
Converting Hardware to a Container Solution
and its Security Implication

GUSTAV STRÖMBERG
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

G
U

STA
V

 STR
Ö

M
B

ER
G

C
onverting H

ardw
are to a C

ontainer Solution and its Security Im
plication

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-844
http://www.eit.lth.se

Converting Hardware to a Container Solution and
its Security Implication

Gustav Strömberg
bbh13gst@student.lu.se

Axis Communications

Supervisor: Christian Gehrmann (LTH), Martin Bäckström (Axis),
Martin Ljunggren (Axis)

Examiner: Thomas Johansson

September 10, 2021

© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Hardware today can be inaccessible to users due to cost or the customer’s desire for
flexibility. By using virtualization one can reduce customer costs while increasing
flexibility. To do this, companies might need to redesign or migrate their hardware
to suit a virtualized environment. However, migration from custom to virtual
hardware introduces security risks. This thesis, therefore, explores the possibility
to transform a hardware solution into a container solution while retaining sufficient
security.

The execution was divided into two steps, to gain knowledge on how one can
protect the container and implementing the container. Two tools were considered
to increase security: SCONE and Lic-Sec. The former one utilizes Intel SGX on
the container to mitigate attacks from the host machine, while the latter is a tool
that generates a profile for AppArmor that can shield it from other containers. The
container was developed with Podman as its container engine since it enforces user
namespace and allows the container to use systemd which was a requirement for
the container to function.

The development of the container was a success, however, due to the structure
of the container, neither tool could be used to enhance its security. Nevertheless,
the thesis shows that systems can run on a container, although modifications to
the hardware running the container or other tools are needed to obtain sufficient
security for public use. Future research is needed to deduce if it is possible to
replace a single container with a cluster which could increase security.

i

ii

Acknowledgements

I extend my gratitude to Christian Gerhmann for all the help and guidance he has
given me. This thesis would not be possible without him.

I would also like to thank Martin Ljunggren and Martin Bäckström, along
with Stefan Andersson, at Axis for their input and for helping me debug and
understand the system controller unit.

Thanks to Hui Zhu for modifying Lic-Sec which enabled it to be used with
Podman, it would not be possible without her.

I would like to thank Robert Schambach and Christof Fetzer at SCONE for
providing me with early access to their tool, and their willingness to discuss their
product with me.

Finally, I am grateful to my fiancée Fredrika for all her support.

iii

iv

Popular Science Summary

Today, millions of people use virtualization without realizing it. It is often used to
host websites or used in infrastructure cloud solutions. Imagine it like a balloon
blown up halfway; when there are more users, i.e. more air, then the service
requires a larger portion of virtualization, i.e. the balloon expands, and vice versa.

All virtualization uses physical hardware, however, it could be beneficial to
virtually represent the hardware. This could reduce customer costs for a particular
device, decrease the production cycle, and reduce the climate footprint. So is it
possible to convert hardware into a virtualized entity and can it be done securely?
This was researched at Axis Body Worn Solution (which develops body cameras
for lawn enforcement) with the goal to convert their system control unit (SCU), a
hardware that manages a web page and body worn cameras, into a container for
public use.

A container is an OS virtualization and is an isolated process on a computer.
It runs with no knowledge of the outside. Think of it like an apartment complex
where a container is one apartment. They can be furnished independently of each
other and the owners do not know how the other apartments look like, however,
the complex owner, i.e. the computer, can peek in all apartments.

The SCU could be containerized successfully, however, it suffered in terms of
security. The lax security enables anyone to manipulate the recordings from the
camera on the SCU container. This can damage the container’s legitimacy which
furthermore could result in the footage being discarded as evidence in court.

Two security enhancements were used with the aim to provide additional se-
curity for the container, SCONE, and Lic-Sec. SCONE isolates programs and
encrypt desired files. This would help to protect the SCU from the host computer,
i.e. the user. Lic-Sec generates a profile that defines mandatory access control. It
can prevent other containers from attacking it by tightening the rules on who can
access what inside the container.

The security enhancements could not be applied to the container. This had
to do with the nature of the container, in the case of SCONE, as well as technical
design choices.

v

vi

Table of Contents

1 Introduction 1
1.1 Axis Body Worn Solutions . 1
1.2 Virtualization . 2
1.3 Project Goals . 3
1.4 Thesis Scope . 4
1.5 Problem Description . 4
1.6 Methodology . 5
1.7 Outline . 5

2 Technology Background 7
2.1 Containerization . 7
2.2 Docker . 8
2.3 Podman . 9
2.4 Namespaces . 11
2.5 Cgroups . 12
2.6 Mandatory Access Control . 13
2.7 SELinux . 14
2.8 AppArmor . 15
2.9 vTPM . 16
2.10 Intel SGX . 18
2.11 Virtual Machine . 20

3 Containerizing the Hardware 25
3.1 Overview . 25
3.2 Running SCU Programs . 27
3.3 Server Setup . 28
3.4 Finalizing the Image . 29

4 Increasing Container Security 31
4.1 Sconify the Native Image . 31
4.2 Generating an AppArmor Profile With Lic-Sec 33

5 Security Analysis 35
5.1 General Security Risks . 35

vii

5.2 Vulnerability Scan . 35
5.3 Container Enumeration . 36
5.4 With Security Enhancement . 37

6 Benchmarks 39

7 Discussion 41
7.1 The SCU Container . 41
7.2 SCU as a Virtual Machine . 42
7.3 Conclusion . 42
7.4 Future Work . 43

References 45

viii

List of Figures

1.1 Body Worn Solution setup . 1
1.2 BWS setup with a container . 2
1.3 VM and container architecture . 3

2.1 Container image layer structure . 8
2.2 Docker storage types . 9
2.3 Architecture for Docker and Podman 10
2.4 Namespaces affect on container escape 12
2.5 cgroup hierarchy illustration . 13
2.6 Core decision making SELinux architecture 14
2.7 The basic concept of MLS illustrated with clearance level 15
2.8 Proposed vTPM implementation architecture 17
2.9 SCONE architecture . 19
2.10 Sconification process (file protection) 20
2.11 Two types of hypervisor technologies 21

3.1 Container content overview . 25
3.2 Container architectural overview . 26

4.1 SCU cluster design . 33
4.2 Intermediate SCU cluster design . 33

ix

x

List of Tables

2.1 Types of namespaces . 11
2.2 Number of VM vulnerabilities per product 23

3.1 Summery of container adaptations 27

5.1 Native image vulnerability scan . 36

6.1 Footage upload time . 39
6.2 The duration of adding and removing a camera to the system 40

xi

xii

Chapter 1
Introduction

Axis was founded in 1984 in Lund where they first developed printer servers that
enabled printing from multiple computers to a single printer. About 10 years
later they released the world’s first network camera, AXIS Neteye 200. Although
the image at the time was not suited for surveillance due to only having one
frame every 17 seconds [1], it showed the aspiration and a glimpse of the future.
Today, Axis is world-leading in camera surveillance, with network cameras, access
control, and radars, among other products. In the summer of 2020, Axis Body
Worn Solution (BWS) was released, and this thesis was done in cooperation with
the BWS development team.

1.1 Axis Body Worn Solutions

Axis Body Worn Solution is a system aimed towards law enforcement and private
security. Its purpose is to aid in evidence gathering, to deter bad behavior, and
to serve as a tool in teaching how to respond in certain situations. It fulfills its
purpose by recording video and audio from the perspective of the wearer and, in
the case of Axis’ BWS, can be triggered by touch, on fall, or when a firearm is
unholstered.

Body worn solutions consist of three devices: the body worn camera (BWC),
a docking station in which the camera is placed, and a system control unit (SCU).
The component and the setup is shown in figure 1.1. When docked, the cam-
era becomes locked and begins to upload its video and audio files, together with
other associated data, to the SCU. The SCU then directs the footage to an ev-
idence management system (EMS) of the user’s choice. The SCU is compatible
with multiple third-party evidence management systems such as Milestone1 and
Genetec Clearance2, but also Axis’ own EMS.

BWC
docking
station

SCU EMS

Figure 1.1: Body worn solution system setup.

1https://www.milestonesys.com/
2https://www.genetec.com/solutions/all-products/clearance

1

2 Introduction

The cost of BWS may be an obstacle for a potential customer that requires
one or two cameras; the reason for this is due to the cost of the SCU. Therefore,
Axis wants to investigate the usage of a container-based solution to replace the
SCU hardware. The goal is for the container to be deployed locally to increase
flexibility and reduce customer costs. The container will have the functionality of
the SCU and therefore needs to uphold appropriate security measures to ensure
that the recordings are handled with a sufficient level of security. This in turn
ensures that the recordings are legitimate, otherwise it might not be eligible as
evidence. An overview of this system setup can be seen in figure 1.2.

machine

BWC
docking
station

container

EMS

Figure 1.2: System setup with the use of a container running on the
same machine as the EMS.

1.2 Virtualization

Virtualization is the act of creating virtual representations of hardware and soft-
ware. Before the 1970s, virtualization was used in the form of a virtual machine
(VM), as hardware was expensive. This allowed for multiple users to develop and
test programs without the risk of crashing the computer and destroy other people’s
work [2].

Today, virtual machines allow users to emulate different operating systems
(OS) and environments on a computer rather than having multiple computers
for the same purpose. It is widely used in cloud computing as infrastructure as
a service, platform as a service, and software as a service. These services allow
the companies using them to easily expand with rising demand, or reduce with
decreasing demand. This enables companies to be more cost-efficient as they pay
for what they need at the moment, contrary to investing in servers to meet the
highest demands.

Containers, on the other hand, are isolated processes on a host OS, in other
words, it does not have an OS as a VM does. The difference in their architecture
can be view in figure 1.3. Virtual machines use a hypervisor (virtual machine mon-
itor such as VirtualBox) which the guest OS is placed on along with its dedicated
resources, whereas the container is placed on top of the host OS and the container
runtime is a software that is responsible for running the container, such as Docker,
Podman, CRI-O, etc.

Introduction 3

Hardware

Operating system

Hypervisor

Guest
OS

Libs

App 1

Guest
OS

Libs

App 2

Guest
OS

Libs

App 3

Hardware

Operating system

Container engine

Libs

App 1

Libs

App 2

Libs

App 3

Figure 1.3: The architectural structure of the two types of virtual-
ization. Left side is the virtual machine, right side the container.

1.3 Project Goals

The main goal is to replace the SCU hardware with a container. The container
should contain the same functionality at an acceptable security level. To obtain
these goals, a container architecture will be developed, followed by a security
evaluation, implementation, and proof-of-concept. Alongside the implementation,
a container solution will be compared, theoretically, with a VM solution to analyze
the security and performance implications. Below is a summary of the thesis goals.

• Develop a functional container

• Perform a proof of concept on the implemented container solution

• Perform a security analysis on the finished container

• Make performance measurements based on the proof-of-concept implemen-
tation

• Investigate the performance and security trade-offs concerning the container
vs. VM vs. SCU

• Is it possible to replace hardware with virtualization and maintain a suffi-
cient level of security?

4 Introduction

1.4 Thesis Scope

This thesis aims to investigate the possibility to convert a hardware solution, i.e.
the SCU, into a container solution in such a way that its core functions are usable,
with minimal performance and security compromises. Using a container introduces
security risks since the underlying hardware and software are different from the
SCU and the Axis platform it uses (Axis OS). Thus, modifications have to be
made to create a functional container. Such modifications can include mocking
services, code modification, and extending container namespace, etc. Due to time
constraints, potential shortcuts can be made to ensure a working container at the
cost of security, stability, or performance.

This thesis does not address the current security vulnerabilities in the SCU,
the body worn manager (frontend), nor the communication between camera and
SCU, as it is not a consequence of containerization.

1.5 Problem Description

The issue presented in this thesis concerns the security of transferring custom-built
hardware to a container environment and the authenticity of the data it produces.
This container is thought to be hosted by a third party (i.e. not Axis in the case of
this thesis). As developing custom hardware is expensive, particularly for startups,
virtualizing the product can reduce the cost and increase flexibility. However, the
security and functionality of the product are affected by virtualization which is
something that needs to be considered during development. Although the focus is
on the development and the product, other factors are also affected when avoiding
developing new hardware. A factor that is positively impacted by virtualization
is the environment. Through shorter production chains, reduced need for trans-
portation as well as the reduced or eliminated need for minerals in production.

Publicly distributed containers introduce security risks as the content of the
image becomes exposed. Without security enhancements, the content and func-
tionality of the service become easy to analyze, which in turn increases the risk
of exploitation. The program(s) and the data produced by the container need
to maintain their integrity such that the application can be trusted to produce a
legitimate result.

A system is often seen as large, both in terms of its size and dependencies,
which contradicts the view of using containers as micro-services. Therefore one
should seek a minimal container system to minimize complexity and vulnerabilities.
One could also consider shutting down producing hardware and focus solely on
alternating the code and structure to better suit a container environment.

The results of this thesis will shed light on whether or not it could be an
option to transfer the production, i.e. a system, from hardware to virtualization.
Although containerization is rarely planned at an early stage of development, it
might aid teams who wish to transition to a cloud-based solution.

Introduction 5

1.5.1 Threat Model

The container is executed locally on a computer and it is assumed that the con-
tainer image will be accessible by anyone. The SCU container is furthermore
assumed to be executed with non-root privileges, in its own user namespace, and
with mandatory access control enabled. Two types of threats are expected, one
from the host and another from other containers. The adversary in both cases
can be either passive or active. A passive adversary will eavesdrop on the com-
mutation to and from the container, while an active adversary can influence and
tamper with the container’s functionality.

As the container image is public, it is expected that the image is pulled and
run by a malicious host, and the hardware (CPU, memory, and hard drive, etc)
on said host is presumed to be untampered with. Furthermore, the container
is also assumed to be executed on a system with other containers, which are
potentially malicious. Said container can either be designed to be malicious or
have one or several malicious applications running inside it. These containers are
also presumed to be run as root.

1.6 Methodology

To gain an understanding of how containers and virtual machines work, a literature
study was conducted. This also provided a state-of-the-art description of their
security and performance. Another aim of the literature study was to find tools
that enhance container security. The results from the literature study were used to
perform a theoretical evaluation of whether a VM is more suitable than a container.

To verify the possibility of converting hardware into a virtual form, a container
of the SCU has to be developed. The goal is to create a script that downloads
files, compiles code, and sets up dependencies automatically so that it is possible
to build the image without additional input. The hardware uses services that are
not present in Debian. These services, therefore, have to be mocked to fulfill the
binary’s requirement. After the completion of the container, a proof of concept is
conducted to verify that the container performs as its hardware counterpart. When
said proof is successful, security enhancements are made based on the result of the
literature study, followed by confirmation through another proof of concept.

Finally, a manual analysis is conducted to investigate possible vulnerabilities
of the containerized system. This is done by accessing the container from the host
to eavesdrop and manipulate files on it. The container image is also analyzed,
with the help of a tool, to detect known vulnerabilities.

1.7 Outline

Chapter 2 introduces state of the art for container security and information on
Docker, Podman, and VM. Chapter 3 describes the development process and ob-
stacles, and chapter 4 describes the process of implementing security enhance-
ments. Chapter 5 provides a security analysis of the container image, before and

6 Introduction

after security enhancements. Finally, chapter 6 presents benchmarks results and
chapter 7 discusses the results and summarizes the thesis.

Chapter 2
Technology Background

This chapter provides concept needed to understand how a container work and
the security features used. The security enhancements are selected to protect the
container according to the threat model in section 1.5.1. Lastly, a discussion on
performance and security for a virtual machine is made.

2.1 Containerization

Containers are virtual runtime environments that provide OS-level virtualization.
When executed, the kernel isolates the process and defines which and how much
system resources it can use, e.g. CPU, memory, network. One machine can run
multiple containers where each container is an isolated process and they all share
the kernel [3]. Isolation is important as it increases the security of the containers
by protecting the host from containers but also protects containers from other
containers. In other words, a container has no knowledge of the host or other
containers on the machine. This is achieved by using kernel namespaces, which
provide a unique environment for the container, and control groups (cgroups),
which restrict the resources available to the container [4].

The Open Container Initiative (OCI) is a project under the Linux Foundation
to create an open industry standard around containers. The project itself was
initialized by Docker, CoreOS (RedHat), and others. OCI contains two specifi-
cations that set the standard: runtime specification and image specification. The
former defines how to run a file system bundle, which is the structure created when
unpacking the image file [5]. The latter assures a uniform image format, enabling
different container engines (based on OCI) to run the same image.

One can create an image with the help of a container file, otherwise known
as a docker file. This image describes the container system, its libraries, and
dependencies, the programs it contains, how it will run, etc. The image consists
of a set of layers that are created in form of a stack, shown in figure 2.1. These
layers are read-only and for the container to write, modify, or delete files, it needs
a layer that is read and writable. This is satisfied by creating a so-called container
layer that conforms to these properties [6]. The container layer persists as long as
the container is running, i.e. removing the container deletes all data produced by
it.

In addition to one container, it is possible to create multiple containers working

7

8 Technology Background

together as one system, i.e. a pod or cluster. It is encouraged to develop a container
to serve one function solely, e.g. a nginx server, and nothing else. By using a pod, it
becomes possible to combine several containers with different functionality in such
a way that they relay data between each other. This is appropriate for modular
development which increases flexibility.

Image

Layer 3

Layer 2

Layer 1

Read/write layer

Read Only

Container layer

Figure 2.1: The structure of a container image where each layer
inside the image is read only and the container layer is read and
writable.

2.2 Docker

Docker is a container engine for running container images. It is constructed out
of three parts: a client, docker daemon (dockerd), and a registry. The use of
dockerd results in a client-server architecture as the client sends all commands to
it, as illustrated in figure 2.3a. The client uses a console-line interface (CLI) which
translates the input to a HTTP package that is sent dockerd [7]. The registry
can be viewed as a library of different container images one can access and can be
either public or private.

The purpose of dockerd is to run, manage, and monitor the containers, build
images from container files, manage images from the registry, and more. The
daemon is running as root and is controlled through a Unix socket or TCP [8].
Because dockerd manages all containers, if the daemon terminates, by choice or
not, all active containers will also terminate by default [9]. However, dockerd does
not directly create and manage containers, but instead, relies on containerd to do
so.

Containerd is a container runtime daemon that manages the container’s life
cycle. It manages image transfer and storage, executing containers, namespace,
and network. It has a low-level API that is wrapped in dockerd. It is furthermore

Technology Background 9

integrated with runc to create and run a container. It is also possible to detach
containers from contained. In such cases, containerd-shim takes over after runc has
initialized the container, and acts as the parent by managing exit status, standard
I/O, and can keep the container alive even if dockerd dies [10, 11]. Figure 2.3a
illustrates this in the right sub-tree of the containerd node.

Docker can store data in three ways: bind mounts, volumes, and tmpfs mount
[12], which is shown in figure 2.2. The latter stores the container data inside
memory and as such is never written to the host’s filesystem. Tmpfs is only
available on Linux and data stored in this way cannot be shared between other
containers. Bind mount uses any directory on the system to bind to the container,
using it as its root directory. Finally, volume is managed by docker as it creates
a new directory under docker where it stores the data from the container. Bind
mounts and volumes enable persistent data storage, however, volumes are the
preferred way to store data [12]. These two solutions also enable containers to
share data, compare to tmpfs. By default, files created in the container are stored
on a writable container layer and are therefore not persistent.

Memory

c1

tmpfs

c2

Filesystem

Docker area

/shared/dir

c3 c4 c5

bind

volume

Figure 2.2: The three different type of storage provided by docker.
The method using the filesystem are capable of sharing storage
while tmpfs are not able to share. C1 to C5 represents 5 different
containers.

2.3 Podman

Podman is an open-source container engine based on the OCI and mainly devel-
oped by RedHat. The motivation behind Podman was the need to avoid a root
daemon, which Docker does. Instead of relying on the client-server architecture
that comes with the daemon, Podman uses a fork-exec model which integrates more
naturally into Linux [13] and avoids potential security risks associated with the
client-server structure. However, since it does not have a daemon, it instead uses

10 Technology Background

conmon for monitoring and manages communication with the containers [14, 15].
Conmon is a C program that is required to watch the primary process of the

container. Conmon also holds the teletypewriter open which allows the user to
send standard I/O to the container. Furthermore, it allows Podman to exit and
run in detached mode while the container still runs [16], i.e. the Podman process
can quit while still enabling the container to run. The architecture of Podman can
be viewed in figure 2.3b. When the container is launched, conmon is also launched.

Docker CLI
(client)

dockerd

containerd
(runc)

Container container-shim

Container

(a) Docker container execution architec-
ture. Dockerd calls on containerd
which uses runc in order to run a
container.

Podman CLI
(client)

runc

Container

Conmon

(b) Podman uses a fork-exec approach which
launches conmon attached to the con-
tainer. It starts containers by using runc
as its container runtime environment.

Figure 2.3: Architecture for Docker and Podman

Podman can use two different container runtime: runc, which is used and orig-
inally developed by Docker, and crun. The latter container runtime is written in
C, compared to runc which is developed in Golang, to have better performance
and lower memory footprint. Crun is implemented according to the OCI container
runtime specification and according to crun’s github repository, running 100 se-
quentially containers is 49.4 % faster with crun compared to runc [17]. The increase
in performance is welcomed by the high-performance computing community where
an empirical study shows that the use of crun reduced the mean overhead from
5.10 % to 2.04 % [18] when simulating impacts of automotive crashes, explosions,
and sheet metal stamping.

Podman is a rootless container engine which is possible due to the user names-
pace mechanism in the Linux kernel. It allows Podman to execute containers

Technology Background 11

without escalating privilege and as such, processes inside the container can be
root, but outside it is running as a non-root user [18, 19]. This increases security
since executing containers as non-root results in non-root host access if a con-
tainer escape occurs. Additionally, it also enables containers to isolate themselves
towards other containers by using different user and group id [19].

2.4 Namespaces

Namespace is a feature in the Linux kernel which aims to provide processes with
isolation. There are in total seven different namespaces which can be viewed
in table 2.1. Resources in one namespace are invisible from another non-parent
namespace, i.e. namespace can be inherent to sub-processes, which gives the
containers their isolation. Different container engines use different namespaces
by default and some can be opt-in. For instance, Docker and Podman use runc,
which according to [20] uses all namespaces by default except user namespace
which is optional for Docker and enforced in Podman. Some resources are not
bounded by namespaces, such as devices [21], meaning all containers can access any
device on the system. The container engine performs the setup for the namespaces
automatically upon container creation [22].

Table 2.1: The types of namespaces the Linux kernel supports [23].

Namespace Isolates

IPC System V IPC, POSIX message queues
Network Network devices, stacks, ports
Mount Mount points (file system)
PID Process ID
Time Boot and monotonic clocks
User User and group IDs
UTS Hostname and NIS domain name

Cgroup Cgroup root directory

When creating a container, the user id (uid) on the host will be mapped to
the uid on the container. This can be an issue if the containers are run as root
and a container escape occurs. This results in the user having root access to the
host machine. Therefore, it is ideal to run containers as non-root, such that the
container will map to the user on the host instead of root. For example, if a root
user on the host creates a container and the user on the container is root, then if
escaped, the container user will have host root access. On the other hand, if the
container is created as a non-root user while still being root in the container, an
escape would yield user access on the host instead [20]. This is visualized in figure
2.4.

12 Technology Background

Host user
root

Container user
root

Escaped user
root

Host user
user1

Container user
root

Escaped user
user1

Create container

Create container

Escaped

Escaped

Figure 2.4: Visual of how user namespace can mitigate root access
on host during a container escape.

2.5 Cgroups

Control groups (cgroups) manages and restrict the system resources among pro-
cesses. There are two types of cgroup versions, namely versions 1 and 2. These
two version functions differently from each other in a significant way, however,
both follow a tree structure in defining restrictions. This thesis focuses on version
2.

Version 2 of cgroup is designed with a core and controllers. The core is the
root of the tree and possesses all controllers available to the system. The controller
limit and monitors which type of resources a cgroup can use [24]. The processes
affected are located as the leaves under a cgroup as figure 2.5 shows. The child
cgroup inherent its parent’s restrictions at the same time as the parent dictate
which controllers the child is allowed to have control over. For instance, if the
child inherits the CPU controller, then it can further limit the CPU, but it cannot
ease the restriction set by its parent. The creation of cgroups is mainly managed
automatically by systemd, libcgroup, container engine, among others, but can also
be created and configured manually [25].

Cgroups offers availability to the containers. Without a system to limit re-
sources, a container could be used as a denial of service. For instance, a container
could use all CPU or memory which will starve other processes on the system,
including other containers [26].

Technology Background 13

CORE

controllers: cpu memory io pid device

system.slice

controllers: cpu memory io pid

pid 1 pid 2

docker.service

controllers: cpu memory

pid 3

user.slice

controllers: cpu memory io pid

user1.slice

controllers: cpu memory io

pid 4 pid 5 pid 6 pid 7

python.service

controllers: cpu memory

pid 8 pid 9

Figure 2.5: Illustration of the tree hierarchy in which cgroup is based
on. The processes under a cgroup, e.g. system.slice, are leaf
nodes.

2.6 Mandatory Access Control

Mandatory access control (MAC) is a method of restricting access to certain files,
directories, sockets, and more, by enforcing a policy. This policy defines which
processes are allowed to access a particular resource where the restriction can
depend on multiple factors. In what manner they allow access is also defined, i.e.
if a process can, for instance, read or write to it. Users are unable to override the
policy. Mandatory access control can be illustrated with key cards to a facility.
Certain people will not have access to a part of the building, rooms, or even
documents, depending on the clearance level their key card holds. Tools such as
SELinux and AppArmor use MAC and are discussed in the following sections.

A MAC could make it more difficult for a malicious container to perform a
successful attack on a legitimate container (depending on the policy). Further-
more, it protects the host from containers as the processes inside a container will
be restricted to themselves.

14 Technology Background

2.7 SELinux

Security-Enhanced Linux (SELinux) defines MAC for applications, processes, and
files, by using the Linux security module (a framework integrated into the Linux
kernel). When enabled, it can run in either permissive or enforcing mode, where
enforcing blocks access on policy violation, and permissive only logs them. SELinux
system defines subjects (processes) and objects (files, sockets, etc.) where the sub-
ject performs actions on an object, such as read, write, and execute. Each subject
and object are assigned a label which defines their: user, role, type, and (option-
ally) level [27], and is written on the form user:role:type:level.

When a subject performs an action on an object, a request is sent to an object
manager which queries an access vector cache (AVC) that stores recent policy
look-up. If a cache miss occurs on the policy, then the AVC forwards the request
to the security server where it queries the security policy for the requested action.
The reason for the AVC is to increase the performance and thus reduce overhead
[28], provided the number of cache misses is low [29]. An overview of the request
process can be seen in figure 2.6.

Subject Object
Manager

Object

Access Vector Cache Security
Server

Security
Policy

Figure 2.6: Core decision making SELinux architecture. The subject
requests access to the object. The object manager first queries
the AVC, secondly searching the policies, and finally returns
allow or deny.

SELinux defines MAC in several ways, although the most common is Type
Enforcement (TE) where the policy is based on the type attribute and is defined
as

allow user_t bin_t : file {read write}.

This tells SELinux that user_t is allowed to perform the actions read and write
on file belonging to the object bin_t. All requests will be denied unless there is a
SELinux policy rule which allows an action.

Multi-Level Security (MLS) is another way for SELinux to define MAC. It
is based on the level attribute and provides restrictions on information handling
between different confidentiality levels [30]. In its simplest form, it can be thought
of as an access level, where one needs a certain clearance level to be allowed to
view certain documents, figure 2.7 illustrates this. Furthermore, MLS is considered

Technology Background 15

more advanced to use, while TE comes with default policy settings that covers a
wide range of applications, tasks, and services [31].

unclassified

confidential

secret

top secret

Figure 2.7: The basic concept of MLS illustrated with clearance
level. One with the level confidential can view its own and all
levels below, but not levels above itself.

While SELinux provides robust security frameworks, it falls short on user-
friendliness. This impacts the security it could provide as end users are not able
to set it up correctly [32] since it requires expertise and is, therefore, more suited
towards experts.

2.8 AppArmor

Application Armor (AppArmor) is another mandatory access control scheme that
utilizes Linux security module. It uses profiles for applications to restrict access
based on the path. Like SELinux, it uses the MAC in two ways: enforcing, and
permissive.

2.8.1 Lic-Sec

AppArmor is easier to use than SELinux, especially when considering using tools
that generate the profiles. One such tool is Lic-Sec introduced by Zhu and
Gehrmann [33] which is based on Docker-sec [34] and the older LiCShield [35].
Lic-Sec combines capability and network rules from Docker-sec with pivot root
rules, file access rules, mount rules, and more, from LiCShield.

Lic-Sec collects data by tracing which operations are performed by Docker and
the container. The data is later used to generate new profiles for AppArmor. It
traces SystemTap and Auditd in parallel in such a way that the former collects
data from Docker components and the latter collects data from mount, capabilities,

16 Technology Background

and network inside the container. After the trace is done, the results are analyzed
and output the new profile.

It is possible to use Lic-Sec in three different modes. Each of the modes initiates
the trace at different times during the container startup or running process. The
first one initiates the trace of SystemTap before dockerd is launched and continues
until stopped. The second one executes at runc, and the third is activated when
the container is running [33].

Performance suffers slightly overall with increased overhead. The main reason
for this according to Zhu and Gehrmann is the analysis of both SystemTap and
Auditd. Despite the increase in overhead, the tool provides higher security in the
tested containers. Lic-Sec successfully mitigated 8 kernel exploits compared to
Docker-sec and had the same performance versus userspace exploits.

2.9 vTPM

As the name suggests, the virtual TPM (vTPM) is a software implementation
of the Trusted Platform Module (TPM) hardware component that resides inside
computers, smartphones, servers, etc. A TPM provides hardware support for an
array of features such as encryption and decryption, attest hardware and software,
and provide a root-of-trust as the TPM can always be trusted. The TPM is
attached to a specific device and if the device is tampered with or the TPM is
replaced, then the TPM will not work as it attests the entire device [36].

A vTPM could enable encryption of the container’s content, something which
is otherwise not possible to do securely as the keys will be accessible to the host.
The keys generated by the vTPM will be available only to the container and cannot
be accessed or used directly by a host. This could prevent a host from modifying
or faking content as the data is be attested by the vTPM.

A requirement for the container is that the footage remains untampered with,
which can be achieved by using a TPM. However, the container cannot utilize the
TMP as it is bound to the host. It requires a vTPM instead that acts as a bridge
between the container and the TMP hardware. This would secure the encryption
keys used for video and hard disk encryption as they are stored inside the TPM
instead of the system hard drive. The vTPM was first designed for VMs where
each VM should have access to the vTPM. More specifically, S. Berger et al [37]
presented the following requirements for a virtual TPM:

1. A vTPM function and commands towards software must be that of the TPM
to the OS on the hardware.

2. The VM and its vTPM must have a strong association between them such
that secrets inside the vTPM cannot be accessed outside by others and
migration is possible.

3. There must be a strong association between the vTPM and the trusted
computing base.

4. The vTPM is distinguishable from the TPM due to security differences.

Technology Background 17

As of the writing of this thesis, there exists no implementation for vTPM for
containers. However, S. Hosseinzadeh et al [38] proposes two ways to implement a
vTPM based on the requirements S. Berger et al [37] proposed (as listed above).
The two types of architectures can be viewed in figure 2.8.

TPM

LinuxvTPM vTPM

Container
Manager

Container Container

(a) vTPM kernel architecture

TPM

Linux

Container Manager

Container

vTPM
Manager

Container

Adapter

(b) vTPM container architecture

Figure 2.8: The two different architectures for virtual TPM for con-
tainers as proposed in [38].

The first architecture (figure 2.8a) is to have a kernel module that can produce
an arbitrary number of vTPM. The generated virtual TPM then communicates
with the physical TPM and with the associated container. This design satisfies
all requirements for a vTPM under the assumption that the container is isolated
and cannot access the host OS. This results in the container being able to attest
its state (if the host OS can be trusted), and ideally, the container could attest
the host OS as well. The virtual TPM is better protected (but not as well as a
physical TPM) if placed in the kernel compared to having it in user space as per
the second architecture.

The second architecture (figure 2.8b) uses a designated container with software
support for the vTPM and uses it to delegate requests to other containers on the
system. The container with the virtual TPM communicates directly with the
hardware TPM. This architecture is easier to implement compared to the kernel
version. However, it also requires a daemon to be associated with the underlying
trusted computing base. The risk with this design is if another container gets access
to the host OS, aka container escape, it can then attack the vTPM container.

18 Technology Background

2.10 Intel SGX

Intel Software Guard Extensions (iSGX) allows applications to ensure confiden-
tiality and integrity via CPU extensions, even if the underlying system is malicious
[39, 40]. It is designed to provide applications with confidentiality, integrity, and
to protect execution. Intel SGX uses enclaves to achieve this and is defined as a
private part of memory that encrypts and isolates parts of a program. While inside
an enclave, no other process, despite the level of privilege, can access the content
within it, however, the enclave can still access content outside of itself. Although
iSGX provides protection on untrusted hosts, it is still exposed to attacks such as
side-channel attacks which aim to obtain information through other sources than,
in this case, the CPU. Examples of such exploits are controlled-channel attacks
[41] and last-level cache attacks [42].

2.10.1 SCONE

Arnautov et al [39] presented SCONE, secure container environment, which uti-
lizes Intel SGX to construct a container that can be used on untrusted platforms.
The result is increased security by narrowing the trust base, while also having
low overhead. This mitigates the risk of adversaries exploiting containers as the
execution is now done with enclaves. The architecture of SCONE can be viewed
in figure 2.9.

SCONE provides their solution via containers, from base images to tools. One
of these tools, sconify image, takes a native image and protects a binary, data, and
codebase. The binary and files need to be specified by the user. Sconify image can
be used with two different modes: file protection and binary file protection. For-
merly, the binary is used inside an enclave and additional data provided becomes
encrypted. Latterly, all associated files are together with the binary placed inside
an enclave.

Both of the modes place the provided files and binaries into an encrypted
image as figure 2.10 illustrates, where sconify binary is a process that enables the
binary to run inside an enclave and use SCONE services. Furthermore, it creates
a security policy associated with the container image, it defines the secrets and
how they are distributed, which part of the container image is encrypted, which
users are allowed to read or modify the policy, and more.

The policy is uploaded to an attested configuration and attestation service
(CAS) provided by SCONE. The CAS runs within an enclave and therefore pro-
tects the policies. Its core purpose is to securely maintain keys and secrets from
non-authorized entities, i.e. users, adversaries, or other containers. CAS provides
secrets to an enclave, according to the policy, after verifying its integrity and
authenticity, enabling it to execute as intended [43].

SCONE implements the C standard library (libc) interface to be able to ex-
ecute unmodified processes, i.e. unmodified in the sense that it does not require
additional code or configuration to work with Intel SGX. Libc must be able to
perform system calls, which cannot be done inside an enclave, and therefore re-
quires an external interface to use as a bridge between the enclave and the host
OS. This interface is protected by shield libraries which use transparent encryp-

Technology Background 19

Host OS

SCONE kernel
module

Intel SGX
driver

Container

Sys. call
request

Sys. call
response

lock free
queues

Enclave

App code and app-specific libs

SCONE

Figure 2.9: SCONE architecture. The orange zone is trusted, the
blue zones are SCONE components, and the white zones are
untrusted.

tion (data is encrypted at rest, but not while used or in transit) on system calls
concerning I/O on files. The external interface also performs sanity checks and
copies memory-based return values before passing the arguments to the enclaves
to protect itself from user space attacks.

The shields prevent low-level attacks and ensure confidentiality and integrity
of data passing through the OS. There are support for three types of shields: file
system shield, network shield, and console shield.

The file system shield ensures confidentiality and integrity of files as they are
authenticated and encrypted seamlessly to the service. It defines three rules which
determine if the file is authenticated, encrypted (or both), or just passed on to the
OS. It also contains the same support for ephemeral files, i.e. files existing only
for a short period.

The network shield guarantees that the container uses TLS when communicat-
ing over a network as it enforces a client to use it. This was added since services
such as Redis and Memcached do not use TLS (compared to Apache and Ng-
inx), but assumes the traffic is protected by other means. SCONE redirects all
socket operations to the network shield, which performs a TLS handshake and
encrypt/decrypts the packages.

20 Technology Background

Native container image Encrypted container image

Policy
(in enclave) CAS

Binary

Data/code files

Binary’

Encrypted
data/code files

create policy

sconify image

sconify binary

encrypt files

Figure 2.10: The sconification process with file protection mode.
Parts of the native image are selected for protection and placed
on a new, encrypted, base image. The CAS verify and holds its
key to use when running the container image.

The console shield is designed to protect application data during stdin, stdout,
and stderr console streams. Since the data is transparently encrypted, it uses a
symmetric key to encrypt the stream by dividing it into blocks that are given a
unique identifier. This protects against replay and reordering attacks.

As of writing this thesis, SCONE requires an image based on Alpine Linux to
apply its security features, however, support for Ubuntu is under development.

2.11 Virtual Machine

Virtual machine (VM) was the first way to achieve virtualization by using a hy-
pervisor. The hypervisor handles scheduling, manages memory, I/O, and network,
but also works as a bridge between the guest OS (i.e. the VM) and the host
OS including the hardware [44]. The VMs are isolated from the hardware and
are therefore the hypervisor’s task to communicate requests from the VM to hard-
ware. A hypervisor can host multiple VMs on a local machine where the hypervisor
separates the VMs with firewalls.

There are two types of hypervisors, as can be viewed in figure 2.11, bare metal
(type 1) and hosted (type 2). The former type integrates the hypervisor above the
hardware with no underlying OS, as such, it gains direct access to the hardware.

Technology Background 21

It can also be embedded directly into the hardware. This is ideal for companies
and cloud services as it is more lightweight and has increased security due to the
absent operating system [45]. The second type, hosted, is installed as a software
on top of an OS. The hypervisor must use the host OS to access the hardware. One
advantage over bare metal is that it is easier to install, use, and maintain a hosted
hypervisor [46] in addition to using the operating system’s memory management,
process scheduling, and other OS features.

The following two following sections will discuss VMs and compare them with
containers.

Hardware

Hypervisor

VM 1 VM 2 VM 3

(a) Type 1: bare metal

Hardware

Operating System

Hypervisor

VM 1 VM 2 VM 3

(b) Type 2: hosted

Figure 2.11: Two types of hypervisor technologies.

2.11.1 Performance

This section discusses the performance between the two types of hypervisors, bare-
metal and container, as well as between a hosted VM and a container. All of the
hypervisors mentioned are compatible with Linux.

Beserra et al [47] explored if VMs are suitable for high-performance computing
(HPC). The paper investigates Kernel-based virtual module1 (KVM) and Virtu-
alBox2 where the former uses a bare-metal hypervisor and the latter a hosted
hypervisor. HPC-challenge benchmark was used to evaluate the processor, RAM,
process communication, and network communication. The paper concluded that
KVM outperforms VirtualBox with near-native performance in most cases. The
bottleneck presented for both hypervisors was local memory and communication
between processes.

Poojara et al [48] conducted a performance comparison between Linux contain-

1https://www.linux-kvm.org/
2https://www.virtualbox.org/

22 Technology Background

ers3 (LXC) and Xenserver4, a bare-metal VM, where the objective was to compare
CPU, RAM, hard disk, and HTTP web server, with the hardware as a reference
point. The container outperformed the Xenserver in all cases while being close to
the hardware’s performance. Nevertheless, in most cases, the VM was compara-
ble to LXC. Furthermore, the container was 4% slower than the hardware when
benchmarking RAM read and write, with the VM being slightly slower. Finally,
the largest difference is the number of requests per second on a http web server
where the container was 12% slower than the hardware, and the VM falling closely
behind.

Similar results from Poojara are also seen in a performance overhead compar-
ison by Li et al [49], where they examined communication, computation, memory,
and storage, through Domain Knowledge-driven Methodology (DoKnowMe) and
on a feature-by-feature basis. The comparison was between Docker and VMware
Workstation Pro5, which is a hosted hypervisor. They found that the performance
of the container is on average better than the VM with near hardware performance.
An interesting find is the storage transaction speed which gave an overhead up to
50% for the container and hardware-like performance for the VM when solving
the N-Queens problem or writing small-sized data to the disc. Furthermore, the
authors argue that the performance of two types of virtualization depends on the
type of feature and job it is performing, as such one is not better than the other
performance-wise.

2.11.2 Security

The usage of VMs is substantial in cloud networking. The security of virtual
machines is crucial as one machine may host VMs for several companies. The
threat model for VMs is quite extensive with possible attacks from other virtual
machines, the hypervisor, and the host. If an attacker manages to perform a
VM escape, it is then able to attack another VM through the host or hypervisor
[50]. An example of VM escape is by memory corruption like Cloudburst [51],
which enabled the attacker to execute malicious code on the host that created a
backdoor to it. Although a VM is considered more secure than a container, due to
the isolation it provides, it is still vulnerable. Documented vulnerabilities of the
virtual machines mentioned in the previous section can be seen in table 2.2. It
is worth noting that KVM most likely contains vulnerabilities, even though they
have zero registered from 2019 to 2020.

The hypervisor plays a vital role in VM security as it creates, manages, and
handles communication with the VMs. The reason for VMs to be considered se-
cure is the smaller code base hypervisors introduces, compare to operating systems,
which results in a smaller attack surface [52]. Despite this, virtualization solutions
from companies such as WMWare (Workstation), Xen (Xenserver), Oracle (Vir-
tualBox), are affected with vulnerabilities. There have been research due to this
with the hope to increase security outside the hypervisors. For instance, a tool to
enforce mandatory access control, similar to AppArmor, was developed to prevent

3https://linuxcontainers.org/
4https://www.citrix.com/
5https://www.vmware.com/

Technology Background 23

VM escape [53]. Research has been made on intrusion detection and prevention
mechanisms, like CLARUS [54]. CLARUS is a system that monitors a virtual
machine. It is up to the user to analyze the data it collects to detects abnormal
patterns. There is also research on preventing zero-day attacks, i.e. exploits of
unknown vulnerabilities, such as ferify [55]. Ferify prevents zero-day on a set of
user files and kernel operations which it aims to protect by catching system calls.
The system calls are then analyzed and either accept or deny depending on the
user or group.

Table 2.2: Number of vulnerabilities for different virtualization prod-
ucts from year 2019-2020 according to NIST’s NVD.

Product Number of vulnerabilities

KVM 0
VirtualBox 125

Xen 68
Workstation Pro 5

Side channel attacks

While the VMs are isolated from each other, they also share resources, such as
memory, cache, and I/O. This opens up for side-channel attacks where the vulner-
ability lies in the information the VM shares with other virtual machines. With it,
it is possible to extract cryptographic keys [56], disclose files or applications run-
ning inside another VM [57], and leak memory from the victim’s memory space
[58]. Note that containers are also susceptible to side-channel attacks.

A feature VM has is memory deduplication. Memory deduplication enables
VMs to share virtual memory if they use the same data. Using memory dedupli-
cation comes with two advantages for cloud providers, lowers power consumption
and increases the number of VMs a server can host, meaning they can reduce cost
while maximizing the amount of VMs provided. However, memory deduplication
is susceptible to memory disclosure attacks, as the authors of [57] show. The
suggested attack makes it possible to obtain the contents within the memory by
measuring the time it takes to write to the memory. Since memory deduplication
needs to copy on write, this action takes longer compared to non-deduplication.
One could therefore guess which applications a victim VM use by using said appli-
cation. For instance, a malicious VM could run Firefox and when the victim VM
runs the same application, write time to the memory will increase. In the case
of Firefox, it is possible to read the content cashed by the victim’s VM. In other
words, one could know which pages it visited.

To mitigate this risk of memory deduplication, most cloud providers have
disabled it, however, Taehun and Youngjoo [59] proposed a method that would
mend the security implication of memory deduplication. By embedding a fixed
random byte to the applications one wishes to secure. According to the authors,
should make it infeasible to extract the data without knowing the value within a

24 Technology Background

reasonable time (years). This is due to the extra byte altering the data in such a
way that it never becomes shared in memory deduplication.

Another memory leakage weakness was presented by the authors in [58]. They
show how to leak the memory of KVM by utilizing spectre attacks. The spectre
attack exploits the processor’s speculative computation. The CPU uses its idle
time (i.e. waiting for data) to pre-process the outcome and guessing where the
data will appear in memory. If the guess is incorrect it discards the calculation.
Although this is mainly a hardware vulnerability, VMs are still able to exploit it,
which in turn should make containers able to exploit it as well. Nevertheless, there
are both hardware [60] and software [61] mitigation for the spectre attack. The
former extracts instructions and uses machine learning to detect spectral behavior,
and the latter is a software that analyzes code and performs sanitation on it before
execution.

Chapter 3
Containerizing the Hardware

This chapter describes the process, obstacles, and solutions, along with motiva-
tions, to develop the container image. In the overview, a general explanation is
given to provide an understanding of the transformation process, the major com-
ponents, the main obstacles they introduced, along with the results. The sections
3.2 and 3.3 provide a more detailed description with motivation to design choices
regarding the main programs and the server transformation. Section 3.4 discusses
the modifications done on a functional container image.

3.1 Overview

Two factors were considered to be able to transform the hardware into a container.
Firstly, satisfying the requirements of the programs running on the SCU, and
secondly, configure the server. Figure 3.1 provides an overview of the content in
the container image. The physical SCU is built on Axis OS, a custom OS that is a

SCU programs Server

Container image

Figure 3.1: The main components used to produce the container
image.

subsystem of Debian. This operating system contains services utilized by the SCU
that are absent on Debian and became the major obstacle as the SCU programs
rely on these services. Furthermore, the SCU heavily utilizes systemd, a system
and service manager, to handle communication and manage program statuses
within the system. The base image, i.e. the foundation, used when constructing
the container image contained Debian 9 as its OS, and thus uses neither Axis OS
nor systemd. Without Axis OS, the system lost several services required. These
services were given by a mock script that provides a static response upon a system

25

26 Containerizing the Hardware

call. The absent systemd could be installed via the advanced package tool (apt).
It would be possible to modify the SCU code to avoid a mock service, however
that would require two different implementations for the same product, which is
redundant.

The container had to communicate with the BWC while also hosting a web
page, i.e. the BWM, to provide an interface to the user. This was done by con-
figuring a server to serve both the BWM and to be able to communicate with the
camera, on different ports and addresses. The default SCU server configuration
uses server modules and features only available on Axis OS. Furthermore, it also
uses privileged ports, something a non-root container cannot use. As such, several
configuration files were modified, via a script, to remove or redefine lines. Unfor-
tunately, this was the only way to make the server run, although it would ideally
be avoided to minimize maintenance.

Finally, an initialization script was constructed to start the mock service, as
well as a script that aided the setup wizard process (performed manually). This
initialization script is the first thing systemd started, which in turn started the
mock and setup services, and created a server certificate. Figure 3.2 illustrates
the final system architecture where systemd is the root. Table 3.1 summarizes all
modifications necessary to acquire a functional SCU container where some entries
are discussed further in section 3.2 and 3.3.

systemd

Mocking serviceSCU programs

Init script

Setup wizard
assistance

Frontend
&

BWC
Server

Figure 3.2: The container architecture. Systemd starts the processes
and handles their communication. The initialization script is
the first thing it starts which in turn launches the mocking and
setup service. Frontend and BWC is outside the container and
the wizard assistance is required to complete the setup in the
frontend.

Containerizing the Hardware 27

Table 3.1: Summery of adaptations required to achieve a functional
SCU container.

Adaptation Solves

Mock service Absent Axis services
Setup assistance Upload and install firmware
File modification Satisfy server configuration

Container use host network BWC communication
Host network modification BWC communication

3.2 Running SCU Programs

The SCU programs are written in Go and the container image was therefore based
on golang:1.15-buster. The code was copied onto the image and compiled during
the image-building process. The entry point of the container was set to launch
systemd, however, this binary was initially absent. The package manager apt was
used to install systemd, as well as dbus (which is used to send messages between
applications), on the container. The reason for this is because the Axis binaries
rely on systemd and dbus to communicate with other software, and cannot work
without them.

Using systemd and the golang image is not ideal due to its complexity and
large size (the resulting image was over 1 GB). However, because the physical
SCU uses a subsystem of Debian, it was not investigated whether or not it was
possible to use something else. Furthermore, a previous container development
of similar nature at BWS was developed on the golang image, which made it a
natural starting point.

Executing the SCU program resulted in errors due to services not found, ab-
sent directories, non-existing users and groups, and incorrect file permission and
directory ownership. The main issue, however, was the missing services. These
services are integrated into the Axis OS which the SCU uses, and were therefore
needed to be mocked. Through investigation of the code and the SCU, it was
possible to determine the requirements for a particular service. This included
expected input and output, as well as where to find the service.

The mock service was provided via a python script which was required at the
start. The values used in the mock script were copied from a SCU and might not be
optimal for the container. For instance, the mocked service regarding disk space is
static and might not reflect the assigned disk space given by the container engine.
The container is, by default, given 10 GB and as the camera can record about 55
GB, this becomes an issue. While the physical SCU tells the BWC to pause footage
transfer when its storage is full, the container becomes unable to do so due to the
static setting telling the programs it always has space. Nevertheless, it is possible
to set the storage of the container so that it matches the BWC. Furthermore,
the container (and a physical SCU) remove the footage after uploading it to an
EMS. The only dynamic service is the time, which always returns the current local

28 Containerizing the Hardware

time. The time is important since the SCU and BWC sync their time to verify
the content, check certificates, and more.

Building the image by copying code to the container was redundant. It was
time-consuming and it resulted in an unnecessarily large image size and left code
behind. To avoid this, all programs were compiled locally whereafter the binaries
were copied to the container.

3.3 Server Setup

A server binary had to be installed to provide camera communication and the
BWM (user interface). The server installation included several unnecessary con-
figuration files which were removed to avoid interference from the default server
configuration. These configurations were then replaced by Axis’ server configura-
tion files which specified how the communication to the camera and BWM should
behave.

The SCU server uses modules and settings that are not available to the con-
tainer. Therefore Axis’ configuration files had to undergo modification to suit
the container. Ideally, this would be avoided since it creates maintenance when
additions or alterations are made to these files. Nevertheless, this process was
automated with a script whose job was to remove or modify lines in multiple
configurations files.

The server had to redefine who was allowed to access the web page, from a
restricted group to everyone. Furthermore, it also had to change the port used
for http and https for the server to provide the BWM. Running Podman as a
non-privileged user enforces restrictions, one such restriction is the denied access
to privileged ports (0-1024), and seeing as the server uses port 80 and 443 for http
and https respectively, it had to be altered.

An additional interface was required to communicate with the BWC since the
programs use a specific IP address to handle communication between the camera
and the SCU. For this to be possible, an additional network interface had to be
created with the appropriate name and IP address to match it.

By increasing the network capabilities for the container, it became possible
to manually add the required network interface inside the container. This was
however an undesirable solution as it forced the user to modify the container.
Therefore the same commands were integrated with the container file to automate
the process. However, Podman could not construct the container image this way
as the capabilities of a non-root user restrict them from modifying the network.
Instead, one had to construct the image as a root user, something which was
avoided with regards to the threat model.

The container was instead allowed to use the host’s network stack and interface
to provide the two interfaces. By inserting a network card into the computer and
configure its address accordingly, it was possible to provide a connection to a BWC.

Containerizing the Hardware 29

3.4 Finalizing the Image

A full proof of concept realization was implemented and verified. Afterward, efforts
were made to trim the container image to reduce the size and decrease the number
of dependencies. By changing the golang base image to a Debian buster base image,
the image size reduces significantly, with the base image being 840 MB compared to
114 MB in size, along with unnecessary packages such as secure shell protocol (ssh)
being excluded. The Debian image was originally based on the slim version but
later changed to the non-slim version to benefit position independent executable
(PIE) of the Axis binaries. This allows for address space layout randomization,
a technique that randomizes the memory locations used, mitigating the use of
return-oriented programming attacks, which is important since the host is seen as
the largest threat.

30 Containerizing the Hardware

Chapter 4
Increasing Container Security

As the host is suspected to be the major threat against the container, tools which
could isolate and protect the container on the local machine was deemed most
valuable. One of those tool is SCONE (discussed in section 2.10). By utilizing
SCONE’s ability to encrypt, attest, and isolate parts of the image, hope was
that it could be integrated such that it was possible to run the container safely
on a malicious host. In section 4.1 the implementation and expected results are
discussed further.

Mandatory access control (discussed in section 2.6) can be used to protect
the containers from other containers as well as the host from a container. Since
manually configuring a profile for SELinux and AppArmor is both time-consuming
and prone to misconfiguration, Lic-Sec (AppArmor) was a good candidate to use.
The reason why AppArmor was chosen over SELinux is the difficulty of configuring
SELinux in such a way that its full potential is used. Therefore, a manageable
MAC was used instead. Section 4.2 discusses the implementation and results.

4.1 Sconify the Native Image

To utilize SCONE, the container had to be converted to Alpine Linux, which is a
minimal operating system focused on being lightweight and secure. Due to this,
Alpine does not use systemd, instead, it uses OpenRC which is another type of
initialization system. To use SCONE, the container image had to be converted
to use Alpine Linux. However, when working with converting the container, it
quickly became apparent that it was not possible. To use Alpine, one would have
to redesign the entire product.

Fortunately, SCONE1 was developing support for Ubuntu, and indirectly De-
bian. They provided access to an early version of the tool for this thesis which
made it possible to apply SCONE on the container image, without alterations.

The two directories, custom-scripts and var, were chosen for encryption, along
with the binary to the main program to be SGX enabled. Var was encrypted
to protect footage uploaded to the container, while custom scripts contain help
code to make the container run properly. When running the tool sconify image, it
yielded an error saying that the native image is not musl LibC (Alpine) or GLibC

1https://scontain.com/

31

32 Increasing Container Security

(Ubuntu) based. Sconify image assumes that the native image is based on Alpine.
To account for this, one could specify the base image used and by providing Debian
Buster as its base image, the tool ran successfully and gave the encrypted image
as output. Interestingly, the encrypted image was only 282 MB, in other words,
smaller than the native image.

Although running the container was expected to fail, as docker cannot run the
native image, it failed for another reason - missing binary for systemd. Another
attempt to encrypt the image was made with the systemd binary instead of the
main program. However, running the new image resulted in the same error, most
likely due to systemd binaries missing files to work properly.

A final attempt was made by providing all files and binaries essential to the
container. However, as the system is large, while also depending on systemd, it
became difficult specifying all required files. It was not possible to use the root
directory as input to sconify-image either, and all attempts made failed.

4.1.1 Why it Failed and Potential Solution

Due to Intel SGX (iSGX) limitations, which provide security, it is not possible
to apply SCONE to the entire image as both iSGX and SCONE are designed for
application-oriented security and not system security. Thus, SCONE can protect
the functionality of the SCU inside the container, but it cannot protect the entire
system it uses. The reason is that the trusted computing base of iSGX is smaller
than the OS [62]. This allows only a subset of OS system calls, and therefore is
only a subset of system functionality. Because SCONE utilizes iSGX, they also
conform to these limitations.

As the developed container mirrors an entire system, i.e. the physical SCU
hardware, it is not suitable for SCONE. Limiting the system calls of systemd is not
possible without disrupting the container’s functionality, i.e. the SCU programs
will not be able to perform system calls or communicate with other services on
the platform. Therefore, to provide a working solution with SCONE, one needs to
execute system calls outside of a SCONE container.

A possible way to realize this approach with external system calls would be
to modulate the SCU container, separating it into multiple containers, and use a
cluster as shown in figure 4.1. A sconified container in the figure represents a con-
tainer running a single SCU program. The program then communicates to other
containers, which together compose a SCU, via a network. In this solution, sys-
temd is its own container, although as an intermediate step, one could include all
non-SCONE related functionality inside a single container as figure 4.2 illustrates.

This approach could, however, bring additional work, as the containers have
to send packages between each other. It is possible that Podman or Kubernetes2
possesses an easy way to implement this. Otherwise, the SCU code needs to be
extended. There was no attempt to modulate the container as this would require
lots of implementation efforts, something there was no room for in the scope of
this thesis.

2https://kubernetes.io/

Increasing Container Security 33

Cluster

systemd
container

Sconified
container

Sconified
container

Server
container

Database
container

Frontend
&

BWC

Figure 4.1: SCU cluster design consisting of multiple containers
with one purpose. Some of the containers are sconified, e.g.
the SCU programs. The entire cluster represents a SCU.

Cluster

Container

Sconified
container

Sconified
container

Frontend
&

BWC

Figure 4.2: A cluster design where the SCONE components are
extracted and running as its own container. The rest of the
functionality, i.e. server, systemd, etc., is running inside a single
container.

4.2 Generating an AppArmor Profile With Lic-Sec

At the start, it became clear that it was not possible to use Lic-Sec since the
container image is not functional on docker. Docker is required as Lic-Sec runs

34 Increasing Container Security

the container to audit it. Lic-Sec was modified to be compatible with Podman
since the container could only be run with Podman. This was possible as the
similarities between Docker and Podman are many.

To generate a profile, the tool had to be started after the container was instan-
tiated. With the audit of Lic-Sec initiated, one had to use the container application
as usual. As such, the wizard setup, adding camera and user, upload footage, as
well as removing the camera, was performed, after which the tool seized its audit.

After the first training session, Lic-Sec generated a profile in which randomized
paths were detected. In other words, the container created a non-static file system
with directories containing names depending on certain variables. Currently, the
Lic-Sec tool is unable to detect non-static file systems. As such, the tool had to
be manually configured to treat the static root followed by the non-static part, as
one.

As an example, if the container generated the file path /static/path/abc123 but
on the next run it generated /static/path/xyz987, then the tool was configured such
that /static/path/ is considered the root and all sub-directories will conform to
the same rules, i.e. abc123 and xyz987 will both have the same rule, e.g. read
and writable. This was possible by applying regular expression (regex) on the
directories with randomized names in the Lic-Sec configuration file.

It was also noticed that Lic-Sec was limited by the size of the logs it produces.
These logs were used to later generate the profile. The max size was set too low,
and therefore resulting in Lic-Sec missing information to generate a correct profile.
The max size was therefore increased to collect sufficient logs.

The profile contained over 300 lines of rules that primarily consisted of defining
read, write, execute, on file paths. In addition to the common access types, it also
defined prot_exec on a few Linux libraries. Prot_exec specifies that a region
of memory can store instructions that can be executed, as such defines what is
allowed to run. The profile also defined which network type was used and on
which domain, e.g. bluetooth stream, as well as the capabilities used, such as
chown. Furthermore, it denied everything on the root directories proc, mount, and
a handful of sys sub-directories, and are defaults of any AppArmor profile.

The AppArmor profile generated from Lic-Sec could be loaded and used with
the container, although to do so, Podman had to be used with sudo, as Podman
required root privileges to run AppArmor. It was not possible to run the container
with the profile, likely due to it accessing things during start-up by systemd which
was not covered by the audit. As a workaround, a default AppArmor profile was
used and after the start, its content was replaced by the generated profile and
then reloaded. The container could start successfully, however, the BWM was not
accessible, rendering it useless.

The profile is missing definitions of the SCU programs, and likely other pro-
grams executed by systemd, which might explain why it is unable to execute the
container with the generated profile. This could also be the reason for it being
unable to run the BWM after reloading the profile from its default settings.

Concluding the trials, one see that Lic-Sec is better suited for containers that,
on the one hand, runs on docker natively, and on the other hand is a microservice.

Chapter 5
Security Analysis

A few areas have been investigated to determine the security of the container.
These are selected based on Axis’ inquiry, as well as what has been deemed im-
portant in regards to the threat model. The container should be as isolated as
possible, meaning it should not be possible to delete, read, or write, either from
or to the container by the host or other containers. While the container has been
enumerated, only a theoretical discussion is made with the effects the security
enhancements would provide.

5.1 General Security Risks

It was interesting to deduce how much information one could obtain solely by in-
specting the container image. It turns out that the container image possesses no
confidentiality as its layers are unencrypted, enabling an adversary to easily enu-
merate the system. By inspecting the image, the adversary can gain knowledge of
the SCU file structure, files, and permissions which could aid in finding a weakness
to exploit.

Since this container requires the host’s network interfaces, all packages to
the container will go through its network stack. As such, these packages can be
eavesdropped on by a passive adversary and an active adversary could potentially
modify packages. Nevertheless, the communication between the BWM and the
container is done via TLS, as such, the packages sent are encrypted. However, the
container should ideally run with its own network namespace. This will allow the
container to define its own firewall rules, minimizing the risk of port collision, and
maintaining its own network stack.

5.2 Vulnerability Scan

To get an overview of the vulnerabilities in the image, and therefore potential
exploits, a software tool called Trivy1 was used to analyze the image. Trivy scans
the image’s packages and their version to compare it to the national institute of
standards and technology’s (NIST) national vulnerability database (NVD). NVD
contains all known vulnerabilities and ranks them based on their severity (CVSS

1https://github.com/aquasecurity/trivy

35

36 Security Analysis

score) and how one can mend the vulnerability if one exists. Although there are
multiple tools for this purpose, Trivy was chosen for its ease of use.

The initial search found 697 vulnerabilities of different degrees of severity, as
can be viewed in table 5.1, all without a fixed version. The two critical vulner-
abilities are due to a package called libgnutls30, which implements the TLS and
DTLS protocols. This package is mandatory for the server to run and the camera
communication also requires TLS. There exist no known substitutions.

Table 5.1: Native image vulnerability scan of the container which
resulted in 697 vulnerabilities. CVSS scoring is based on version
3.x.

Severity Number of vulnerabilities

Unknown 1
Low 531

Medium 74
High 89

Critical 2

While the result from the scan is an abstract measurement of the system, it
does provide some insight into the complexity and size of the image. The container
can be viewed as an operating system since it is based on Debian Buster, and with
it, introduces a large attack surface. It is a time-consuming task to dissect which
packages are needed for the system to function, which is why it would be more
ideal to find a better base image. This is however not possible to do for the SCU,
as previously discussed.

5.3 Container Enumeration

By enumerating the container, i.e. information gathering, it is possible to deduce
what actions one can perform to exploit and manipulate the system. In this
section, the focus is on system layout, databases, keys, and certificates, as well as
access control. Actions are performed without root access.

To gain an understanding of the content available on the container at the start,
and after performing the setup wizard, one can inspect the container layer, after
instantiating the container. The content produced by the container is unencrypted
and can therefore be manipulated. Before the setup wizard, one can detect two
different databases and one private and public key. The private key could be
stolen, allowing anyone to impersonate its owner, and the accessible databases
enable easy enumeration that can make it vulnerable to SQL injections.

After performing the setup wizard, additional keys, certificates, and config-
uration files were detected. While traversing the file system, one sub-directory
was protected due to it being owned by another user. However, this is considered
minor security as it could be bypassed with root access.

Security Analysis 37

This file system enumeration could be extended to a script that monitors
modifications done to it. To illustrate this, a python script was written using the
library watchdog2. The script is running as a background process on the host
machine and monitors all read and writes performed inside the container, i.e. to
its container layer. The actions made by the container were logged by the script
to a text file residing on the host machine. However, instead of a text file, the
actions could be transmitted via the internet to an adversary.

The eavesdropping script was not able to monitor actions on the directory
owned by another user, although it was possible to bypass it by running the script
as root. If the host machine is running other containers as root, if an adversary
manages to perform a container escape and run the script on the host machine, it
would still be able to monitor all actions made on the SCU container.

Critical files such as private keys should be encrypted or isolated, in contrast
to certificates and public keys. Some of the configuration files could be seen as
critical if they dictate where footage is uploaded to. An adversary could change
where footage could be uploaded by manipulating said files. Furthermore, the
configuration files could also declare which user is assigned to which camera. This
could lead to users becoming blocked or invalidate, or they could be framed by
being assigned to a camera he or she did not wear.

As a result of enumeration, it was possible to perform an attack on the con-
tainer. One could distort the video footage by interrupting the upload to the EMS
followed by scrambling its bytes. When the connection was re-established, the
footage was uploaded without error, however, the video could not be played.

5.4 With Security Enhancement

Next, a discussion on how the previously discussed security enhancements could
potentially contribute to enhanced security of a containerized SCU service. Only
the investigated methods are considered when discussing the increased security
they contribute with. As it was not possible to fully execute any of the enhance-
ments on the containerized SCU. This section, therefore, only reasons with regards
to the applicability of the investigated methods.

Out of the two investigated methods, SCONE was thought to contribute the
most in terms of security. Using SCONE would protect the container from host
attacks as it enables binaries and files to be executed inside enclaves, or by en-
crypting said files instead. This could protect the SCU program’s execution, as
they would be located inside enclaves, and private keys and other sensitive data
could be encrypted, thus providing confidentiality. This would not necessarily
protect recordings from being deleted, however, it could prevent deceitful footage
from being uploaded as it will not be encrypted, or encrypted with the wrong key.

An adversary needs to obtain the encryption (symmetric) key to decrypt data
on the container. Obtaining said key would provide difficult as it resides inside
the CAS. Another option is for the adversary to perform an exhaustive key search
to obtain the encryption key. As SCONE uses a 258-bit symmetric key, the time
to brute force the key is millions of years for non-quantum computers. However,

2https://pypi.org/project/watchdog/

38 Security Analysis

suppose the key is retrieved via an exhaustive key search, then all SCU containers
of a particular build will be exposed as they all will use the same key.

The SCU programs are still susceptible to attacks even if they would be exe-
cuted inside enclaves. However, an attacker has to have extensive technical skills
to be able to successfully perform, for instance, a side-channel attack. With that
being said, the integrity of the program should stay intact, i.e. it should not be
possible to modify the program for it to deviate from its purpose, but information
from the program could be obtained.

Although SCONE is considered important, it does not protect the host from a
running container or via an inter-container attack. Mandatory access control can
provide the security necessary to protect in these cases. If an attacker manages
to bypass SCONE, a MAC will most likely restrict (depending on the MAC and
the profile) the access to files and directories an attacker tries to access. In other
words, a solution where SCONE and MAC can be used could provide sufficient
security to allow for public distribution of the container.

However, if the container is not distributed publicly, but only to trusted cus-
tomers of Axis, then a MAC might provide sufficient security if it is set up properly.
Although, if such a distribution model is used, then the customer is trusted not to
manipulate the container in any way, and the MAC should prevent other containers
from attacking the SCU container.

Since Podman requires root to run AppArmor, it might be more beneficial to
use SELinux (even though SELinux is harder to configure properly) instead of it
since it does not require root to use when running the container. However, a tool
with similar nature to Lic-Sec could be used to generate the profile, although more
research is needed to confirm if it is possible.

Chapter 6
Benchmarks

Performance is measured in two ways, upload time and camera assignment time.
Upload time and camera assignment were measured both on the container and the
SCU, and the results were then compared. To measure upload time, one video
was recorded at a time. Recordings were done with different resolutions and video
lengths to see if this affected the upload time for the two systems. The same video
is used for each case between the container and the SCU for a fair comparison.
Upload time is defined as the time between the docking of the camera to the
content arriving at the EMS. The reason for this is that the SCU communicates
and processes information from both the BWC and the EMS. The time is started
when the BWC is docked and ends when the footage appears in the EMS. Results
for upload time can be viewed in table 6.1. The computer running the container
was equipped with an Intel i7-6700k 4.2 GHz CPU, 16 GB RAM, and a SanDisk
256 GB SSD.

Table 6.1: Upload time from BWC to EMS with a container and
SCU.

Resolution Video duration Container SCU

1080p 10 min 47.9 s 50.5 s
720p 10 min 35.1 s 37.7 s
1080p 27 min 57.1 s 45.4 s
720p 27 min 51.2 s 52.2 s
1080p 60 min 82.2 s 85.7 s
720p 60 min 58.2 s 57.4 s

The results indicate that no conclusion can be made that the container sufferers
in terms of upload performance compared to the SCU. It is not surprising that the
upload time increases with the size of the footage, however, theoretically the SCU
should be faster in all cases. This could be explained by the extensive network
communication propagated between the devices. It could be speculated that the
upload time can be shorter for the container as it is located on the same device as
the EMS. As such, there is no need to physically transmit the data over cables.

39

40 Benchmarks

The performance of camera assignment was measured as the time between the
addition of a camera to it becoming usable, and then through measuring the time
between removal of a camera to the time of it being addable again. This was done
to deduce if the container affected the time it takes to add or remove cameras to
the system, in contrast to the SCU. The results can be seen in table 6.2 and shows
no significant performance penalty.

Table 6.2: The duration of adding and removing a camera to the
system.

Type Container SCU

Add 115.5 s 114.9 s
Remove 29.3 s 32.4 s

Chapter 7
Discussion

This section discusses the results obtained in the thesis regarding mitigating the
Axis SCU to a container environment. It also identifies topics for future work.

7.1 The SCU Container

The success of containerizing the SCU comes with security consequences. In its
current state, a public release is not recommended due to its vulnerabilities. Un-
encrypted image layers and system access render the recordings useless as evidence
since it is easy to manipulate the content. Nevertheless, with further work, it could
be made secure enough (see section 7.4) with minimal impact on performance.

The identified threats in section 1.5.1 are unfortunately not mitigated as the
investigated security enhancements failed to be successfully implemented. The
threat from the host is considerable without the use of the system’s hardware to
provide protection. However, even though the AppArmor profile failed, a simpler
profile with default behavior could be applicable to protect from inter-container
attacks. That being said, if it is possible to combine, for instance, SCONE and
MAC, then the container have a good chance of being usable publicly in a secure
fashion. Although, other combinations could be used, such as a virtual TPM and
MAC.

The container could be used by Axis internally to simulate systems in their test
suit. It could be beneficial in testing a larger system as it minimizes required office
space and reduces manufacturing costs. A container also allows for more focus on
developing the SCU software as hardware is no longer necessary. However, the
container suffers due to modifications required for it to function. This could be
avoided by developing a way to build the container image similarly to the SCU.

As the container lacks the Axis OS and instead contains a mock service, it
is missing certain features that the SCU has. The two systems will function dif-
ferently since the mock service provide static responses as well as provide double
development. By developing an Axis OS base image for containers, the quality
and reliability of their features will increase, and the development time for future
Axis containers will decrease.

From a customer’s point of view, using a container is easy as everything is
packaged for it to work. The end-user only has to run it and perform the setup
wizard. It is also easier to distribute updated versions of the SCU container as the

41

42 Discussion

latest will always be available. In a virtual machine, the user will have to install
all software and perform updates manually.

7.2 SCU as a Virtual Machine

Currently, a virtual machine solution will provide more security, compared to a
container, as it is better isolated. A VM is also better suited for a system, which
the SCU is. However, a different threat model is needed compared to the one in
section 1.5.1. The threat from other VMs is negligible as a user seldom uses mul-
tiple VMs in parallel or runs them continuously, however, the host threat remains.
To gain protection from the host, one could use Intel SGX or a vTMP. The choice
of virtualization software can impact security. Although, the number of vulnera-
bilities (table 2.2) for a specific VM will vary with time as new vulnerabilities are
discovered.

In some instances, it might be beneficial to use a VM over a container. A VM’s
performance can be compared to that of a container, considering the minimal work
the SCU appears to do. Furthermore, by using a VM it could be possible to match
the functionality and security of a SCU. However, an Axis OS image should be
available for the VM in order to more closely match the SCU, much like with the
container solution.

As the solution is intended for public use, a bare-metal solution is not appli-
cable as the customer will most likely neither possess the knowledge nor the setup
for it. Without bare-metal, the performance and the security of the VM will suffer.
As the performance result show (6.1 and 6.2), the SCU and the container generate
similar results. This suggests that the camera is the main factor affecting upload
time and camera assignment performance, rather than the SCU and the container.
Therefore, the performance should be of no concern regardless of VM technology.

7.3 Conclusion

This thesis shows that it is possible to implement a hardware system as a con-
tainer, although it comes with limitations in terms of features, flexibility, and
security. The developed container system does not meet sufficient security levels
to be deployed publicly.

If such a solution is required in near future, then an investigation on whether
or not it is possible to do it on a VM is recommended. The VM will provide better
support for a system, compared to a container, as it provides better isolation
and security out of the box. Nevertheless, security enhancements should still be
implemented, despite using a virtual machine, to protect the VM from the host.

If a container solution is desired, then using a cluster should be considered to
enable a more secure container. The cluster could provide the solution to use a
container publicly if it enables SCONE to be used.

Finally, if Axis decides to provide the container to trusted customers, then
the container could be secure enough with the use of a properly configured MAC,
although more research is needed to confirm this.

Discussion 43

7.4 Future Work

Containers are intended to work as micro-services. Some areas need to be explored
further to optimize the functionality and security of the container solution. One
could attempt to divide the SCU container image into modules to explore whether
it can maintain functionality in a modular form and if SCONE becomes applicable.
The application of SCONE would greatly improve the security of the container.
In the case of this thesis, a first step could be to extract the SCU programs into
separate containers (see figure 4.2) and derive a working solution from there. The
next step could be to apply SCONE.

A possible substitution to SCONE could be AMD secure encrypted virtualiza-
tion1. It can be used to provide isolation from the host and protect container data,
similar to Intel SGX. It is applicable to both virtual machines and containers.

1https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryp-
tion_Whitepaper_v7-Public.pdf

44 Discussion

References

[1] “Changing the face of surveillance: The brains behind the first network cam-
era,” https://www.axis.com/newsroom/article/first-network-camera, [On-
line; accessed 16-02-2021].

[2] S. N. T.-c. Chiueh and S. Brook, “A survey on virtualization technologies,”
Rpe Report, vol. 142, 2005.

[3] V. G. da Silva, M. Kirikova, and G. Alksnis, “Containers for
virtualization: An overview,” Applied Computer Systems, vol. 23,
no. 1, pp. 21 – 27, 01 May. 2018. [Online]. Available: https:
//content.sciendo.com/view/journals/acss/23/1/article-p21.xml

[4] T. Y. Win, F. P. Tso, Q. Mair, and H. Tianfield, “Protect: Container process
isolation using system call interception,” in 2017 14th International Sympo-
sium on Pervasive Systems, Algorithms and Networks 2017 11th International
Conference on Frontier of Computer Science and Technology 2017 Third In-
ternational Symposium of Creative Computing (ISPAN-FCST-ISCC), 2017,
pp. 191–196.

[5] “About the open container initiative,” https://opencontainers.org/about/
overview/, [Online; accessed 16-02-2021].

[6] “About storage drivers,” https://docs.docker.com/storage/storagedriver/,
[Online; accessed 05-05-21].

[7] “Docker architecture,” https://docs.docker.com/get-started/overview/, [On-
line; accessed 11-02-2021].

[8] T. Combe, A. Martin, and R. Di Pietro, “To docker or not to docker: A
security perspective,” IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62, 2016.

[9] “Keep containers alive during daemon downtime,” https://docs.docker.com/
config/containers/live-restore/, [Online; accessed 11-02-2021].

[10] A. Holbreich, “Docker components explained,” http://alexander.holbreich.
org/docker-components-explained/, 2018, [Online; accessed 10-03-2021].

[11] M. Crosby, “Use of containerd-shim in docker-architecture,” https://groups.
google.com/g/docker-dev/c/zaZFlvIx1_k?pli=1, 2016, [Online; accessed 10-
03-2021].

45

46 References

[12] “Manage data in docker,” https://docs.docker.com/storage/, [Online; ac-
cessed 05-05-21].

[13] A. Sheka, A. Bersenev, and V. Samun, “The problem of reprodicible results
on the hpc cluster,” in 2019 International Multi-Conference on Engineering,
Computer and Information Sciences (SIBIRCON), 2019, pp. 0833–0837.

[14] S. Abraham, A. K. Paul, R. I. S. Khan, and A. R. Butt, “On the use of
containers in high performance computing environments,” in 2020 IEEE 13th
International Conference on Cloud Computing (CLOUD), 2020, pp. 284–293.

[15] “conmon,” https://github.com/containers/conmon, [Online; accessed 18-02-
2021].

[16] B. Baude, “Podman: Managing pods and containers in a lo-
cal container runtime,” https://developers.redhat.com/blog/2019/01/15/
podman-managing-containers-pods/, 2019, [Online; accessed 18-02-2021].

[17] “Performance,” https://github.com/containers/crun, [Online; accessed 17-02-
2021].

[18] H. Gantikow, S. Walter, and C. Reich, “Rootless containers with pod-
man for hpc,” in International Conference on High Performance Computing.
Springer, 2020, pp. 343–354.

[19] G. Scrivano, “User namespaces support in podman,” https://www.
projectatomic.io/blog/2018/05/podman-userns/, 2018, [Online; accessed 18-
02-2021].

[20] O. Flauzac, F. Mauhourat, and F. Nolot, “A review of native container
security for running applications,” Procedia Computer Science, vol. 175, pp.
157–164, 2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S187705092031704X

[21] R. Chandramouli and R. Chandramouli, Security assurance requirements for
linux application container deployments. US Department of Commerce, Na-
tional Institute of Standards and Technology, 2017.

[22] S. Kenlon, “Demystifying namespaces and containers in linux,” https://
opensource.com/article/19/10/namespaces-and-containers-linux, 2019, [On-
line; accessed 05-03-2021].

[23] “namespaces(7) — linux manual page,” https://man7.org/linux/man-pages/
man7/namespaces.7.html, [Online; accessed 04-03-2021].

[24] “Control group v2,” https://www.kernel.org/doc/Documentation/cgroup-v2.
txt, [Online; accessed 12-04-2021].

[25] “cgroups,” https://wiki.archlinux.org/index.php/cgroups, [Online; accessed
12-04-2021].

[26] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues, chal-
lenges, and the road ahead,” IEEE Access, vol. 7, pp. 52 976–52 996, 2019.

References 47

[27] B. S. Radhika, N. V. N. Kumar, R. K. Shyamasundar, and P. Vyas,
“Consistency analysis and flow secure enforcement of selinux policies,”
Computers & Security, vol. 94, p. 101816, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404820300948

[28] A. Eaman, “Tepla: A certified type enforcement access-control policy lan-
guage,” Ph.D. dissertation, Université d’Ottawa/University of Ottawa, 2019.

[29] J. Ko, S. Lee, and C. Lee, “Real-time mandatory access control on selinux
for internet of things,” in 2019 IEEE International Conference on Consumer
Electronics (ICCE), 2019, pp. 1–6.

[30] V. Kuliamin, A. Khoroshilov, and D. Medveded, “Formal modeling of multi-
level security and integrity control implemented with selinux,” in 2019 Actual
Problems of Systems and Software Engineering (APSSE), 2019, pp. 131–136.

[31] “What is selinux?” https://www.redhat.com/en/topics/linux/
what-is-selinux, [Online; accessed 11-03-2021].

[32] Z. C. Schreuders, T. McGill, and C. Payne, “Empowering end users to
confine their own applications: The results of a usability study comparing
selinux, apparmor, and fbac-lsm,” ACM Trans. Inf. Syst. Secur., vol. 14,
no. 2, 2011. [Online]. Available: https://doi.org/10.1145/2019599.2019604

[33] H. Zhu and C. Gehrmann, “Lic-sec: An enhanced apparmor docker security
profile generator,” Journal of Information Security and Applications, vol. 61,
p. 102924, 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2214212621001435

[34] F. Loukidis-Andreou, I. Giannakopoulos, K. Doka, and N. Koziris, “Docker-
sec: A fully automated container security enhancement mechanism,” in
2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), 2018, pp. 1561–1564.

[35] M. Mattetti, A. Shulman-Peleg, Y. Allouche, A. Corradi, S. Dolev, and L. Fos-
chini, “Securing the infrastructure and the workloads of linux containers,” in
2015 IEEE Conference on Communications and Network Security (CNS),
2015, pp. 559–567.

[36] T. Morris, Trusted Platform Module. Boston, MA: Springer US, 2011, pp.
1332–1335. [Online]. Available: https://doi.org/10.1007/978-1-4419-5906-5_
796

[37] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van
Doorn, “Vtpm: Virtualizing the trusted platform module,” ser. USENIX-
SS’06. USA: USENIX Association, 2006.

[38] S. Hosseinzadeh, S. Laurén, and V. Leppänen, “Security in container-based
virtualization through vtpm,” in 2016 IEEE/ACM 9th International Confer-
ence on Utility and Cloud Computing (UCC), 2016, pp. 214–219.

[39] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,

48 References

R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure linux containers
with intel SGX,” in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). Savannah, GA: USENIX Association, Nov.
2016, pp. 689–703. [Online]. Available: https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/arnautov

[40] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint Arch.,
vol. 2016, no. 86, pp. 1–118, 2016.

[41] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic
side channels for untrusted operating systems,” in 2015 IEEE Symposium on
Security and Privacy. IEEE, 2015, pp. 640–656.

[42] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware
guard extension: Using sgx to conceal cache attacks,” in International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2017, pp. 3–24.

[43] “Sconify container image (standard edition),” https://sconedocs.github.io/
ee_sconify_image/, [Online; accessed 03-06-21].

[44] Qian Chen, R. Mehrotra, A. Dubeyy, S. Abdelwahed, and K. Rowland, “On
state of the art in virtual machine security,” in 2012 Proceedings of IEEE
Southeastcon, 2012, pp. 1–6.

[45] “Hypervisor,” https://www.vmware.com/topics/glossary/content/
hypervisor, [Online; accessed 26-03-2021].

[46] Z. Wang, C. Wu, M. Grace, and X. Jiang, “Isolating commodity hosted
hypervisors with hyperlock,” in Proceedings of the 7th ACM European
Conference on Computer Systems, ser. EuroSys ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 127–140. [Online]. Available:
https://doi-org.ludwig.lub.lu.se/10.1145/2168836.2168850

[47] D. Beserra, F. Oliveira, J. Araujo, F. Fernandes, A. Araújo, P. Endo, P. Ma-
ciel, and E. D. Moreno, “Performance evaluation of hypervisors for hpc ap-
plications,” in 2015 IEEE International Conference on Systems, Man, and
Cybernetics, 2015, pp. 846–851.

[48] S. R. Poojara, V. B. Ghule, M. N. Birje, and N. V. Dharwadkar, “Perfor-
mance analysis of linux container and hypervisor for application deployment
on clouds,” in 2018 International Conference on Computational Techniques,
Electronics and Mechanical Systems (CTEMS), 2018, pp. 24–29.

[49] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance overhead compar-
ison between hypervisor and container based virtualization,” in 2017 IEEE
31st International Conference on Advanced Information Networking and Ap-
plications (AINA), 2017, pp. 955–962.

[50] S.-A. Federico, B. Rodrigo, and L. Ben, “Security issues and
challenges for virtualization technologies.” ACM Computing Surveys
(CSUR), vol. 53, no. 2, pp. 1 – 37, 2020. [Online]. Available:
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?
direct=true&db=edscma&AN=edscma.3382190&site=eds-live&scope=site

References 49

[51] K. Kortchinsky, “Cloudburst: A vmware guest to host escape story,”
https://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/
BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf, 2009, [Online; access
22-04-21].

[52] S. Daniele and L. Emil, “Evolution of attacks, threat models, and solutions
for virtualized systems.” ACM Computing Surveys (CSUR), vol. 48, no. 3,
pp. 1 – 38, 2016.

[53] J. Wu, Z. Lei, S. Chen, and W. Shen, “An access control model for
preventing virtual machine escape attack,” Future Internet, vol. 9, no. 2,
2017. [Online]. Available: https://www.mdpi.com/1999-5903/9/2/20

[54] G. Ouffoué, A. M. Ortiz, A. R. Cavalli, W. Mallouli, J. Domingo-Ferrer,
D. Sánchez, and F. Zaidi, “Intrusion detection and attack tolerance for cloud
environments: The clarus approach,” in 2016 IEEE 36th International Con-
ference on Distributed Computing Systems Workshops (ICDCSW), 2016, pp.
61–66.

[55] A. Peppas, G. G. Xie, and C. Prince, “ferify: A virtual machine file protection
system against zero-day attacks,” 2020.

[56] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security. New York,
NY, USA: Association for Computing Machinery, 2012, p. 305–316. [Online].
Available: https://doi-org.ludwig.lub.lu.se/10.1145/2382196.2382230

[57] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication as a
threat to the guest os,” in Proceedings of the Fourth European Workshop
on System Security. New York, NY, USA: Association for Computing
Machinery, 2011. [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.
1145/1972551.1972552

[58] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in 2019 IEEE Symposium on Se-
curity and Privacy (SP), 2019, pp. 1–19.

[59] T. Kim and Y. Shin, “Poster: Mitigating memory sharing-based
side-channel attack by embedding random values in binary for cloud
environment,” in Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security. New York, NY, USA: Association
for Computing Machinery, 2020, p. 919–921. [Online]. Available: https:
//doi-org.ludwig.lub.lu.se/10.1145/3320269.3405444

[60] Y. Zhang and Y. Makris, “Hardware-based detection of spectre attacks: A
machine learning approach,” in 2020 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST), 2020, pp. 1–6.

[61] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoudhury,
“oo7: Low-overhead defense against spectre attacks via program analysis,”
2019.

50 References

[62] R. C. R. Condé, C. A. Maziero, and N. C. Will, “Using intel sgx to protect
authentication credentials in an untrusted operating system,” in 2018 IEEE
Symposium on Computers and Communications (ISCC), 2018, pp. 00 158–
00 163.

Converting Hardware to a Container Solution
and its Security Implication

GUSTAV STRÖMBERG
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

G
U

STA
V

 STR
Ö

M
B

ER
G

C
onverting H

ardw
are to a C

ontainer Solution and its Security Im
plication

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-844
http://www.eit.lth.se

