reducing bus accesses
to achieve increased energy efficiency.

2.2 Hardware Compiler

For this work, a HW compiler is defined as a program or script that takes pa-
rameters and constraints to create a HW architecture accordingly. The HW is
described by a Hardware Description Language (HDL). This is what the compiler
of this project produces, a set of HDL files that needs interpretation by some syn-
thesis tool to be translated into a physical implementation. The current compiler
implementation takes a set of parameters to set up constraints used in determining
the size of the architecture to implement, which in turn translates to a performance
at a specific area cost.

2.2.1 HDL

The compiler is written in VHDL which stands for Very High Speed Integrated
Circuit (VHSIC) Hardware Description Language. VHDL is a popular HDL used

3

4 Background Theory

to describe basic components of digital systems and their connections in a coding
language style. This HDL code is then used to translate the described functions of
the components in the code to physical components that replicate the behaviour
the code describes. A VHDL reference manual is found in [6].

Register Transfer Diagram

The VHDL code enables a translation into register transfer level (RTL) diagrams.
The RTL diagram shows components like registers, multiplexers, adders, etc. The
architecture given by the compiler is presented in chapter 3. Simplified RTL
diagrams are shown to help explain the architecture.

2.2.2 Synthesis

The synthesis process takes the HDL code produced by the compiler and converts
the code to a HW structure. Generally, the HDL code is translated to a set
of generic gates, and then mapped to specific HW gates or blocks. The HW
blocks are read from a library, provided from a process design kit (PDK) provider.
This means that depending on the PDK used, the physical implementation of the
circuit differs. The synthesis tool used to generate the results in chapter 4 is Genus
Synthesis Solution by Cadence [7].

Power Simulation

Various tools exist to estimate circuit parameters such as power consumption and
timing information. To estimate power consumption for a synthesized design,
PrimeTime by Synopsys was used [9]. PrimeTime takes library information pro-
vided by a technology manufacturer together with variables such as supply voltage
and operating temperature. Switching information from a simulation of the cir-
cuit is then provided to PrimeTime to help estimate the power consumption of
the design.

2.3 Neural Networks

The basic building block of a NN is the neuron. The neuron takes a dot product
between a set of inputs and a set of predetermined weights with the addition of a
predetermined bias value, this result is the input to the function f where f is some
non-linear function called an activation function [10]. The general function of a
neuron is defined as

f([in1, in2, . . . inn] · [w1, w2 . . . wn] + bias) = y. (2.1)

Putting neurons in a layer where the output of the layer is the input to another
layer, the general structure of Figure 2.1 is obtained. In the figure, the input layer
sees an input vector represented by numbers. This could be an image, outputs
from another network, etc. At the output layer a vector of numbers representing
information or a conclusion about the input are found. This layer structure in the
network gives rise to (2.2), which can be simplified to (2.3). The resulting output

Background Theory 5

Y in (2.3) is then fed to the activation function and the results are passed to the
next layer. By adjusting all individual weights and biases of the neurons, using
the right type of activation function, using a certain number of neurons in a layer,
and using a certain number of layers, the network is tuned to produce the desired
outputs for some set of inputs.

Figure 2.1: A basic neural network example with circles representing
neurons and lines representing weighted connections. The input
layer takes a vector of numbers and the output layer outputs a
vector representing information or a conclusion about the input.

in11 in12 . . . in1c

in21 in22 . . . in2c

...
...

. . .
...

inr1 inr2 . . . inrc

w11 w12 . . . w1r

w21 w22 . . . w2r

...
...

. . .
...

wc1 wc2 . . . wcr

+

b1
b2
...
br

 =

y1
y2
...
yr

 (2.2)

IW +B = Y (2.3)

2.4 Convolutional Neural Networks

Many classes of NNs exist, and the NN example in the previous section is selected
as a general example of the feed-forward type of network. A more complex type of
network in the same class is convolutional neural networks (CNNs). This network
applies a filter window that performs the convolutional operation over the input
layers. This makes this type of network good for image processing since it helps
to extract and break down individual features that might be in the input [11].

6 Background Theory

2.4.1 Layers in a CNN

To construct a basic CNN, different layers are used, some examples include:

• Convolutional layer

• Pooling layer

• Fully connected layer

Different kinds of layers exist, but these three are some of the most commonly seen
building blocks. The convolutional layer contains the aforementioned filters that
move over the input. The pooling layer is usually placed after the convolutional
layer. The pooling layer’s task is to reduce the size of the convolutional layer’s
output. Two popular ways to implement this are maximum pooling and average
pooling. To accomplish this a partial region of the input to the pooling layer
is taken, and then either the maximum value or the average value of the region
is forwarded to the next layer. This is performed over the whole input to the
pooling layer, effectively reducing the size of the input. The fully connected layer
has the structure of one layer seen in Figure 2.1. If the two-dimensional or three-
dimensional output from a convolutional or pooling layer is "flattened", converted
to a one-dimensional vector makes inputting it to the fully connected layer possible.
Although a CNN accelerator architecture preferably implements all the mentioned
layers to enable computation of a complete network. Due to time constraints and
the complexity of creating an architecture that is flexible and scalable, only the
convolutional layer has been the focus of this work. The convolutional layer usually
(depending on the CNN implementation and varies from case to case) contains a
large proportion of the total multiplications in the CNN. Therefore, it is chosen
as a good starting point for the compiler to implement.

2.4.2 Convolution Layer

The basic operation of the convolutional layer is described as

X(f, r, c) = F

(
Bf +

D−1∑
d=0

N−1∑
n=0

M−1∑
m=0

Id,(r+n),(c+m) ∗Wf,d,n,m

)
, (2.4)

where f represents the filter to be computed, r represents the row of the output
and c represents the column of the output. The depth of the filter is represented by
D. The row and column size of the filter are represented by N and M, respectively.
The input is represented by I where the first index d is the depth. The second
index, (r+n), is the row. The third index, (c+m), is the column. The weights of the
filter are represented by W, with the first and second index, f, and d, representing
the filter to be computed and its depth respectively. The third and fourth indexes
represent the row and column of the filter respectively. To the sum, a bias value
Bf is added to provide an offset of a filter result. Finally, the complete sum is
the input of the activation function F to provide non-linearity to the result. The
layer operation is called a two-dimensional convolution, even though the input and
filter are in three dimensions, row, column, and depth. The filter only "moves"
over the row and column since the filter depth and input depth are the same, and

Background Theory 7

the full depth is summed for every computed output X. Applying the equation for
all rows, R, and columns, C, produces a two-dimensional output per filter f. Since
one layer contains multiple filters, K. The final output from the layer will have the
size of R by C by K where K is the depth of the output also called the number
of output channels.

2.4.3 Activation Function

Many different types of activation functions exist. Some examples include the
functions seen in (2.5) through (2.7).

Sigmoid: f(x) =
1

1 + e−x
(2.5)

Tanh: f(x) =
e2x − 1

e2x + 1
(2.6)

ReLU: f(x) = max(0, x) (2.7)

One of the most commonly used is Equation (2.7), ReLU (Rectified Linear Unit),
[12]. Max(0, x) simply translates to a function that is zero for negative values of
x and is equal to x for positive x. This relatively simplistic function is also simple
to implement in HW. Since it only requires the designer to look at the sign of the
result x, and output x if positive otherwise output a zero. For these reasons, this
activation function was chosen to be implemented by the compiler.

2.4.4 Quantization

Floating point computations are used for multiplications and additions that con-
tain decimals. While floating points do give a higher precision, they require more
HW, are slower to compute and are more complex to implement. An alternative is
to implement all computations in fixed integer multiplication, [13]. This reduces
accuracy but enables each computation to be computed in one clock cycle. First,
a certain bit precision has to be chosen, for example, N bits. This gives a range
of −2N−1 to 2N−1 − 1. Now the maximum floating point value and the minimum
floating point value found in the NN to be computed is mapped to the highest
and lowest integer range value, respectively. All other values in the NN now fall
somewhere in between the maximum and minimum ranges and are to be mapped
linearly to a corresponding integer. However, the values do not necessarily need
to correspond to integer values. Using fixed point arithmetic, some bits are rep-
resenting integers and some bits are representing the fractional part. An example
of fixed point number representation is provided in (2.8). It is shown that fixed
point representation can be described by an integer and a multiplication by two
to some negative power. This implies that the multiplication between two fixed
point numbers can be carried out as integer multiplications with the result shifted
with 2−(m+n), where m and n are the number of bits used for the fractional part
in each respective multiplicand.

8 Background Theory

101.11001 ≡
1 ∗ −(22) + 0 ∗ 21 + 1 ∗ 20 + 1 ∗ 2−1 + 1 ∗ 2−2 + 0 ∗ 2−3 + 0 ∗ 2−4 + 1 ∗ 2−5

= (1 ∗ −(27) + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20) ∗ 2−5

= −71 ∗ 2−5

= −2, 21875 (2.8)

Therefore, in HW, the multiplication is carried out in the same way no matter
if integer or fixed point representation is used. If fixed point representation is
needed, the user of the system needs to interpret the generated results correctly.
This means that knowledge of where the radix point ends up after multiplication
is needed. If the radix point is in position n for one multiplicand and in position
m for the other multiplicand, the result will have its radix point in position n+m.

2.4.5 Truncation

As multiplications and additions are carried out, more and more bits are needed to
represent the growing result. When computing the subsequent layer in the CNN
the same multipliers need to be used, i.e., the same number of bits as the previous
layer is needed for representation. One way to do this is to truncate the results back
to the original input precision [14]. The act of truncating entails discarding the
lower-valued bits and to keep a subset of the bits from the upper range. This will
lower the precision of the system with the trade-off that the same-sized multipliers
are used to carry out the needed multiplications for all CNN layers. Therefore, a
user of the architecture needs to investigate the optimal point to truncate for each
layer before using the architecture.

Chapter 3
Accelerator Architecture

This chapter will introduce the compiler parameters together with RTL diagrams
to give an overview of the developed architecture.

3.1 Compiler Parameters

A short overview of the compiler parameters and their ranges will be presented.

3.1.1 Hardware Parameters

The different memories the architecture requires are given in Table 3.1. All the
names represent one memory that needs to be connected to the generated archi-
tecture, except Buffer. The reason for this is that multiple buffer memories are
needed, the number of needed buffer memories depends on the parallel filter (PF)
parameter, which will be given later. Each memory is given by two parameters that
need specification, these parameters exist so that the architecture can interact with
the given memories correctly. These are data width (DW) and address width
(AW). The parameters take integer values that represent the bit array length of
a given element. Their ranges for DW and AW are to be anything from one and
upward with no restrictions from the compiler side. Different memory intellectual
properties (IPs) will come with different DW and AW with their own restrictions.
The memory parameters give the user the control and flexibility needed to create
and connect the HW to different-sized memory systems that fit the performance
needed by the user.

Table 3.1: Names for all the needed memories.

Required memories
Input

Weight
Bias

Output
Buffer

9

10 Accelerator Architecture

One restriction of the memory parameters is that the bias memory DW and
buffer memory DW currently need to have the same value. This is due to the
fact that the number of bits for these two memories controls the number of bits used
for the final accumulated results. Thus, the sizes of these two vectors need to be big
enough to ensure there is no overflow after accumulating all results of a convolution
operation. Most likely, input memory DW and output memory DW will
also have the same value if the user wants to be able to switch between them for
input and output. The addition needed for this will be shown in section 3.2. All
memory parameters; input/weight/bias/output/buffer memory AWs are
required to specify the number of bits needed to interact with the memories and
to limit counters in the architecture to not use more bits than needed to index
the specified address range. The user needs to make sure that memories with an
address range that is big enough for the input data, results, and weights to fit in
their respective memories.

The compiler parameters given in Table 3.2, set the maximum sizes of the
convolutional layers that will be computable, define precision and determine par-
allelization/performance. All values are specified as integer values.

Table 3.2: Hardware parameters to specify compiler configuration.

Accelerator parameters Acronym
Data Width DW

Maximum Filter Size MFS
Maximum Input Size MIS

Maximum Input Depth MID
Maximum Number of filters MNF

Maximum Stride MS
Parallel Filters PF
Parallel Depth PD

Data Width is used to specify the number of bits used for each input, weight,
and output value. All of these values are treated as a two’s complement
numbers and will be referred to as a "data word". DW is specified as any
positive integer but, when multiplied with another positive integer N, the
following needs to apply:

DW ∗N ≤ M (3.1)

and
M mod (DW ∗N) = 0 (3.2)

where M is any of the integer widths specified for memory DW of the
memories in Table 3.1. This ensures that an integer number of words fits in
the specified memories and completely fills one address row with values.

Maximum Filter Size (MFS) sets the maximum possible filter size that can
be used for a convolution operation. The set size is squared such that an

Accelerator Architecture 11

integer 3 specifies a 3 by 3 filter and an integer 9 specifies a 9 by 9 filter.
The minimum allowed value is 3 and is incremented in steps of 2 to any
desired size. The depth of the filter always follows the depth of the input.

Maximum Input Size (MIS) specifies the maximum two-dimensional size of an
input to a layer. That is, if MIS is given as I the maximum allowed input
is I by I data words in size. The minimum value of MIS is three following
the minimum filter size.

Maximum Input Depth (MID) refers to the maximum size of the third dimen-
sion of the input, usually referred to as input depth or the number of input
channels, and takes any positive integer value. With MIS given by I and
MID given by D the maximum allowed size of an input is I by I by D.

Maximum Number of Filters (MNF) sets the maximum allowed number of
filters/the number of output channels for a given layer. It is set to any
integer value starting at one.

Maximum Stride (MS) sets the maximum allowed stride for any given layer. It
is set to any integer value starting at one.

Parallel Filters (PFs) set how many filters of one layer that the architecture
calculates in parallel. The minimum integer value is one and the maximum
allowed value depends on output memory DW / DW.

Parallel Depth (PD) sets how much of the input depth of a layer the architecture
calculates in parallel. The minimum integer value is one and the maximum
allowed value depends on input memory DW / DW.

3.1.2 Run Time Parameters

Run time parameters are the specifications for a specific layer that the user wants
to compute. Compared to the previous HW parameters, the run time parameters
do not influence the architecture data path or the HW that is generated after syn-
thesis. The run time parameters have their ranges limited by the HW parameters.
The run time parameters all take an integer as input and are summarized in Table
3.3.

Input Size (IS) is limited by MIS as its maximum value, the minimum value
is the minimum filter size, three. If the specified IS is I for some layer the
architecture expects the input for this layer to be I by I words in size.

Input Depth (ID) specifies the depth/number of channels in the input of the
current layer. The maximum value is specified by MID and the minimum
value is one.

Filter Size (FS) is the two-dimensional size of a filter that convolves over the
input. If the given FS is F, the filter will have a size of F by F with
the same depth of the input. The maximum value for FS is MFS, and the
minimum size is the minimum FS, three. As MFS is specified in increments
of two, so is FS, starting at the minimum value.

12 Accelerator Architecture

Table 3.3: Run time parameters for convolutional layers and their
ranges.

Run time parameters Acronym Min. Max.
Input Size IS 3 MIS

Input Depth ID 1 MID
Filter Size FS 3 MFS

Stide - 1 MS
Padding - 0 1

Number of Filters NF 1 MNF
Truncation Start Bit TSB DW Bias memory DW

Relu - 0 1
Filter Base Address FBA 0 2(Filter memory AW) − 1

Bias Base Address BBA 0 2(Bias memory AW) − 1

Result Save Address RSA 0 2(Result memory AW) − 1

Stride is the step size of the filter and is the same in both two-dimensional di-
rections. The minimum value is 1 and takes any integer up to the set MS.

Padding is set with 1/0 indicating yes/no to use "same" padding. Same padding
adds zeros around the input to ensure that the two-dimensional size of the
output is the same as the input.

Number of Filters (NF) specifies the number of filters to run over the input,
which translates to setting the output depth/number of output channels.
The maximum allowed value is set by MNF and the minimum allowed
value is one.

Truncation Start Bit (TSB) specifies from what bit index the results of a con-
volution will be truncated. The output will have the same word size as the
inputs and weights determined by DW. The result vector before truncation
is set to have the same number of bits as the bias memory DW. At some
index, within this vector, a truncation point is set. Truncation from the set
index point includes the start bit and DW number of bits under this point.
An example: If DW equals eight and bias memory DW equals 32, the
options for the TSB are 32 down to 8. Since DW is set to 8, the lowest bit
truncation starts from is 8. If TSB equals 18 for example, the truncated
result vector for the output results includes bit 18 down to (and including)
bit 11.

Relu assumes a value of 1 or 0 indicating yes/no. If it assumes ’1’, relu will be
applied to the output results and any negative value will be set to zero.

Filter Base Address (FBA) is to be set to the address which contains the first
weight for a particular layer.

Bias Base Address (BBA) is to be set to the address which contains the first
bias value for a particular layer.

Accelerator Architecture 13

Result Save Address (RSA) will be the address where the first results of a layer
will be saved with the following results saved to subsequent addresses.

All these parameters are called run time parameters and need to be specified
before synthesis. Further development of the compiler would allow these run time
parameters to be given during operation. However, in the current version the
parameters are saved as static read-only values and thus the parameters are not to
be given or changed during operation. This is to decrease the number of parameters
that are needed to be given to the HW for a computation. Based on the given run
time parameters, many other values needed by the architecture compiler are pre-
calculated. This limits the size of many control elements, thus reducing area and
power, but also makes a trade-off with the architecture flexibility. To generalize
the architecture to one that can be given the run time parameters at operation,
the control logic needs to change to use bigger counters and bit vectors to be
able to accommodate any unknown parameter configuration. If this change is
made additional values need to be pre-calculated during operation for the HW to
function properly. Provided in (3.3) is an example of one of these pre-calculated
values. The example shows the needed calculation of a "jump" in memory address
when loading different filters.

(FS)2

(weight memory DW
DW)

(3.3)

In (3.3), the "jump" in memory is calculated from the size of the current filter
divided by how many data words fit into one address. This calculation contains
both a square and two divisions. These operations are HW-expensive to imple-
ment. Changing the architecture into the more generalized version, these values
that are more complex to calculate need to be provided at run time, and thus
some added pre-calculation is needed. However, this will not affect run time per-
formance since it is a one-time calculation. After calculation, the values are to be
stored away, reused when needed again, and thus do not add any major overhead
to the operation of the architecture.

3.2 Generated Architecture

RTL diagrams will be presented with the purpose of furthering the understanding
of the presented compiler parameters and how they affect the performance of the
architecture. The diagrams will mostly include the architecture data path. Most
units presented have some control logic, however, the control logic does not change
much with the given HW parameters and is therefore excluded to simplify the
diagrams. At most, some counters change their upper limits, which means more
bits might be needed to represent a number, but the operation of the logic mostly
stays the same. Starting with the core of the architecture, the surrounding units
will be built up and included until the whole architecture has been presented.

14 Accelerator Architecture

Figure 3.1: Architecture overview of module connections.

3.2.1 An Overview

For an initial overview, a basic diagram showing the modules to be explained in
the chapter is shown in Figure 3.1. The diagram shown is simplified and does not
contain control blocks and control signals to keep the diagram clear and under-
standable.

3.2.2 Basic Multiplier Block

Figure 3.2: BM block.

The most basic building block is the multiplier shown in Figure 3.2. It consists of
a multiplication of the two inputs, row data, and weight data. Both inputs will
be DW number of bits in width. Multiplication will be signed resulting in the
multiplication out signal being DW * 2 in width with one bit as a sign bit. The
zero weight signal is a control signal that gives the option to force multiplication
with a zero instead of the weight input effectively setting the multiplication output
to zero.

3.2.3 Filter Row

The basic multiplier is used to implement a row of MFS number of multipliers
seen in Figure 3.3, called a filter row. One of the multipliers’ inputs is set to
row data in, RDI, and the second connects to MFS number of registers that are
chained together. Weights are inserted one by one from weight data in, WDI, and
shift from one register to the next. When all weights of a filter row are loaded,

Accelerator Architecture 15

Figure 3.3: Row filter, BM denotes the basic multiplier. Computes
one row of one filter over one row of inputs.

the input of row values starts. The multiplied result is added to the previous
multipliers result and latched in a register. This means at the start the first row
value is multiplied by the filter rows right most weight and the result is obtained at
row result out RRO. In the next clock cycle, after the first result is obtained, the
next row value is inputted and multiplied with the rightmost filter weight. This is
added together with the first row value multiplied by the second rightmost filter
weight. In the next clock cycle, the sum of three multiplications is obtained. This
continues until the sum of all MFS number of multipliers is obtained. Thus, the
filter row calculates the result of a filter moving over an input row, as described
by a CNN filter convolution. The result from the multipliers is DW ∗ 2 number of
bits. The subsequent and repeated addition means more bits are needed for the
summed result. Therefore, the registers after the addition and the output have a
bit array length of 2 ∗ DW + log2(MFS).

3.2.4 Filter Slice

The filter rows are arranged into a column as seen in Figure 3.4, which will be
called a filter slice. The filter slice now consists of MFS2 number of multipliers
and implements a square moving filter over its input. The filter rows are summed
by adders to produce a single result at filter sum out (FSO) for a square filter. The
output now has the bit array length of 2 ∗ DW + 2 ∗ log2(MFS). To compute a
filter smaller than MFS2, the "zero weight" signal is used in the multiplier block.
For example, to compute a filter of size (MFS−2)2 the two top rows of multipliers
and two leftmost columns of multipliers are switched to zero.

3.2.5 Filter Core

Grouping multiple filter slices gives the filter core seen in Figure 3.5. The idea is
to use one filter slice to compute values for one filter and another slice for another
filter. This is because different filters share the same inputs allowing parallelization
without being limited by the input memory bandwidth. The row inputs are the
same as in Figure 3.4, but shown here as an array. Increasing the parallelization
increases the number of weights that need to be loaded before computations begins,

16 Accelerator Architecture

Figure 3.4: Filter slice, sums results of multiple filter rows.

Figure 3.5: Filter core, groups together multiple filter slices.

Accelerator Architecture 17

which needs to be considered by the user. To control the number of slices in the
filter core, the PF parameter is used. Also, observe that now there is PF number
of outputs produced each clock cycle.

3.2.6 Computation Block

To further parallelize, assuming the bandwidth of the input memory is sufficient,
multiple input row values are loaded from different depths of the input. Thus,
using multiple filter cores as seen in Figure 3.6, enables different depths of filters
to be calculated. To control the number of filter cores, i.e., the current depth of the
input/filters that are worked on in parallel, the PD parameter is used. This new
block also contains adders to sum the results from different depths, giving a total
of PF number of outputs. The width of the output is now the previous bit array
length added with log2 of the number of PD used: 2 ∗ DW + 2 ∗ log2(MFS) +
log2(PD). The use of multiplexers before the input of each adder enables the
option to take the results of a certain filter core, i.e., the result of a certain depth
calculation, and zero it instead of adding it. The reason for this is best explained
with an example: Calculating a filter with the depth of seven and PD set to four.
This means that after the first four inputs of the depth are calculated, only three
in depth are left of the input/filter to calculate, and thus the results of the fourth
filter core need to be set to zero. Therefore, multiplexers switch the results from
the fourth filter core to zero.

Figure 3.6: Computation block, that sums the results from the filter
cores.

3.2.7 Weight Loading

In order to load the weights of a filter, buffers are used. The buffers allow the
loading of weights from a memory while computations in the computation block
are still ongoing. The loaded weight then only needs to move from the buffers into

18 Accelerator Architecture

Figure 3.7: Overview of the different weight management blocks
and their connections.

Figure 3.8: Weight structurer, alignes filter data form memory with
buffers.

Accelerator Architecture 19

the computation block when a new computation cycle starts. This preemptive
loading of the weights, instead of reading directly from memory, ensures to not
bottleneck the architecture from the memory bandwidth. The buffers are each
accommodated by a "filter structurer" block. The general block structure is seen
in Figure 3.7. Internally, the filter buffers are a MFS by MFS grid of DW-sized
registers connected to each other horizontally. This means that in order to load a
new set of weights into the computation block, only MFS number of clock cycles
are needed. The number of filter buffers and filter structurers are one each per
filter slice used, thus PF ∗ PD number of both is needed.

The filter structurers are controlled by a block called "weight link", also seen
in Figure 3.7. The role of the weight link is to coordinate the filter structurers
with the weight memory. It gives the address to the weight memory and orders
a filter structurer to latch the resulting memory output. Then the memory ad-
dress jumps to either load the next address, the address that contains the next
depth value for the current filter, or jumps to load a new filter depending on
how the parallelization parameters are set. The general arrangement of the fil-
ter structurers is seen in Figure 3.8. Here, the input of the memory is split up
into weight memory DW/DW number of arrays. This number is referred to as
weights per clock (WPC). The split-up input is distributed to WPC number of
registers through WPC-1 number of multiplexers controlled by the pick input (PI)
signal. The weights latched into the registers are fed forward. When a weight is in
the rightmost register in the chain, the corresponding filter row register latches the
value. This continues for WPC number of clock cycles, then the filter structurer
waits until another set of weight memory data is latched into the registers and
continues to feed the filter row registers. Once the number of filter row registers
corresponding to the current FS to be calculated have their values, the outputs
are latched by the filter buffer block after the structurer and the next column
of weight are loaded. This does serialize the parallel input of weights from the
memory. However, as long as there is some parallelization, that is PF or PD are
bigger than one, some filter structurer will be saving values from memory while
another is moving values to the buffers. For example: If a parallelization gives
four filter structurers and the weight memory DW is 32 and DW is eight. This
gives WPC equal to four. Then reading from memory every clock cycle until all
weights are loaded will be possible.

Weight Memory Management

To ensure the weight link fetches the correct weights from memory, the weights
need to be saved in memory in a certain way. An example of how the weights are
saved is provided in Table 3.4. With a weight memory with weight memory DW
equal to 32 and DW equal to eight, 32/8 gives four weights stored per address row
in memory. The example shows how N number of filters with a size of five by five
by two are to be saved in memory. The weights are shown as Ffdrc, where f equals
the filter index, d equals the depth index, r equals the row index and c equals the
column index in the given filters. Filters weights are saved starting in the rightmost
column and saved on a row-by-row basis. When one full two-dimensional slice has
been saved and the depth, d, or the filter index, f, is incremented, the storing of

20 Accelerator Architecture

the values starts on a new address row.

Table 3.4: Weight memory space, shows the general structure of
weight data in memory.

Memory address Memory data
FBA F1115 F1125 F1135 F1145

FBA + 1 F1155 F1114 F1124 F1134

FBA + 2 F1144 F1154 F1113 F1123

FBA + 3 F1133 F1143 F1153 F1112

FBA + 4 F1122 F1132 F1142 F1152

FBA + 5 F1111 F1121 F1131 F1141

FBA + 6 F1151 X X X
FBA + 7 F1215 F1225 F1235 F1245

FBA + 8 F1255 F1214 F1224 F1234

FBA + 9 F1244 F1254 F1213 F1223

FBA + 10 F1233 F1243 F1253 F1212

FBA + 11 F1222 F1232 F1242 F1252

FBA + 12 F1211 F1221 F1231 F1241

FBA + 13 F1251 X X X
FBA + 14 F2115 F2125 F2135 F2145

3.2.8 Loading Inputs

Row Buffer

Input data is buffered on a row-by-row basis, using the row buffer block shown
in Figure 3.9. The buffer consists of registers with the same number of bits as
DW. The total number of registers is determined by MIS to allow a full row to
be buffered. The IS run time parameter sets the size for different layers and is
here used to insert multiplexers in the register chain, resulting in the buffer being
able to change in length depending on the size of the current layer.

Figure 3.9: Row buffer, register chain of configurable length.

Accelerator Architecture 21

Row Buffer Connections

The output of the row buffers is connected to the row inputs of the computation
block. The inputs and outputs of multiple row buffers are chained together, as
seen in Figure 3.10.

Figure 3.10: Row buffer connections to the computation block and
to each other.

There will be MFS-1 row buffers created per PD. During an operation, the row
buffers need to be filled with inputs, meaning the first row of the input data is
read and fed to the row input and then the next row, etc. The input data will
move up the chain of row buffers until FS (of the current layer) minus one number
of row buffers are filled (since the bottom row is not buffered). This means that
the first rows that the filter will move over are loaded, except the bottom row
that goes directly from the input link output to the computation block without
buffering. During computation, while the row data is outputted from the buffers
to the computation block, the row data also move up to the next buffer. When the
filter has moved over a complete row, and a new row below is loaded, no reloading
of previous inputs from memory is needed. For every PD used in the design,
loading and buffering the inputs is needed, thus the number of row buffers needed
are (MFS− 1) ∗PD. Since the buffer size depends on DW and MIS the number
of needed registers grows fast depending on all four mentioned parameters.

Input Link

Interfacing of the input memory is realized by the input link, as shown in Figure
3.11. The input link provides an address to input memory and receives the memory
data. Similarly, to the weight link, the input memory data is split up over input
memory data width / DW = Inputs per clock number of registers with one
register chain per PD. Values are saved to the correct row of registers by switching
multiplexers with the appropriate read depth (RD) signal. On the outputs of the
weight link, registers are inserted to delay the output. Since one set of inputs from
one row of one depth gets loaded per clock cycle, the delay registers make sure that
when outputting the values, they arrive at the same time to the core input and

22 Accelerator Architecture

to the row buffers. Out depth 1 will have PD minus one chained registers after
the output, Out depth 2 will have PD-2 chained registers after the output and
so forth. In this input link, the maximum PD limit is seen, inputs per clock will
be the maximum number of PD since if PD were to be any higher, the needed
number of input values per clock exceeds the bandwidth of the input memory.

Figure 3.11: Input link, reads input memory data and outputs the
data to the row buffers.

Input Memory Management

Structuring the input data in memory is performed in a similar fashion to weight
management in the weight memory. An example is seen in Table 3.5. With input
memory DW equal to 32, and DW equal to 8, giving four input values per
address row in the memory. The indices in Indrc have d representing depth, r
representing row, and c representing column of the input. An input with dimen-
sions of three by three by some depth is given. When a new chunk of the depth
is to be loaded, a new address row in memory is to be used (similar to how the
weights were managed). One parameter not given in the run time parameters is
Input Base Address (IBA). This parameter is not loaded pre-synthesis but given
during the actual run time/operation of the unit to the top module in a "true run
time" fashion, giving more flexibility as to where the inputs are stored.

Accelerator Architecture 23

Table 3.5: Input memory space, shows the general structure of input
data in memory.

Memory address Memory data
IBA In111 In112 In113 In121

IBA + 1 In122 In123 In131 In132

IBA + 2 In133 X X X
IBA + 3 In211 In212 In213 In221

IBA + 4 In222 In223 In231 In232

IBA + 5 In233 X X X
IBA + 6 In311 In312 In313 In321

3.2.9 Filter Result Accumulator

The results produced by the computation block are (depending on PD and input
depth) a sum of some depth of the input per filter computed in parallel. For the
times the input/filter is of a depth (both have the same depth) greater than the
PD used, the result from the computation block is only a partial result. This
partial result needs to be saved. The next part of the input depth needs to be
calculated and added to the partial result. To store the partial result, two buffer
memories per PF are used. Reading out the partial result and adding it together
with the newest value from the computation block is performed by the filter result
accumulator (FRA) block seen in Figure 3.12. For the first results of a filter, the
buffer memory data inputs to the FRA are set to zero, since the first result does not
need any previous result added. The result is stored in one of the two memories.
After all partial results of the output are computed, the computation block starts
to compute the next set of results for the same filters. Now the previously stored
results will be read from one of the two memories where it was stored, added
together with the new result from the computation block, and stored back to the
other memory. This process continues until the full depth of an input/filter has
been computed.

Figure 3.12: Filter result accumulator, selects a partial result from
a buffer memory, sums it with the latest computed result and
stores back to buffer memory.

Important to note is that one FRA accumulates results and stores them for one
filter. This means that for every PF used one FRA block is added, and more
importantly, two buffer memories are needed. The size of these memories needs

24 Accelerator Architecture

to be big enough to store all output results of one filter. For example, if the
number of output results from one filter equals 400, the buffer memories need to
be able to store at least 400 results each. To ensure that during accumulation no
overflow is generated, the buffer memories store one result per address row. The
number of bits needed for the result out from the computation block was previously
2 ∗ DW + 2 ∗ log2(MFS) + log2(PD). Now with arbitrary many accumulations
depending on the depth of the input, it is up to the user to make sure that the DW
of the buffer memories is adequate to store the full result. In order to facilitate
this, the buffer memories and the bias memory need to have the same DW. Usually,
bias values are full 32 bit or 64 bit precision and thus if these sizes are used, the
accumulation in the FRA hopefully does not overflow. However, if the accumulated
values have a chance of growing larger than abs(231) or abs(263) (one bit used for
sign), buffers and bias memory with larger DWs are needed. It is up to the user
to ensure that the buffers and bias memory are large enough/adequate.

3.2.10 Writeback Unit

After a filter has been fully computed, the results are either in buffer 1 or buffer
2 for each filter and needs to be written to memory. This is performed by the
writeback unit seen in Figure 3.13. The writeback unit takes control from the
FRA of the buffer (1 or 2) that holds the completed results. The computation
block can start to compute the next set of filters and store the first partial results
in the unused buffer, meaning that computation does not stop when saving the
results. Inside the writeback unit, a few different processes take place. Firstly, the
bias value for the current filters is added to the read results. The results then go
through a truncation unit, going from a bit array length equal to that of the buffer
memories/bias memory to a bit array length of DW. Relu is also performed in the
truncation unit if needed. Secondly, the different filter results need to be delayed
slightly since all results first arrive at the same time, but only one output address
is written to at a time. To do this, results from filter two are delayed one clock
cycle, filter three results are delayed two clock cycles, etc. After the delay registers
are output memory DW/DW = outputs per clock number of registers that
hold the results. After outputs per clock number of clock cycles the filter one
row registers are filled, thus the multiplexers on the output select all values from
the filter one row and outputs to memory. Because of the added delay, in the
next clock cycle, filter row two has all the outputs per clock number of values. A
jump is made in memory and filter two is saved. The first filter starts saving at
RSA. The outputs are saved in memory similar to how the inputs were saved.
The example provided for the input memory in Table 3.5 presents the structure
of the outputs in memory. The only change to be made from that example is that
the d in Indrc instead represents the filter number instead of the depth since the
individual filter results do not have a depth. The writeback unit sets an upper
limit to PF and that is outputs per clock. PF cannot be greater than outputs
per clock since the number of results arriving then exceeds the output memory
bandwidth and a "build up" of outputs occurs.

Accelerator Architecture 25

Figure 3.13: Writeback unit, reads results from buffer memory to
then add bias, truncate, and save result to memory.

26 Accelerator Architecture

Truncation Unit

Figure 3.14: Truncation unit, truncates result at wanted bit position
and applies activation function.

The previously mentioned truncation unit is seen in Figure 3.14. The input is
split up into DW sized arrays. For example, if the input is 32 bits, and the DW
is set to eight bits, the input is split into 24 arrays starting from bit 31 (sign bit is
ignored) down to (and including) bit 24, 30 down to 23, 29 down to 22, etc. until
the lowest range, eight down to one. Then one of these ranges is picked by the
multiplexer specified by the user from the TSB parameter. The sign bit is used
to produce the relu value (if negative, output zero). The user-specified parameter
relu is used to either output the relu result or just the truncated result. Finally,
since networks are trained on a set of input data, but the actual inference inputs
are completely new inputs, there is a risk of an input producing a result greater
than the truncation point. This results in outputs of a small positive or negative
value when the real output was meant to be the largest possible output. Thus,
some logic is added to check all bits above the chosen TSB. If any bit has flipped to
a one for positive numbers or if any bit has flipped to a zero for negative numbers,
the output is changed to be adequate to the range that is representable with the
current DW.

Bias Link

The bias link is a unit that addresses the bias memory and provides the bias
values to the writeback unit. At the start of each filter computation, the bias
link reads PF number of bias values from memory and stores them in the same
number of registers feeding the writeback unit. The bias values are to be stored in
memory starting with the bias for filter one at BBA, the bias value for filter two
at BBA + 1, etc. All multiplications in the computation block are implemented
as two’s complement integer multiplication. If the user wants to represent the
data as having a fixed radix point, consideration of the bias value data must be
performed. If the inputs and weights have some parts of their DW size as integer
representation and decimal representation (i.e., fixed point representation), the
radix point will be shifted after multiplication and needs alignment with the bias

Accelerator Architecture 27

value radix point. This can be explained by an example: Using DW equal to 8,
multiplication of the input and weight will result in 16 bits. If the input values have
four bits to represent decimal values, and the weights have six bits to represent
decimal values, there are now ten bits after the radix point to represent decimal
values after the multiplication. The bias values in memory then need their radix
point physically aligned with the radix point of the multiplication at bit ten, in
order to be added correctly later in the writeback unit. An illustration of this is
given in Figure 3.15.

Figure 3.15: Bias and multiplication radix point line up for addition.

3.2.11 Overview of Top Module and Memory Connections

Figure 3.16: Architecture top module with memory connections.

The top block and its memory connections is shown in Figure 3.16, presenting an
overview of the top-level connections of the system. If input and output memory
are kept to the same DW, it is possible to add multiplexers and a control bit
to the top-level design, allowing the user to switch input and output memory.
This grants the ability to run consecutive convolutional layers without moving the
results from the output memory to the input memory.

28 Accelerator Architecture

Chapter 4
Compiler Generated Example

This chapter details different implementation results from examples synthesized
from architectures generated by the designed compiler.

4.1 Hardware Specification

Table 4.1: Specified hardware parameters supplied to the compiler.

Memory parameters
Input AW, DW 13, 32

Weight AW, DW 13, 32
Bias AW, DW 13, 32

Buffer AW, DW 13, 32
Output AW, DW 13, 32

Accelerator parameters
Data Width 8

Max. Filter Size 5
Max. Input Size 32

Max. Input Depth 32
Max. Number of Filters 32

Max. Stride 1

Values for the given HW parameters in the compiler are presented in Table 4.1.
The same memory IP was used for all different memories; thus all width values
are the same. Accelerator parameters were set accordingly as the maximums of
the layers to be computed. The PF and PD parameters were changed to give
multiple synthesized versions with different performances.

4.2 Runtime Specification

In Table 4.2, the runtime parameters of the convolutional layers used for the
example are presented. One notable thing is the address used for RSA. The given
memories have an address range of 213 = 8192 available for use. The convolution
over layer one generates exactly 8192 results. This means that all available memory
is used. Consequently, there is no need in starting to store results from subsequent
layers at another point in memory than the first address. The assumption before
starting a computation after layer one is that the previously generated results have
been used or moved from memory. This problem does not exist for layer two and

29

30 Compiler Generated Example

Table 4.2: Specified runtime parameters supplied to the compiler.

Parameter name Layer 1 Layer 2 Layer 3
Input Size 32 16 8

Input Depth 3 32 16
Filter Size 5 5 5

Stride 1 1 1
Padding Yes Yes Yes

Number of Filters 32 16 32
Trunc. Start Bit 19 21 20

Relu Yes Yes Yes
Filter Base Address 0 670 4256
Bias base Address 0 32 48

Result Save Address 0 0 1024

three since both results fit in the memory at once. Starting computation of layer
three is therefore possible after the computation of layer two. This assumes all
weights and inputs are pre-loaded for both layers. An alternative is to use a bigger
memory to store the results.

4.3 Extracted Results

Different versions are synthesized with the HW specifications shown in Table 4.1,
with PF and PD changed within their allowed ranges. A clock period of 5 ns was
used.

4.3.1 Run Time Operation

The number of clock cycles required to compute each layer depending on PF and
PD is presented with a table for each layer given in Table 4.3 through 4.5. It can
be seen in the tables that the performance change is predictable with respect to
changes in the performance parameters PF and PD. Since MFS has been set to
five, the number of multipliers per PD or PF is 25. This gives 25 ∗ PF ∗ PD
number of multipliers. This in turn, with PF and PD taking possible values
between one and four, gives the possibility to change the number of instantiated
multipliers in the design to between 25 and 400.

Looking at the table data one can see that an increase in PF has the same
effect on performance. For example, double the PF (and thus double the number
of multipliers) gives a performance that is close to twice as fast, in other words,
the calculation takes half as many clock cycles to complete. The performance gain
is not exactly linear with PF, increasing PF with a factor of two does not increase
performance with exactly a factor of two, but is close to an increase with a factor
of two. It is within one to four percent of the expected increase. Looking at the
change in performance with respect to PD, the same does not hold. While in

Compiler Generated Example 31

some cases (especially going from one to two PD) double the PD means double
the performance, but for many cases, the increase is between 60 and 90 percent
of the expected increase. Since there is some overhead, both in loading input
values and in computation, the change in performance is most likely linked to
both the HW parameters and runtime parameters. Both the HW parameters and
the runtime parameters will change the exact performance, and thus another layer
or other HW setups might not see the same limit. One likely contributor to the
performance limitation is an overhead of pre-loading input values to load the row
buffers. This overhead does increase with PD, since there are more row values to
pre-load. Referring to Figure 3.11, there are more rows of registers to load before
values start to be given to the buffers. One outlier is the change in PD from three
to four in layer one (Table 4.3). This is explained by the fact that the input to
layer one only has a depth of three. This means that the extra PD does not offer
a performance gain compared to PD equal to three.

Table 4.3: Computation time in clock cycles for layer one.

PF
PD 1 2 3 4

1 240644 162436 83652 83716
2 121606 82310 42950 43398
3 84270 57276 30634 31096
4 61866 42442 23178 23626

Table 4.4: Computation time in clock cycles for layer two.

PF
PD 1 2 3 4

1 377444 190276 131748 96580
2 189110 95430 66182 48806
3 141976 71728 50020 37072
4 94834 48106 33690 25114

Table 4.5: Computation time in clock cycles for layer three.

PF
PD 1 2 3 4

1 132420 68356 52356 36100
2 66534 34310 26342 18630
3 45808 23676 18616 13468
4 33370 17482 13914 10474

32 Compiler Generated Example

4.3.2 Area

Contrary to the runtime measured in clock cycles, the area is technology depen-
dent, and these are the results when synthesized to the CMOS 28 nm FD-SOI
technology by STMicroelectronics [8]. The given area results in Table 4.6 give the
area in relation to a base case, which is PF and PD equal to one. The given
results only include the architecture that is generated by the compiler. Memories
and buffer memories are not included in the given area since these change depend-
ing on the memory IP used. To give a point of comparison, the memories used for
this example with their size of 8192 addresses of 32 bits per address have an area
of 4,3 times that of the base case. Given that there are four memories needed for
inputs and outputs, plus two times PF number of buffer memories, the total area
of the architecture including memories is between 27.0 to 63.1 times the base case
for (PF, PD) of (1,1) and (4,4) respectively. This shows that for this particular
example memory size has the greatest influence on final area.

Table 4.6: Synthesis area in relation to the base case of PF, PD
equal to one.

PF
PD 1 2 3 4

1 1 1.877 2.752 3.617
2 1.645 3.101 4.558 6.004
3 2.291 4.330 6.374 8.399
4 2.931 5.554 8.174 11.280

4.3.3 Timing

Table 4.7: Critical path in relation to the base case of PF, PD equal
to one.

PF
PD 1 2 3 4

1 1 1.031 1.062 1.125
2 1.003 1.083 1.096 1.117
3 1.023 1.068 1.110 1.119
4 1.028 1.073 1.145 1.238

The critical path in relation to the base case of PF, PD equal to one, is presented
in Table 4.7. The values generated here are also a result of using the CMOS
28nm SOI technology by STMicroelectronics. The minimum frequency for the
synthesized gate-level netlist is above 350 MHz. The generated timing results
show some change between different PF and PD. This change is explained by the
fact that the critical path is within the control parts of the architecture and not

Compiler Generated Example 33

the data path. The reason that this is the case here is that the used multiplication
precision (DW) was set to 8 bits. A higher precision might change the critical
path to the point where the data path has the longest timing path. If this happens,
no difference is seen in the critical path between different PF, PD settings.

4.3.4 Power Consumption

A simulation to estimate the power consumption was carried out with PF equal to
one and PD equal to three. The estimated power consumption at a frequency of
200 MHz for the whole circuit was 29 mW, with memories consuming the majority
of the total power. Putting together the number of operations in a layer, the num-
ber of cycles to compute a layer, frequency, and the power consumption, one gets
just above 200 GOPS/W (counting one multiplication as one operation). These
results are estimated from the synthesized design. Place and route is outside the
scope of this thesis but if carried out, wires and parasitics could be accounted for
in simulation further improving the power consumption estimation of the archi-
tecture.

34 Compiler Generated Example

Chapter 5
Conclusion

To conclude, a near-memory neural network accelerator compiler has been pro-
duced within the frames of this thesis. A compiler that takes a number of config-
urable parameters to allow variable performance has been produced. This thesis
presents the process of how a flexible architecture is designed and implemented
in VHDL for different properties of convolutional layer computations in CNNs,
without the overhead required in the specialization for each use case.

5.1 Limitations and Future Work

There are endless ways to improve the architecture and features that could be
added. Presented here are a few ideas for features and improvements that can be
explored in future work.

Add support for pooling. This is a good expansion since pooling layers often
follow the convolutional layers. The pooling can be seen as a reduction in
the output size of the convolution, performing the pooling before storing
back the results in memory allows for a greater increase in PF since less
output memory bandwidth will be needed to store back the results.

Memory integration. Currently, the compiler gives a top-level VHDL file that
the user must connect the memories to. Streamlining this process with a
script helps users without VHDL experience to more easily use the compiler.

Compiler Asserts. Many different rules regarding what value different parame-
ters take were given in the accelerator architecture chapter. Currently, there
are no checks implemented in the compiler for these rules. Implementing
assert statements to check for rule violations helps the user avoid possible
compilation errors.

Run time parameters. As mentioned in the thesis, the run time parameters
are hard coded and do not change after synthesis. To allow the running
convolutional layers to change post-synthesis, the hard-coded parameters
must be moved to registers, enabling change at run time.

Register emptying. When one row of input data has been computed, the regis-
ters in the row filters need to output their values before the next row starts
to be computed. Currently, to output the values, takes the same number of

35

36 Conclusion

clock cycles to complete as the size of the current filter being calculated. To
remove this delay, a separate set of registers could be added. The next row
of results would be saved to these registers while the first values are being
outputted.

Bias value alignment. The current way of aligning the bias value in memory
depending on how many fractional bits are used could be simplified. The
place of the radix point could be given to the compiler and the alignment
could be performed automatically. This allows the user to just store the
bias value in memory without shifting it.

Bias value in weight memory. The weight link could be reworked to handle
the loading of bias values. This allows for the bias values to be stored
in the weight memory, reducing the number of needed memories by one.
Assuming all weights and bias values fit in one memory, this would help
save both power and area.

References

[1] Hyeokjun, C. et al. (2017) “Near-Data Processing for Machine Learning.”.
Presented at 33rd Int. Conf. on Massive Storage Sys. and Tech. (MSST 2017),
Santa Clara, CA, USA. Available: https://storageconference.us/2017/
Papers/DifferentiableMachineLearningModels.pdf

[2] H. E. Sumbul et al., "A 2.9–33.0 TOPS/W Reconfigurable 1-D/2-D
Compute-Near-Memory Inference Accelerator in 10-nm FinFET CMOS,"
in IEEE Solid-State Circuits Letters, vol. 3, pp. 118-121, 2020. doi:
10.1109/LSSC.2020.3007185

[3] S. Sun et al., "A Study of the Memory Wall within the Jacobi Itera-
tion Method," 2012 IEEE 14th International Conference on High Perfor-
mance Computing and Communication & 2012 IEEE 9th International
Conference on Embedded Software and Systems, 2012, pp. 964-969, doi:
10.1109/HPCC.2012.140

[4] K. -T. Tang et al., "Considerations of Integrating Computing-In-Memory
and Processing-In-Sensor into Convolutional Neural Network Accelerators for
Low-Power Edge Devices," 2019 Symposium on VLSI Technology, Kyoto,
Japan, 2019, pp. T166-T167, doi: 10.23919/VLSIT.2019.8776560.

[5] G. Singh et al., "A Review of Near-Memory Computing Architectures: Op-
portunities and Challenges," 2018 21st Euromicro Conference on Digital
System Design (DSD), Prague, Czech Republic, 2018, pp. 608-617, doi:
10.1109/DSD.2018.00106

[6] "IEEE Standard for VHDL Language Reference Manual," in IEEE Std 1076-
2019 , vol., no., pp.1-673, 23 Dec. 2019, doi: 10.1109/IEEESTD.2019.8938196

[7] “Cadence Design Systems.”, Available: https://www.cadence.
com/ko_KR/home/tools/digital-design-and-signoff/synthesis/
genus-synthesis-solution.html (accessed Nov. 16, 2022).

[8] “28nm FD-SOI technology catalog - stmicroelectronics.”, pp.5, Available:
https://www.st.com/content/ccc/resource/sales_and_marketing/
presentation/technology_presentation/group0/35/54/24/df/
5d/39/4f/39/BRFDSOI0616/files/BRFDSOI0616.pdf/_jcr_content/
translations/en.BRFDSOI0616.pdf (accessed Dec. 5, 2022).

37

https://storageconference.us/2017/Papers/DifferentiableMachineLearningModels.pdf
https://storageconference.us/2017/Papers/DifferentiableMachineLearningModels.pdf
https://www.doi.org/10.1109/LSSC.2020.3007185
https://www.doi.org/10.1109/HPCC.2012.140
https://www.doi.org/10.23919/VLSIT.2019.8776560
https://www.doi.org/10.1109/DSD.2018.00106
https://www.doi.org/10.1109/IEEESTD.2019.8938196
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/technology_presentation/group0/35/54/24/df/5d/39/4f/39/BRFDSOI0616/files/BRFDSOI0616.pdf/_jcr_content/translations/en.BRFDSOI0616.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/technology_presentation/group0/35/54/24/df/5d/39/4f/39/BRFDSOI0616/files/BRFDSOI0616.pdf/_jcr_content/translations/en.BRFDSOI0616.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/technology_presentation/group0/35/54/24/df/5d/39/4f/39/BRFDSOI0616/files/BRFDSOI0616.pdf/_jcr_content/translations/en.BRFDSOI0616.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/technology_presentation/group0/35/54/24/df/5d/39/4f/39/BRFDSOI0616/files/BRFDSOI0616.pdf/_jcr_content/translations/en.BRFDSOI0616.pdf

38 References

[9] "PrimeTime Technology by Synopsys", Available: https://www.synopsys.
com/implementation-and-signoff/signoff/primetime/technology.
html (accessed Dec. 6, 2022).

[10] J. Singh and R. Banerjee, "A Study on Single and Multi-layer Perceptron
Neural Network," 2019 3rd International Conference on Computing Method-
ologies and Communication (ICCMC), Erode, India, 2019, pp. 35-40, doi:
10.1109/ICCMC.2019.8819775.

[11] D. Dai, "An Introduction of CNN: Models and Training on Neural Network
Models," 2021 International Conference on Big Data, Artificial Intelligence
and Risk Management (ICBAR), Shanghai, China, 2021, pp. 135-138, doi:
10.1109/ICBAR55169.2021.00037.

[12] L. Tóth, "Phone recognition with deep sparse rectifier neural net-
works," 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, Vancouver, BC, Canada, 2013, pp. 6985-6989, doi:
10.1109/ICASSP.2013.6639016.

[13] E. Kalali and R. van Leuken, "A Power-Efficient Parameter Quantiza-
tion Technique for CNN Accelerators," 2021 24th Euromicro Conference
on Digital System Design (DSD), Palermo, Italy, 2021, pp. 18-23, doi:
10.1109/DSD53832.2021.00012.

[14] J. Choi et Al., "Parameterized Clipping Activation for Quantized Neural Net-
works", 2018, doi: 10.48550/ARXIV.1805.06085

https://www.synopsys.com/implementation-and-signoff/signoff/primetime/technology.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime/technology.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime/technology.html
https://www.doi.org/10.1109/ICCMC.2019.8819775
https://www.doi.org/10.1109/ICBAR55169.2021.00037
https://www.doi.org/10.1109/ICASSP.2013.6639016
https://www.doi.org/10.1109/DSD53832.2021.00012
https://www.doi.org/10.48550/ARXIV.1805.06085

Near-Memory Computing Compiler for Neural
Network Architectures

ALEX ALLFJORD
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

A
LEX

 A
LLFJO

R
D

N
ear-M

em
ory C

om
puting C

om
piler for N

eural N
etw

ork A
rchitectures

LU
N

D
 2023

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-911
http://www.eit.lth.se

	Alex_Allfjord_Thesis.pdf
	Introduction
	Background and Motivation
	Project Aim
	Report Disposition

	Background Theory
	Near-Memory Computing
	Hardware Compiler
	HDL
	Synthesis

	Neural Networks
	Convolutional Neural Networks
	Layers in a CNN
	Convolution Layer
	Activation Function
	Quantization
	Truncation

	Accelerator Architecture
	Compiler Parameters
	Hardware Parameters
	Run Time Parameters

	Generated Architecture
	An Overview
	Basic Multiplier Block
	Filter Row
	Filter Slice
	Filter Core
	Computation Block
	Weight Loading
	Loading Inputs
	Filter Result Accumulator
	Writeback Unit
	Overview of Top Module and Memory Connections

	Compiler Generated Example
	Hardware Specification
	Runtime Specification
	Extracted Results
	Run Time Operation
	Area
	Timing
	Power Consumption

	Conclusion
	Limitations and Future Work

	References

