
Memory Efficient Hardware Accelerator
for CNN Inference

SERGIO CASTILLO MOHEDANO
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

SER
G

IO
 C

A
STILLO

 M
O

H
ED

A
N

O
M

em
ory Effi

cient H
ardw

are A
ccelerator 

LU
N

D
 2023

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-917
http://www.eit.lth.se



Memory Efficient Hardware Accelerator
for CNN Inference

Sergio Castillo Mohedano
se5616ca-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor:
Joachim Rodrigues
Masoud Nouripayam

Arturo Prieto

Examiner: Pietro Andreani

May 15, 2023



© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund



Abstract

Convolutional neural networks (CNNs) have gained popularity in recent years due
to their ability to solve complex problems in areas such as image recognition, natu-
ral language processing, and speech recognition. However, the computational cost
and memory requirements of CNNs are significant challenges for their widespread
deployment, particularly in edge devices where power and area budgets are limited.
To address these challenges, this thesis focuses on the design of a low-energy CNN
inference accelerator using near-data processing (NDP), which is an approach to
improve energy efficiency by bringing computation closer to data.

This thesis presents a design for a CNN inference accelerator that utilizes NDP
to improve energy efficiency. The accelerator is designed to execute convolutional
layers of the CNN with high throughput and low power consumption. It uses par-
allel processing and data reuse techniques to reduce the amount of data transferred
between the memory and the accelerator. In addition, clock-gating is applied to
reduce power consumption. At 200 MHz, it achieves a performance of 2.42 GOPS
and an energy efficiency of 47.54 GOPS/W.

The accelerator is synthesized and simulated at gate-level to calculate its perfor-
mance and energy consumption, and it is evaluated using the CIFAR-10 dataset.

Overall, this thesis contributes to the field of CNN accelerators by providing a
low-energy and high-performance design that could be used in edge devices for
real-time CNN inference applications.

The design can be further optimized and customized for specific use cases, and
it provides a foundation for future research in the field of NDP and CNN acceler-
ators.
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Popular Science Summary

Deep Neural Networks (DNNs) have achieved remarkable breakthroughs, exempli-
fying the potential to revolutionize the world we live in. One such example is the
remarkable performance of AlphaGo, a computer program developed by DeepMind
and based on DNNs, which achieved a historic victory against the world champion
in the ancient and complex board game of Go in 2016. This accomplishment,
among others, underscores the potential of DNNs to transform various fields and
bring new and innovative solutions to real-world problems.

Convolutional Neural Networks (CNNs), a subset of DNNs, are used in today’s
world in many applications such as image classification, speech recognition, and
natural language processing. CNNs have achieved significant milestones in the
past years, such as surpassing human-level accuracy in complex image classifica-
tion benchmarks such as ImageNet.

The design of efficient CNN accelerators is crucial to meet the increasing demand
for real-time and energy-efficient processing. In this thesis, the design of a CNN
accelerator for inference is proposed, which takes advantage of the Row-Stationary
dataflow. This dataflow technique improves performance by reusing data and dis-
tributing it to Processing Elements across a Network On Chip, bringing data closer
to the computation units.

The design is validated using the CIFAR-10 benchmark, which is a popular dataset
used to evaluate CNN performance. The proposed design uses fixed-point quanti-
zation, which reduces memory usage and computation complexity while maintain-
ing acceptable accuracy levels.

Overall, this thesis presents a step forward towards accomplishing a reliable, ef-
ficient and flexible accelerator. The proposed design addresses the challenges as-
sociated with CNN acceleration, such as high computational cost and memory
bottleneck, while improving energy efficiency.
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Chapter 1
Introduction

Today’s most trending workloads such as high-resolution image processing, big
data analytics, and Machine Learning (ML) are facing increasing computational
and memory demands. These applications require high performance, real-time
processing and low power consumption. However, the classic von Neumann archi-
tecture is unable to cope with these new demands. To address these challenges,
new ways of moving and consuming data have been developed in recent years.

Among those computing and memory hungry applications that are proliferat-
ing nowadays, those related with Artificial Intelligence (AI) are between the most
trending ones due to their ability to achieve great performance on different count-
less of backgrounds. As an example, very recently OpenAI released ChatGPT, a
language model which is able to answer questions in a conversational manner, give
you snippets of code, write essays about any topic in a structured way, or even
write you a poem with assonance rhyme [1]. Also from OpenAI, another model
that has gained a lot of popularity during the last year is DALL·E, which is shak-
ing the way of living of artists or graphic designers, among others. This model
receives as an input the description of an image by using descriptive prompts and
outputs such an image with outstanding results [2].

AI is the field in which machines are able to mimic and copy the behavior of
humans and interact with their environment as a person would do, or even out-
performing them. These machines process data and act in an autonomous way,
without the need of any human interaction and are usually constrained to a spe-
cific application, not being able to perform any task beyond the one it has been
programmed to do, this is also referred as Narrow Artificial Intelligence.

Machine Learning (ML) is a subset of AI that focuses on how algorithms pro-
cess incoming data to predict outputs, and relies on the analysis of this data to
refine the algorithm and improve the model. This process is also known as train-
ing. ML can be further divided into two categories: unsupervised learning and
supervised learning. The main difference between these two is that supervised
learning requires input data and its expected outcome (label) during the training
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2 Introduction

phase of the algorithm, while unsupervised learning does not require a label.

Neural Networks (NNs) are a specific type of ML model that mimic the behav-
ior of neurons in the human brain. They consist of a large number of simple pro-
cessing nodes, called neurons, which are interconnected with one another. These
neurons are organized into layers, and a NN can be composed of just a few layers
or dozens of layers. When a NN has many layers, it is usually referred to as a
Deep Neural Network (DNN). Data movement in these networks is feed-forward,
meaning data moves in a single direction from the input layer to the output layer.
DNNs have been used in applications such as speech recognition, image processing,
and autonomous driving to improve performance [3].

A specific type of NN are Convolutional Neural Networks (CNNs). A CNN
is able of extracting features within different regions of the input data by locally
applying filters or kernels, hereby it is possible to detect and record spatial and
temporal dependencies in an image [4]. CNNs have proven to be highly effective
at image recognition and processing tasks [5].

To gauge the accuracy of image classification networks, various datasets are
utilized. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a
yearly event that assesses the performance of image classification and object de-
tection algorithms using a subset of the ImageNet database, which contains more
than 14 million images organized into over 21,000 categories. In 2017, SENet net-
work model achieved a top-5 error rate (reflects the model’s ability to correctly
predict the correct label among its top five most probable predictions) of 2.251%.
To give some context, for the same ImageNet dataset, Russakovsky et al. in [6]
calculate an optimistic top-5 error rate for humans at 2.4%.

However, running CNN inference (i.e., using a trained CNN model to make
predictions on new data) on edge devices, such as smartphones, tablets, and In-
ternet of Things (IoT) devices, presents several challenges and requires careful
consideration of a number of factors [7].

One challenge is the limited computational resources and power constraints
of edge devices [8]. CNN models can require significant computational resources
and power to run, which can be a challenge for devices with limited processing
power or battery life. This can make it difficult to deploy CNNs on edge devices,
especially for resource-intensive tasks such as real-time object detection or image
classification.

Another challenge is the need for low latency. Many applications that rely on
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CNN inference, such as augmented reality or autonomous vehicles, require rapid
processing and decision-making. This can be difficult to achieve on edge devices,
as the model must be able to process data and make predictions quickly without
access to the computing resources of a cloud or server [8].

To address these challenges and meet the needs of running CNN inference
on edge devices, it is important to carefully consider the hardware and software
requirements of the application, as well as the trade-offs between performance,
accuracy, and energy efficiency. Techniques such as model compression, quantiza-
tion, and pruning can also be used to reduce the size and computational demands
of the model, while still maintaining acceptable performance [9].

Within this context, the well-known Memory Wall problem began taking shape
several decades ago. Despite improvements in technology processes for micropro-
cessors, progress in memory technology has not kept up. As a result, the transfer
rate of memory has not improved as quickly, leading to a bottleneck in system
performance [10].

As long as improvements in semiconductor fabrication continued to progress,
the Dennard Scaling Law and Moore’s Law appeared to be sustainable solutions
for dealing with increasing challenges and reducing the impact of the Memory
Wall problem. However, during the first decade of the 2000’s both laws started
to tear apart; the frequency at which processors were functioning could no longer
be increased while keeping power consumption constant, and the performance per
watt could not be improved at the same pace as in the earlier years.

As a consequence, other systems beyond Central Processing Units (CPUs)
have been coexisting together with other more specialized hardware, like Graphic
Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs), Applica-
tion Specific Integrated Circuits (ASICs) or, more recently, Application Specific
Instruction-Set Processors (ASIPs). The latter has been gaining popularity for
finding the perfect equilibrium between the high performance achievable by ASICs
while being able to get the desired flexibility of CPUs [11]. GPUs are widely used
for tasks like image processing, gaming, and mining due to their ability to par-
allelize computations and increase performance compared to CPUs, even though
they can still be a solution for general-purpose applications. FPGAs allows a
higher degree of flexibility than GPUs and CPUs, as they can be reprogrammed
while achieving higher power performance than CPUs. ASICs are the best solu-
tion when it comes to accomplishing a specific requirement, whether it is about
being energy efficient or achieving low latency; they are, on the contrary, costly
and have low flexibility. Figure 1.1 exemplifies this pattern.
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Figure 1.1: Flexibility vs. Performance of the main hardware archi-
tectures.

This paradigm has led to the development of alternative domain-specific archi-
tectures beyond traditional CPUs in order to address the Memory Wall problem
and the challenges specific to running CNNs on edge devices. Therefore, designing
an architecture that is both flexible and energy-efficient, while also exhibiting good
performance, has consistently presented a challenge. The present work endeavors
to address this challenge by creating a balanced and resource-efficient hardware
architecture tailored for CNN inference.
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1.1 Related Work

There have been a number of research efforts focused on the development of accel-
erators for CNN inference, with the goal of improving the performance and energy
efficiency of CNNs.

One of the key contributions in this area was made by Chen et al. [12], who
proposed Eyeriss, a hardware accelerator for CNN inference. Eyeriss is a domain-
specific accelerator that is optimized for CNNs and uses a number of techniques
to improve performance and energy efficiency, including data reuse, weight reuse,
and fine-grained parallelism. Chen et al. demonstrated that Eyeriss was able to
achieve significant performance improvements compared to traditional CPUs and
GPUs, as well as reduced power consumption.

Eyeriss uses a Network-on-Chip (NoC), which is a core part that allows data
delivery from the storage elements to the computation units by exploiting data
reuse and reducing bandwidth requirements. The NoC allows communication be-
tween the Processing Elements (PEs) and the on-chip memory, as well as between
the different processing elements themselves. The Eyeriss design introduced the
use of a novel dataflow organization called Row-Stationary for the first time [13],
which enables efficient data reuse and parallelism, being up to 2.5 times more
energy-efficient than other existing dataflows. It should be noted, however, that
some works such as [14] have argued that the selection of the dataflow architec-
ture had a limited effect on the overall performance and energy efficiency of the
accelerator, with other factors such as the design of the convolutional processing
elements and the implementation of optimization techniques having a more signif-
icant impact.

The researchers at MIT who developed the Eyeriss accelerator also created an
updated version, referred to as Eyeriss v2. This updated version presents several
enhancements in terms of performance, energy efficiency, and chip area efficiency
compared to the original Eyeriss. For example, when considering the AlexNet
CNN model, and running at 200 MHz, Eyeriss v2 demonstrates a higher through-
put of up to 342.4 inferences/second, compared to the 34.7 inferences/second of
the original Eyeriss [15].

Similar to Eyeriss, ShiDianNao [16] is a CNN accelerator which uses a scalable
architecture that can support a wide range of neural network models and sizes.
The architecture is based on a distributed computing model that uses a large num-
ber of PEs that can be interconnected to form a larger system. In addition, it uses
a spatial architecture, where the PEs are arranged in a grid-like pattern. This
architecture allows for efficient data sharing and communication between the PEs,
which is critical for processing large neural networks.
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Another notable contribution was made by Han et al. [17], who proposed the
use of a hardware accelerator called Deep Compression. Deep Compression is a
general-purpose accelerator that is designed to accelerate a wide range of CNNs
and uses techniques such as weight pruning and quantization to improve perfor-
mance and reduce the size of the model. Han et al. demonstrated that Deep
Compression was able to achieve significant performance improvements and re-
duced model sizes compared to traditional architectures.

Overall, all these architectures revolve around the idea of Near-Data Processing
(NDP). NDP is a computing paradigm that seeks to bring computation closer to
the data. By reducing the distance that data has to travel, NDP can improve
the performance and energy efficiency of the system by reducing the data transfer
overhead between the accelerator and main memory. This can be achieved through
the use of on-chip memory, such as scratchpad memory or register files, which can
be accessed faster than off-chip memory. By storing the data and intermediate
results of the CNN computation in on-chip memory, the accelerator can avoid the
need to constantly access main memory, which can be a bottleneck for performance.

1.2 Thesis Outline

The goal of this work is designing a flexible and energy efficient hardware acceler-
ator for running CNN inference.

The presented thesis is organized as follows:

• Chapter 2: Background. Introduces the reader to key concepts and
specifications of CNNs, as well as describes different approaches towards
accelerating the computation of such algorithms.

• Chapter 3: Accelerator Design and Implementation. Details the
designed accelerator and its architecture.

• Chapter 4: Baseline CNN Model. Describes the process and approach
followed regarding selecting a reliable CNN to validate the accelerator.

• Chapter 5: Verification. Presents the validations process for the func-
tionality of the accelerator.

• Chapter 6: Results. Reports the results obtained in terms of throughput,
power efficiency and area.

• Chapter 7: Conclusions & Future Work. Summarizes the general at-
tributes of the accelerator, acknowledging potential areas for improvement,
and outlines a number of enhancements that could be implemented.



Chapter 2
Background

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs), also referred as NNs, are a type of AI that are
inspired by the structure and function of the human brain. The idea of NNs has
its roots in the 1940s, when researchers first began investigating the possibility of
using computers to model the behavior of neurons in the brain. One of the key
early contributions to the development of NNs was the work of Warren McCulloch
and Walter Pitts, who published a paper in 1943 outlining the concept of using
artificial neurons to perform logical operations.

NNs are composed of interconnected artificial neurons that process and trans-
mit information. In a NN, weights and biases are parameters that determine the
behavior of the network. Weights are numerical values assigned to the connections
between neurons in the network. Each weight represents the strength of the con-
nection between two neurons and determines the influence that one neuron has on
the output of another neuron. Biases are numerical values added to the inputs of
each neuron in the network. The learning process of a CNN is simulated through
the adjustment of weights and biases, allowing the network to adapt to new data
and improve its performance.

The basic building block of the NN is the perceptron (or artificial neuron). Per-
ceptrons are inspired by the biological neurons in the human brain, which receive
input signals from other neurons and produce output signals. Figure 2.1 compares
a biological neuron next to an artificial neuron. Input signals, coming from other
neurons, are transmitted to a biological neuron through dendrites similar to the
way an artificial neuron receives data from other perceptrons by connecting its
inputs and outputs. Inputs in a perceptron are scaled through the use of weights,
which reflect the significance of each input, this is analogous to the connections
between the biological neuron and its inputs via synapses. The nucleus of a biolog-
ical neuron generates an output signal based on the signals received through the
dendrites, while the nucleus (node) in a perceptron performs calculations based
on the input values and generates an output. Lastly, this output is carried away

7
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by the axon in the biological neuron, and spread out to other neurons through the
synapses.

(a)

(b)

Figure 2.1: A cartoon drawing of a biological neuron (a) and its
mathematical model (b) [18].

In the most basic form of a NN, perceptrons are disposed in layers, and they
receive inputs from perceptrons belonging to the previous layer in a feed-forward
manner. The inputs are then processed by multiplying them by their corresponding
weight. A bias is then added to the weighted sum to fine-tune the result. Finally,
non-linearity is added to the network using an activation function so that the
model is able to adapt to complex problems. Another important characteristic
of an activation function is that it controls the way a perceptron activates or
fires. Equation 2.1 models this behaviour for a single perceptron computing the
weighted sum of inputs x1 . . . xk, each of them multiplied by its corresponding
weight w1 . . . wk, a bias b is added to the sum and an activation function σ is
applied to the result, obtaining the output y.

y = σ · (
n=k∑
n=1

wnxn) + b (2.1)
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Input Layer ∈ ℝ⁷ Hidden Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ⁵ Output Layer ∈ ℝ⁷

Figure 2.2: A Deep Neural Network with two hidden layers.

The output of the perceptron is then passed on to other neurons on the next
layer in the NN. Figure 2.2 shows a simple model of such networks, where the
first layer represents the input layer, the last layer is the output layer, with hidden
layers in between.

Depending on the application, perceptrons may have different types of activation
functions, such as tanh, sigmoid or Rectified Linear Unit (ReLU). ReLU activation
function (eq. 2.2) is commonly used in deep learning. ReLU does not saturate
for positive values, which means that it does not suffer from the vanishing gra-
dient problem. The vanishing gradient problem occurs when the gradients of the
weights in the network become very small, which can slow down or prevent the
training process. The ReLU activation function avoids this problem because it
does not saturate, so the gradients remain large and the network can continue to
learn effectively.

f(x) =

{
0 x < 0,

x x ≥ 0.
(2.2)

Another important activation function which is worth mentioning apart is
the softmax activation function (eq. 2.3), which is commonly used in multi-
class classification problems such as those encountered in popular datasets used
as benchmarks for CNNs. It converts the j1 . . . jN raw outputs from a layer of a
neural network into probabilities, with the sum of all values in that layer totaling
1. When softmax is used in the last layer in a NN, each individual output value
represents the probability of the input belonging to a particular class. Another ac-
tivation function is argmax, which also activates the perceptron in the output layer
corresponding to the input’s class, but it does so by one-hot encoding the output.
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Hereby, unlike the softmax activation function, it does not have the capacity to
evaluate the quality of the prediction.

softmax(x)i =
ezi∑N

j=1 ·ezj
(2.3)

As an example, assuming there is a trained NN used to evaluate an input image
of a dog, the output layer of the NN has three nodes with each one triggering
depending on the possible outcomes or classes for which the network has been
trained (cat, dog or frog). Table 2.1 compares the output of the NN with both
softmax and argmax as activation function. Notice how the probabilities of the
softmax output adds up to 1.

Table 2.1: softmax and argmax outputs of a NN having the image
of a dog as input.

Class softmax argmax
Cat 0.253 0
Dog 0.736 1
Frog 0.011 0

2.1.1 Inference & Training

Inference refers to the process of using a trained model to make predictions or de-
cisions. The weights and biases of the model are already tuned and the network is
able to classify inputs into classes or categories. Inference involves feed-forwarding
the values received in the input layer towards the output layer of the network.

Training involves using not only forward propagation as for inference but also
backpropagation. Considering a supervised learning model, backpropagation is
used to adjust the weights and biases of the network to decrease the error between
the labeled output and the actual output. This is achieved by propagating the
error through the network from the output layer, working backwards through the
layers, and using the error to compute the gradient of the weights and biases,
which are then updated to reduce the error by using optimization algorithms such
as gradient descent. Together, these two methods are repeatedly employed to train
the network until it reaches an acceptable level of accuracy.
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2.2 Convolutional Neural Networks

The neuron (also known as perceptron), as the simplest form of ML algorithm,
serves as the foundation for more complex NNs. When the neuron of a hidden
layer receives all outputs from the previous layer as inputs, that layer is referred
to as a fully-connected (FC) or dense layer. When only a subset of the neurons in
one layer are connected to the neurons of the next layer, the latter is considered
to be a sparsely connected layer. When this subset is local, meaning the neurons
are close to each other, it is referred to as a receptive field. This locality is the
primary attribute of a convolutional layer [19].

A CNN is composed of multiple layers, including at least one convolutional
layer. The convolutional layer uses filters that convolve with the input image to
extract features. It also uses pooling layers, which reduce the spatial dimensions
of the feature maps. At the end of the network, the feature maps are then fed
into fully connected layers that perform the final classification. CNNs are known
for their ability to recognize patterns and features in images, which makes them
well-suited for tasks such as image classification, object detection and image recog-
nition.

One of the most widely-used and well-known CNNs is AlexNet. AlexNet was
the first CNN to achieve breakthrough performance on the ILSVRC-2012 image
classification dataset. Specifically, it outperformed the second-best model by a
substantial margin, achieving a top-5 error rate of 15.3%, compared to 26.2% for
the next-best model [20]. In addition to AlexNet, there are other well-known CNNs
such as MobileNet [21], which is designed for efficient mobile vision applications.
It was first introduced by Google researchers in 2017. The main goal of MobileNet
is to reduce the computational complexity and memory requirements of traditional
neural networks, while still maintaining high accuracy in image classification tasks.

2.2.1 Convolutional Layer

In a network with multiple convolutional layers, each layer extracts distinct fea-
tures from the images, and as the layers become deeper, the complexity of these
features increases. This increased complexity typically leads to a higher number of
channels in the feature maps, making the convolutional layer a high-dimensional
operation. For example, the first layer may focus on the detection of edges in the
image, while a deeper hidden convolutional layer may focus on detecting bird’s
beaks, which ultimately would classify the input image as a bird.

A convolution is a mathematical operation that involves sliding a small ma-
trix, called a kernel or filter, over a larger matrix, called the input feature map
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(ifmap). The purpose of this operation is to extract certain features or patterns
from the larger matrix. As the kernel slides over the larger matrix, it multiplies
each element of the kernel with the corresponding element in the larger matrix,
and then adds up all of the products. This result is then stored in a new matrix,
called the output feature map (ofmap). The size of the ofmap depends on the
size of the kernel and the stride of the sliding operation. The stride determines
the distance by which the filter is moved in each iteration and controls the spa-
tial dimensions of the output feature map, with larger strides resulting in smaller
output feature maps, and smaller strides resulting in larger output feature maps.
Typically, stride values of 1 or 2 are used.

The structure of a convolutional layer is shown in Figure 2.3; the ifmap is a
three-dimensional matrix with height H, width W and with number of input chan-
nels C. Each ifmap channel convolves with a kernel of weights with dimensions
height R and width S. For computing one 2-D ofmap, a 3-D kernel must convolve
with a 3-D ifmap, and every resulting 2-D convolution corresponding to each ifmap
channel is accumulated altogether to generate one 2-D ofmap channel. There are
M ofmap channels, each with height E and width F . Hence, the set of kernels
that comprises one convolutional layer is a 4-D matrix of size [R x S x C x M ]. A
one-dimensional vector of biases can be added to the results. In addition to this,
a batch (N) of multiple input feature maps can be computed together. Table 2.2
summarizes the different shape parameters of a convolutional layer.1

Figure 2.3: Structure of a convolutional layer [22].

1Notation of the different shapes and sizes, as well as naming conventions are based
on the work of Sze et. al in [12, 19].
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Table 2.2: Different shape parameters of a convolutional layer [22].

Shape Parameter Description
N Batch size of 3-D ifmaps
M Number of ofmap channels (number of 3-D kernels)
C Number of ifmap channels
H/W Height/width of 2-D ifmap
H’/W’ Height/width of 2-D ifmap (including padding)
R/S Height/width of 2-D weight
E/F Height/width of 2-D ofmap

Padding is the technique of extending the dimensions of the ifmap channel
by adding pixels (usually zeroes) to the border. This technique responds to two
reasons. On the one hand, it helps preserving the information in the borders
of the input image, as it allows multiple convolutions over these pixels. On the
other hand, it ensures that ofmaps have the same spatial dimensions as ifmaps.
This allows stacking multiple convolutional layers without reducing the spatial
dimensions of the feature maps. If aiming to have same dimensions for ifmap and
ofmap channels, it is important noticing that the padding to be applied to the
ifmap will depend on the stride of the convolution.

2.2.2 Pooling Layer

The primary function of a pooling layer is to reduce the spatial dimensions of the
feature maps, while also reducing the number of parameters and computational
cost of the network.

The most common types of pooling layers are max-pooling and average pool-
ing. From an area of the input feature map, max-pooling selects the maximum
value, while average pooling computes the average value. These operations are
applied to non-overlapping regions of the input feature map, resulting in a con-
densed output feature map.

The pooling operation is typically applied with a fixed window size and stride.
The window size is the size of the region over which the pooling operation is
applied, and the stride is the step size with which the window is moved across
the feature map. These hyperparameters can be adjusted to achieve the desired
reduction in the spatial dimensions of the output feature map. Figure 2.4 shows
an example of the results of applying max-pooling and avg-pooling to a feature
map of size 4x4.
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Figure 2.4: Avg-pooling and max-pooling operation with a stride of
2 and a size of 2x2 over a feature map of size 4x4.

2.2.3 Dense Layer

In a CNN, FC layers receive the output of the previous layers, which is typically a
multi-dimensional array, and flatten it into a one-dimensional array, which can be
used as input to the final output layer of the network. These layers are responsible
for the final decision-making process of the network. A FC layer can be perceived
as a convolutional layer which filters have the same dimensions as the input feature
map (HW = RS), hence the output feature map’s dimensions being reduced to
one (EF = 1). With this constraints, it is evident there is no locality anymore.

2.3 CNN Accelerators

2.3.1 Spatial vs Temporal Architectures

As discussed in chapter 1, the myriad of applications proliferating within the
last years related with ML shaped a context in which specialized architectures
are being demanded to cope with the required needs. Consequently, for achieving
the high parallelism needed in DNN algorithms, a distinction needs to be made
between temporal architectures and spatial architectures.

Both architectures are composed of multiple processing units. However, con-
trol in temporal architectures is centralized, while the units of spatial architectures
have their own separate internal control. Similarly, processing units in spatial
architectures have an internal memory to store data, while processing units in
temporal architectures have no memory capacity. Additionally, units in spatial ar-
chitectures can be interconnected to each other to exchange data, allowing dataflow
processing thus optimizing the reuse of data. To summarize, the computational
units in temporal architectures are typically Arithmetic Logic Units (ALUs), while
those in spatial architectures are more complex Processing Elements (PEs) that
can support a greater variety of data movement patterns. Figure 2.5 shows a
representation of both architectures.
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Figure 2.5: Temporal Architecture (left) and Spatial Architecture
(right).

2.3.2 The Convolutional Operation as a Nested Loop

The fundamental computation for both convolutional and dense layers is the
multiply-and-accumulate (MAC) operation. The commutative nature of this oper-
ation will allow a high degree of flexibility and parallelism in the way that the final
ofmap pixels can be computed. The number of MACs that a convolutional layer
has depends on the shape and size of the layer itself (#MACs = E ·F ·R·S ·C ·M).
Similarly, C ·M computes the number of MACs needed for a FC layer.

Algorithm 1 shows the convolution operation for a stride of 1, ignoring bias
addition. It can be noticed that no matter the order in which the MACs are com-
puted, the resulting ofmap value will remain unchanged. This phenomenon gives
to the designer a high degree of freedom on how to achieve parallelism in order to
compute as many MACs per cycle as possible.

Algorithm 1 Nested Loop of a Convolutional Layer
for m = 0;m < M ;m++ do ▷ channel of ofmap

for c = 0; c < C; c++ do ▷ channel of ifmap
for e = 0; e < E; e++ do ▷ row of ofmap

for f = 0; f < F ; f ++ do ▷ column of ofmap
for r = 0; r < R; r ++ do ▷ row of weight

for s = 0; s < S; s++ do ▷ column of weight
ofmap[m][e][f ]+ =
ifmap[c][e+ r][f + s] · weight[m][c][r][s]

end for
end for

end for
end for

end for
end for
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2.3.3 Mapping and Design Space Exploration

Mapping is the allocation and scheduling of MAC operations onto hardware func-
tion units of an accelerator. Mapping is a threefold task. First, the architecture
is defined with a computation dataflow according to the operations to perform.
Then, a tiling strategy of each data type involved in the convolutional operation
is tailored to the dataflow, which will impact the amount of data to be transferred
to the PEs. Lastly, a binding strategy of the operations into the hardware is de-
termined.

The evaluation of the trade-offs on the different characteristics and metrics
of the accelerator is called Design Space Exploration (DSE). DSE is the process
of identifying the optimal design for an accelerator that can efficiently accelerate
the computations required for CNNs. This can include exploring different archi-
tectures, such as different types of memory hierarchies or interconnects, as well
as different micro-architectural techniques, such as dataflow, tiling and unrolling
parallelism.

A DSE strategy aims to find the best trade-off between performance, power
consumption, and area-costs. This can be accomplished through the use of simu-
lation and optimization techniques to evaluate the performance of different design
options and identify the best one that meets the specific requirements.

The design space can be very large and complex due to the many different
options available for the accelerator architecture and due to the nature of the
NNs. Therefore, DSE requires a combination of automated exploration techniques
and human expertise to guide the exploration and make informed design decisions
[22, 23].

2.3.4 Row-Stationary Dataflow

A dataflow defines the way that data is moved through the accelerator and how
it is processed by the different function units. It is utilized for exploiting the
data reuse opportunities that are present in a spatial architecture. By using a
multilevel storage hierarchy and maximizing the data reuse in the lower-energy
cost levels, it is possible to reduce the data accesses of the higher-energy cost lev-
els, such as the off-chip memory. More specifically, DNN algorithm allows data
reuse opportunities, which include the utilization of filter weights across multiple
input feature maps (filter reuse), the utilization of input feature map pixels across
multiple filters (ifmap reuse), and the reuse of both input feature map pixels and
filter weights as a result of the sliding-window processing in convolutions, known
as convolutional reuse. Additionally, the intermediate values produced during the
convolution operation, known as partial sums (psums), can also be reused by ac-
cumulating the output feature maps.
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Nonetheless, taking into account that CNN accelerators are usually memory-
constrained, it is not possible to implement both input data reuse (ifmaps and
filters) and convolutional reuse simultaneously. For example, reusing input data
for multiple MAC operations that compute different ofmap channels generates par-
tial sums that cannot be accumulated together, thus requiring additional storage
space. Consequently, the energy efficiency of the system is optimized when the
mapping strategy effectively balances all types of data reuse within a multi-level
storage hierarchy. Furthermore, there are different shapes and sizes of DNNs, and
depending on the layer’s size and type it might be more convenient to exploit some
specific type of data over others. For example, dense layers would take advantage
of input reuse rather than convolutional reuse [24].

Given the described scenario, Sze et. al [24] presented the Row-Stationary (RS)
dataflow, which is designed to optimize all types of data movement for all data
types across any level of the storage hierarchy in a spatial architecture, being up
to 2.5 times more energy efficient than other dataflows such as weight-stationary
or output-stationary.

The RS dataflow methodology segments the MAC operations into units re-
ferred to as mapping primitives. These primitives are executed on a single PE
in a predetermined sequence and perform a 1-D row convolution (row primitive),
maximizing data reuse for all data types. The 1-D row convolution consist on the
MACs involved on one row of ifmaps with one row of weights. Figure 2.6 shows
the computation of a 1-D row convolution within a PE. With this approach, it
is possible to achieve several mapping choices that work both temporal-wise and
spatial-wise.

Figure 2.6: Row primitive running a 1-D row convolution within a
PE [24].
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One possible spatial mapping approach is to allocate the mapping primitives
with data rows from the same 2-D plane within the PE array, which allows reusing
the same rows of filter weights and ifmap pixels across PEs horizontally and di-
agonally respectively, and enables the accumulation of psum rows across PEs ver-
tically. This mapping choice facilitates the execution of a 2-D convolution (as
illustrated in Figure 2.7) and effectively exploits the opportunities for convolu-
tional and psum reuse across primitives. Furthermore, if the PE Array is large
enough, this mapping strategy can be duplicated within the PE Array, allowing
the computation of several 2-D convolutions and exploiting further the data reuse
opportunities.

Figure 2.7: Patterns of how row primitives from the same 2D plane
are mapped onto the PE array in the RS dataflow. Weight rows
are reused vertically, ifmap rows are reused diagonally accross
the PE Array, and psums are accumulated vertically [24].

The RS dataflow approach also allows for temporal mapping options such as
the concatenation or interleaving of different row primitives within the same PE.
For instance, it is possible to concatenate filter rows from different weight channels
that convolute over the same row of ifmaps and generate partial sums belonging
to different ofmaps. This increases ifmap reuse, but it also increases the on-chip
memory required for storing intermediate partial sums.

When designing a CNN Accelerator with a spatial architecture, it is important
to consider the flexible pattern of the convolutional operation and also the mapping
opportunities that the RS dataflow offers. Parameters such as the number of
PEs, on-chip memory size and shape, spatial and temporal mapping opportunities
within each PE, should be taken into account.
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2.3.5 HW Parameters of the CNN Accelerator

The group of PEs within the PE array that are needed for spatially mapping
ifmaps, weights and psums for computing a 2-D convolution is called a PE Set.
The dimension of a PE Set is exclusively a consequence of the shape and size of
the convolution operation. For example, the PEs shown in Figure 2.7 conform
a PE Set which size is given by the the height of the filter kernel (R = 3) and
the height of the output feature map (E = 4). As stated in the previous section,
if the size of the PE Array allows for multiple 2-D convolutions, it is possible to
allocate several PE Sets within the PE Array, hence increasing spatial mapping
capabilities.

Since the PE Set varies with the shape and size of the convolution operation,
the accelerator shall be flexible enough to dynamically modify and allocate the
resulting number of PE Sets on the PE Array to maximize data reuse.

To exemplify, let’s take a PE Array which size is 3 x 32, and let’s say we
want to convolute an ifmap with size H ′W ′ = 10 over a filter kernel which size is
RS = 3, thus resulting in a primitive ofmap channel which size is EF = 8. Figure
2.8 shows that it is possible to fit 4 PE Sets, with each PE Set having a size of
R x E = 3 x 8, and each being able to compute a different 2-D convolution. Notice
a primitive ofmap channel as the 2-D result of the convolution of a 2-D set of filters
with an ifmap channel. The primitive ofmap channel needs further accumulation
with other primitive ofmap channels before incurring in the final ofmap channel.
Each PE Set computes a single primitive ofmap channel. By repeatedly comput-
ing different primitive ofmap channels the final multidimensional ofmap result is
obtained.

Figure 2.8: Allocation of PE Sets across a PE Array with size 3x32
for a convolution with a filter size of 3x3 and an ofmap of size
8x8.

The chosen RS dataflow and the spatial architecture of the accelerator allows
multiple spatial and temporal mapping options:

• Unrolling (r) the convolutional layer by computing different primitive ofmap
channels from different 3-D weights belonging to the same ofmap channel,
having the corresponding ifmap channel mapped in a different PE Set. This
spatial mapping strategy increases the utilization of the PEs and also im-
proves throughput of the computation path. Once the psums have been
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computed on each PE Set, they can be further accumulated hence reducing
data movement further.

• Tiling (t) the convolutional layer by casting the same ifmap channel to the
PE Sets, and each PE Set having t different filters from different ofmap
channels. Each PE Set computes different primitive ofmap channels from
different 3-D weights belonging to different ofmap channels. Unlike with un-
rolling, there is no further accumulation of the psums computed by different
PE Sets, since they all belong to different ofmap channels.

• Temporal mapping can be exploited by allocating more than one 1-D row
of weights within the same PE. Consequently, a PE Set can process up to p
3-D filter weights over the same ifmap channel, with each 2-D convolution
result corresponding to a different ofmap channel.

• Similarly, another temporal mapping option is to allocate several 1-D row
of ifmaps within the same PE. In this case, each PE Set processes q dif-
ferent ifmap channels. This approach allows psum accumulation within the
same PE Set, since it is possible to compute different primitive ofmap chan-
nels consecutively belonging to the same ofmap channel. However, internal
memory within each PE for both ifmaps and weights would increase by q.

The parameters above are summarized in Table 2.3 below.

Table 2.3: Hardware Parameters of the accelerator [22].

Parameter Description
p Number of 3-D weights processed by a PE Set
q Number of input channels processed by a PE Set
r Number of PE Sets that process different input channels in

the PE Array
t Number of PE Sets that process different 3-D weights in the

PE Array

A processing pass can be defined as the amount of computation needed for
processing a single subset of the data that comprises the convolutional layer. The
boundaries that determine the pass are based on that the input data (ifmaps and
weights) can only be read once from the on-chip memory, and ofmap pixels are
written back to the on-chip only once psum accumulation within the subset of
computed data is finished.

The parameters that were just defined in Table 2.3 delimit the computational
effort of each processing pass. Unrolling (r) and tiling (t) increases parallelism
because there are more PE Sets available for processing, thus the total number of
passes needed for computing a convolutional layer decreases.



Background 21

On the contrary, with increasing values of the temporal mapping parameters
p and q, in one pass the memory inside the PEs increase, as well as the number
of 2-D ifmaps and weights processed (and so does the time). Reads and writes in
between the on-chip memory and the PE Array also increase.

The accelerator’s architecture is highly based on the concepts described in
the present chapter. In chapter 3 a detailed description of such architecture is
presented.
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Chapter 3
Accelerator Design and Implementation

3.1 Overall Architecture

Figure 3.1 represents a block diagram depicting the high-level architecture of the
accelerator. The core of the accelerator is the PE, which is organized in an array
of X by Y PEs for increasing the parallelism. The NoC connects the memories
with the PEs and uses the Multicast Controllers MCs to route the input data to
the appropriate PE.

There are three separated SRAM-type memories for each of the three main
data types involved in the convolution operation. The Activation memory allo-
cates the ifmap pixels for one layer at a time, and it is updated by the ifmaps from
next layer when convolution operation is finished for current layer. The Weight
memory allocates all weights and biases for all layers, it also stores the configu-
ration parameters from Table 3.8 per each layer. OFMAP memory stores all
the ofmap pixels of a convolutional layer being computed until all accumulations
have finished.

Once the final ofmap pixels are obtained (i.e. ifmap pixels from next layer),
the bitwidth is lowered by applying Round To Nearest (RN) in the ReLU/RN
block, in which also the ReLU activation function is applied. Lastly, POOLING
is applied to the activation value, and the ofmap output, with or without max-
pooling depending on the condition, is stored back to the Activation memory.

When the computation of one convolutional layer is finished, activations for
next layer are already on the Activation memories, and the SYSTEM CON-
TROLLER points to the memory address in the Weight memory containing the
weights, biases and configuration parameters of the next layer. The operation
keeps going on until all convolutional layers have been computed.

23
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Figure 3.1: Block diagram of the accelerator, with a PE Array with
size 3x32.
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3.2 Constraining the Mapping Space

Defining the mapping space of the accelerator requires some constraints which
will limit the number of different convolutional layers that can be computed by
the accelerator depending on their shapes and sizes. The goal is that, given some
hardware constraints, the accelerator is adapted for those legal mapping points for
which the accelerator is intended to work. The first criteria to consider is design
time and scalability of the hardware rather than having a wide mapping space, and
it is highly based on taking advantage of power of 2 divisions and multiplications,
hence using shifting when appropriate.

The definitions of the parameters that define the dimensions of the convo-
lutional layer and the convolution operation, as well as the parameters of the
hardware accelerator, were introduced in Chapter 2, in Table 2.2 and Table 2.3.

Considering the accelerator’s PE Array is composed of X · Y PEs, being X
and Y the length and height of the PE Array respectively, then:

• Same padding is applied to the convolutional layers, meaning the height and
length of the 2-D ifmap channel must be equal to the height and length of
the 2-D ofmap channel:

HW = EF

• The stride of the convolutional operation is limited to 1.

U = 1

• Filter size must be an odd number lower or equal to the height of the PE
Array1:

RS = 2 ·N + 1, with
N ∈ N, and
RS ≤ Y

As a result of the above-mentioned constraints, the padding can be com-
puted as:

P = (RS − 1)/2, hence
H ′W ′ = HW + 2 · P = EF +RS − 1

• The maximum size of the 2-D ifmap/ofmap channel cannot be bigger than
the length of the PE Array:

1Receptive Field’s dimensions other than 3x3 are possible to implement in the accel-
erator as long as the constraints allow it. However, they have not been validated in the
present work.
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EF ≤ X

This responds to the need of allocating at least a whole PE Set within
the PE Array.

• The size of the 2-D ifmap/ofmap channel must be a power of 2:

log2(HW ) = log2(EF ) = N , with N ∈ N

• The maximum number of parallel PE Sets that can be allocated in the PE
Array should be a power of two, and is defined to be 4. Although, future
improvements in the accelerator’s scalability could increase this number. In
addition, the spatial mapping is only given by the unrolling parameter r,
meaning that tiling (t) parallelism is not applied in the accelerator:

r ∈ {1, 2, 4}
t = 1

For example, if X = 32, the possible set of values for EF (HW ) are limited
to the following set of numbers:

r ∈ {1, 2, 4}
r = X/E

}
EF ∈ {X

1 ,
X
2 ,

X
4 }

X=32−−−−→ EF ∈ {32, 16, 8}

On the other hand, if X = 64:

r ∈ {1, 2, 4}
r = X/E

}
EF ∈ {X

1 ,
X
2 ,

X
4 }

X=64−−−−→ EF ∈ {64, 32, 16}

So far, the constraints mentioned only bound the mapping space in height
(H/E) or length (W/F ), but not in depth (C/M). Table 3.1 shows some of the
possible valid mapping points given the already described constraints.

Table 3.1: Example of some valid mapping points given the first set
of constraints.

X Y HW EF RS r (unrolling) t (tiling)
64 3 64 64 1, 3 1 1
64 3 32 32 1, 3 2 1
64 3 16 16 1, 3 4 1
32 3 32 32 1, 3 1 1
32 3 16 16 1, 3 2 1
32 3 8 8 1, 3 4 1
16 5 16 16 1, 3, 5 1 1
16 5 8 8 1, 3, 5 2 1
16 5 4 4 1, 3, 5 4 1
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The following constraints limit further the mapping space. Specifically, they
limit the dimensional depth of the ifmap and ofmap channels (C/M).

• The temporal mapping of rows from different ifmap channels within the
same PE, given by parameter q, is set to 1, with no chance of taking advan-
tage of this mapping strategy.

q = 1

• The temporal mapping of rows from different weight filters belonging to dif-
ferent ofmap channels, given by parameter p, is variable and can be of up
to 81. The maximum value that parameter p can take is limited by the size
of the Register File (RF) dedicated to the weights within the PE. In order
to contain the size of the RF, this maximum the maximum value is chosen
to be 8.

p = 8

• The number of passes needed to process a convolutional layer must be an
integer number, so as to avoid any idle PE during all processing passes.
Otherwise, during a processing pass, there will be left an odd number of
ofmap/ifmap channels to compute.

The number of passes is given by:

#ofPasses = ⌈C
r
⌉ · ⌈M

p
⌉

0 < r ≤ C

0 < p ≤ M

Table 3.2 shows some of the possible valid mapping points considering the
constraints just described.

Table 3.2: Example of some valid mapping points given the second
set of constraints.

X Y HW EF RS C M r t p q #Passes

32 3 32 32 3 3 16 1 1 8 1 6
32 3 16 16 3 16 16 2 1 8 1 16
32 3 8 8 3 32 32 4 1 8 1 32
16 5 8 8 5 128 64 2 1 4 1 1024

1Both the system controller and the local PE controller allows values other than 8
for the p temporal mapping parameter. However, they have not been validated in the
present work.
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Notice that the number of input and output channels, together with the tem-
poral mapping (p) and the unrolling parameter (r) result in an even number of
processing passes. Lastly, below there are few more constraints not directly related
with the shape/size of the layers, but with the architectural characteristics of the
accelerator, such as memory limitations or the activation functions implemented.

• The accelerator’s hardware only allows max-pooling with a stride of 2 and
a pooling window of size 2.

• The accelerator only supports ReLU as activation function.

• Depending on the size of the RFs in the PE, it is possible to vary the
temporal mapping parameters described above. However, increasing these
Register Files can worsen area-cost and energy-efficiency. Hence, as a design
choice, the size of the Register File dedicated to the ifmap pixels is going to
be determined by the CNN’s convolutional layer that has the largest length
(H). In the same way, the size of the Register File dedicated to the weight
values is going to be determined by the width of the filter kernel (S) and
the maximum allowable value for the temporal mapping parameter p; thus
the size of this Register File is S · p.
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3.3 HW Parameters & Configuration Parameters

The baseline CNN Model that is used to evaluate the accelerator is described
in chapter 4 and is summarized in Table 3.3. As it can be observed, all its
convolutional layers fall within the valid mapping space of the accelerator described
in previous section.

Table 3.3: Layer Parameters of the CNN Baseline Model.

Layer C M HW H’W’ RS EF U P
Conv. 0 3 16 32 34 3 32 1 1
Conv. 1 16 16 32 34 3 32 1 1
max-pooling 0 16 16 32 32 - 16 2 0
Conv. 2 16 32 16 18 3 16 1 1
Conv. 3 32 32 16 18 3 16 1 1
max-pooling 1 32 32 16 16 - 8 2 0
Conv. 4 32 64 8 10 3 8 1 1
Conv. 5 64 64 8 10 3 8 1 1
max-pooling 2 64 64 8 8 - 4 2 0
Dense Layer 1024 10 - - - - 1 0

The baseline CNN is composed of ten layers, out of which six are convolu-
tional layers. Every two convolutional layers, max-pooling is applied to reduce the
dimensionality of the feature maps. At the end of the network, the 3-D output of
the max-pooling 2 is flattened (4 · 4 · 64 = 1024), and all its values are fully con-
nected to the ten neurons of the dense layers, which output’s values are analyzed
for classification purposes.

Table 3.4 below shows the arrangement of the accelerator based on the char-
acteristics of each layer given that the dimensions of the PE Array are X = 32 and
Y = 3. Table 3.5 shows the number of processing passes that each convolutional
layer needs, and the number of MACs in total as well as the number of MACs to
be computed on each processing pass.

Table 3.4: Accelerator Arrangement based on the characteristics of
each layer, for X = 32 and Y = 3.

Layer p q r t # PE Sets PE Set Dimensions
(X/E) (t x r) (E x R)

Conv. 0 8 1 1 1 1 (32 x 3)
Conv. 1 8 1 1 1 1 (32 x 3)
Conv. 2 8 1 2 1 2 (16 x 3)
Conv. 3 8 1 2 1 2 (16 x 3)
Conv. 4 8 1 4 1 4 (8 x 3)
Conv. 5 8 1 4 1 4 (8 x 3)
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Table 3.5: # of MACs to be computed for each convolutional layer
of the baseline CNN model.

Layer # Passes # MACs # MACs/Pass
(E x F x p x t)

(E x F x R x S x C x M) x
(R x S x q x r)

Conv. 0 6 442,368 73,728
Conv. 1 32 2,359,296 73,728
Conv. 2 32 1,179,648 36,864
Conv. 3 64 2,359,296 36,864
Conv. 4 64 1,179,648 18,432
Conv. 5 128 2,359,296 18,432

There are some design-time parameters to be set before passing the design
through ASIC flow which are shown in Table 3.6. The table also shows the values
given for evaluating the accelerator in the present work based on the baseline CNN
Model, but they could be changed to encompass a wider mapping space and hence
different CNNs.

Table 3.6: Hardware Parameters of the accelerator (I).

Parameter Name Value
X 32
Y 3
hw_log2_r (0, 1, 2)
hw_log2_EF (5, 4, 3)
NUM_REGS_IFM_REG_FILE 34
NUM_REGS_W_REG_FILE 24
ADDR_4K_CFG 4042
NUM_OF_PARAMS 13

• X & Y are the length and height of the PE Array. For the evaluation of the
accelerator in this work we set these values to 32 and 3, respectively, thus
having a total of 96 PEs in the accelerator. As it has been discussed, the
selection of these values allows us to map each of the convolutional layers of
our Baseline CNN Model.

• hw_log2_r is utilized to multicast the ifmap pixels and weight values
from their respective memories to the appropriate PEs through the Multicast
Controllers (MCs). As it will be seen later in the chapter, the MCs route the
input data dynamically based on the parameters of the layer being computed
at that moment.

• hw_log2_EF is used to effectively divide the PE Array in r PE Sets
on-the-fly depending on the parameters of the current convolutional layer
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being computed. The accelerator takes all possible log2 values of the differ-
ent heights/widths for the valid mapping points (e.g. for our baseline CNN
model, all possible values for EF are 32, 16 and 8). Both sets of hw_log2_r
and hw_log2_EF values are hardwired in the MCs, and it would be pos-
sible to increase the mapping points by including a broader set of values
without the need of modifying MCS’s logic.

• NUM_REGS_IFM_REG_FILE & NUM_REGS_W_REG_FILE
are the sizes of the RFs inside the PEs for the ifmap pixels and the weight
values, respectively. The former is given by the layer which has the largest
ifmap width, including the padding (W ′ = 34 for our baseline CNN model),
the latter is set according to the temporal mapping parameter p and the
width of the filter kernel S (p · S = 24). Varying these parameters greatly
affect the data storage elements contained within the PEs and hence the
overall memory overhead of the accelerator, which ultimately also affects the
area and energy efficiency, specially considering these memories are made
of flip-flops. If a larger dimensions are to be computed for the accelerator,
it might be needed to consider using other types of memories for the PEs,
such as SRAMs.

• ADDR_4K_CFG points to the first memory address that contains the
configuration parameters that are to be loaded during the operation of the
accelerator. The different configuration parameters are to be loaded at the
beginning of the layer computation.

• NUM_OF_PARAMS defines the number of configuration parameters
per each layer in the CNN.

Table 3.7: Hardware Parameters of the accelerator (II).

Parameter Name Value
ACT_BITWIDTH 16
WEIGHT_BITWIDTH 8
BIAS_BITWIDTH 16
PSUM_BITWIDTH 28
OFMAP_P_BITWIDTH 30
OFMAP_BITWIDTH 34
HYP_BITWIDTH 8

Not directly related with the arrangement of the accelerator, there are other
hardware parameters to be considered which set the bitwidth of the input param-
eters (biases, weights and ifmap pixels) and the width of the data-path and the
computation-path. These parameters are represented in Table 3.7.

• ACT_BITWIDTH, BIAS_BITWIDTH & WEIGHT_BITWIDTH
are the bitwidth for activations, biases and weights, respectively. Using 16
bits for activation and bias values, and 8 bits for weight values responds
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to the need of achieving an adequate accuracy similar to the one obtained
during the evaluation of the CNN using floating values. Briefly, as elabo-
rated in Chapter 4, shorter bitwidths degrades accuracy during fixed-point
inference as compared to floating point inference.

• PSUM_BITWIDTH is set to avoid overflow of the partial-sums (psum)
computed inside the PE Array.

• OFMAP_P_BITWIDTH refers to the bitwidth of the ofmap primi-
tive, which is the ofmap value coming out of the PE Array block into the
Adder Tree, where it is further accumulated with their corresponding ofmap
primitives on their way to the PISO Buffer.

• OFMAP_BITWIDTH determines bitwidth of the ofmap, once all ofmap
primitives have been accumulated.

In addition to design-time parameters which are set prior to hardware synthe-
sis, there are also a set of configuration parameters that are loaded right before
starting computation of the CNN and which are fetched from memory to the con-
trol logic for the accelerator to be configured and dynamically set its properties
according to the needs of the convolutional layer being computed. Table 3.8 shows
these parameters.

Table 3.8: Configuration Parameters of the accelerator.

Param. Name Description Value
L Number of (convolutional) layers
M Number of ofmap channels
C Number of ifmap channels
HW Height/width of ifmap channel
HW_p Height/width of ifmap channel, with padding
RS Height/width of filter kernel
EF Height/width of ofmap channel as per tables
r Unrolling factor (# of PE Sets 3.3 and 3.4
p Number of different 1-D row filters to fit within a PE
M_div_pt Number of Passes until ifmap reuse
EF_log2 log2(EF )
r_log2 log2(r)
is_pooling 1 (0) if there is (is not) max-pooling

L refers to the number of convolutional layers to be computed by the accelera-
tor. The current version of the accelerator requires all the weights and biases from
all layers to be loaded beforehand, and once computation starts it does so starting
with the first convolutional layer. Right after the first convolutional layer has fin-
ished, is_pooling evaluates if there is (1) or there is not (0) a max-pooling layer
after. If there is, max-pooling is applied to the activation outputs of the current
convolutional layer being processed, then the next convolutional layer starts being
computed. This process goes on continuously without the need of any external
interaction until L convolutional layers have been computed. Each layer requires
NUM_OF_PARAMS - 1 for it to be computed by the accelerator. The −1
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is because L needs to be loaded only once.

In the following sections a detailed description of the accelerator’s hardware
and its blocks is depicted.
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3.4 System Controller

The System Controller’s main function is setting up the nested loops of the convo-
lutional operation according to the configuration parameters of the current layer
being processed. The configuration parameters tailor the nested loop boundaries
and its parallelization settings according to the needs of the layer as to maximize
PE Utilization in the PE Array. Algorithm 2 shows the nested loop, similar to the
one described in algorithm 1, but personalized to these parallelization techniques
according to the mapping strategy used for the accelerator.

Algorithm 2 Nested Loops of Main System Controller
for c = 0; c < C − r; c+ = r do

for m = 0;m < M − p;m+ = p) do
for rc = c; c < c+ r; rc++ do

******************* ▷ IFMAPS NESTED LOOP
for w′ = 0;w′ < H ′W ′;w′ ++ do

for h′ = 0;h′ < H ′W ′;h′ ++ do
ifmap index [rc][h′][w′]

end for
end for
*******************
******************* ▷ WEIGHTS NESTED LOOP
for r′ = 0; r′ < RS; r′ ++ do

for pm = m; pm < m+ p; pm++ do
for s = 0; s < RS; s++ do

weight index [rc][r′][pm][s]
end for

end for
end for
*******************
******************* ▷ OFMAP NESTED LOOP
for pm = m; pm < m+ p; pm++ do

for f = 0; f < EF ; f ++ do
for e = 0; e < EF ; e++ do

ofmap index [pm][f ][e]
end for

end for
end for
*******************

end for
end for

end for

As it can be observed, there are three main nested loops that will trigger at
specific times during the computation of the convolutional layer. At first, the RF’s
PEs are empty, the ifmap pixels and weight values corresponding to the layer be-
ing computed for the first processing pass are still in the memories, thus both the
IFMAPS NESTED LOOP and the WEIGHTS NESTED LOOP start running
concurrently.
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The indices of the ifmap pixels start increasing in the IFMAPS NESTED
LOOP, these indices are sent to both the Activation memory and to the MCs.
The Front-End Read Interface of the Activation memory evaluates these indices
and reads the appropriate activation value to be sent to the PE Array. On the
other hand, the MCs receive both the ifmap pixel and the indices on the same
clock cycle and evaluate to which PEs the ifmap pixel must be sent, so that a
single read from the Activation memory is enough to send a specific ifmap pixel
to the corresponding PEs according to the mapping strategy given by the Row-
Stationary dataflow approach.

Similarly, the indices of the weight values also increase according to the WEIGHTS
NESTED LOOP, these indices are sent to the Front-End Read interface of the
Weight memory and to the MCs to multicast the weight values to the correspond-
ing PEs.

There are three things to notice at this point. First, these two actions take
place concurrently, meaning that the time it takes for the accelerator to load the
input values to the PE Array is given by the longest Nested Loop, which at most
cases is the IFMAPS NESTED LOOP. Second, there are processing passes in
which there is no need to load the ifmap values, and the accelerator can reuse
them for as long as the weight values can still be used. In these cases, only the
WEIGHTS NESTED LOOP is run, while the IFMAPS NESTED LOOP remains
inactive. Lastly, the OFMAPS NESTED LOOP triggers once the inputs values
for the current processing pass are in the PEs, and controls when the processing
pass is finished.

Figure 3.2: Block diagram of the System Controller.
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Figure 3.2 represents a high level diagram of the System Controller and its dif-
ferent blocks. SYS CFG retrieves from memory the configuration parameters for
the layer to be computed and stores them in registers for the whole computation of
the layer. This parameters are used to set the limits of the nested loop’s counters
and configure different settings throughout the accelerator. PASS FLAG out-
puts a control flag that indicates when to trigger the computation and hence the
OFMAP NESTED LOOP. WEIGHTS NL, IFM NL and OFM NL control
the different nested loops already mentioned, and MAIN NL controls the outer
parameters of the nested loops (c, m and rc) as well as manages the interaction
between the different control blocks and the rest of the accelerator.
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3.5 Memories

There are three memories that the accelerator uses for allocating the different data.
The memories used in the present work are high-performance/high-density 28nm
FD-SOI embedded memories provided by STM. More specifically:

• 1x Single-Port High-Density memory with 4096 words and 32 bitwidth.

• 3x Single-Port High-Density memory with 8192 words and 32 bitwidth.

• 8x Double-Port High-Density memory with 2048 words and 32 bitwidth.

The arrangement of the memories and total size of each memory block is shown
in Table 3.9. The details of each memory block and the mapping of the data in
the memories is described in subsections below.

Table 3.9: Arrangement of memories used by each memory block of
the accelerator.

Memory Block Memories used Total Size [KB]

WEIGHTS SRAM 2x SPHD 8192x32
1x SPHD 4096x32 80

ACTIVATIONS SRAM 1x SPHD 8192x32 32
OFMAPS SRAM 8x DPHD 2048x32 64
TOTAL 176

3.5.1 Weight memory

The Weight memory block not only stores the weights of the network but also
the biases and the configuration parameters of all layers in the network. The size
requirements were given by the number of parameters of the Baseline CNN Model.
The Weight memory allocates the parameters for the whole convolutional network,
hence the user must ensure that the network size does not exceed the size of the
memory.

The order at which the weights are stored in the memory is based on the map-
ping strategy of the accelerator; it depends on the spatial mapping parameter p
and also on the RS dataflow.

Weight memory also stores the biases and the configuration parameters of
the CNN. The hardware parameter ADDR_4K_CFG sets the memory pointer
from which the configuration parameters are stored in memory, in increasing or-
der of addresses. In a similar way, the biases are stored in decreasing order of
addresses starting in the memory address ADDR_4K_CFG - 1. Figure 3.3
show a general picture of the memory mapping.
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As Table 3.9 indicates, the Weight memory block is composed of three mem-
ories. The weights occupy the most of the memory block, leaving biases and
configuration to be stored at the end of the memory block.

Figure 3.3: General View of the Weight memory Block.

The overall architecture of the Weight memory is shown in Figure 3.4. The
Weight memory has a Front-End Read interface that handles the control signals
as well as the indices coming from the system controller and the nested loops,
and it retrieves the weights, biases and configuration parameters from the Back-
End Interface, which directly interacts with the Wrapper Block and manages the
addresses belonging to each of the three memories conforming the memory block.
Notice there is not a Front-End Write interface since for the validation of the
current version of the accelerator the parameters are forced in the SRAMs during
simulation.

Figure 3.4: High Level Block Diagram of Weight memory.

3.5.2 Activation memory

The Activation memory allocates the ifmap values of each layer. At first, it al-
locates the ifmap pixels of the first image to run the inference with. When com-
putation of the first convolutional layer finishes, the activations for the second
convolutional layer overwrites the ifmap pixels, and this process is repeated until
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all convolutional layers of the CNN are computed.

When there is a pooling layer followed by a convolutional layer, rather than
storing the output activations of the convolutional layer, the activations stored are
the ones computed after the pooling layer. As opposed to storing the activations
directly after the computation of the convolutional layer and applying pooling af-
terwards, this approach allows the accelerator to prevent unnecessary reads/writes
to the Activation memory. Given the Table 3.10, which shows the activations gen-
erated after each layer in the Baseline CNN Model, the activations in cursive are
not stored in memory, but the ones generated after max-pooling is applied.

The size of the Activation memory was set according to the requirements of
our CNN Baseline model. Being Conv. 0 layer the one generating the largest
number of activations, and given that the activations bitwidth is 16, the memory
needs at least 8,192 addresses to allocate all values.

Table 3.10: Activations generated per each layer of the Baseline
CNN Model.

Layer Activations Shape
M x E x F # of Activations

Input [3 x 32 x 32] 3,072
Conv. 0 [16 x 32 x 32] 16,384
Conv. 1 [16 x 32 x 32] 16,384
max-pooling 0 [16 x 16 x 16] 4,096
Conv. 2 [32 x 16 x 16] 8,192
Conv. 3 [32 x 16 x 16] 8,192
max-pooling 1 [32 x 8 x 8] 2,048
Conv. 4 [64 x 8 x 8] 4,096
Conv. 5 [64 x 8 x 8] 4,096
max-pooling 2 [64 x 4 x 4] 1,024

The high level block diagram of the Activation memory is depicted in Figure
3.5. As opposed to the Weight memory, the Activation memory does have a Front-
End Write interface, since the activations after finishing one convolutional layer
must be stored back to the Activation memory for next layer’s computation.

The padding that needs to be applied is not stored in the memories, since this
would imply storing just zeroes unnecessarily. Instead, as shown in Figure 3.6
the indices h′ and w′ from the ACTIVATIONS NESTED LOOP are evaluated
together with its control signals, and the outcome of the assessment serves as a
control signal for the Back-End interface, which will read the appropriate value
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from the memory, or will just send back a zero instead when padding. As it can
be observed, the padding to be applied is dependent on the width/height of the
filter kernel (RS) and the stride (U). The current version of the accelerator only
works with strides of 1 for convolutional layers.

Figure 3.5: High Level Block Diagram of Activation memory.

Figure 3.6: High Level Block Diagram of Activation memory’s Front-
End Read Interface.

3.5.3 OFMAP memory

The OFMAP memory is embedded within the Adder Tree Block, it serves as an
intermediate storage for the partial-sums until the final ofmap values have been
computed. Due to the nature of the accelerator, each processing pass computes
r primitive ofmap channels belonging to the same ofmap channel, hence they can
be added together in the Adder Tree. The further addition that can be done after
the computation within the PE Array is given by the number of PE Sets (r). At
the same time, the spatial mapping parameter p allows reusing the ifmap pixels by
computing different ofmap channels sequentially. While this allows the accelerator
to reuse the ifmap pixels, this comes at the cost of having to temporarily allocate
the M ofmap channels in order to accumulate those values. Because of this, in
order to not waste any clock cycle while loading the previously stored value, the
accelerator uses double-port SRAM.
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On the other hand, the bias is also added within the OFMAP memory. The
bias is sent directly from the Weight memory at the appropriate time. Both the
accumulation of the ofmap primitives and the bias addition takes place in the
Front-End Accumulation Interface, shown in Figure 3.7. When the signal NoC_c
(index coming from the OFMAP NESTED LOOP) is zero, there is no need to
read other ofmap values since it is yet the first iteration and there is nothing to
accumulate, but once NoC_c is no longer zero then accumulation is enabled (first
multiplexer) and the Front-End Acc. Interface sets the control signals for the
Back-End interface to enable the memory reading the corresponding ofmap value.
Similarly, the signal NoC_c also sets the condition for adding the bias value (sec-
ond multiplexer).

A third multiplexer is used to control the bitwidth of the ofmap value when all
accumulations have finished, which as defined by parameter OFMAP_BITWIDTH,
is 34. Truncation to both the upper bound and lower bound is applied.

Figure 3.7: Block Diagram of OFMAP memory’s Front-End Acc.
Interface.

Since the most suitable available double-port compiled memory from STM for
this purpose was the DPHD 2048x32, this one was used, and a router was im-
plemented to interact with the Back-End Interface. The Front-End Out Interface
reads the final values and outputs them to the ReLU/RN block as soon as the final
ofmap values are obtained. The Front-End Out interface it is very simple since
the order at which the values are output corresponds to the order at which they
must be in the Activation memory (column-wise, row-wise and channel-wise), see
Figure 3.8. A high-level block diagram is depicted in Figure 3.9, showing all the
interfaces.
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Figure 3.8: Memory Mapping of ofmap values in OFMAP memory.

Figure 3.9: High level Block Diagram of OFMAP memory.
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3.6 Network-on-Chip

The NoC facilitates communication between the PE Array and the various SRAMs
that compose the on-chip memory, as well as between the individual PEs. On the
one hand, it connects the Weight memory and Activation memory with the PEs,
prior pass through the MCs to evaluate to which PE the input values must go.
On the other hand, it connects the PEs themselves vertically to accumulate the
psums.

The NoC must possess the flexibility to accommodate various data distribu-
tion patterns, originating from the diverse configurations of the CNN and the
sequence of operations. Furthermore, it manages the three parameters involved in
the convolution; the ifmap pixels, weight values, and psums. The latter becomes
an ofmap value after the necessary accumulations have been performed. Each data
type has their own separate buses to write/read these parameters to/from their
corresponding SRAM modules or from the PE Array, concurrently enhancing the
on-chip memory bandwidth.

In an effort to minimize the hardware resources used during implementation,
the dimensions of the PE Array are set to a minimum to ensure the operation of
the largest convolutional layer of the Baseline CNN Model, avoiding the need of
folding the convolution, hence the reason of the PE Array of having a size of 32x3.

The NoC engine is configured based on the hardware parameters and the
configuration parameters, and it is also set as to recognize which layer is being
computed; it recognizes dimensions of the ifmap, ofmap and filter and hence it
knows:

• Which PEs must receive which ifmap/weight.

• Number of PE Sets and Dimensions of the PE Set.

PE Set dimensions and number of PE Sets are not hardwired, but the control
flow will decide depending on network characteristics. In the following subsections
the blocks that conform the NoC as well as their arrangement are described.

3.6.1 Multicast Controllers

The Multicast Controllers (MCs) are a key element in the NoC, their function is
to control the data flow of the incoming input data from the Activation memory
and the Weight memory to the PEs.

Each PE is linked with an MC, and each one has a hardwired ID. In the case
of the activations, the NoC fetches the activation pixel from memory to each PE
trough the dedicated bus, then a MC associated to a specific PE decides whether to
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disregard the activation pixel sent or not. The weights have a different dedicated
bus. Both buses work in parallel.

Figure 3.10: High level Block Diagram of NoC Interface, with a close
up look to the internal structure of the Multicast Controller.

This work uses a bus structure (see Figure 3.10) with X vertical Y-buses
connected to Y horizontal X-buses. Each of the Y horizontal X-buses have a
different Y-ID, each PE within a row has an X-ID and a Y-ID associated to its
X-bus. Each node within the Y-X network has an MC. Hence, so far:

• The Y X-buses are attached to the Y-bus, and each of these X-buses have
X associated MCs and X PEs to which the MCs are linked to, with their
corresponding Y-ID and X-ID. For example, the leftmost PE at the top of
the PE Array and its associated MC_X have X_ID = 0 and Y _ID = 0,
whereas the rightmost PE at the bottom of the PE Array and its associated
MC_X have X_ID = X − 1 and Y _ID = Y − 1

• There are two separate buses for both activations and weights to provide
sufficient bandwidth from the memories to the PE Array.

• The buses are ACT BITWIDTH and WEIGHT BITWIDTH bits wide for
activations and weights, respectively. Logic within the MC allows the input
data to be sent to their corresponding PEs in a single read operation.

A closer look to the internal structure of the MCs shows that, in order to
let the values pass further through the NoC, the pass conditions and the enable
signals must be set to 1, otherwise the value passing is a zero and the status signal
is 0, hence ultimately not enabling the PE to which the MC is connected.

A third special type of blocks are the MC_rr, which are connected vertically
to all MC_X blocks of each column in the PE Array. The function of the MC_rr
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block is to feed to the MC_x blocks of each column with the parameter rr, which
states to which PE Set does the PEs of a specific column belong to, depending
on the characteristics of the convolutional layer being computed. For example, if
there are r = 4 PE Sets, the 9th column belongs to the second PE Set (rr = 2 for
that column). On the other hand, if there are r = 1 PE Sets then that column
belongs to the 1st (and only) PE Set (rr = 1).

The order at which the activations are sent from the memory to the MCs is
column-wise. The number of clock cycles it takes to distribute the activations
across the PE Array is W ′ · H ′ · r clock cycles. Table 3.11 describes how many
clock cycles it takes to distribute the activations on each convolutional layer of
our Baseline CNN Model. In a similar way, the number of clock cycles that takes
for the weights to be distributed across the PE Array is given by Table 3.12.
Weights are distributed horizontally, meaning each row of PEs in the PE Set
allocates p different kernel’s rows belonging to the corresponding ifmap channel
being computed on each PE Set.

Table 3.11: Arrangement of Activations across the PE Array.

# of cc per PE Set
(W ′ ·H ′)

# of cc in total
(W ′ ·H ′ · r)

Conv. 0 1156 1156
Conv. 1 1156 1156
Conv. 2 324 648
Conv. 3 324 648
Conv. 4 100 400
Conv. 5 100 400

Table 3.12: Arrangement of Weights across the PE Array.

# of cc per PE Set
(R · S · p)

# of cc in total
(R · S · p · r)

Conv. 0 72 72
Conv. 1 72 72
Conv. 2 72 144
Conv. 3 72 144
Conv. 4 72 288
Conv. 5 72 288

The MC must be able to decide if the input value shall pass or not by using
hyperparameters of the network. There are several pass conditions which are
tailored for the MC_X and MC_Y blocks an which are described below.

• Activations pass conditions

– 1st condition: determines the upper bound for which the activation
value shall no longer pass to the top rows in the PE Array.
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– 2nd condition: determines to which PEs the activation must go. The
condition takes into account how many PE Sets there are and to which
PE Set the specific PE belongs to. It allows passing the value to several
PEs diagonally.

– 3rd condition: determines to which ifmap channel the activation be-
longs to.

– 4th condition: determines the lower bound for which the activation
value shall no longer pass to the bottom rows in the PE Array.

To exemplify, let’s take Conv. 5 layer of our Baseline CNN Model over a PE
Array with X = 32 and Y = 5. Conv. 5 has an ofmap channel with height/width
of 8 (EF = 8), an ifmap channel, including padding, with height/width of 10
(H ′W ′ = 10) and 64 ifmap channels (C = 64). Because EF = 8, the PE Array
can allocate 4 PE Sets (r = 4).

Supposing the eighth row (h′ = 8) of the fifteenth ifmap channel (c = 15) is
sent to the PE Array:

• 1st condition is satisfied for the last four rows as per Figure 3.11a.

• 2nd condition is satisfied for the PEs in diagonal green shown in Figure
3.11b.

• 3rd condition states that the pixel must be sent to the last PE Set in the
PE Array (Figure 3.11c).

• 4th condition disregards the last two rows in the PE Array, because we are
using a 3 x 3 kernel (Figure 3.11d).

As a result, the PEs to which the activation value for the indices h′ = 8 and
c = 15 must be sent are shown in Figure 3.11e.
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(a) 1st pass condition for Activations

(b) 2nd pass condition for Activations

(c) 3rd pass condition for Activations

(d) 4th pass condition for Activations

(e) Resulting PEs selected

Figure 3.11: Pass conditions and resulting PEs selected on a PE
Array with X = 5 and Y = 32 for Conv. 5 layer of the Baseline
CNN Model for activation value with indices h′ = 8 and c = 15.
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• Weights pass conditions

– 1st condition: determines the row of the PE Array.

– 2nd condition: determines to which ifmap channel the weight belongs
to. It is the same as the 3rd condition for the activation values.

To exemplify the flexibility of the accelerator, suppose a convolutional layer
with a 5 x 5 filter, 16 ifmap channels (C = 16) and an ofmap channel with
height/width of 4 (EF = 4). Supposing the weight value to be sent to the PE
Array belongs to the second ifmap channel (c = 2) and to the third row of the filter
kernel (r′ = 3); The PE Array is now divided in 8 PE Sets (r = X/E = 32/4 = 8).
The selected PEs to which the weight must be sent are shown in Figure 3.12.

(a) 1st pass condition for Weights

(b) 2nd pass condition for Weights

(c) Resulting PEs selected

Figure 3.12: Pass conditions and PEs selected on a PE Array with
X = 5, Y = 32 for a conv. layer with a 5 x 5 kernel, C = 16,
E = 4. The indices of the weight are c = 2, r′ = 3.

In conclusion, the described approach allows the accelerator to send a single
input value to their corresponding PEs in a single read operation, alleviating on-
chip memory bandwidth.
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3.6.2 Processing Elements

The Processing Elements (PEs) are the core units of the accelerator. The PE has
a multiplier unit and an adder to multiply and accumulate the input data and
generate the psums. It also has two internal Register Files (RFs) for storing the
activations and weights that are read from the memories. There are 2 levels of
memory hierarchy (on-chip SRAM and RFs) in the accelerator, being the deeper
one composed by the local RFs, allowing an NDP approach and thus improving
overall energy efficiency and optimizing data reuse. During a processing pass,
when activations and weights have been casted from the memories, each PE in the
PE Array holds the input data needed as per RS dataflow, hence all PEs in play
can start computation concurrently. The overall architecture of the PE is shown
in Figure 3.13.

Figure 3.13: Block Diagram of a Processing Element.

The computation starts when a control signal coming from the system con-
troller states that all input data necessary for the current processing pass have
been already sent to the RFs. At this point, in the Feature RF there is one row of
activations, and in the Filter RF there are p rows of weights. Taking into account
that psums are accumulated vertically, all PEs within a PE column in the PE
Array will first compute internally S MACs, and the psums obtained internally
within each PE in the PE Column will be sent to the top PE in the PE Column,
where the psums will be further accumulated, computing R MACs. hence, it takes
R · S MACs to obtain an ofmap primitive and, as seen in Figure 3.14, it takes
R + S clock cycles to obtain the ofmap primitive that is later to be sent to the
Adder Tree. Each PE Column computes a different ofmap primitive concurrently,
thus on each iteration there are E · r ofmap primitives.
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Intra-PE accumulation operation takes place first, the first activation value
and the first weight of the first kernel row are read and sent to the multiplier unit,
then the second activation is multiplied by the second weight and accumulated
with the previous operation, this is repeated S times. Then Inter-PE Accumula-
tion proceed, and the computed psums are transferred upwards in the PE Column
and accumulated in the top PE. When all MACs for obtaining the ofmap primitive
have been computed, the ofmap primitive is stored in the accumulator register of
the top PE and sent to the Adder Tree. Right after, that register is reset in or-
der to accumulate the next ofmap primitive. While Inter-PE Accumulation takes
places in the top PE, the other PEs in the PE Column await. The logic dashed
in Figure 3.14 indicates the extra logic implemented exclusively for the top PE
in order to perform the extra accumulation, this logic is not implemented in the
other PEs.

When the operation described is finished, there are X (E·r) ofmap primitives in
each of the top PEs of the PE Array that, in the case when there are more than one
PE Set, need to be accumulated further and hence they are sent to the Adder Tree,
where this extra accumulation proceed. Afterwards, they are sent to a Parallel-
In Serial-Out buffer (PISO Buffer) prior to be stored into the OFMAP memory,
where subsequent ofmap primitives are accumulated until obtaining the final ofmap
value. When the PISO Buffer is full and while it is being emptied to the OFMAP
memory, the computation in the PE Array must stall and wait for the PISO Buffer
to be empty before continuing the operation. The computation happening in the
PE Array, the Adder Tree, the PISO Buffer, and the OFMAP memory during the
write operation is pipelined to minimize this stall. Such stalling will depend on
the number of the PE Sets of the convolutional layer being computed. The specific
stall time will be described when the architecture of the Adder Tree and the PISO
Buffer are presented. Ideally, without accounting with the stall time, the Intra-PE
Accumulation and Inter-PE Accumulation is repeated F · p times until a new pass
starts.
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Figure 3.14: Intra-PE Accumulation and Inter-PE Accumulation
operation.
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3.7 Adder Tree

The Adder Tree fetches E · r ofmap primitives from the PE Array and performs
further accumulation before sending the resulting E ofmap primitives to the PISO
Buffer. The Adder Tree must be flexible enough to reroute the ofmap primitives
according to the number of PE Sets being computed. If there is only one PE
Set, then there is no further accumulation. However, if r = 2(4), this means that
E = 16(32). Each ofmap primitive from e = 0 to e = E − 1 of each PE Set must
be added accordingly. Figure 3.15 shows the structure of the Adder Tree. Given
that the accelerator allows the PE Array to be divided of up to four PE Sets, the
Adder Tree must be able to handle this borderline scenario, so that on its first
computing stage it first evaluates whether r = 1 or not, in which case there is
no need to add anything, and the X ofmap primitives can be sent to the PISO
Buffer. If r ̸= 1, the X ofmap primitives are split in four buses of size X/4. At
this point, notice that, regardless of r = 2 or r = 4, the first bus and the third
bus (dashed lines) contain ofmap primitives that are to be added together, and
the second bus and fourth bus (dotted lines) contain ofmap primitives that are to
be added together.

For example, let r = 2 , then there are two PE Sets, and each one computes
ofmap primitives from e = 0 to e = X/2− 1. The Adder Tree must add together
each pair of ofmap primitives. During the first stage, one adder adds the pairs of
ofmap primitives from e = 0 to e = X/4− 1 (dashed lines). The other adder adds
the pair of ofmap primitives from e = X/4 to e = X/2 − 1 (dotted lines). Each
adder sends the resulting X/4 ofmap primitive to their corresponding registers at
the next stage, and then a multiplexer evaluates if r = 2 or r = 4. Since r = 2, the
buses are joint together obtaining the E = X/2 ofmap primitives, which are then
sent to the PISO Buffer. If, on the other hand, r = 4, the ofmap primitives are
further added altogether in the second stage, obtaining a bus composed by X/4
ofmap primitives which are sent to the PISO Buffer.

As it can be seen, the number of clock cycles that takes to the ofmap primitives
going through the Adder Tree depends on the number of PE Sets and thus the
number of additions it needs. Hence, it can be stated that # cc Adder Tree =
log2(r). A control signal coming from the PE Array is also delayed the same
number of cycles to synchronize the dataflow with the control of the PISO Buffer.
It is worth mentioning that, depending on the number of PE Sets, the bus width
to be sent to the PISO Buffer differs, so when r = 1 there are X ofmap primitives
to feed the PISO Buffer with, when r = 2 the size of the bus is X/2, and when
r = 4, the size of the bus is X/4.
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Figure 3.15: Adder Tree structure.
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3.8 PISO Buffer

The Parallel-In Serial-Out (PISO) Buffer is composed by X registers. Depending
on the numbers of PE Sets r, the batch size of ofmap primitives that the PISO
Buffer receives from the Adder Tree on each iteration will vary.

If r = 1, the batch has a size of X hence every time the PE Array computes
the E ofmap primitives and these go through the Adder Tree all the way to the
PISO Buffer, this gets already full and needs to be emptied towards the OFMAP
memory. In the meantime, the operation in the PE Array must stall and wait for
the PISO Buffer to be empty. When r = 2, the batch has a size of X/2 hence the
PE Array operation can proceed two consecutive times before the PISO Buffer is
full, and then it has to wait X/2 clock cycles until there is enough space in the
PISO Buffer for another batch. When r = 4, the PE Array operation iterates four
times until the PISO Buffer is full, and X/4 clock cycles must pass before allowing
sending another batch of ofmap primitives.

The control of the PISO Buffer allows sending each batch to the corresponding
section in the buffer, so when r = 4 and if the PISO Buffer is empty, the batch is
send to the rightmost section in Figure 3.16, on the second iteration the batch goes
to the second section, and so on until the buffer is full. This operation proceeds
continuously until the processing pass finishes, after which the buffer is emptied.

Figure 3.16: PISO Buffer structure. There are four sections for
allocating different batches of ofmap primitives.

The stalling time that the PE Array must wait before proceeding with the
computation of the next batch of E ofmap primitives will depend on the number
of PE Sets r, which ultimately depends on the size of the batch E (r = X/E), and
the size of the kernel (R x S): stall_time = E −R− S + 1.
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3.9 ReLU & Rounding

Once all processing passes for the current convolutional layer being computed have
finished, the values in the OFMAP memory are ready to be sent back to the Acti-
vation memory. Prior to that, these values must be rounded down to 16 bits and
ReLU activation function must be applied. ReLU activation function is straight-
forward and the logic evaluates whether the ofmap value is higher than zero, in
which case it let the value pass, otherwise it returns zero.

Round To Nearest (RN) is applied according to Section 3.11. The ofmap
value at this point is a 32 bits fixed-point number with 19 bits belonging to the
integer part and 13 fractional bits (Q < I.F >= 32 < 19.13 >). The activation
is a 16 bits fixed-point number with 8 bits belonging to the fractional part and
8 fractional bits (Q < I.F >= 16 < 8.8 >). In order to trim the fractional part
and apply RN a 1 must be added to the fractional bit at position 13 − 8 = 5,
and disregard the rightmost bits. For truncating the integer part the 19− 8 = 11
leftmost bits are disregarded, obtaining 8 bits. There is no need to handle the
sign bit since all truncation is applied after performing ReLU hence all values are
positive.

3.10 Pooling

When the configuration parameter is_pooling is 1, before storing the activations
into Activation memory, max-pooling is applied. The activations arrive to the
Pooling Block column-wise (from e = 0 to e = E − 1), row-wise (from f = 0 to
f = F − 1, and channel-wise (from m = 0 to m = M − 1), and they are stored in
the Activation memory in the same order.

A buffer of size X/2 is used to be able to allocate the biggest possible size given
when there is only one PE Set (r = X/E = 32/32 = 1). At first, a multiplexer
sends the first value from the first column being computed to register 1, and the
next value to register 2, both values are compared and the result is stored in the
buffer, thus when processing the entire column half of it will be allocated in the
buffer with the results of the first comparison.

Once the first half column is in the buffer, the first and second activations
from next column are compared, and the result is sent to register 3 while the first
value of the previously processed column is read from the buffer. Both values are
then compared and the bigger of these two values is then the biggest of the four
activations. This process is repeated until the second column is processed, then
the third column overwrites the contents in the buffer and when the fourth column
starts the third column in the buffer is compared with the incoming fourth column.
The operation proceeds until reaching the last column (e = E − 1).
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There is no any extra cycle as a consequence of this logic and the time that it
takes to write the activations back to the Activation memory is given by its size
(E · F · M), regardless of max-pooling being applied or not. Figure 3.17 shows
the block diagram of the Pooling block and exemplify this process.

Figure 3.17: max-pooling Block Diagram.

3.11 Quantization and Rounding Scheme

Even though the hardware parameters of the accelerator allows choosing a specific
bitwidth for weights, activations and biases, the current work has been analyzed
with these values being 8, 16 and 16, respectively. Lower bitwidths degraded
achievable accuracy for the Baseline CNN Model.

Furthermore, the position of the decimal point also affects accuracy. The
precision of activations and weights affects the overall accuracy of the network’s
predictions. With a low number of fractional bits, the intermediate values may
be rounded or quantized in a way that discards important information, leading
to a decrease in the network’s accuracy. On the other hand, a low number of
integer bits may cause the activations to be rounded to the nearest quantization
level, leading to a loss of information that can also impact the performance of the
network. Table 3.13 summarizes the quantization applied:
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Table 3.13: Quantization Scheme.

BITWIDTH
(Q < I.F >)

Integer Part
(I)

Fractional Part
(F )

Activations 16 8 8
Weights 8 3 5
Biases 16 3 13
ofmap 34 21 13

The ofmap’s bitwidth is given after all MACs for obtaining such value have
finished.

Since MAC operations imply multiplications, the fractional and integer parts
must be handled appropriately:

Fofmap = Fw + Fact = 5 + 8 = 13

Iofmap = Qofmap − Fact = 34− 13 = 21

The bitwidth’s data-path of the ofmap primitive increases gradually as it moves
from the PE Array to the OFMAP Front-End Acc. interface, where the bias is
added to the value before storing it in the OFMAP memory. Note that, since the
fractional part of both biases and ofmaps are the same, there is no need to align
the decimal point. Also, at this point the ofmap’s bitwidth is 34, but the memory’s
bitwidth is 32, thus truncation to max/min value is applied and the 2 MSB’s are
disregarded, this is done in hardware while also taking into account the sign bit.
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3.12 Wrapping Up

Once described the whole architecture of the accelerator, it is possible to calculate
the number of clock cycles that it takes to compute a convolutional layer as a
function of its parameters. Table 3.14 details the number of clock cycles that
each layer of the Baseline CNN model needs for it to distribute the activations
and weights to the PE Array before actual computation starts. Note that both
weights and activations are sent concurrently to the PE Array, and note also that
there are some passes in which only weights are loaded while activations are still
being reused.

Table 3.15 describes the number of clock cycles for computing the ofmaps in
the PE Array, the Adder Tree and the PISO Buffer on their way to the OFMAP
memory. Table 3.16 describes the number of clock cycles for writing the resulting
activations back to Activation memory, as well as the time it takes to load the
configuration parameters and the time it takes to the main NL updating its values.

Combining the results from previous tables, it is possible to calculate the total
number of clock cycles that it takes to the accelerator to process each convolutional
layer (see Table 3.17). As it can be seen, this time responds to the characteristics
of each layer and how it is mapped in the accelerator, and it can be known in
advance. With this data the overall performance of the accelerator is computed
in the Results 6 chapter.

1stall ·F ·p−stall ·(r−1) = stall ·((F ·p)−(r−1)) = (E−R−S+1) ·((F ·p)−(r−1)).
Notice that at the beginning of computations, PISO Buffer is empty so PEs do not stall
until PISO Buffer is full. PISO Buffer gets full after (. e.g. if r = 4, it is possible to load
the buffer four times before stalling.

2RN, ReLU and max-pooling takes place as well.
3During computation of the first convolutional layer in the CNN the parameters are

loaded twice; once at the very beginning for computation of current layer and once at
the end for computation of the next layer. During the last convolutional layer, there is
no loading of parameters since those are loaded at the end of computation of previous
layer.
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Table 3.14: # of Clock Cycles for distributing both activations and
weights across the PE Array before computation starts.

Convolutional Layer:
0 1 2 3 4 5

Distribution of Activations (1 pass)
- Act. Nested Loop Logic (start) 1 1 2 2 4 4
(r)
- Switching PE Sets 0 0 1 1 3 3
(r − 1)
- Act. Nested Loop Logic (end) 1 1 2 2 4 4
(r)
- Distribution of Acts. 1,156 1,156 648 648 400 400
(W ′ ·H ′ · r)
Total 1,158 1,158 653 653 411 411
Distribution of Weights (1 pass)
- Weights Nested Loop Logic (start) 1 1 2 2 4 4
(r)
- Switching PE Sets 0 0 1 2 3 3
(r − 1)
- Weights Nested Loop Logic (end) 1 1 2 2 4 4
(r)
- Distribution of Weights 72 72 144 144 288 288
(p · r ·R · S)
Total 74 74 149 149 299 299
Distribution of Activations (total)
- Act. Nested Loop Logic (start) 6 32 64 128 256 512
(r · Passes)
- Switching PE Sets 0 0 32 64 192 384
(r − 1) · Passes
- Act. Nested Loop Logic (end) 6 32 64 128 256 512
(r · Passes)
- Distribution of Acts. 6,936 36,992 20,736 41,472 25,600 51,200
(W ′ ·H ′ · r · Passes)
Total 6,948 37,056 20,896 41,792 26,304 52,608
Distribution of Weights (total)
- Weights Nested Loop Logic (start) 6 32 64 128 256 512
(r · Passes)
- Switching PE Sets 0 0 32 64 192 384
(r − 1) · Passes
- Weights Nested Loop Logic (end) 6 32 64 128 256 512
(r · Passes)
- Distribution of Weights 432 2,304 4,608 9,216 18,432 36,864
(p · r · S · S · Passes)
Total 444 2,368 4,768 9,536 19,136 38,272
Distribution of Weights & Activations combined (total)
((C/r) ·#cc Acts.) + ((Passes− (C/r)) ·#cc Weights)
Total 3,696 19,712 8,800 17,600 20,032 40,064
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Table 3.15: # of Clock Cycles for computing the ofmap values.

Convolutional Layer:
0 1 2 3 4 5

Computation of ofmaps (1 pass)
- OFMAP Nested Loop Logic (start) 1 1 1 1 1 1
(1cc)
- Intra PE Acc. + Inter PE Acc. 1,536 1,536 768 768 384 384
(S +R) · F · p
- Stalling1

6,912 6,912 1,397 1,397 183 183
(stall · (F · p · (r − 1)))
- RF/Adder Tree/PISO Buffer 3 3 4 4 5 5
(2 + log2(r) + 1)
- Emptying PISO Buffer 5 5 21 21 29 29
(X − stall)
- OFMAP Nested Loop Logic (end) 1 1 1 1 1 1
(1cc)
Total 8,458 8,458 2,192 2,192 603 603
Computation of ofmaps (total)
(... · Passes)
Total 50,748 270,656 70,144 140,288 38,592 77,184

Table 3.16: # of Clock Cycles for writing back to Activation mem-
ory, for loading configuration parameters and for updating main
Nested Loop values.

Convolutional Layer:
0 1 2 3 4 5

Writing back to Activation memory2

(E · F ·M)
Total 16,384 16,384 8,192 8,192 4,096 4,096
Loading CFG. Params.
- CFG. Control 1 1 1 1 1 1
(1cc)
- Updating CFG. Params.3 25 12 12 12 12 0
(# Parameters− 1)
Total 26 13 13 13 13 13
Main Nested Loop Logic
(# Passes)
Total 6 32 32 64 64 128

Table 3.17: # of Clock Cycles that it takes to the accelerator to
process each convolutional layer.

Convolutional Layer:
0 1 2 3 4 5

Total 70,860 306,797 87,181 166,157 62,797 121,473



Chapter 4
Baseline CNN Model

The Baseline CNN Model used for testing and validating the accelerator was cho-
sen based on two criteria. On the one hand, having a somewhat complex and deep
enough CNN so that it can perform good enough and can obtain an acceptable
validation accuracy when classifying the CIFAR-10 Dataset [25]. CIFAR-10 is a
dataset composed of 50,000 training images and 10,000 validation images divided
in 10 different classes (airplane, truck, frog, cat, dog, deer, automobile, horse, bird
and ship). The images have three channels (Red-Green-Blue) and have a size of
32 x 32 pixels.

On the other hand, state-of-the-art CNNs such as the one in [26], which
achieves an accuracy of 98.9% in CIFAR-10, are usually composed by millions
of parameters. Aiming to design an accelerator that can compute CNNs but also
considering this work as a starting point towards a more complex architecture (e.g.
handle scenarios such as folding layers with bigger dimensions, multiple batches,
or that can load different sets of weights per layer), a simpler CNN model was
selected. In this chapter the process for selecting such CNN Model is described.

There are several reasons why deeper layers in CNNs are often constructed
with smaller spatial dimensions and a greater number of channels.

• Smaller spatial dimensions can help reduce the number of parameters and
computation needed to train the network. This is particularly important
for large-scale applications where efficiency is critical, as in NNs tailored for
edge devices [27].

• Deeper layers with more channels can help the network learn more complex
features. As the network goes deeper, it can learn to detect more complex
patterns and relationships in the input data, and having more channels
allows the network to represent more diverse and subtle features [28].

61
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A tailored CNN, described in Table 4.1 below, was designed in Python using
Tensorflow, an open-source library developed by Google for deep learning applica-
tions.

Table 4.1: Baseline CNN Model.

Layer Output Shape Param #
Conv. 0 (32, 32, 16) 448
Conv. 1 (32, 32, 16) 2,320
max-pooling 0 (16, 16, 16) 0
Conv. 2 (16, 16, 32) 4,640
Conv. 3 (16, 16, 32) 9,248
max-pooling 1 (8, 8, 32) 0
Conv. 4 (8, 8, 64) 18,496
Conv. 5 (8, 8, 64) 36,928
max-pooling 2 (4, 4, 64) 0
Flatten (1,024) 0
Dense Layer (10) 10,250
Total # of Parameters: 82,330

The model is composed by six convolutional layers, with inserted max-pooling
layers to reduce dimensions of the channel. The last layer is a FC layer with ten
output neurons which hold the final values corresponding to each one of the classes
of the CIFAR-10 dataset. Overall, the CNN has 82,330 parameters. The network
was trained using a batch size of 1, 25 epochs and using stochastic gradient descent
(SGD) with momentum. The basic idea behind the momentum method is to add
a momentum term to the update rule for the weights, which takes into account
the previous weight updates [29].

After training, a validation accuracy of 71% is achieved (see Figure 4.1).

Figure 4.1: History Diagram of the training process of the Baseline
CNN Model using SGD and momentum, 25 epochs and no data
augmentation.
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Notice how the validation accuracy stops improving around the 7th epoch and
the validation loss starts increasing. This effect is a sign of overfitting, which is a
phenomenon where the model performs well on the training data but poorly on
new data. There are several workarounds to solve this issue, such as data aug-
mentation. Data augmentation refers to the process of increasing the amount of
training data available. This can be achieved by applying a set of transformations
to the original images in the training set, such as rotations, translations, flips, and
other distortions, to generate new images that are still representative of each class.

By introducing these variations, the model can learn to be more robust to
changes in the input data, and can potentially improve its performance. After
training again while also increasing the number of epochs to 100, overfitting was
reduced and validation accuracy increased up to around 81% (see Figure 4.2.

Figure 4.2: History Diagram of the training process of the Baseline
CNN Model using SGD and momentum, 100 epochs and data
augmentation.

Once the model was trained, the parameters were exported to MATLAB. In
order to compare the behavior of the actual hardware, a behavioral model was im-
plemented in MATLAB, where the parameters of the network are first evaluated in
floating point format and analyzed to check their dynamic range for appropriately
choosing the position of the decimal point and quantize them accordingly.

MATLAB model also registers the maximum and minimum values of the ac-
tivations across the network for each forward pass when running the validation
dataset. The maximum and minimum activations are 56.554 (dense layer) and
-79.870 (Conv.5 layer), respectively. These values determine the dynamic range of
the activations, which is the range of values that can be represented by the number
format. Hence, at least 8 bits are needed to represent all activations within the
range without clipping (2(8−1) = 128). A similar analysis was performed regard-
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ing the dynamic range of the trained weights. It was observed that an excessive
reduction of the precision of the activations and weights resulted in loss of informa-
tion that degraded the accuracy considerably. Because of this, the most optimal
approach for the current model was to work with 16-bit fixed-point for the activa-
tions (8 bits for the integer part and 8 bits for the fractional part), and 8-bit fixed
point for the weights (3 bits for the integer part and 5 bits for the fractional part).

After running the validation dataset again in MATLAB with the mentioned
quantization approach, the accuracy achieved was 79.2%. Thus, it can be con-
cluded that the selected model behaves good enough given that it is not as com-
plex as other state-of-the-art CNNs, making it a perfect Baseline CNN Model to
evaluate the performance of the accelerator.

4.1 Backpropagation Analysis

Initially, the accelerator was intended to work both for training and inference,
so the implemented MATLAB behavioral model is also capable of training such
described network from scratch. It does so by running backpropagation once
the forward propagation of the network is finished. It propagates backwards the
computed error at the output and calculates the weight gradients and activation
gradients for each layer. Due to the increased complexity of implementing this
functionality in hardware, it was disregarded during the design process. In this
section, we describe the training analysis of the network and some design consid-
erations of the accelerator that were transferred to the only-inference accelerator.

After the forward pass, the output of the network is compared to the truth
label to calculate the loss. Then, the backward pass begins with the calculation
of the gradient of the loss function with respect to the output of the network.
This gradient is backpropagated through the network layer by layer, calculating
the gradient of the loss with respect to each weight in the network. Once the
gradients have been calculated, the weights in the network are updated using
stochastic gradient descent (SGD) and momentum. The weights are updated in
the direction that will decrease the loss, proportional to the magnitude of the
gradient and a learning rate hyperparameter. Calculating the gradients of each
weight of every convolutional layer is a twofold task.

• First, the weight gradients of the current convolutional layer being processed
are computed by convoluting the activations of the current convolutional
layer with the activation gradients obtained from the next layer in the net-
work, which act as a filter over the activations of the current layer. The
result of the convolution is a 4-D matrix, representing every weight gradient
of the convolutional layer.

• Second, the activation gradients of the current convolutional layer being
processed are computed by convoluting a flipped version of the weight matrix
of this layer with the activation gradients of the next layer in the network,
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which act as filter over the flipped version of the weights matrix. The
resulting activation gradients are then utilized for computing the activation
gradients of the previous layer in the network.

As stated, when all weight gradients are calculated, they are updated using
SGD and momentum. This process implies not only an increased computational
effort to the accelerator, but also a huge memory overhead, since all the activations
produced from the forward propagation need to be re-accessed in the backward
training phase for weight gradients computation. In addition, weight gradients of
all layers and the activation gradients of the current layer being processed need to
be allocated in memory. Also, allocation of the activation gradients for the layer
with highest number of activations (conv. 0 and conv. 1 layer) would be needed.
The indices of the max-pooling operation would need to be also allocated in order
to backpropagate the activation gradients in their correct indices, applying a pro-
cess called upsampling. The indices of the ReLU activation function would also
need to be allocated and the number will depend of the sparsity of each layer.

Furthermore, it is not possible to apply aggressive quantization to the gra-
dients, since trimming the precision bits when applying fixed-point quantization
imply a loss of information that would result in a poor performance in finding
the optimal weights for finding the best accuracy results. [30] explores several ap-
proaches for applying effective quantized training and introduces stochastic round-
ing, which is a rounding technique that involves randomly rounding numbers to
their nearest integer. This is in contrast to deterministic rounding, which always
rounds numbers up or down based on a fixed rule. By randomly rounding the
gradients during the backward pass, the optimization process can be made more
robust to noise and can help prevent the network from getting stuck in local min-
ima. With this approach, [30] quantizes weights, biases, activation gradients and
weight gradients to 16 bits, varying the size of the fractional part of the word
length, concluding that stochastic rounding is able to preserve the information of
the gradients as opposed to round to nearest.

The stochastic rounding algorithm is implemented in hardware in [30] by using
a linear feedback shift register (LFSR) to introduce randomness to the value to
be rounded, and proves that the hardware overhead of such implementation is
minimal. [31] further probes the validity of such rounding scheme by recursively
adding up the harmonic series as per Equation 4.1 below.

∞∑
i=1

1

i
= 1 +

1

2
+

1

3
+ . . . (4.1)
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Figure 4.3 compares the accumulated error of the harmonic summation over
5 million iterations and probes that stochastic rounding outperforms round to
nearest approach and single floating format.

Figure 4.3: Comparison of the accumulated error of different round-
ing approaches when computing a harmonic series summation
over 5 million iterations.

To accelerate the training, [32] introduce stochastic pruning, which is an ap-
proach that takes advantage of the fact that activation gradients are mostly com-
posed of values that are very close to zero. They start from the hypothesis that
those close-to-zero activation gradients have very little effect to the weight-update
process and prune these gradients to zero, demonstrating that it has no effect on
the convergence during the training process. In that work, a threshold is cho-
sen based on statistical analysis from which all gradients below this threshold are
pruned. By improving the sparsity of activation gradients, this implementation
significantly reduces the cost and memory required for the backpropagation pro-
cedure during training.

To validate stochastic pruning, we implement in MATLAB the training al-
gorithm of a simple CNN composed of one convolutional layer, one max-pooling
layer and one dense layer. The CNN is evaluated using MNIST, which is a dataset
composed of a large collection of hand-written digits, consisting of a training set
of 60,000 examples and a test set of 10,000 examples, where each example is a
grayscale image of a handwritten digit (0-9) of size 28x28 pixels. Figure 4.4
shows the normal distribution of the activation gradients belonging to the convo-
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lutional layer and exemplifies the stochastic pruning approach as per [32]. Figure
4.5 compares the training efficiency of the MATLAB implementation with and
without applying stochastic pruning. As it can be seen, there is no noticeable
difference in the accuracy achieved.

(a)

(b)

Figure 4.4: Activation gradients distribution before (a) and after (b)
applying stochastic pruning.
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Figure 4.5: Training a CNN for MNIST dataset with and without
stochastic pruning.

All in all, implementing training capabilities to the accelerator implies a thought-
ful consideration of the memory overhead, the data rearrangement needed for com-
putation of weight gradients and activation gradients, computation of the classifi-
cation error when forward propagation is finished and the updating of the weight
values once the gradients are computed. The present work can serve as a ground
line from which these functionalities can be built upon.



Chapter 5
Validation

For validation of the system, different input images from the CIFAR-10 validation
set were used as inputs for the accelerator.

Table 5.1: Comparison of the classification quality of the accelera-
tor and MATLAB behavioral model with different images from
CIFAR-10 Validation Dataset.

# Of Image Real
Predicted Error

Simulation
Behavioral Model

1 Cat Cat 0.191021
Cat 0.162236

1923 Dog Dog 0.000007
Dog 0.000008

345 Ship Ship 0.020273
Ship 0.016767

25 Dog Deer 1.487420
Deer 1.330098

5820 Bird Bird 0.582055
Bird 0.422870

9582 Horse Horse 0.000000
Horse 0.000000

402 Ship Automobile 2.189124
Automobile 1.920229

90 Truck Truck 0.001161
Truck 0.000959

7026 Frog Frog 0.000003
Frog 0.000004

45 Airplane Airplane 0.047380
Airplane 0.052249
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In order to validate the accelerator, and due to this not being able to compute
FC layers, the output values of the max-pooling 2 layer of the Baseline CNN Model
are extracted from simulation and fed to the MATLAB behavioral model. With the
data obtained from the simulation, the MATLAB behavioral model processes the
dense layer (last layer of our Baseline CNN Model), then applies softmax activation
function and lastly cross-entropy loss function is calculated. The resulting error
is compared with the error obtained when entirely running the network in the
MATLAB behavioral model. Table 5.1 shows such comparison with different
images from the validation dataset. It can be seen that the accelerator classify as
good as the network does given the trained weights that the CNN works with.



Chapter 6
Results

In this chapter the different metrics of the accelerator in terms of throughput, la-
tency, performance and energy efficiency are presented. The results were obtained
by synthesizing the accelerator with the HW parameters from Table 3.6 and Table
3.7.

Throughput, reported in terms of inferences per second, is given by Equation
6.1:

throughput =
inferences

second
=

operations

second
· 1

operations
inference

(6.1)

Operations per second depends on the frequency, the cycles per operation of
a single PE, the number of PEs of the accelerator and the overall time the PE is
performing computations, as per Equation 6.2.

operations

second
=

(
1

cycles
operation

· cycles

second

)
︸ ︷︷ ︸

for a single PE

·# PEs · PE Utilization
(6.2)

According to Figure 3.14, it takes 3 clock cycles to compute the expression
Ai · ai + Bi · bi + Ci · ci = xi, with i = 1 . . . 3 for each PE in a PE Column, plus
another 3 clock cycles to add up the psum (x = x1 + x2 + x3). For each PE, 3
MACs are computed every 6 clock cycles, being cycles/operation (1PE) = 2. On
the other hand, PE Utilization can be computed as per Equation 6.3 below.

PE Utilization =

(
#Active PEs

# PEs

)
· Utilization Active PEs (6.3)

The accelerator’s architecture focuses on avoiding any idle PE and utilizing all
PEs, hence: #Active PEs/# PEs = 1.
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Considering that the cycles that the PE is actually performing computations
is given by (R + S) · F · p for a single pass, in order to calculate the utilization
of active PEs we need to multiply this number by the number of passes of each
layer, and divide the result by the total number of clock cycles (obtained in Table
3.17). This results in that the PE is performing computations around 25% of the
time in which the accelerator is running:

((R+ S) · F · p ·# Passes)Conv. 0 +

. . .+

((R+ S) · F · p ·# Passes)Conv. 5 = 205, 824 clock cycles
205, 824/Total # clock cycles = 205, 824/815, 365 = 0.252

The PE Utilization is affected by how quickly data is delivered to the PE
without making them idle. This time depends on memory bandwidth and latency,
and the data reuse available in the neural network, which is determined by the
dataflow and the memory hierarchy. The utilization of PEs can also be affected
by an imbalance in work allocated across PEs. This metric could be improved by
reducing the stalling time of the PEs or by placing an adder on each PE Column,
which would avoid the need of the R extra clock cycles needed for the Inter-PE
Accumulation. However, the latter approach would incur a significant hardware
overhead. On the other hand, operations per inference from expression 6.1 is given
by the total number of clock cycles it takes to compute the whole CNN divided by
the batch size, and the batch size that the current version of the accelerator can
handle is one. All in all, operations per second can be computed as:

operations

second
=

(
1

2
· frequency

)
︸ ︷︷ ︸

for a single PE

·96 · 0.25246 = frequency · 12.118
[
Ops.

Cycle

]

Table 6.1 shows the operations per second, latency and resulting throughput
for a batch size of 1 for several frequencies.

Table 6.1: Throughput, Performance, and Latency (for a batch size
of 1) of the accelerator for the Baseline CNN Model.

Frequency [MHz]
50 100 200 250

Ops. Per Second [GOPS] 0.60 1.21 2.42 3.03
Throughput [inferences/second] 61 123 245 307
Latency [msecs/inference] 16.30 8.15 4.08 3.26
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6.1 Timing

The maximum frequency at which the accelerator can function without committing
a slack violation is 200 MHz, being the critical path the one between the signal
that carries the configuration parameter that indicates the height/width of the
ofmap (EF ) and the Data-In (D1 ) of the writing port of one of the double-port
memories that compose the OFMAP memory Block. A considerable part of the
delay is due to the routing interface that deals with all the memories that compose
the OFMAP memory Block.

6.2 Area

The area is dependant of the technology used. The CMOS 28 nm SOI technology
libraries provided by STMicroelectronics were used for this work. Route & Place
was not implemented hence the net area is an approximate figure defined by the
technology libraries.

The total area adds up to 1.1 mm2, out of which 0.95 mm2 corresponds
to the cells and 0.15 mm2 to the nets. Figure 6.1 shows a breakdown of the
area occupation of the accelerator. Most of the area is employed in the SRAM
memories. It is worth mentioning that even though the size of the Weight memory
(80 KB) is bigger than the size of the OFMAP memory (64 KB), the latter occupies
more than twice than the former. A reason for this is that this memory block is
composed by eight separated embedded memories with its auxiliary logic, which
increases the total area considerably. Furthermore, double port memories dedicate
more area to auxiliary logic. Sequential elements occupy roughly 23% of the total
area, and most of those are employed in the RFs of the PEs. The logic portion refers
to multiplexers, basic gates such as and gates, and other multi-stage compound
gates. The miscellaneous part refers to the inverters (0.73%), buffers (0.23%) and
clock-gating related logic (0.03%).

Sequential Elements (22.8%)
Misc. (0.99%)

Logic (20.86%)

OFMAP SRAM (34.39%)
Activation SRAM (5.31%)

Weight SRAM (13.5%)

Pads (2.15%)

Figure 6.1: Area breakdown of the accelerator.
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6.3 Power

The power consumption was estimated using switching activity with Synopsys’
PrimeTime timing analysis tool. Clock-Gating is applied to the Register Files
within each PE in the PE Array. This allows a tight control of the clock signal
that feeds the Register Files. The clock enable gates the clock when the PEs are
stalling and when the ofmap values are being stored back to the Activation mem-
ory. The number of clock cycles that the PEs are stalling plus the number of clock
cycles in which the activations are stored back to SRAM accounts for 40% of the to-
tal number of the clock cycles that the architecture needs to compute the Baseline
CNN Model. As a consequence, power consumption is reduced 40% as compared
to when not applying Clock-Gating, achieving an overall power consumption of
50.01 mW . The energy efficiency of the architecture is 47.54 GOPS/W.

Clock Network (75.28%)

Registers (6.78%)
Combinational (8.42%)

Memories (9.53%)

Figure 6.2: Power Consumption breakdown of the accelerator.

As it can be seen in Figure 6.2, most of the power budget is taken by the
clock network (75.28%). The power budget is dominated by the clock network,
since RFs within the PEs compose the 69% of the total number of registers in the
system. As a comparison, in Eyeriss V1 approximately 45% of the total power is
consumed by the clock network [12].
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6.4 Summary

Table 6.2 below summarises the obtained results in previous sections.

Table 6.2: Accelerator Specifications.

On-Chip SRAM [KB] 176
Number of PEs 96
Register Files Size (per PE) [B] 92
Storage Registers [KB] 8.77
Clock Frequency [MHz] 200
Network1 CNN

Data-width Activations: 16-bit
Weights: 8-bit

Dataset CIFAR-10
Performance [GOPS] 2.42
Energy Efficiency [GOPS/W] 47.54

Natively Supported CNN Shapes2

Filter Size: 3x3
Channel Dimensions: 8x8, 16x16, 32x32
# of Filters: 1-256
# of Channels: 1-256
Stride: 1
Batch Size: 1

Table 6.3 shows a comparison of prior relevant work. Comparison with Eye-
riss v1 becomes relevant since much of the present work is based on Chen et al.
contributions. At 200MHz, Eyeriss v1 achieves an average performance of 23.1
GOPS. In the present work, even though all the PEs are utilized for computation,
a single PE performs such computations only a 25% of the total processing time,
which explains why this figure is significantly lower than in Eyeriss v1. On the
other hand, Eyeriss v1 achieves an energy efficiency of 83.1 GOPS/W, because it
takes advantage of the sparsity of the network by avoiding ineffectual operations
and by applying a compression algorithm to read/write from external memory.

Eyeriss v2 is a specialized architecture for accelerating compact versions of
sparse CNNs, which are modified versions of a CNNs that improve computational
efficiency by reducing the number of connections without affecting the accuracy.
It upgrades the NoC from Eyeriss v1 and incorporates a hierarchical mesh, that
can adjust to the varying amounts of data reuse and bandwidth demands. This
enhances the efficiency of the computation resources. It is evaluated using a sparse
version of AlexNet, resulting in a performance of 153.6 GOPS and achieving an
energy efficiency of 962.9 GOPS/W.

1Excluding FC layers.
2Channel size is limited by bitwidth of configuration parameters, but most likely

constrained also by memory capacity.
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VGG16 is a CNN architecture that was developed by the Visual Geometry
Group (VGG) at the University of Oxford. It is composed of 16 layers, including
13 convolutional layers and 3 dense layers. It is widely used for evaluation and
benchmarking. [33] uses a compact model of this CNN and apply dynamic quan-
tization, reducing the bitwidth down to 16 bits for both weights and activations.
NullHop exploits activation sparsity by applying zero-skipping without wasting
any clock cycle, and implements a compression scheme optimized for sparsely ac-
tivated CNN layers. When evaluating NullHop with VGG16, the accelerator’s
capability in efficiently computing highly sparse CNNs attains a performance of
420.83 GOPS and an energy efficiency of 2.7 TOPS/W.

Table 6.3: Comparison of the proposed architecture against other
relevant works.

Eyeriss v1 Eyeriss v2 NullHop This Work
[12] [15] [33]

Technology 65nm 65nm 28nm 28nm
Area 4 - 8.1 1.1
[mm2]

On-chip SRAM 181.5 246 1,088 176[KB]
Model AlexNet sparse AlexNet VGG16 -
Network CNN
Bit Precision 16b/16b 8b/8b 16b/16b 16b/8bActivations/Weights
Clock Frequency 200 200 500 200[MHz]
Performance 23.1 153.6 420.83 2.42[GOPS]
Energy Efficiency 83.1 962.9 2,715 47.54[GOPS/W]
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Conclusions & Future Work

This work introduces a CNN accelerator that adapts itself to the convolutional
layer being processed and maximizes the PE utilization according to the size and
shape of the layer. The accelerator implements a Network-on-Chip that allows
a hierarchical memory scheme that minimizes data movement, pushing the input
data as close to the computation units as possible. It does so by taking advantage
of the Row-Stationary dataflow, which approach focuses on reutilizing the input
data within the PEs for as much as possible before having to fetch new values
from the on-chip SRAMs. As a consequence of this mapping strategy, memory
utilization is optimized and energy consumption is minimized. In addition to this,
using fixed-point quantization and Clock-Gating further improves the energy effi-
ciency and area footprint of the accelerator. Lastly, the accelerator could easily be
expanded to support kernel sizes other than 3, since the mapping strategy allows
it.

Regarding possible improvements that are focused on reducing the memory
overhead of the accelerator:

• Dynamic Fixed-Point Quantization. Dynamic fixed-point quantization
[34] is a technique used to reduce the precision of the weights and activa-
tions, while maintaining accuracy. In dynamic fixed-point quantization, the
precision is not fixed in advance, but is determined dynamically based on the
dynamic range of the weights and activations. During training, the range
of the weights and activations is monitored and a fixed-point format with
the appropriate precision is chosen based on the observed range (usually
on a layer-by-layer basis). This allows for more efficient use of the limited
precision available in hardware, while still maintaining accuracy. For exam-
ple, Tensorflow uses such technique by post-training the network, allowing
8-bit fixed-point values for both weights and activations with no accuracy
drop. This improvement would reduce the area overhead of the memories
dedicated for activations and psums, while also reducing the area of the
computation units.

• Study the utilization of pseudo dual-port SRAMs for the OFMAP mem-
ory. This would reduce the area dedicated to the OFMAP memory consider-
ably while keeping functionality and performance intact. A pseudo dual-port
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SRAM uses a single port and an additional set of control signals to achieve
the same functionality as a dual-port SRAM. The control signals allow the
single port to be time-multiplexed between the two sets of data, allowing
for simultaneous access.

• Compression Techniques. CNNs tend to have a high sparsity (i.e. a lot
of zeros in their activation values), which increases as the layer is deeper.
While reading the activations from an external DRAM into the on-chip
SRAM, a compression algorithm could by implemented in the hardware as
to avoid unnecessary reads/writes hence reducing the memory overhead.
This requires the accelerator to work on a layer-by-layer processing basis,
as opposed as how it works now that processes several layers sequentially in
one run.

In addition, there are a countless amount of techniques that can also be im-
plemented to the architecture that can further improve its performance on terms
of energy efficiency, area, or throughput. A few of them are mentioned below.

• Zero Skipping. Again, by taking advantage of the sparsity property, when
performing the MAC operations within the PEs, ineffectual computations,
in which one of the operands is zero, could be avoided and hence improve
the overall energy consumption.

• Clock Gating. Clock gating is a technique used to reduce power consump-
tion. It involves selectively enabling or disabling the clock signal to certain
parts of the circuit based on whether they need to be active or not. For
example, when having a PE Array with five rows (Y = 5), if a convolutional
layer with a kernel size of 3 is computed, the last two rows of PEs will not
be used. By applying clock gating the overall energy consumption during
the processing of this convolutional layer could be reduced.

• Adding extra Features. By extending the set of configuration parameters
for each layer to be processed, it would be relatively easy to tailor the
accelerator to the specific characteristics of the layer, and adding the extra
hardware necessary for it. For example, applying average pooling, allowing
computations of FC layers or allowing different strides other than one for
the convolutional layers.

• Reduce Stalling. As it was described in Chapter 3, the PE Array must
stall computation while waiting for the PISO Buffer to empty for (E −R−
S + 1) · (F · p · (r − 1)) clock cycles per pass, this time could be reduced
and thus improve the performance of the accelerator. One way of achieving
this is extending the word-length of the OFMAP memory four times the
current width (from 32 bits to 128 bits), and modify the PISO Buffer to
allow outputting four ofmaps at the same time and allocate them in the
same memory address. This way the stalling time could be reduced x4
times.

• Mapping. The control logic of the accelerator could be improved for en-
hancing its mapping capabilities and allowing a wider set of natively sup-
ported CNN shapes. For example, by allowing allocation of multiple rows



Conclusions & Future Work 79

of activations within the RF of the PE (i.e. allow parameter q to be higher
than 1). Or, at the cost of more area and higher power consumption, im-
prove the spatial mapping capabilities by increasing the tilling parameter
(t), this would create instantiations of the PE Array and the Adder Tree, and
would imply separate on-chip SRAMs for each set, but concurrent comput-
ing would be greatly improved. Another key mapping improvement would
be increasing the scalability of the accelerator by allowing the convolutional
network to be folded into the PE Array when the dimensions of the ifmap
channel are wider than the size of the PE Array (e.g. allowing a conv.
layer with ifmap dimensions of 64 x 64 to be computed in a PE Array
with X = 32), thus improving the set of supported CNN shapes for a given
accelerator configuration.

• Design a mapper that can automatically search the best mapping
option given network constraints. Since it is possible to tailor the
accelerator according to the hardware parameters prior to synthesise it, it
would be interesting to analyze the set of CNNs that the accelerator is more
likely to be working with depending on the application, and create a tool
that, based on some constraints, could output a working design in a similar
way a compiler would do.
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