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Abstract

Machine learning as a field has expanded in an explosive manner, with
more companies interested in using the technology. One of these compa-
nies, Spiideo, uses Machine learning to automatically stream and record
sports, highlighting key events - all automatically without a cameraman.
However, these cameras have to undergo a lengthy calibration process
involving manual feature extraction. This work investigates the usage
of machine learning and computer vision to automate this work. In par-
ticular, both U-Net and DeepLab v3+ networks were trained on sets of
images and related data from previous feature extractions. From the
ML detected features, ridge detection and sub-pixel optimization was
used to remove outliers and for classification. The accuracy of the ML
and computer vision combination was compared to the manual feature
extraction, yielding similar results. The DeepLab v3+ network was
found to very accurately extract the intended features, leading to high
accuracy independent of camera position, camera angle or noise from
the stadium.

Keywords: Machine learning, computer vision, feature extraction, classification,
camera calibration, DeepLab, U-Net, ridge detection, sub-pixel optimization.
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Popular Science Summary

Teaching my computer to find the lines on a football field

The interest in sports is gigantic everywhere in the world, and the demand for
watching sports is increasing even more due to the Covid-19 pandemic. It does
not matter if it is watching professional teams, friends, your children or grandchil-
dren playing: watching games live is not always easy - mostly professionals can be
seen on TV!

Spiideo has one solution to this: streaming sports online without a camera man
by instead using “Artificial Intelligence”. This method teaches a computer to learn
human-like tasks. In this case, Spiideo trains a computer to act like a camera
man: e.g. following the ball during a football game and highlighting when goals
are scored. Their cameras do however, require a lengthy calibration to work as in-
tended. Currently, this calibration is done manually and is both quite tedious and
time consuming. One of the main steps of this process is to click and save points
on the outermost lines on the pitch (from an image) for each camera. One solu-
tion to this was explored in this project. In collaboration with Spiideo, I created a
method using artificial intelligence, to find, mark and save lines on a football field
- removing the need for manual work.

One problem during the project was how football fields and arenas can look very
different: some have running tracks close by, some have advertisements in the
arena and some even has extra lines on the pitch! One way to work around this
problem was removing these "bad" points by a few so-called "computer vision
algorithms". These are mathematical models which helped by finding points that
seemed out of place!

The project eventually found a model that works: accurately finding and sav-
ing the lines on a football pitch after removing any outliers. There were some
problems when lines were not clearly visible - in one case the entire pitch was
covered in snow! However, in most cases the method was very accurate!
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Chapter 1
Introduction

“Begin at the beginning," the
King said, very gravely, "and go
on till you come to the end:
then stop.”

Lewis Carroll,
Alice in Wonderland

1.1 Motivation

With the ever-growing field of machine learning becoming more apparent every
year, more companies see the possibilities of implementing and using the technol-
ogy. The advances in computing power have further advanced the practicability to
use ML networks on large data sets and for more applications. Due to the Covid-
19 pandemic, sports clubs are looking for new opportunities to work around the
economic losses [1] and engage with their following [2] while supporters seek ways
to follow their teams from home [3]. This applies from a professional level all the
way down to watching your children or grandchildren play. Spiideo facilitates this
process by streaming sports online through their services (both professional teams,
amateur and even youth). The Spiideo cameras do however, require a thorough
and manually executed calibration process. This thesis describes the development
of an automatized model with the intent to simplify or even fully remove manual
labour during this camera calibration process. The project was conducted in col-
laboration with Spiideo and executed from home due to the Covid-19 virus.

On a broad level, the Spiideo system is built around three main components;
4k video cameras, a cloud-based server and machine learning (ML) algorithms.
Currently, ML is mostly used to find the ball, players, recognizing when a goal is
scored or other events during a game. For teams, having recorded material has
shown to be a major contribution to successful growth on both an individual and
team level [4]. Furthermore, since the cameras record the entire pitch and uses
ML to follow the play, there is no need for a cameraman which in turn makes the
system easier to use.
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2 Introduction

1.2 Problem Description

Many of the AI-analysis features used in Spiideo’s sport analysis require that both
the exact position and orientation of the pitch in relation to the cameras are
known. Thus, every new installation goes through a lengthy calibration process
in which the positions of the cameras relative to the field are calculated based on
known objects in the image (the bounding lines and the intersections between the
halfway line and the central circle). Currently this calibration is done manually for
each camera which requires both time and effort. The calibration process starts by
manually extracting the features (selecting points on every line) and later changing
the camera parameters in iterations until a acceptable result is reached. Changes
in camera angle or position would require an entirely new calibration, starting with
feature extraction by manually selecting new points. This thesis tries to automatize
the feature extraction during the initial phases of the calibration process through
a combination of ML and computer vision algorithms.

1.3 Aim

The primary objective of this thesis project is fully automating feature extrac-
tion for the camera calibration process of Spiideo cameras. However, in doing so,
gaining understanding about ML and computer vision will be paramount for fu-
ture improvements. Furthermore, this thesis project investigates the possibilities
and issues when attempting to generalize the feature extraction process for differ-
ent camera angles, camera positions or drastically different pitches in relation to
weather, visibility, background noise etc.

1.4 Previous Work

For this project, previous work in each area was important. For the feature extrac-
tion, much previous work has been done through both ML and computer vision
algorithms.

Rethinking Atrous Convolution for Semantic Image Segmentation by Chen et. al.
[5] and DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs by Chen et. al. [6] both ex-
plain the DeepLab networks. The two individual papers successfully prove how
the DeepLab networks can accurately be used for semantic image segmentation.
Additionally, the first DeepLab system was state-of-the art in 2017, with the three
new versions performing even better. The papers were highly influential regarding
choosing a ML model for the feature extraction during this thesis.

Robust camera calibration for sport videos using court models by Farin et. al.
[7] discusses a robust calibration of camera parameters for different types of sport
courts. Furthermore, the study discusses some ways to extract lines and a way
to use combinatorial optimization from detected lines to find a sports court. The
approach used in the study inspired some key parts of both line extraction, opti-
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mization and classification for this thesis.

End-to-End Camera Calibration for Broadcast Videos by Sha et. al. [8] pro-
poses another feature extraction approach in sports for camera calibration, in
more challenging scenarios, using a different Semantic Segmentation technique
combined with homography to extract the features in the image.

1.5 Thesis Outline and Disposition

This thesis mostly describes and discusses the ML networks used, how computer
vision can be used to improve the feature-extraction accuracy and finally discusses
some future modifications or additions to the network.

The first step of the thesis project was to collect and label the data. The 4k-
resolution images were captured from old calibrations from different stadiums.
These images then required some pre-processing to run in a ML network.

The second step was to implement and train a ML network to find the lines on
the pitch. Note that only lines on the pitch are sought after, whereas detections
from the stadium or arena, background or from advertisements in proximity to
the pitch could interfere and lower the accuracy of the network.

The third step was using computer vision algorithms to remove outliers from the
ML detections by using ridge detection and sub-pixel optimization. When observ-
ing the currently manual calibrations, not many points from each line seem to be
required for the calibration to succeed. However, the points need to be on (or very
close to) the line and therefore cannot have any significant outliers.

The final step was to use the detected points and classify them depending on
which line they were a part of and save these classified points into data files to
later be used to choose the camera parameters (files with the same appearance as
the ones from manual feature extraction).

The approach used in this thesis project was using certain neural networks based
on the convolutional neural network (CNN): namely U-Net and DeepLab v3+.
These networks were chosen due to their capabilities to save information between
convolutions (U-Net) or accuracy in semantic segmentation (DeepLab v3+), both
helping decipher the intended features during this project [11].



4 Introduction

Disposition:
Chapter 2 introduces the reader to some of the core theory and concepts for the
ML networks and the different computer vision algorithms used. Additionally, a
short explanation of Spiideo’s current camera calibration process and feature ex-
traction is described.

Chapter 3 explains the methods used in each step to tackle the problem at
hand and gives an overview of the experimental setup for the thesis project.

Chapter 4 displays the results for different iterations of the ML networks, the
improvements made by using computer vision algorithms, and two examples of
the classification and output generation.

Chapter 5 discusses the difference between the ML network results, the addi-
tion of computer vision algorithms to remove outliers and the point classification
for generation of output files. Furthermore, the chapter discusses future modifica-
tions, additions and changes to the approach.

Chapter 6 concludes the thesis project with reflections from the entire work
process.

Appendix A: gives an overview of a football field to explain the used nomencla-
ture.

Appendix B: displays two large images from the ML training and validation
process.



Chapter 2
Background and Theory

“Never trust anything that can
think for itself if you can’t see
where it keeps its brain”

J.K. Rowling,
Harry Potter and the
Chamber of Secrets

2.1 Artificial Intelligence and Machine Learning

For this thesis project, the reader is assumed to have some prior basic knowledge
about AI and neural networks. Therefore, only the core of the Machine learning
(ML) networks used for the project will be introduced in this report. However,
the report will be written in a way, where even readers without much prior under-
standing can follow the results and discussion. In this section, the two main neural
networks (U-Net and DeepLab v3+) are explained after a brief introduction to the
Convolutional Neural Network and Autoencoder on which the two networks are
built upon.

2.1.1 Convolutional Neural Network

The Convolutional Neural Network (CNN), is one of the main network ar-
chitectures used in ML. The CNN network typically consists of an input layer, an
amount of hidden layers and an output layer. However, what separates the CNN
from other ML techniques is the usage of convolution layers. These layers act as
filters, finding certain specific features from the input (e.g. an image). By using a
larger amount of hidden layers and filters per layer, many different features can be
found and for different resolutions in the input. The filters can feature e.g. bright-
ness, color or edges, but also more complex features like an eye, a tire or a cat’s tail
[9]. Furthermore, the network architecture typically uses a so called "Rectified
linear unit" (ReLU) and a pooling layer between each convolution. ReLU is
a non-linear function that is typically used to simplify the values in a network by
removing negative values (set to zero) while keeping positives. See Figure 2.1 for

5



6 Background and Theory

the appearance of the ReLU function. The ReLU function is typically referred to
as an activation function, due to its nature of "activating" only positive features,
saving these to the next layer.

Figure 2.1: Figure showing the ReLU function. Note that the func-
tion is 0 for negative values and linear for positive values. Image
taken from [14].

Pooling is a function used to reduce the data complexity by combining data from
the output of a convolutional layer. Thus reducing the amount of parameters for
the next hidden layer stage. When using a 2D matrix input (e.g. an image), pool-
ing can use either the maximum from the outputs (max-pooling) or the average
of outputs from a rectangular neighborhood of perceptrons. This forces the out-
puts of the next stage to become less sensitive to small changes and typically also
down-samples the network to smaller dimensions (e.g. 256x256 to 64x64). For
a full example of a CNN network, see Figure 2.2 and note the input stage, the
hidden layers (convolution, ReLU and pooling) and output stage(s) [9], [10].

The training of a CNN typically starts by pre-processing input data to fit the
network, extracting features on which the network is supposed to find and finally
training on a large data set. Due to the nature of the CNN, the architecture is
very suitable for visual object detection, segmentation or classification [9], [12].
For different CNNs, different parameters will have different optimal values. The
two main parameters typically noted are Learning Rate (LR) and Batch Size.
LR controls the step size during training of a network and is typically found from
a trial-and-error approach. A smaller step size requires more updates before the
network reaches its ideal point whereas a large step size goes quicker with the
added risk of drastic updates leading to divergent or periodical behaviours. A
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Figure 2.2: Figure showing an example of a CNN network. Note the
convolutional, ReLU and pooling transformations of the input.
Image taken from [9].

smaller step size also has the additional risk of the network getting stuck in a local
minimum (for loss) and therefore not finding the global minimum. Depending on
the CNN model the LR will differ, thus requiring the trial-and-error approach to
find the optimal value (LR value typically around 0.1-0.0001). The batch size of
a network describes the division of a data set into smaller "batches". The network
is then trained on one batch at a time in iterations. The batch size is typically
correlated to the optimal learning rate, but there is no simple way to optimally
choose this parameter. Depending on the batch size, the network will be trained
on a different amount of iterations. This parameter impacts the network in both
a regularizational and computational way. A smaller batch size requires more it-
erations and more computational power, whilst having additional regularization
effects to prevent overfitting, where the data performs well on the training data
but worse for any new data. Smaller batches therefore mean that the gradient of
the cost function will be cheaper to calculate, but with the consequence of being
less accurate. [11], [13], [14].

2.1.2 Autoencoder

The autoencoder is specific type of neural network that attempts to reproduce
the input after a reduction and reconstruction process. See Figure 2.3 which
displays a simplified image of an autoencoder architecture and Figure 2.4 which
displays an example of an autoencoder with 3 hidden layers.

Note that typically an autoencoder has more than one hidden layer. The mid-
dle hidden layer (often called "code" or "bottleneck") always has fewer nodes
(perceptrons) than the input layer, whereas the output has the same amount of
nodes as the input (remember that the main idea is to replicate the input). The
first half of the network "encodes" the input to the bottleneck layer and the second
half "decodes" the information from the bottleneck layer to the output. Also note
that generally, autoencoders follow a symmetrical pattern in terms of the hidden
nodes in the encoder and decoder - sometimes called a "butterfly design". Similar
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Figure 2.3: The general autoencoder structure. Note that the en-
coder stage is from input to the bottleneck (called latent vector
in the image) and decoder stage goes from the bottleneck to
output. Image taken from [14].

Figure 2.4: The autoencoder structure (grey circles represent per-
ceptrons and arrows the direction of data flow). Image taken
from [14].
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to most ML networks, more complex data requires more complex hidden layers
[11], [15].

Using the autoencoder structure in combination with the CNN architecture, the
"Convolutional Autoencoder" is created. This architecture encodes the input
through convolutional steps, similar to the normal CNN, then decodes using "de-
convolution", which acts somewhat like the opposite of convolution, trying to
recreate the input [16].

2.1.3 U-Net

The U-Net network architecture, created to work with smaller training set, is a
type of CNN. The architecture takes an input image and (using convolutional and
pooling layers with ReLU as an activation function) runs both sub-sampling and
up-sampling in stages, with information being retained between down/up-sampling
pairs (skip connections), see Figure 2.5. The architecture looks quite similar to
the autoencoder, see Figure 2.4, but there are a few important differences. Mainly,
note that for typical autoencoders, there is a straight front-to-back direction from
input to output by first encoding then decoding the input. The U-Net instead
retains connections between each stage. In Figure 2.5, note these connections
marked as grey arrows. One consequence of these connections is that one cannot
use only half of the architecture (compare to only using the encoder or decoder
stage of an autoencoder) [17], [18].

2.1.4 DeepLab v3+

DeepLab is another architecture based on CNN. Instead of the typical convolution
layering, the architecture uses a method called "atrous convolution", which is a
type of convolution using upsampled filters. By combining the atrous convolution
with "bilinear interpolation" (a re-sampling technique in three dimensional images
to filter or map points), a full resolution feature map is recovered. The architecture
has been updated a few times, adding on improvements over the preceding version.
Version 3+ is the latest iterations of the architecture, using an added "decoding"
module to refine results further, making the architecture somewhat similar to the
autoencoder approach (having an encoder and a decoder stage). The image in
Figure 2.6 displays a simplified version of the DeepLab v3+ architecture and the
atrous convolution filter [5], [6], [19].

2.2 Computer Vision

The following section very briefly introduces the reader to the core concepts of the
two Computer Vision techniques used in the project: ridge detection and sub-pixel
optimization.
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Figure 2.5: The U-Net architecture. Note the connections between
each pooling stage to the respective up-convolution. Image
taken from [17].

Figure 2.6: The DeepLab v3+ model architecture. Note the atrous
convolution upscaling filter. Also note the encoder and decoder
stages. Image taken from [19]
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2.2.1 Ridge Detection

The first Computer vision technique used in this thesis project is based on ridge
detection. This method tries to automatically detect one dimensional features in
feature detection from an image. In mathematics, a ridge is defined as the point(s)
where a line or curvature has a local maximum. One of the ways to find ridges
are by running a grey scale image through Gaussian filters and then finding and
saving the local maximums [20], [21].

2.2.2 Sub-Pixel Optimization

Sub-pixel optimization is a mathematical model used to increase the resolution
of points in an image. The method is based on finding both the sub-pixel point
and its normal for chosen pixels. By comparing the normal and sub-pixel point-
coordinates of a set of points on a ridge response image, one could determine if
the points are from the same one ridge [22] - [26].

2.3 Current Camera Calibration

The current calibration of Spiideo cameras is done through manual steps. First,
an image from each camera is saved. Sequentially, for each image, feature ex-
traction of points for the bounding lines of the pitch (or using halfway line if
camera only sees half of the pitch) are marked manually and saved into a data file.
Combining these points, with knowledge about the size of the pitch, a recursive
trial-and-error approach is done to optimize the different camera parameters from
an approximated starting point. Specifically, removal of distortion is optimized
by straightening each line (from the saved points). Once the parameters seem
sufficient enough, the camera parameters are saved and the calibration is finished.

2.4 Additional Background

The reader is assumed to know the core nomenclature of a football field, but
Appendix A does give an overview of the main nomenclature used to describe the
different areas and lines on a football field in this thesis.
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Chapter 3
Methods

“Don’t always complain the way
isn’t there. If you can’t find the
way, create it.”

Israelmore Ayivor

3.1 Data and Image Pre-Processing

Prior to training the ML network, some pre-processing of the available data was
done. The first ML network, described in the next section, used images as input
for the training. These images were extracted from old calibrations of the Spi-
ideo cameras. The native resolution of these images was in 4k, but to reduce the
complexity and standardize images for training - each image was cut into smaller
images of equal size (128x128, 256x256 or 512x512 px).

Additionally, for each calibration image, text files with lists of the manually ex-
tracted features (points for each line on the pitch) were used to create labeled
images for the ML training. This labeling was made by making a grid of zeros
with the same size as the native image, then placing ones in the positions of (and
a set radius around) the lines created by connecting the points on each field-line.
Note that the halfway line is used as a bounding line during this thesis project due
to the cameras typically only seeing about half of the pitch. Furthermore, points
for the other lines in the image were manually extracted and combined with the
data file. The main reason behind this was forcing the network to find all the
lines on the pitch, and the data provided excluded lines from the penalty box, goal
box and central circle. Note that the two images of size 128x128 can be close to
identical even if one image is from the penalty box and one is from another line
in the same direction. This can be observed in Figure 3.1 where the left image is
from the penalty box, the center image is from the goal box and the right is from
the goal line. If this manual step was not made, the network could be trained on
close-to identical inputs, with very different labels.

13
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Figure 3.1: Three different image cutouts showing lines and grass
from three different parts of the pitch. Left is from penalty
box, center is from goal box, right is from goal line. Note the
similarities between the images in regards to position and angle
of the lines.

3.2 Line Detection Network

The first step of automatizing the calibration process was removing the manual
labour of feature extraction for every camera. Therefore, an initial ML network
was created with the intent of finding and separating the lines on the pitch (the
features) from everything else in the image. Following the pre-processing in the
preceding section, directories for training images, validation images, training labels
and validation images were created.

3.2.1 U-Net

The initial networks were based on the U-Net architecture. Initially, one image
from one stadium was cut into 50 different 128x128px images. These cut-outs were
then used to both train, validate and test the network. All the cut-outs used in
this initial network included lines from the pitch, forcing the network to recognize
the white lines from the grass. From this first network, some of the training pa-
rameters were experimented with to create a working environment with correctly
made labeling.

Sequentially, the U-Net network was expanded with more calibration images from
different stadiums or fields. The network was trained for a larger amount of epochs
and evaluated for different training parameters. Furthermore, cut-outs from the
parts of the calibration images with no appearing lines (e.g. the sky and the sta-
dium or stand) were introduced into the network to reduce the outputted false
positives (noise) from the stadium, the grass and other noise which the network
predicted as a line.

The parameters for each iteration of the U-Net network were noted down. To
test and compare the results, a new full 4k image, from a different stadium than
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the ones used for training and validation was tested on. This test read the 4k im-
age, cut it into the same size used in the network training, ran each image through
the network and saved the predicted output. By combining the saved image pre-
dictions, a fully sized 4k-resolution image was reproduced. By comparing this
predicted image between each iteration, the progression between U-Net iterations
was recorded. The final iterations used larger image cut-outs (256x256px).

For the final iterations of the U-Net networks, a more concrete and rigours test-
ing was done by using a set of 10 different 4k-resolution images and comparing
the resulting prediction to the label. This comparison resulted in a more reliable
prediction accuracy for the networks.

3.2.2 DeepLab v3+

Following the U-Net network experiments, new ML networks with the DeepLab
v3+ architecture were created following a similar approach. Due to the directories
of image cut-outs already existing from the previous steps, training of the first
DeepLab v3+ networks could start almost instantly by just changing the network
type in the code.

The initial DeepLab v3+ networks were trained on the same set of images as
the final U-Net networks and evaluated with the same testing set of images. Af-
terwards, the training parameters were adjusted and more images were introduced
due to the faster run time for the DeepLab v3+ network. Subsequently, new
DeepLab v3+ networks were trained for even larger cut-outs (512x512px). Fi-
nally, a few 5-hour training and validation sessions of a 512x512px DeepLab v3+
network were performed and evaluated.

3.3 Ridge Detection and Sub-Pixel Optimization

From the ML predicted line detection, computer vision algorithms were introduced
to further increase the accuracy of the predicted image.

First, all elongated Gaussian filters were run on a native 4k image from an old
calibration (this image was not used for training or validation for any of the ML
networks). After running the image through these filters, the detected ridges from
local maximums were extracted and observed. The same input image was then
run through the ML network. Afterwards, the detections from the ML network
were combined with the ridge detection to form a matrix, saving points the ML
network predicted with a high chance being on a line and simultaneously being
part of the set of detected ridges.

These chosen and filtered detections were then run through a sub-pixel algorithm,
finding more accurately exactly the center of each line segment and each detec-
tion’s normal. Following this, some outliers were removed by only saving sets of
points with both a similar normal and position in the image.
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3.4 Line Classification

Following the line-prediction and computer vision aid, a classification of the dif-
ferent lines was quickly demonstrated. This classification tried to break down the
detection into vectors for each of the different bounding lines of the pitch, similar
to the manual data from old calibrations. Due to lack of time, a ML network was
not finalized. Instead, the resulting image from sub-pixel optimization was broken
down into quadrants and more outliers were removed from the detections by com-
paring the numerical values of each point in the quadrants (for their normal and
coordinates). For each quadrant, the remaining points were saved into a vector.
Note how this created four vectors: one for each bounding line in the image (in the
ideal case). To find the intersections between the lines, all vectors then underwent
polynomial fitting. Afterwards, new points were automatically and evenly placed
along the four polynomials using the intersections with the other polynomials as
starting and end points. These new points were finally saved into four new vectors:
one for each line.

3.5 Generating Outputs

During creation of the labeling sets, the Spiideo data files were observed to follow
a specific pattern in respect to order of parameters. Figure 3.2 shows a short
version of such a file. Note that after the initial information about image size, the
rest of the file consists of points. Furthermore, the amount of dashes (-) indicates
if the value is the x or y coordinate. Values starting with 3 or 4 dashes indicate
the start of a new line. Figure 3.3 displays the realization of plotting the points
from such a data file. By using the vectors from the line classification step, data
files were generated to identically replicate the Spiideo data files. Hence, an input
image to the system outputs a new file containing evenly spaced points along each
of the four bounding lines of the pitch. Remember that the halfway line is used as
a bounding line during this project due to the cameras typically only seeing about
half of the pitch.

3.6 Experimental Setup

Due to the Covid-19 virus, the entire thesis project was executed from home,
using an Nvidia Geforce GTX 1050 Ti GPU. The code was written and executed
in MatLab.
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Figure 3.2: A (part of) text file from an old calibration process
indicating the values saved from the first step of manual feature
extraction. Note that only points and image size are saved.
Furthermore, note how the amount of dashes prior to an integer
value indicates if the value is and x or y coordinate (one dash
is for y and two for x). When three dashes are present, the x
value is the start of a line, whereas four dashes indicates the
first of the four saved lines.

Figure 3.3: An image plotting the points from one of the Spiideo
data files. The white lines are between the points. Note how
the points create the bounding lines of a pitch (two side lines,
the goal line and the halfway line).
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Chapter 4
Results

“However beautiful the strategy,
you should occasionally look at
the results.”

Winston Churchill

4.1 Line Detection Through Machine Learning

The following section displays the resulting images and the network accuracy dur-
ing training from different iterations of the ML networks. Additionally, the test
accuracy is displayed for the final iterations. Appendix A displays two images
saved from the training and validation process.

4.1.1 U-Net

Model, Validation and Testing accuracy

From Table 4.1, every other iteration of the U-Net network training is displayed.
Note the amount of images used for training, the training time and validation
accuracy. Additionally, observe the slight changes in parameters between the iter-
ations. Finally, U-Net 7 is the final iteration using 128x128px sized input images
and U-Net 9 is the final iteration using 256x256px input images. The validations
accuracy for U-Net 7 is 94.88% and for U-Net 9 it is 96.24%.

The total test accuracy for the final U-Net (U-Net 7 in Table 4.1) using 128x128
sized input image cut-outs on the test set was recorded at 91.85% .
The total test accuracy for the final U-Net (U-Net 9 in Table 4.1) using 256x256
sized input image cut-outs on the test set was recorded at 94.67%
Note that these test results are different to the validation accuracy in both cases.

Detections

Figure 4.1 and 4.2 display the network response to strictly using input images
where the camera is positioned from the side (which is the same camera position-

19
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Iteration Parameters
Number of
training imgs
(no. of arenas)

Time
(min)

Validation
accuracy

U-Net 1
Img 128x128px
LR: 2e-3
batch size: 128

Training: 40(1)
Validation: 4 (1) 25 78.42%

U-Net 3
Img 128x128px
LR: 2e-3
batch size: 16

Training: 150(1)
Validation: 40(1) 48 86.88%

U-Net 5
Img 128x128px
LR: 1e-3
batch size: 16

Training: 125(3)
Validation: 40(2) 73 91.28%

U-Net 7
Img 128x128px
LR: 1e-3
batch size: 16

Training: 600(6)
Validation: 120(2) 168 94.88%

U-Net 9
Img 256x256px
LR: 1e-3
batch size: 32

Training: 600(6)
Validation: 120(2) 346 96.24%

Table 4.1: Table showing the changes of some key variables, amount
of input images, training time and validation accuracy for the
progression of every other U-Net network iteration. Note that
LR is short for learning rate. For the amount of images used
for training: note that the first number indicates the amount of
cut-outs used in training, and the number within the parenthesis
indicates the amount of different arenas these are taken from
(e.g. 600 cut-outs from 6 different arenas = 100 cut-outs per
arena)
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Figure 4.1: Three sets of image pairs with inputted image on the
left and outputted line detection (white points) on the right.
Note that all these images are of the right half of the pitch.
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Figure 4.2: Three sets of image pairs with inputted image on the
left and outputted line detection (white points) on the right.
Note that all these images are of the left half of the pitch.
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Network Network type Training
time (min)

Validation
accuracy

DeepLab v3+, 256x256 px resnet-18 140 98.04%
DeepLab v3+, 256x256 px resnet-50 203 98.22%
DeepLab v3+, 512x512 px resnet-50 425 98.34%

Table 4.2: Table showing the validation accuracy and training time
for the two different DeepLab v3+ model types.

ing that the network was trained with).

Note in the two figures how most of the detections from the pitch itself are from
the lines. Also note the amount of detections from noise (e.g. the lines detected
from the stadium in the top right image in Figure 4.2.)

4.1.2 DeepLab v3+

Model, Validation and Testing accuracy

From Table 4.2, The two final DeepLab v3+ networks are displayed. These net-
works were trained on the same amount of images as the final U-Net networks,
while later iterations instead used 512x512px sized cut-outs. Note the difference
in time and accuracy between the models and to the U-Net network.

The total test accuracy when using the resnet-18 network on the test set was
recorded at 98.04 % .
The total test accuracy when using the resnet-50 network on the test set was
recorded at 98.34 % .
The test set used for these networks was the same as for the U-Net networks.

Detections

Figure 4.3 and 4.4 display line detection from different pitches, strictly using input
images where the camera is positioned from the side (which is the same camera
positioning that the network was trained with). Note that the camera angle differs
slightly between the images. Figure 4.5 displays a more zoomed-in result from the
DeepLab v3+ network: the result from one of the cut-outs during training. Note
the accuracy and similarity to the label.
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Figure 4.3: Three sets of image pairs with inputted image on the
left and outputted line detection (white points) on the right.
Note that all these images are of the right half of the pitch.
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Figure 4.4: Three sets of image pairs with inputted image on the
left and outputted line detection (white points) on the right.
Note that all these images are of the left half of the pitch.
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Figure 4.5: Four images depicting the DeepLab v3+ network re-
sponse on one of the input cut-outs. Top-left displays the input
cut-out. Bottom-left displays the label for the cut-out. Bottom-
right shows the pure network response and top-right overlays the
network response (red) on top of the input image (with a blue
tint to clarify the network response further.)



Results 27

4.1.3 Generalization

From the final U-Net and DeepLab v3+ networks, some images with vastly dif-
ferent camera positions, noise and line visibility were tested. In Figure 4.6 two
different camera positions are tested: from the side and from behind the goal.
Note how the DeepLab v3+ network has a much higher accuracy than the U-Net
network for both input images - with the U-Net network having very low accuracy
for the image with the camera positioned behind the goal (Figure 4.6, mid right).

In Figure 4.7, two different inputted images with (left) poor line visibility and
(right) white lines (noise) outside the pitch. Observe how the U-Net network finds
substantially more detections on the pitch for both images, while also finding many
detections from the background. Additionally, for the right input image, the U-
Net networks has much fewer detections from the running track outside the pitch.

In Figure 4.8, the network responses to having much noise on the pitch itself
(snow) are displayed. Note the difference between the amount of detections of
both lines and noise. In Figure 4.9, note the impact of additional lines on the
pitch.
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Figure 4.6: Six images displaying the points (white) from the U-Net
(2nd row) and DeepLab v3+ (3rd row) network detections from
input images (1st row) with different camera positions. Note
that the U-Net does not find any lines on the pitch when the
camera is positioned behind the goal while the DeepLab v3+
seems have similar accuracy independent on if the camera is
positioned behind the goal or from the side.
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Figure 4.7: Six images displaying the points (white) from the U-Net
(2nd row) and DeepLab v3+ (3rd row) network detections from
two different input images (1st row). Note that the DeepLab
v3+ network has very few detections for both images while the
U-Net network has more detections from both the pitch and
from the background.
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Figure 4.8: Three images displaying the input and detected lines
for the U-Net and DeepLab v3+ network when there is snow
on the pitch. Note the difference between finding many detec-
tions including lines and noise for the U-Net network to finding
few detections from either lines or noise in the DeepLab v3+
network.
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Figure 4.9: Images displaying ML network responses to the input
image having additional lines on the pitch itself
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4.2 Ridge Detection and Sub-Pixel Optimization

The following section displays a few images for both of the computer vision tech-
niques used to mainly remove outliers and save more accurate data.

An image and the resulting ridge detection are displayed in Figure 4.10. The
upper image in the figure displays the input and the lower image the ridge re-
sponse. Note that the algorithm is run on a "normal" input image, not an image
from the ML network.

In Figure 4.11 and 4.12, the sub-pixel optimization is shown. The bottom im-
age in Figure 4.11 displays how the optimization works. Note that the sub-pixel
algorithm uses a combination of the ML output and local maximums from the
ridge response. Figure 4.12 displays the usage of the sub-pixel optimization to
remove the worst outliers.

4.3 Line Classification and Output Generation

Figure 4.13 displays the line classification points (top) and the polynomial fitting
of these points (bottom). The different colors indicate that the points are from
different lines on the initial football field.

In Figure 4.14, 4.15 and 4.16, saved points from the earlier polynomial fitting
are displayed. Note in Figure 4.14 that the upper image shows the generated
points while the lower image is from an old calibration of the same football field.
Figure 4.15 displays another iteration of the full project model with the inputted
image (top), generated points (middle) and old manually extracted points (bot-
tom). Note that points for each line are saved in different vectors. Finally, Figure
4.16 displays the data file generated from the project and the old manually created
file for the same pitch.
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Figure 4.10: Two images showing the input(top) and ridge response
(bottom) when running the input through all the elongated
Gaussian filters. Note that the bottom image displays local
maximums.
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Figure 4.11: Two zoom-levels of the same image. The upper image
shows a football field with blue markings from the sub-pixel
optimizations plotted. The lower image is a zoomed in version
on one of the lines in the upper image. Note the red point
(which is the detection sub-pixel) and blue arrow (indicating
the normal of the detection point).
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Figure 4.12: Two images displaying remaining points after sub-
pixel optimization (top) and outlier removal (bottom). Note
the differences between the images.
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Figure 4.13: Upper: points saved for each line (different colors for
each line). Bottom: Polynomial fitting, 2nd deg, of the points
in the upper image.
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Figure 4.14: Two images showing both the saved points from the
project (top) and the manually saved points from the old cali-
bration (bottom). Note the similarities here.
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Figure 4.15: Three images showing the input image (top), the au-
tomatically generated output (middle) and manual calibration
(bottom). Note the similarity of the two lower images.
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Figure 4.16: Two text files both displaying image size and saved
points for two different pitches. Left: generated file. Right:
manually created file. Note the similarities. Also note that
integers (for the points) start with one dash if its the y-value
and two dashes if its the x-value. Additionally, three dashes
indicate a new line and four lines are used for the first of all the
lines

.
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Chapter 5
Discussion

“The aim of argument, or of
discussion, should not be
victory, but progress.”

Joseph Joubert

5.1 ML Networks

When observing Table 4.1, note how the accuracy increases steadily with a larger
data set. However, during training, a balance between down sampling the images
and computing time had to be found. Either information would be lost due to the
down sampling (giving more faulty detections) or the network would require larger
amounts of computational resources. This can also be noted in Table 4.1 when
comparing the training time between the larger-sized network to the smaller-sized
ones. Additionally, consider Figures B.1 and B.2 in Appendix B, where the accu-
racy increases with more epochs (longer training). In theory, the network would
reach a point where validation accuracy starts to decrease due to overtraining,
however that is not observable in these results from the training processes. Hence,
with more computational resources the network could be trained for longer (more
epochs) and with larger-scale images to lose less information, likely leading to
higher accuracy.

From Figures 4.1, 4.2 4.3 and 4.4, note that the DeepLab v3+ network outputted
better results than the U-Net network when trained the same data set (Trained on
600 cut-outs of size 128x128px from 6 different arenas and Validated on 120 cut-
outs from 2 different arenas.) Highest test accuracy for DeepLab v3+ was 98.22%
whereas the test accuracy for U-Net was 94.67%. Additionally, comparing Tables
4.1 and 4.2, training for the DeepLab v3+ network also ran faster and required less
computational power. Thus, larger images could be used for training, resulting in
the higher test accuracy of 98.34% when training the network on 512x512 sized
inputs.

When observing Figures 4.6, 4.7 and 4.8, note how images with more "noise"
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from e.g. snow, different camera positions, fences and other lines in close proxim-
ity to the pitch reduces the accuracy of the networks. Particularly, the DeepLab
v3+ network is having dramatically reduced accuracy when the lines in the image
are not clearly visible to the camera, see Figure 4.6. The U-Net network instead
is having difficulties with most noise, especially from the stadium, and has close
to zero true detections when the camera is positioned behind the goal, see Figures
4.6. However, the U-Net network does seem to find more true points on the figures
with poor line visibility than the DeepLab v3+ network, see Figure 4.7.

5.1.1 Generalization

Looking at Figure 4.2, 4.4 and 4.6, note how the line detection seems to work
with a similar accuracy for all images when using the DeepLab v3+ network. The
accuracy of the network appears to rely less on the camera angle and more on
how visible the lines in the image are, compare to Figure 4.7 where the angles are
similar to before, however the resulting accuracy is much lower. This likely means
that the DeepLab v3+ network works well for most camera angles and positions as
long as the lines are clearly visible. Even better results for the images from behind
the goal (and with very different camera angles from the used training data) could
be acquired by using more of these images during training. A larger data set with
more variation in terms of camera angles, camera positions and weather conditions
would increase the general accuracy for the network. For the U-Net network, the
resulting image seems to depend heavily on the camera position and amount of
noise. This could be due to the fact that the network could not handle very large
input images for training and much information was lost. Regarding noise, the U-
Net network seems to find more false positives from the background, see Figure 4.6.
However, for images with poor line visibility and running tracks, the network more
accurately finds detections on the pitch (but also more noise) than the DeepLab
v3+ network, see Figure 4.7. This could be due to the apparent lower threshold for
detections in the U-Net. Finding more points while also finding more noise could be
okay if false positives could be removed in a later stage. For a better performance,
larger parts of the 4k-resolution images (either by down-scaling or using larger
cuts) have to be trained on to retain more of the U-Net theoretical capabilities of
retaining information between convolutions. Furthermore, using more variety of
images would increase the generalization of the network for different angles and
camera positions.

5.2 Computer Vision Aid

In Figure 4.10, the local ridge-maximums after running the native image through
all elongated Gaussian filters are shown for a given input image. By using these
ridges in combination with the ML networks’ detected points from the lines; some
of the worst outliers could be removed. This can be observed in Figure 4.12 where
the saved points are combining results from the ML network and local maximums
of the ridges.
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By observing Figure 4.11, showing the resulting image after running the sub-
pixel optimization (blue) on an ML and ridge detection combination, one might
first not see anything special (top image). However, looking at the zoomed-in im-
age (bottom), the sub-pixel optimization algorithm is more clearly showing both
the normal and sub-pixel point. Figure 4.12 shows the same sub-pixel optimized
image, but before (top) and after (bottom) removal of all the smallest sequences
of points with a similar normal and coordinates. Using the normal and positions
of detected points seems to be a working strategy, however when removing more
of the sequences, some true positives were also lost. Therefore, a balance had to
be found where most of the outliers from noise were removed while still retaining
enough detection points for each of the four bounding lines (including the halfway
line). When observing the manual calibration data files (see Figure 3.2), only
around 5-10 points per line were saved. Therefore, choosing to remove more noise
with the consequence of losing detection points on the lines appears reasonable as
long as enough points remain to recreate the entire line. Figures 4.13 and 4.14
show the progression from the removal of outliers to final vectorization of the lines.
Note how only few segments of points (around 50 points in relatively close proxim-
ity with a similar normal) are enough to almost fully recreate the bounding lines
through polynomial fitting.

The key thing from the ridge detections was removing some of the outliers, however
this step seems unnecessary in comparison to how much more outliers the later
methods remove. The method does help in regards to reduce time of the sub-pixel
optimization. Since the optimization is run on every detected point saved from the
combination of the ML network and ridge detection, removing points early signif-
icantly reduces the run time and computing power required. However, using the
sub-pixel optimization more outliers are removed (including most of the outliers
that would be removed from the ridge detection).

5.3 Visual Effects

First, the visibility of the lines in the original image seems to be the most impact-
ful for the accuracy of the ML models (specifically the more accurate DeepLab
v3+ network) as previously discussed (Figure 4.6 and 4.7). Furthermore, since the
detected points from the ML model are the basis for the rest of the models, the
visibility of the lines are vital for the entire process to succeed. If the ML model
outputs very inaccurate results, there is no way to reproduce enough information
for successful classification of the different lines.

The main noise resulting in false detections being saved seems to come from either
the arena itself, the pitch, advertisements or the background. This can be seen
clearly in Figure 4.1 and 4.3, where notably all the extra detections are due to
these factors. Additionally, due to how the training was performed for the net-
works, false positives from pitches with additional lines around or on the pitch
are typically saved, see the right column of Figure 4.6 where the running track
is detected and Figure 4.9 where false positives from both the pitch and running
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track are saved.

Observing the visual impact of sub-pixel optimization and line classifications from
section 4.2 and 4.3, note how the image after sub-pixel generation (upper image
of Figure 4.12) still retains a very complete image of the pitch, with some out-
liers. When using the sub-pixel optimized points to classify the lines however, a
lot of true-positive data points are lost as well (Figure 4.13). A different approach
(maybe using a second ML model) to classify more of the true positive points
would more accurately depict the polynomial fitting - hence leading to more ac-
curate results for later calibration stages.

Comparing the generated data files from the system to the manually created files
acquired from the company, the similarities are striking (Figure 4.16). When sep-
arating the images into four parts, some manual labour was done to extract the
correct line. A more robust approach would be required here for the classification
step to be fully automatized independent on the input image. As it stands, manual
observations have to be made to separate the lines correctly. For an image with
more noise from lines, the classification becomes even harder due to these lines
fitting the criteria of having similar coordinates and normal.

5.4 Comparison to Manual Work

Looking at the bottom part of Figure 4.13 and 4.15 compared to the ML outputs
(Figure 4.1, 4.2, 4.3 and 4.4), note how the network finds more detections the
the amount of points chosen during manual calibration. Therefore, a more strict
threshold of the ML model can be used to only choose points which the network is
very certain is on a line. Furthermore, another way this can be done is by chang-
ing how strict the removal of points from sub-pixel optimization is, see Figure
4.12. Removing a larger percentage of points (only saving e.g. longest segment
for each direction or saving points which are even closer in terms of normal and
coordinates) would lead to more outliers being removed at the cost of saving less
true positives. As discussed however, this might not be a problem if enough true
points remain to recreate the lines.

When observing the ML predicted outputs, one should note the difference between
false negatives (not detecting a line) and false positives (detecting unwanted lines),
and how these affect the outcome of the entire project. With false negatives, line
segments are not detected by the network. However, for false positives, additional
points from other sources than the lines are detected and saved. As previously
stated, the manually saved points for previous calibrations do not typically have
more than 20 points per line. Therefore, the occurrence of false negatives might
not be concerning as long as there are other points saved on the line (preferably
spread out). This is following the same thought process as the previous discus-
sion. In the case of false positives, where additional points are saved from "noise",
the problem is far greater. These outlying points, if saved, will obviously create
problems when trying to estimate polynomials for each line during later stages of
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the calibration. One interesting remark arising from this train of thought is "how
many points are needed to get enough information on a line for the calibration?".
If the image can retain enough information for each line when removing all false
positives, the current calibration techniques following these results will suffice.

Compare the manually created data files (and their plotted points) with the gener-
ated ones in Figures 4.14, 4.15 and 4.16. Note resemblance between the generated
one and the manually created one, where the generated one even has more decimal
places, using the sub-pixel points. It does not, however, include the additional in-
tersections between the halfway line and the central circle which are saved in most
manually created data files used in old calibrations.

Spiideo could use the created process flow to automatically generate the informa-
tional data files of feature extraction (the bounding lines on a new pitch), hence
removing some of the currently manual labour at the start of the calibration pro-
cess for the cameras.

5.5 Future Prospects

For a project of this scale, time is often the limiting factor from testing every-
thing of interest. In this section some of these ideas for future improvements and
additions are stated.

• Automating the extraction of camera parameters. The natural next
step is using the results of this project to automatically extract the camera
parameters, hence making the entire calibration process automatized.

• Server-side coding. The code is currently written in MatLab locally on
a computer. An improvement to this would be writing the code to a server
(e.g. Amazon Sagemaker and Amazon AWS) in python, and letting the user
use the model from any computer, without having the code or ML network
downloaded locally.

• More robust classification of each line. To use the full method on a
large data set or any new data, a more robust and accurate classification is
vital for the final output generation.

• Using a larger ML network for line detection. There is a lot of old
calibrations that can be used to train a much larger ML network, which pos-
sibly would increase the accuracy even further. Thus making the subsequent
steps more accurate as well.

• User interface. One could create a more interactive calibration where the
user can e.g. observe the detected points (and change them manually if
needed), choose the threshold of outlier removal, line classification etc.

• In depth analysis of the removal of outliers. Understanding the effects
of outliers more accurately, and being able to remove enough of them while
retaining enough information about the lines would increase the model ac-
curacy for all the output steps in this project. An interesting question here
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is the balance of using more or less points from both the true detections and
noise - what is the optimal approach?

• Generalization of other sports. Adding on to the project results, one
could use more inputted training data from different sports to create a more
generalized network which works independently on which sport is observed.

• Camera calibration revamp. In this project, the models output true
detections from all of the real lines on a pitch (even penalty box, goal box).
However, currently the later camera calibration only uses the outermost
bounding lines. It would be of great interest to me personally to see if
there could be improvements made to the final parameter calibration by
using more of the detected lines from the other parts of the pitch as well.
Typically the penalty box has set dimensions while the length and width of
a football field can vary. Therefore, a camera calibration using the penalty
box would not require the additional information about pitch-size which is
currently required.



Chapter 6
Conclusions

“It is good to have an end to
journey toward; but it is the
journey that matters, in the
end.”

Ursula K. Le Guin,
The Left Hand of Darkness

6.1 From Experimental Data

The experimental data (4k images with correlated information from old calibra-
tions) was vital to create the training set for the ML networks. Having an even
larger data set would most likely increase the accuracy of the networks. However,
due to the fact that the manually created calibration files do not include some
of the lines (penalty box, center circle etc), one would have to manually create a
more complete label for more files - which would take a lot of time. Thus, another
approach could be to train a network to only find the outer lines for the pitch only.

6.2 Network Analysis

The ML networks work well for images with conditions where the lines are clearly
visible and with few disturbances. However, for less clear images where the lines
are more obstructed or unclear, the network typically outputs poor results with
non-salvageable detections. The DeepLab v3+ network ran faster than the U-Net
network and could therefore handle larger data sets, a larger amount of epochs
and even bigger input images. Consequently, the DeepLab v3+ network outputted
better results when finding the lines of the pitch.

6.3 Usage of Computer Vision

The usage of computer vision techniques were highly dependent on how well the
ML network predicted the lines. A poor prediction lead to many false positives
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from noise being saved for future calibrations. When the ML network performed
well however, the ridge detection and sub-pixel optimization helped reduce outliers
by comparing the positions and normal of nearby points. More work has to be
made to fully optimize the removal of outliers and more rigidly classify the point
detections depending on their respective line.

6.4 Observations

The ML network finds more lines (penalty box, goal box and center circle) than
what the manually created calibrations have used. This additional information is
lost during the final few stages to replicate the old data files. Using the additional
lines from e.g. the penalty box could be beneficial to the calibration of the camera
parameters in later stages.

6.5 Reflections

Understanding the problem was one of the key parts of this thesis project. How-
ever, due to the different approaches used - the problem was continuously evolving.
In the end, more time should have been put into classification of the individual
lines. When looking more closely at the manual calibration files, not many points
for each lines seem to be needed to fully calibrate the camera. For this thesis
project, most of the time was used to create and improve on the ML network
to extract all the lines from a pitch. From the detected points, classifying which
points are on each line would be vital to generate similar output files as for the
manual calibrations.

One of the main problems in doing the project from home was the lack of comput-
ing power, making training very slow. Much of the frustration during the project
was due to long training sessions crashing midway through. However, executing
this project was in many ways very interesting with much problem solving at every
turn and the core concepts used and the discussions on the way have been vital to
my future understanding of the field.

Comparing the results to the aim of the thesis, the feature extraction was suc-
cessfully automated in terms of finding the lines on a football field. However,
this thesis did not completely succeed in classifying each of the found lines in a
generalized way and therefore some additional work has to be made to completely
automate the entire feature extraction-to-file process. Hopefully this project can
be a good starting point for future endeavours. The other objectives were to gain
understanding of the ML field, computer vision techniques and also trying to gen-
eralize the feature extraction. In regards to the generalization, I concluded that
with more training on different angles and camera positions, the line detection
could work as good independent on where the camera is placed for new calibra-
tions. Additionally, I concluded that there already is some generalization for the
DeepLab v3+ network when the image is clear (visible lines) with good conditions
(lower amount of noise).
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Appendix A
Appendix A: Football Pitch Nomenclature

The following image in Figure A.1 displays an overview of the used nomenclature
of the different lines and parts of a football field.

The final nomenclature used is "bounding lines", which is a term describing the
outermost lines around the field (sidelines and goal line). Note that if only half
of the pitch is visible, one of the goal lines are not visible and the halfway line is
then used as a bounding line for that half of the pitch.

Figure A.1: Drawn schematic of a football field with used nomen-
clature indicated for sections and lines.
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Appendix B
Appendix B: ML-Training Process

Two typical examples of the training process is shown in Figures B.1 and B.2,
displaying the progression of training and validation accuracy/loss. Note that
the text is quite small from MatLab and is unfortunately not very readable in
the printed version. However, since mostly the appearance of the curves were
interesting for the thesis, one does not miss out on any vital information due to
the smaller text size.
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Figure B.1: Picture from the training process of one the DeepLab
v3+ networks, the blue line indicates the accuracy and orange
loss. Black points are for validations.
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Figure B.2: Picture from the training processof one the U-Net net-
works, the blue line indicates the accuracy and orange loss.
Black points are for validations.
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