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Abstract

The aim of this thesis was to develop a biologically inspired model for unsupervised
learning on visual data. A preprocessor inspired by the retina was developed, which
generated event-camera like data. This can be used as a low-cost alternative to
an event-camera. Further, a neuron model was developed which showed ability
to learn useful features from video data in combination with the preprocessor. A
number of aspects of the system was also explored to probe its properties.

A data set consisting of videos of moving 3D-printed objects was created.
This was used to compare the biological model in combination with a small LSTM
network against a much larger convolutional LSTM, in classifying the different
objects. This gave promising results, where the biological model performed as
well or better in most aspects, compared with the large convolutional LSTM.
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Popular Science Summary

English

To recognize things in the world is something we do effortlessly. We can recognize
a bird even if we have never seen that particular species or from that angle. For
computers, this is not that easy. To define everything that makes a bird, a bird,
in pixel values, is not a trivial task. Modern machine learning methods try to,
instead get the computer to learn all these different aspects by itself. This has
proven successful for many tasks, but requires large amounts of training data and
computational resources. These methods also have problems generalizing to new
situations.

The company IntuiCells Al technology was built on more general assumptions
and inspiration from neuroscience, to address such problems. This thesis builds on
IntuiCell technology, to see if this novel approach works in the field of computer
vision.

First, two videos were animated and rendered, to test out different aspects of
the model, as wells as to prove its promise. When this was completed a recording
setup, consisting of a box with controllable LEDs and a motorized slider, where
objects could be moved, was constructed. From the recordings, the model was
trained to recognize different objects. This gave promising results. The model
could recognize the different objects, even in some new situations. This shows a
first promising result, of this novel approach to computer vision.

Svenska

Att kéinna igen saker i viirlden dr nagot vi gor utan att ens fundera 6ver det. Aven
pa en ny plats, har vi inga problem att kéinna igen en fagel, trots att vi kanske
aldrig sett just den arten eller en fagel fran den vinkeln. For mjukvara déremot,
ar detta ett mycket svart problem. Téank dig att du ska definiera allt som gor en
fagel till en fagel och inte till exempel en insekt. Det &r inte helt 14tt, da faglar kan
ha sa manga olika firger former och dessutom ses fran olika vinklar och avstand.

Moderna metoder férscker fa program att sjéalva lara sig dessa definition genom
att tréna dem pa manga exempel. Detta har lyckats bra for vissa omraden, men
kraver mycket datorkraft och manga tréningsexempel. Metoderna har dessutom



problem med att generalisera till situationer de aldrig sett tidigare. Utav dessa an-
ledningar startades féretaget IntuiCell, som jobbar med artificiell intelligens, som
bygger mer pa det vi vet om den ménskliga hjarnan, &n de klassiska metoderna gor.
Detta arbete genomfordes i samarbete med IntuiCell, med som mal att anvinda
deras teknologi for att testa en helt ny metod for bildigenkénning.

Forst animerades och renderades tva traningsvideos, for att kunna utforska
olika aspekter av modellen, samt for att initial undersdka om modellen verkade
lovande. Nar detta var gjort konstruerades en inspelningslada, dér ljuset kunde
kontrolleras och olika objekt kunde koras i bilden. Fran inspelningarna tranades
modellen till att kinna igen de olika objekten. Detta gav lovande resultat. Mod-
ellen kunde kinna igen objekten och &ven till viss del i nya situationer. Detta
visar mdojligheten till en helt ny typ av artificiell intelligens, med anvéindning inom
datorseende.
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Chapter 1

Introduction

Object detection and tracking is a common problem in computer vision, with
applications in a wide range of automation applications. Both the autonomous
driving and video surveillance sectors are drivers in developments in this area [1].
The aim of this work is to test a novel approach to this problem using a bio-
mimicking approach of the mammalian visual system. It builds on the IntuiCell
artificial intelligence (AT) platform designed mainly for tactile and auditory data
and extends it to the field of visual data.

Even the best current approaches to object detection in dynamic environments
comes nowhere near what animals do effortlessly [2]. All current approaches also
use vast amounts of labeled data, are computationally demanding and have prob-
lems generalizing to new situations; problems that does not apply to human visual
perception. It is thus of great interest to investigate how well a system, built on
knowledge from neuroscience, can perform.

In this work, the first processing steps of the biological visual system will be
modeled. The resulting system will be explored to find its uses and properties, as
well as be tested against a pure classical artificial neural network.
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Chapter 2

Background and Theory

In this section the background literature on which this thesis is based will be
discussed. First, the biological visual system, which the model will be built on will
be explored. Then a discussion about event cameras, cameras that mimic retina
processing in hardware, will follow. Finally, a short history and summery of the
state-of-the-art methods in computer vision concludes this chapter.

2.1 IntuiCell

This master thesis was done in collaboration with IntuiCell, a company developing
Al-technology, which builds much more faithfully on the functionality of a real
brain compared to traditional AI. The company was founded by three neuroscience
researches, one professor having more than 30 years of experience in the field and
two postdoctoral researches.

2.2 The biological visual system

Visual information first enters the body through the eyes. Light travels thought
the lens, which focuses it at the back of the retina. The retina consists of a dense
network of neurons, with a layer of photosensitive cells at the back. The light
thus has to travel through the neurons to reach the photoreceptor cells. Behind
these cells there is a layer of pigmented epithelium cells, which stop the light from
traveling any further. The visual signal is propagated from the photoreceptor
cells, through the retinal neural network and into the brain via the optic nerve.
The optic nerve projects to neurons in the thalamus. Most of these neurons send
further projections to the visual cortex. An illustration of the system is shown in
Fig. 2.1.
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Figure 2.1: lllustration of the human visual pathway. (Source:
Adapted from [3])

2.2.1 The retina

The retina is the innermost tissue layer in the eye, which is responsible for trans-
forming incoming light into neural signals. It consists of a number of neuronal
layers, which can be divided into three main once, the photoreceptor layer, the
outer plexiform layer, and the inner plexiform layer [4]. The first layer consists of
light sensitive photoreceptor cells, of two types, rods and cones [4]. The cones are
sensitive to light of different wave lengths, giving color vision, while rods respond
to a broad range of wave lengths, but with higher sensitivity down to a single
photon [5]. Both types of photoreceptor cells convert incoming light into a change
in membrane voltage, which results in a decrease in the tonic glutamate release
in their axon terminals [5]. For simplicity, only rod cells will be modeled in this
thesis. The rod cells projects onto two types of cells in the second layer, horizontal
and bipolar cells [4]. An illustration of the cell connectivity is shown in Fig. 2.2.

Amacrine cell  Horizontal cell ~ Cone cell

Ganglion cell  Bipolar cell Pigment epithelium

Figure 2.2: lllustration of the vertebrate retina. (Source: Adapted
from [6])

The horizontal cells receive inputs from a number of photoreceptor cells. They
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also exchange information by the presence of gap junctions between the horizontal
cells [4]. These integrate their inputs relatively linearly [4]. This linear integration
of signals from a number of receptor cells, along with lateral signal propagation,
generates a spatio-temporal low pass filter of the visual information.

The bipolar cells can be divided into two general types, ON and OFF, which
respond to increments and decrements in light intensity respectively [5]. This is
done by comparing the difference between the inputs from projecting horizontal
and photoreceptor cells [4]. The bipolar cells then project onto ganglion cells
who’s axons form the optic nerve. The optic nerve projects to neurons in the
lateral geniculate nucleus (LGN), a thalamic relay nucleus [5].

This is, however, a very simplified model of the vertebrate retina. The retina
contains cells which can be divided into at least 50 distinct cell types, with a great
variety in morphology and function [7]. Recent studies [7] suggest that feature
extraction and preprocessing is performed already in the retina, which opposes
the old view of the retina as just a filter. In this work, the simplified model will
be used as an inspiration for a preprocessor.

2.2.2 Lateral geniculate nucleus

The lateral geniculate nucleus (LGN), is commonly represented as a simple relay
station to the cortex. This however, may again, be a great simplification. The LGN
has been implicated to perform diverse functions such as attention, eye movement
inhibition, signal amplification and contrast gain control [8]. In this work, both the
ganglion and LGN neurons will be simplified down to a neuron model originally
based on properties found in cuneate neurons, which are equivalent mechanosen-
sory information processing neurons in the tactile system (see section 2.3). The
cuneate neurons are feature extractors of tactile sensory information [9], [10].

2.2.3 Cortex

The LGN project mainly to the visual cortex. One view of the cortex’s function is
to find relationships between sensory input features and relate them to an internal
model of the world [11]. The cortex is highly interconnected and mainly consists of
two types of cells, principal cells and interneurons [11]|. Principal cells release the
excitatory neurotransmitter glutamate, while interneurons release the inhibitory
neurotransmitter GABA. This could be modeled by the same cuneate based neuron
model used for the LGN neurons, but connected in an interconnected network
where some neurons would output positive signals and others negative. This is,
however, outside the scope of this thesis, but could serve as inspiration for future
work.

2.3  The Cuneate nucleus

The inspiration of the neuron model used in this work came in part from in vivo
experiments done on the cuneate nucleus of cats [9], [10]. The cuneate nucleus is a
mammalian brain stem nucleus which receives afferent sensory input from the skin
on the upper body [12]. It has been found that cuneate neurons, despite having
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similar receptive fields, respond to different stimuli, indicating that some feature
extraction is done already in subcortical processing stages [9]. Further work has
shown that just a few (4-8) synapses dominate the inputs to cuneate neurons,
whereas the rest have relatively low weights [13].

2.4 Event cameras

There has been an effort to design cameras which already in hardware try to
mimic the workings of biological retinas, i.e. retinomorphic cameras. These are
often called event cameras or event-based vision sensors. They have been touted
to have many advantages compared to traditional cameras and show promise in
automation applications such as autonomous driving and quality control [14].

Instead of the traditional output of frames at a fixed frame rate like normal
cameras, event cameras only output a signal if a pixel detects a change in luminos-
ity above a threshold. This is done asynchronously between pixels, which allows
higher temporal resolution on the order of ps or lower, while reducing data trans-
fers by discarding information about statics. They also have high dynamic range
of around 140 dB and low power consumption [15]. Only the most high-end tradi-
tional cameras can reach a temporal resolution on the order of ps. The $175,000
Phantom v2512 is an example of one such camera. Even at that price, it only has
a dynamic range of 57.2dB, while consuming 230 W [16]. This can be compared
with the $5700 Davids 346, which has a similar latency, but a dynamic range of
120dB and a power consumption of 140 mW [15], [17].

Due to the IntuiCell model’s sensitivity to spatiotemporal dynamics, along
with event camera’s many advantages, they seem like a good fit for this project.
However, they are still in their infancy and few commercial cameras exists and even
fewer with software support and pretuning. Because of this, along with the lower
price of a traditional camera, it was decided that the functions of the retina would
be implemented in software with a traditional camera as a sensor, transforming
the frame based data into event camera style data.

2.5 Traditional methods

There are a great variety of methods for object detection in video data. Early
methods used handcrafted feature detection, which was paired with shallow neural
networks. These suffered from poor accuracy and low robustness to noise [18].

With the development of deep learning came new approaches. Early develop-
ment here took static image classifiers and used them frame by frame, creating a
vector of features in time. Then a second neural net was trained on these feature
vectors. This suffered from two prominent problems, unnecessary computational
load and inability to cope with real-world situations such as motion blur, light and
contextual inconsistencies [1].

A number of modern methods address these problems. Automatic feature
extraction can be incorporated into the networks using deep networks. Recurrent
neural network, such as long short-term memory (LSTM), is another approach
which allows for memory in the network to be able to find spatiotemporal patterns.
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Further, highly specialized architectures has shown great promise [1]. For both
detection and segmentation i.e. localization of objects in a frame, all current state-
of-the-art methods use deep convolutional networks (DCNN) [19]. They can be
divided into two classes, single- and two-stage. Single-stage does both segmen-
tation and classification in one network. Two-stage first uses a region proposal
method and then classification by a convolutional neural network (CNN). Two-
stage methods have higher accuracy, while single-stage are less computationally
demanding. Mask R-CNN is a prominent two-stage network, while You Only Look
Once (YOLO) is a well-known single stage method [19].

The technical field is both wide and rapidly developing. There will, thus, not
be room to go into details in all methods, but due to the fact that all modern
methods are built on DCNNs, they have some common drawbacks. They need
large amounts of labeled training data, which can both be laborious and expensive
to gather [20]. Training more complex networks also require large amount of
computational power. The balance between overfitting and underfitting is a big
problem in all approaches to both classification and regression problems [21].
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Chapter 3

Methods

This chapter will first look at the model of the visual system. It will then go into
the details of a classical neural network, which was used as a comparison to the
visual system model. The chapter continues with the methods of data generation.
Finally, the experiments conducted to test the models will be explained, which
concludes this chapter.

3.1 Model of the biological visual system

The processing system consisted of a retina inspired preprocessor which trans-
form video input into event camera like data, i.e. only information about changes.
Modeled neurons received inputs from a number of pixels in the output of the
preprocessor. These connections were called afferent synapses and the set of con-
nections, to one neuron, the receptive field. Their initial weights (seed weights)
were randomly distributed, but were changed during training by a model of heb-
bian learning. The inputs to the neurons were processed to mimic the response of
biological neurons, and the resulting membrane potential was used as an output.
A high-level diagram of the system can be seen in 3.1.

Membrane
Neurons .
potentials

Video stream _"i : W~
Preprocessor —O—) ’_\j‘\_y
LO—

Figure 3.1: High-level diagram of the visual system model.
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3.1.1 Retina inspired preprocessor

Convolution of video and W Video
Insert at W  Rectangle around (x, y, t)
.y 1) z
© | o 2h
l Element wise multiplication
2a
=
- Element at
(x, y.t-a) Output
. Insert at
. Video — B -8 Difference B L]
y [
| Element at
N v 1

bpoeeoee o

Figure 3.2: Diagram of the preprocessor, which took the convolution
of an input video with the weight W and then for each element
computed the difference between this and an element from the
original video at the corresponding spatial position, (z,y), but
at the next time point, t. The blocks represent video data as
three-dimensional arrays, where two were spatial (x and y) and
was temporal ().

To mimic the visual processing in the human retina, a preprocessor was devel-
oped. The purpose for this was to highlight the dynamics in input data, ampli-
fying changes and excluding statics. It first transformed the video into a three-
dimensional array, with two spatial dimensions and one temporal. Then a 3D-
convolution of this array with a 3D-array of weights was computed. The weights
could be tuned to give different emphasis on temporal or spatial changes. The dif-
ference of each pixel in this convoluted array and the corresponding pixel in space
in the original video array was calculated. For a pixel (z,y,t) in the convoluted
array, C', with a weight array of size 2a¢ in the time dimension and original video
array V, the difference calculation was given by;

Oa:,y,t - Cx,y,t—a - Vx,y,t (31)

where, O was the resulting output array. The time ¢t — a was used for the
convoluted array to compare the video with a low passed version of the past, to
find changes. If the same time point had been used for both arrays, the changes
would have been excluded instead.

This, thus, calculated the difference of each pixel in the video with the mean
of its neighboring pixels in time and space. This is similar to comparing each pixel
to a low pass filtered version of its surroundings, but could be weighted differently
for different distances and dimensions.

A schematic of this process can be seen in Fig. 3.2, which illustrates the
convolution on the upper row and then the subtraction calculations below that.
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The blocks represent the 3D-arrays, where x and y were the spatial dimensions
and t was the temporal dimension.

3.1.2 Neuron model

The neuron model was based on the electrochemical properties of biological neu-
rons. The aim was to capture the information processing and learning functions of
neurons, while being as simple as possible, to limit computational resource needs
[22].

The model was a simplified version of the method described in [10]. Instead
of three ion channels, it only used one for Ca*", but tried to capture the voltage
dynamics of all of the ion-channels.

The input activity was calculated as the sum of synaptic inputs times their
weights. This was multiplied by a scalar called the accumulator, meant to represent
the amount of available ions around the cell. The accumulator was charged by
Ca?" outflow and discharged by Ca?" inflow. The input activity A, to a neuron,
was thus calculated by:

A= (Z Wy - am,y> a (3.2)

where, a, , was the pixel value at position (z,y) in a frame after preprocessing,

W,y was the corresponding synaptic weight and o was the accumulator value.

With the inputs (F) and weights (W) as matrices, the first part of this calculation

is also illustrated graphically in Fig. 3.3. For the full calculation, the sum of
F ® W times a would also have to be computed.

Frame — F Synapse weights — W Fow

.-
LIS,

Ea i

o

-

Figure 3.3: Graphical illustration of the calculation of activity in
each synapse for a frame, F', and synapse weights, W.

From the input activity, the Ca®" inflow was modeled by a RC-circuit de-
scribed by two equations. The first described the resulting membrane potential
change, (V1);
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1—dt dt
vt (R A e (33)
T

T

where, 7 was a time constant, dt was the time step, ¢ was the time and ¢ was
the iteration step. The Ca®" current, Ica2+, was then given by;

V
Ica2+ - E (34)
where, R was a membrane resistance constant.
The voltage change due to outflow of Ca®" was modeled by a second RC-
circuit. This was meant to represent the process of ion-channel and ion-pump

recruitment processes. It was described by the equation;

1—dt dt
VZ= V2L + () e tT (3.5)

T T

Post spike generation, an after-spike-hyperpolarization (AHP) was modeled
by;

AHP = fICa2+,in - fICa2+,out7 if /ICa2+,in - /ICa2+,0ut <0 (36)

0, otherwise

The final membrane potential (V,,,) was given by;

Vin =A+ I+ + AHP (3.7)

3.1.3 Learning

The learning protocol was adapted from the methods described in [23]. The learn-
ing was based on two parts. First, a threshold was calculated. The membrane
potential was then subtracted by this threshold, to normalize it against baseline
activity. Secondly, the activity in each synapse was compared with the whole neu-
ron’s membrane potential and adjusted based on how closely they followed each
other.

Threshold

The threshold, T', was set by the mean membrane potential over a time window,
times a gain function, used to control the learning rate based on the mean of the
synaptic weights. The threshold was thus given by;

T =V gr(W) (3.8)

where V,,, was the mean activity for some time window and g7 (W) was a gain
function, used to specify a set point for the mean of the synaptic weights, W. The
gr(W) used, was a two sloped linear function, defined by the equation;
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ki W1 —k - W), ifW<W

- . M 3.9
ey WA (L—ky - W), W >W (3.9)

gr(W) = {

where the set point, W~ = 0.10, and the slopes, k; = 0.4 and ko = 1.2, giving
the line seen in Fig. 3.4a.

Threshold gain function Learning gain function
w00 —0
2.00 |
0.75
175
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8 150 - 8 050
125 0.25
1.00
: i ! s ! 0,00 & i : ; =——
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Mean W Mean W
(a) Gain function gr, used to set polarity (b) Gain function g;, for learning, to limit
threshold. weight growth.

Figure 3.4: Gain functions.

Weight change

Learning signal

-1.0

. . . |
0.0 2.5 5.0 7.5 10.0
Time

Figure 3.5: Learning signal in yellow, with fill indicating positive
(green) or negative (red) dW, calculated from V;,, — T in blue
and a synaptic input in red.

The idea of the learning protocol was to increase the weights of synapses, whose ac-
tivity followed the membrane potential. This would increase the weight of synapses
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with correlated inputs, which drove the neuron’s membrane potential. The weight
change, dW; ; for a synapse (i,j), was given by;

dWij = Vin = T) - Aij - t(Wi ;) (3.10)

1

a(Wig) =1~ < S, o) (3.11)

where ¢;(W; ;) was a gain function. As seen in Fig. 3.4b, it was an inverse
sigmoid function, which was used to keep weights bounded. When a weight ap-
proached 1 the gain would approach 0.

An example illustration of a learning signal without g;, with a sinusoidal V,,,
T = 0.5 and A; ; as the absolute of a decreasing sinusoidal with a small phase shift
from V,,,, can be seen in Fig. 3.5. The green areas show the positive integral of the
learning signal, while the red show the negative. This illustrates the importance
of the threshold, which set how closely a synapse’s activity had to follow V,,, to be
potentiated.

The weights were not instantly updated, but instead, the mean of dW for a
time window was added to the current weight each time step.

A diagram over the whole visual system model is shown in Fig. 3.6.

Frame from video Preprocessed frame

Membrane potential

2
£
3

‘e )
|
Mean Vi,

ﬁa}
fT

Learning
(Vi - T)-Axy

Preprocessor

R —1

—v,

Figure 3.6: Diagram over the whole visual system model. To the
left, a frame from a training video is shown. The video feed
is then shown being fed through the preprocessor, generating
an event camera style "frame". The blue arrows, from this,
indicate connections between a pixel and the neuron, with the
widths representing different synapse weights. The neuron block
represents the input processing, generating a membrane poten-
tial. Below this, the different parts of the learning mechanism
are represented.
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3.2 Classical neural networks

Classical neural networks were used for two reasons. First, a LSTM was used to
classify neuron outputs. Any classifier could have been used here, but a LSTM
was chosen for its ease of use with multi variable time series classification.
Secondly, a convolutional LSTM (ConvLSTM) was used to compare the results
of the neuron model with a more traditional ANN structure.
Accuracy was used to compare the different methods. According to ISO 5725,
accuracy is defined as,

TP +TN
TP+TN+ FP+FN

where, TP = true positive, TN = true negative, FP = false positive and
FN = false negative [24].

Accuracy = (3.12)

3.2.1 LSTM classifier

The LSTM classifier consisted of a four layer structure as shown in Fig. 3.7.
First, a masking layer was used for the network to be able to handle different
length inputs in the same batch. Then a LSTM layer was used, because it can
find relationships at different time scales. Next, a dropout layer was added to
counteract overfitting. Finally, a five unit dense layer, with softmax, was used as
the output layer. The resulting network had 3493 parameters.

input: | [(None, 994, 9)]
InputLayer
output: | [(None, 994, 9)]
. input: | (None, 994, 9)
Masking
output: | (None, 994, 9)
o . input: | (None, 994, 9)
Bidirectional(LSTM)
output: (None, 32)
input: | (None, 32)
Dropout
output: | (None, 32)
input: | (None, 32)
Dense

output: | (None, 5)

Figure 3.7: Diagram over LSTM classifier structure.
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3.2.2 Convolutional LSTM

A [ input: | [(None, 100, 6, 64, 1] |
|‘output: | [(None, 100, 64, 64, 1] |

input: | (None, 100, 64, 64, 1)

ConvLSTM2D
output: | (None, 62, 62, 64)

Dropout (None, 62, 62, 64)
roren (None, 62, 62, 64)

input: | (None, 62, 62, 64)
Flatton | 2P |
atten (None, 246016)

input:_| (None, 246016)
output: | (None, 256)
(None, 256)

(None, 256)

input: | (None, 256)
Donso |21 |
%0 [output: | (None, 5)

(a) Diagram

1) convLsTH2D

. Dropout . Flatten
. Dense

(b) Illustration

Figure 3.8: Diagram and illustration of the eight layer ConvLSTM

structure.

[ input: [ [(None, 100, 64, 64, 1)] |
|‘output: | [(None, 100, 64, 64, 1] |

|. u

input: | (None, 100, 64, 64, 1)

ConvLSTM2D
output: | (None, 62, 62, 64)

Dropout (None, 62, 62, 64)
ropon (None, 62, 62, 64)

(None, 62, 62, 64)
(None, 246016)

input:_| (None, 246016)
Dense
output: | (None, 512)

input: | (None, 512)
Donse | 2P |
onee (None, 256)

Dropout (None, 256)
(None, 256)

(None, 256)
(None, 5)

(a) Diagram

@ ConvLSTM2D . Dropout
. Flatten . Dense

(b) Illustration

Figure 3.9: Diagram and illustration of the eight layer ConvLSTM
structure.

A convolutional LSTM was used to classify the videos directly. Two different
versions were implemented, one with six layers and one with eight layers. Both of
these had the same initial structure. First, a convolutional LSTM layer was used,
for its ability to find spatio-temporal patterns. Then a flatten layer was used to
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re-dimension the inputs to one dimensional vectors. After this, two dense layers
were used for the six layer version and three dense layers for the eight layer version.
Between each of the neural layers, there were a dropout layer as well.

The six layer network had 63,131,653 parameters, while the eight layer network
had 126,113,315 parameters. These were large models compared with the LSTM
classifier, but the number of parameters were in the same order of magnitude as
state-of-the-art models such as the 60 million parameters YOLOv4 model [25].
Illustrations and diagrams of the two networks can be seen in Figs. 3.8 and 3.9,
for the six and eight layer networks, respectively.

3.3 Data set generation

Two types of video data was used in this project. First, rendered videos were used.
After proving some success of the model, a hardware set-up was constructed, which
was used to record videos.

3.3.1 Video renderings

Videos were rendered in Blender, a free and open source modeling and rendering
software, to be able to test the model during implementation and to prove some
promise of the model before building a hardware recording setup. Two simple
videos were created to see if the model could be trained to pick up both common
and different features from these. Both videos were 4s clips of a swinging pen-
dulum. The only two differences between the videos were the swinging objects,
which was a cube in one video and a sphere in the other, and the texture of the
suspension rods. One frame from each video can be seen in Fig. 3.10.

(a) Sphere (b) Cube

Figure 3.10: Frames from two training videos rendered in Blender.
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3.3.2 Recording setup

To be able to create training videos of moving objects in a controlled environment,
a hardware setup was designed and built. It was decided that in this setup we
should be able to control the light intensity and direction, move an object or
camera and induce controlled vibration of the camera. The recording setup was
designed in SolidWorks, a computer-aided design (CAD) software. A rendering of
the base assembly, without a cover and LEDs, can be seen in Fig. 3.11.

Figure 3.11: Rendering of CAD design of recording system, without
cover and LEDs.

The baseplate, seen in black in the rendering, was machined out of 10 mm
thick brass, as a frame for all components as well as a dampener, to limit unwanted
vibrations. The camera mount was designed to be turnable in increments of 16°,
by a crown gear mechanism, as seen in Fig. 3.12.

The camera mount also had a mounting point for a vibration motor, which
can be seen in the figure as the pin and holes behind the camera on the upper
part.
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Figure 3.12: Camera mount consisting of two parts to be able to
adjust direction in increments of 16°.

\]7+12V

vce IN 4
INT N 3
IN2
I
I
T 1kQ
L +—
ARDUINO
7 UNOT3 AREF|
4 Q Res
—ls Qs[— liorer DI
s Qsf- 4RESET  pwymp11f
33v PWM D10
la Q4 Y M D9f A
JGND Dsk N
—I3 Q GND
4 Vin b7k
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440 PWM D5 -
—i Q1 . ﬁ% D4
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Figure 3.13: Wiring diagram of Arduino controlling LED intensity,
motor controller and monitoring end stop switch. For simplicity,
only one out of two end stop switch circuits and one out of three
LED circuits are shown.

The camera used was a Raspberry Pi Camera Module v2 [26]. It was chosen
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for its low price of $25 and ease of use. It had a resolution of 720p at 60 frames/s
[26]. To be able to accurately move objects, for the model to be trained on, a
linear actuator, consisting of a stepper motor and a threaded rod was used. This
was controlled by an Adafruit featherwing motor controller, marked as pcontroller
in the diagram in Fig. 3.13. The motor controller in turn was connected to an
Arduino. The Arduino also controlled the intensity of three LED-strips, placed
in the cover box, by power width modulation control of the gate voltage of one
MOSFET per strip. This can be seen as the right most circuit in the diagram.
The LED-strips were placed, one on each width of the cover and one behind the
camera facing the actuator. The right and center LED-strips are shown in Fig.
3.14 and marked as 9.

The Arduino had one additional purpose, to receive inputs from one micro
switch at each end of the actuator, stopping the motor before it would run into
the frame. This was also used to zero the position of the object. This part of the
circuit can be seen in the center above the Arduino in the diagram.

Five different objects in geometrical shapes were 3D-printed to be used as
stimuli, along with a mount for attaching these to the actuator carriage. The
hardware setup, with the stimuli placed in the center and the actuator carriage
along with the object mount in the back, can be seen in Fig. 3.14

3.3.3 Recording protocol

With this setup, four light conditions and five speeds were chosen, as seen in table
3.1. The light conditions were named, 1, r, Ic and lcr, where the letters stand for
which of the LED-strips were turned on during the recording. Here | stands for
left, r for right and c for center.

For all videos the stimulus was recorded moving from one end of the slider
to the other and back again. Four different sets of recordings were done. In the
first, called the fixed parameter set, 10 videos for each of the stimuli were recorded
at light condition lc and a speed of 3.27cm/s. These were used to validate the
robustness of the model against real-time noises.

In the second set, called the varying speed video set, five videos were recorded
at each of the five speeds for each of the stimuli. This was used to explore the
response of the model to a varying parameter, as well as to see if the responses
were similar enough to be able to classify the stimuli from the neuron outputs.

For the third video set, called the varying light video set, five videos were
recorded at each of the five light conditions, with the torus as stimuli, traveling at
a speed of 3.27 cm/s. This was used to test the robustness of the model to different
light conditions.

The final video set was only used to test the classification accuracy of the
neuron outputs with a LSTM classifier. It consisted of one video for every given
sensing parameter (speed and light condition) combination for each of the stimuli.
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Table 3.1: Chosen parameter settings for data recordings. For light
conditions, the letters indicate which LED/LEDs were lit, where
[, ¢, and r corresponds to left, center and right LEDs respec-

tively.
Speed cm/s : 1.24 | 1.80 | 1.89 | 3.27 | 4.00 | 4.50
Light condition: | | r lc ler - -

A T R

Figure 3.14: Image of the five stimuli in the recording setup. 1
- sphere, 2 - pentagonal prism, 3 - cube, 4 - octahedron, 5 -
sphere, 6 - actuator carriage, 7 - actuator, 8 - camera on mount
and 9 - LEDs.

3.4 Model experiments

Initially, the model was tested on the rendered data to determine the potential
of the model, before constructing a recording set-up. First, the effect of different
synaptic weights, along with the shapes and densities of connected synapses, were
explored. Then the effect of added noise to the neuron output and learning was
investigated.

3.4.1 Experiments with the rendered video data

Effect of different synapses and their weights

The first aspect of the model that was explored, was the effect of different initial
synaptic weights, called seed weights. The neurons were only connected to a
subset of the pixels in the videos due to computational constraints. The set of
connected synapses was called the receptive field. A non connection between a
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pixel and a neuron was modeled as a synaptic weight of 0 and was excluded from
any computations. The seed weights were created by giving a number of synapses
a random value. These values were taken from a log-normal distribution with
# =0 and o = 0.2 and scaled by dividing them by 8.

Firsts, the model was tested to see that the same seed weights and receptive
field with the same input generated the same weight change. This was done by
giving six neurons the same receptive fields and seed weights and training them
on 200 repetitions of each of the two rendered videos.

Then the same was done, but with different seed weights, to see if different
weights, but the same receptive field, would generate different learning outcomes.
A third variation of this was tested, were the neurons had the same seed weights
and shape of the receptive field, but shifted to different positions. This was done
to prove that the learning was dependent on the inputs and not dominated by the
seed weights.

The effect of receptive field density was also explored. 12 neurons with 400
randomly selected synapses from within a circle, with increasing radius from 4 to
48 pixels, were trained for both 200 and 400 repetitions of the rendered videos.
For the first two neurons, 400 synapses could not fit within the circle so these only
had 45 and 193 synapses respectively.

From this, a method for capturing the entire frame by a number of neurons
was developed and tested. The frame was divided into a grid of six rectangles, one
per neuron, and each neuron were given 1200 random synapses from pixels in its
corresponding area.

Effect of noise

Two experiments were conducted to test the model’s robustness to noise. First,
a neuron was trained for 200 repetitions of each of the rendered videos and then
the videos plus different levels of Gaussian noise was inputted to the neuron.
The second experiment used six neurons with the same receptive field and seed
weights. These were trained again for 200 repetitions of the videos, but with
different amounts of Gaussian noise added, from o = 0 to ¢ = 0.5.

Effect of preprocessor

To test the effect of the preprocessor, one set of 12 neurons were trained on the
raw videos and one set on preprocessed videos for 600 repetitions.

3.4.2 Evaluation with experimental data

First, 12 neurons were trained on one set of recorded videos of each of the five
stimuli, at a speed of 3.27m/s and light condition lc. The receptive fields were
uniformly, randomly distributed in a square area for half the neurons and a circular
area for the other half. This was done to not bias the neurons to find features
constrained by only one type of border of the receptive fields.

The outputs of these neurons were then used for a number of experiments.
First, the variance in response of one of these neurons for inputs of videos of
the same stimulus and recording setting was compared to inputs of videos of the
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different stimuli, but still with the same recording parameters. This was also
compared with the response to inputs with videos of the same stimuli, but in
different light conditions. Finally, this was compared to neuron outputs from
inputs with videos of the same stimuli but traveling at the different speeds. All of
this was also done with the same neuron, but before it had been trained.

A second way of doing these comparisons was used. Here, the LSTM classifier
(see section 3.2.1) was trained to first classify the stimulus from the outputs of the
same 12 neurons, both before and after training, and the fixed parameter video
set as inputs. This classifier was tested with the outputs of the neurons with the
varying light condition video set and the varying speed video set. This was done
to see how well the model in combination with the LSTM could generalize to new
situations. The LSTM classifier was also trained to classify the outputs with the
varying speeds video sets as inputs, as well as with all the videos as inputs.

The same classifications were also performed with the ConvLSTM (see section
3.2.2) directly on the raw videos.
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Chapter 4

Results

4.1 Results from rendered input videos

4.1.1 Impact of different receptive fields and seed weights

Because the model is deterministic, the same seed weights and inputs should give
the same learning output every run of the model, which also seems to be the case.
In Fig. 4.1 the initial and final weights for six neurons can be seen as heatmaps,
where each pixel represents a weight corresponding to the same pixel in an input
video. Darker pixels represent a higher weight. The six neurons with the same
seed weights and receptive fields, all ended up with the same distribution of final
weights, as expected with a deterministic model with the same inputs.

N1-W,., N2=W .y N3=W,.0y Ne—W,. .y N5 =W,y N6-W, .,
1.0
0.9
- 0.8
—0.7
0.6
NL— Wy N2—Wyn N3—W o NA—W o N5 —W i N6 —W iy 0.5
1 1 1 1 ' 1 0.4
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Figure 4.1: Heatmap of seed weights on the upper row and fi-
nal weights on the lower row, for six neurons with same seed
weights.

Running the model with the same receptive fields, but with different seed
weights also gave very similar final weights, as seen in Fig. 4.2. Because the input

25
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is very simple there are not a lot of features to pick up at any one place, so the
neurons may be learning the information that is there. There is some variation
though, which might be useful in more complicated situations, where a lot of
different things can happen in the same region.

N=W,, N2=W, N3=W, 0 NA=W, N5 =W, No—W,.,

NU=W ot N2 =W fnat N3 =W fnat NA=W ot N5 =W i NG =W pina

Figure 4.2: Heatmap of seed weights on the upper row and final
weights on the lower row, for six neurons with same synapses,
but with different initial weights.

Neuron 1 seed W  Neuron 2 seed W  Neuron 3seed W Neuron 4 seed W Neuron5seed W Neuron 6 seed W

Neuron 1 final W Neuron 2 final W Neuron 3 finalW  Neuron 4 final W Neuron 5 final W Neuron 6 final W

P
-
-

Figure 4.3: Heatmap of seed weights on the upper row and final
weights on the lower row, for six neurons with synapses in the
same shape and weights, but at different positions.

Using the same weights and shape of connected synapses, but at different
positions, resulted in different final weights. Fig. 4.3 shows the initial and final
weights of six neurons with connected synapses in the same shape and initial
weights, but at lower positions, for each of the neurons moving right in the figure.
Now, the neurons have potentiated different weights. Neurons 1-4 seem to have
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found a part of the pendulum rod, where the density of connected synapses were
high.

N1— Wuuni N2 — Wse(d N3 — Ws:(d N4 — Wmni N5 — Wurd N6— Wuni N7 - Wuzd N8 - Wucd No— Waml N10— W:z:d N1 - Wsud Ni2— W:zed

NL=W g N2 =W g N3 =Wy NA=W piq N5 =W gy N6 =W gy NT=W gy N8=W gy N9 =W NIO =W g yNIL = W gy N12 = W .y

Figure 4.4: Heatmap of seed weights on the upper row and final
weights on the lower row, for 12 neurons with randomly selected
synapses withing a circle, with increasing radius for each neuron.
The neurons were shown each video 200 times.
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Figure 4.5: Heatmap of seed weights on the upper row and final
weights on the lower row, for 12 neurons with randomly selected
synapses withing a circle, with increasing radius for each neuron.
The neurons were shown each video 400 times.

The effect of synapse density can be seen in Fig. 4.4. Here neurons with dense
and confided synapses ended up with a dense confided number of high weights,
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while neurons with less dense synapses ended up with less potentiated final weights,
but from a bigger area.

This does, however, assume a constant number of learning iterations. As shown
in Fig. 4.5, running the model for twice (400 compared with 200 repetitions)
as long resulted in potentiation of weights even in the neurons with less dense
synapses, showing that learning rate is dependent on the density of connected
synapses. This is reasonable, as closer pixels are probably more correlated.

As shown in Figs. 4.1, 4.2 and 4.3, non-uniform distributions of connected
synapses seems to bias the neurons to potentiate weights in the higher density
regions. In Figs 4.4 and 4.5 the result of uniform receptive fields are shown. As
shown in Fig. 4.6, the entire visual field can be captured, by be divided into
square regions with one neuron connected to a uniform distribution of pixels for
each area. Here the visual field was divided into six squares, with one neuron per
square receiving 1200 random synapses from its corresponding area.

With this approach, the neurons seems to pick up weights building up features
recognizable by eye. Neuron one looks to have learned the perimeter of the sphere.
Neurons two, four and six looks to have learned different parts of the tiled floor
and neurons three and five looks to have learned the rod at two different angles.

Neuron 1 seed W  Neuron 2 seed W  Neuron 3seed W Neuron 4 seed W Neuron5seed W Neuron 6 seed W

Neuron 1 final W Neuron 2 final W Neuron 3 finalW  Neuron 4 final W Neuron 5 final W Neuron 6 final W
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Figure 4.6: Heatmap of seed weights on the upper row and final
weights on the lower row, for six neurons with 1200 randomly
selected synapses within different square areas, for each neuron.

4.1.2 Effect of noise

To test the sensitivity of the model to noise, two experiments were conducted.
First a neuron was trained for 200 repetitions of each video and then the videos
plus different levels of Gaussian noise were inputted to the neuron. The inputs
and resulting membrane voltage can be seen in Fig. 4.7. The magnitude of the
membrane voltages varies, but the general shape and temporals of the responses
looks to be conserved thought out all noise levels. The thick blue line in Fig. 4.7
shows the response to the video without any added noise.
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10
Synaptic input

Figure 4.7: Membrane voltage, V,, for the same neuron, with dif-
ferent level of noise added to the input video. Before this the
neuron had been trained for 200 repetitions of each video. The
thick blue lines show input and V,,, without added noise.

As seen in tab. 4.1 the cross-correlation of neuron outputs at different noise
levels, with no noise, is less affected by the noise than at least the mean of the
cross-correlations of each pixel time series between the original video and the video
with added noise.

Table 4.1: Mean cross-correlations of each pixel time series from the
original videos with the videos along with different amounts of
Gaussian noise added, along with cross-correlations of neuron
outputs from the original video inputs with outputs from video
inputs with added noise.

Video (%): 64 |50 |40 |33 |28
Neuron output (%): | 97 | 90 | 79 | 58 | 46

The second experiment used six neurons with the same receptive field and
seed weights. These were trained again for 200 repetitions of the videos, but with
different amounts of Gaussian noise added, from ¢ = 0 to ¢ = 0.5. In Fig. 4.8 it
can be seen that despite the noise, all neurons potentiated the same weights.

Looking at the time series evolution of the weights for each neuron in Fig. 4.9,
it can be seen that with more noise the weights move more erratically, but overall
the same weights move in the same direction, regardless of noise level.
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Figure 4.8: Heatmap of seed weights on the upper row and final
weights on the lower row, for six neurons with identical seed
weights, but trained with increasing amount of Gaussian noise
(v = 0) added to the input, for each neuron. Neuron 1 had
no added noise, while the remaining neurons had added noise
with standard deviation increasing in increments of 0.1, meaning
neuron 6 had added noise with o = 0.5.

Neuron 1

o 100 - 0 o o w0 0 o -

Figure 4.9: Time series of weights for six neurons with identical seed
weights, but trained with increasing amount of Gaussian noise
added to the input, for each neuron. Neuron 1 had no added
noise, while the remaining neurons had added noise with stan-
dard deviation increasing in increments of 0.1, meaning neuron
6 had added noise with o = 0.5.

These two experiments show that the model is robust against noise, at least for
this simple input. Even with a signal-to-noise ratio of 2 in the input, the neuron
output is similar in shape to the output from an input of the pure signal. The
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learning is also very similar in neurons receiving pure input to neurons receiving
input with added Gaussian noise.

4.1.3 Effect of preprocessor
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(a) With preprocessor.

N1 - kaul N2 — W.se('d N3 — Wscnl N4 — chl'd N5 — Wsw(l N6 —-W NT= W.yﬁed N8 — Ws?e(l N9 — Wsn'rl N10— Wsrml N1 — Wsre(l N2 - Wserrl

seed

N1- Wjinal N2— W[inal N3 — W/hml N4— final N5 — W/inal N6 — W]irml N7— W/inal N8 — W/ivml N9 — Wﬂnu! N10 - W/inalNll e sz‘nnlN12 - Wﬂmx

(b) Without preprocessor.

Figure 4.10: Heatmap of seed weights on the upper row and fi-
nal weights on the lower row, for 12 neurons trained with and

without the preprocessor.
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To test the effect of the preprocessor, one set of 12 neurons were trained on the
raw video and one set on the preprocessed video for 600 repetitions. As seen in
Fig. 4.10 the neurons receiving preprocessed data picked up more distinct features
and learned faster compared with the neurons receiving raw video. Further, with
the preprocessor, the neurons seemed to pick up more diverse features.

(a) Sphere.

(b) Cube.

Figure 4.11: A single frame from each of the two rendered videos
fed through the preprocessor to the right in each sub-figure.
The left images, in each sub-figure, show inputs to the same
neurons trained on preprocessed data as above. Each color
represent input to one neuron and the intensity represents the
amount.

Fig. 4.11 shows one frame from each rendered video after the preprocessor,
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along with that frame multiplied by the neuron weights. This shows the input
from each pixel to a neuron. Each color represents input to one specific neuron,
and the intensity represents the amplitude of the input. The neurons used are the
same as above, trained on preprocessed data. It can be seen that the two stimuli
activate different neurons and differing amounts, showing that the neurons have
picked up different features, some common to both stimuli, but some unique to
one.

4.2 Results from experimental data

In Fig. 4.12b an example of a frame after preprocessing of one video from the
recording set-up, is shown. The preprocessor seems to reliably detect edges and

filter out small static variations in the background.
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(a) Original. (b) After preprocessor.

Figure 4.12: Single frame of recorded video with octahedron as
stimulus.

Training 12 dynamic neurons on one set of recorded videos of each of the five
stimuli, at a speed of 3.27cm/s and light condition lc, generated final weights
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which seems to have some structure. The seed weights were uniformly, randomly
distributed in a square area for half the neurons and a circular area for the other
half. This was done to not bias the neurons to find features constrained by only
one type of border of the receptive fields. However, as seen in fig 4.13 the shape
of the receptive fields did not noticeably impact the conformation of high final
weights.
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Figure 4.13: Heatmap of seed weights on the upper row and final
weights on the lower row, for 12 neurons with 400 randomly
selected synapses within different square or circular areas, for
each neuron. The neurons were trained 250 times on one video
of each object from the recording setup.

4.2.1 Repetitions

Inputting 10 different video of the same stimulus with the same recording settings,
to one of the trained neurons, gives similar responses. In Fig. 4.14a this can be
seen with the torus as the stimulus. Comparing this with Fig. 4.14b it can be
seen that the variation of responses are greater between stimuli than between
repetitions with the same stimulus, showing that the outputs are sensitive to the
stimulus.
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Neuron Outputs Neuron Outputs

Amplitude
Amplitude
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Time (s) Time (s)

(a) Outputs from inputs of repetitions of the (b) Outputs from inputs of the different stim-
tours with the same recording settings. uli with the same recording settings.

Figure 4.14: Neuron outputs, from one pre-trained neuron, given
different inputs recorded with the same parameter settings (V =
3.27cm/s and light condition = Ic).

Fig. 4.15 shows the outputs of the same neuron, with the same inputs as
in Fig. 4.14, but before the neuron had been trained. Here, the outputs from
inputs of repetitions of the same stimulus looks more varied as compared with the
outputs after training. The responses for inputs of different stimuli also looks more
similar to each other than the outputs after training did. This indicates that the
neurons learn useful weights for differentiating the different stimuli. This can also
be seen from the pair wise cross correlations. As seen in tab. 4.2 the mean cross
correlation between one repetition and the others are higher for trained neurons
than untrained ones. However, the mean cross correlation between the output
with the torus as stimuli and the rest is lower for untrained neurons. On the other
hand the outputs looks less structured and more chaotic here, which would result
in the lower cross correlation, and could be sensitive to small changes in the input,
giving worse information representation.

Neuron Outputs Neuron Outputs

Amplitude
Amplitude

Time (s) Time (s)

(a) Outputs from inputs of repetitions of the (b) Outputs from inputs of the different stim-
tours with the same recording settings. uli with the same recording settings.

Figure 4.15: Neuron outputs, from one untrained neuron, given
different inputs recorded with the same parameter settings (V' =
3.27cm/s and light condition = Ic).

Looking at the similarity matrix of outputs from the videos of the different
stimuli as inputs, in Fig. 4.16, it can be seen that the sphere, cube and pentagonal
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prism all are highly correlated. The most differentiated output comes from the
octahedron.

Pairwise cross correlation matrix

Octahedron

Sphere

Cube

Pentagonal prism

Torus

Octahedron Sphere Cube Pentagonal prism Torus

Figure 4.16: Similarity matrix of outputs from one pre-trained neu-
ron when shown the different stimuli. The pairwise cross-
correlations are indicated, by the color and number, where 1
indicates 100% similarity.

Training a LSTM neural network, with 9 units, to classify the stimuli from
the neuron outputs resulted in 100 % accuracy on validation data, showing that
the outputs are diverse enough for each stimulus, while being robust to at least
the small changes between repetitions, to classify accurately. Doing the same
on the outputs of untrained neurons did however result in an accuracy of 95 %,
showing that even untrained neurons could give rather high accuracy in this simple
experiment.

4.2.2 Different light conditions

The outputs from the trained neurons, with the same stimulus, at different light
conditions, are more similar than that of different stimuli at the same light condi-
tion. This can be seen both from the cross correlations, as seen in tab. 4.2, but
also by comparing Fig. 4.17 with Fig. 4.15b. The mean cross correlation between
outputs, from inputs with the same stimulus, in light condition lc, with the others
light conditions, is almost as high as the mean pair wise cross correlation of the
outputs from repetitions of the same stimuli and recording parameters.



Results 37

Neuron Outputs

0.5 —

Amplitude

Time (s)

Figure 4.17: Neuron outputs, from one trained neuron, given input
videos of the torus in different light conditions. (V' = 3.27)

Using the first trained LSTM network described above, but with neuron out-
puts from input videos in the three, by the network, novel light conditions and the
torus as stimulus, resulted in an accuracy of 58 %. Here all the confusions were
with the sphere and in the two lower light conditions. With light only shining
from the right, resulted in especially bad performance, with all predictions being
for the sphere. In contrast, the higher light condition with all LEDs on, resulted
in 100 % accuracy. The system thus seems more sensitive to lower light conditions
than those in the training set. The torus and sphere are also similar and in lower
light conditions the inner perimeter of the torus might be less prominent, making
it even more similar to the sphere.

Using the second LSTM network trained on untrained neurons’ outputs, re-
sulted in even worse accuracy, predicting octahedron for all outputs from untrained
neurons with the torus as stimuli in the novel light conditions. This again shows
that the neurons learned useful weights.

4.2.3 Different speeds

The outputs of again the same trained neurons as above, but with the torus at dif-
ferent speeds as inputs, resulted in very different outputs, for the different speeds.
Looking at Fig. 4.18a it could be suspected that these are however just warped in
time. However, looking at the mean of pairwise cross correlations of the output,
from an input video with the stimuli moving at the lowest speed, with up-sampled
outputs from input videos with the higher speed settings, as seen in tab. 4.2, shows
even lower cross correlation than between different objects. This could be a result
of nonlinearities and instead using dynamic time warping gives a lot higher mean
cross correlation. This could, though, be argued to just be peak matching, but
looking at Fig. 4.18b, the outputs after dynamic time warping looks to follow each
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other closely with some deviations in amplitude and a few small peaks missing.

Neuron Outputs Neuron Outputs

Amplitude
Amplitud

10
Time (s) Time

(a) Raw outputs. (b) Dynamic time warping.
Figure 4.18: Neuron outputs, from one trained neuron, given input
videos of the torus traveling at different speeds.

Again using the first trained LSTM, but now to classify neuron outputs from
video inputs, at, to the LSTM, novel speed settings resulted in an accuracy of 65 %.
Here both the two higher speed settings had higher accuracies of 88 % respectively.
The lower speed settings instead resulted in accuracies of 28 % and 32 % for the
speed settings of 1.24cm/s and 1.89 cm/s respectively. This indicates that the
system is more sensitive to lower velocities than what is has been trained on. Here
however, both the neurons and the LSTM has only seen one velocity setting during
training.

Training a new LSTM model to predict the stimuli from the neuron outputs
of input videos recorded at the different speed settings resulted in an accuracy of
96 %. This shows that the neuron outputs are still distinct enough for different
stimuli, even at varying speeds, to be classified with some accuracy. Doing the
same, but instead training the LSTM to classify the speed of the stimulus, resulted
in an accuracy of 68 %. This show that the neurons are more sensitive to the stimuli
than to which speed they travel at, at least in combination with the LSTM. On
the other hand, the neurons were only trained on different stimuli and had never
seen different speeds, so this may be specific to these neurons.

Table 4.2: Mean pairwise cross correlations of the first output with
the rest, for different varying sensing parameters, except for
first the column, where all recording parameters were kept the
same. For "V - US" the outputs for different speeds were up-
sampled using linear interpolation, while for V' - DTW they
were dynamically time warped instead.

Varying: Non | Light | V -US |V - DTW | Stimuli
Mean: | 98.4% | 97.5% | 55.2% 95.8% 74.5%

Trained: | Std: 0.77 1.2 22.7 3.06 9.88
Mean: | 90.3% | 86.9% | 44.5% 88.5% 68.5%

Utrained: | Std: 5.97 5.86 15.8 5.70 8.77
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Figure 4.19: Confusion matrix for LSTM trained to classify the
stimuli from the neuron outputs, with the 10 videos per stimuli
with fixed recording parameters, as inputs, but tested on videos
with stimuli moving at novel speeds.

4.2.4 Combination

Doing the same LSTM classification as before but, with neuron outputs from all
the recorded data, resulted in an accuracy of 79 % on validation data. This shows
the model can generalize to situations which it has never seen before. Looking at
the confusion matrix in Fig. 4.20, it can be seen that the most common confusion
is between the cube and the pentagonal prism. These are similar in size and outer
perimeter when seen in profile, so this confusion does not seem to be random. The
same is true for the second most common confusion, which is between the torus
and the sphere.
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Figure 4.20: Confusion matrix from LSTM trained to classify the
stimuli from the outputs of 12 pre-trained neurons with all the
recorded training data as inputs.

425 Classical ANN

Using the smaller ConvLSTM network to classify the stimuli in the fixed parameter
video set (light condition = lc and v = 3.27 cm/s), resulted in a maximum accuracy
of 80 % after 10 trails. The best trained networks consistently confused either the
sphere and the torus or the pentagonal prism with the sphere. The first is similar
to the neuron model and is expected due to the stimulus similar shapes. The
network, with the second confusion, could however correctly classify all examples
of the torus in new light conditions. This method is thus more robust to light
changes than the neuron model. This might be because the preprocessor filter
out most things except for edges, and the edges are very differently highlighted in
different light conditions.

With an accuracy of 49 % for novel speeds, the ConvLSTM performed worse
than the neuron model. As seen in Fig. 4.21 the predictions were also less sys-
tematic and more spread out as compared with the neuron model, seen in Fig.
4.19.
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Figure 4.21: Confusion matrix for ConvLSTM trained to classify
the stimuli directly from the 10 videos per stimuli with fixed
recording parameters, but tested on videos with stimuli moving
at novel speeds.

The eight layer ConvLSTM network could be trained to accurately (100 %)
classify all the videos recorded at the fixed parameter settings. It also correctly
classified the torus in all the novel light conditions, but performed even worse at
novel speeds. For novel speeds, the resulting accuracy was 39 %.

This shows that the neuron model performs better in all aspects, except for in
new light conditions, compared with the smaller ConvLLSTM. The larger ConvL-
STM performed as good on the validation data, better on the new light conditions,
but worse on novel speeds, compared with the neuron model. The neuron model
can, thus, despite having a fraction of the parameters, perform at least on par
with these classical ANNs. It also trained faster on the same hardware (Intel®)
Core(TM) i7-9750H CPU @ 2.60GHz), taking 12 min for the neurons to learn and
then 7min for the LSTM, while the smaller ConvLSTM took 80 min. The ANNs
could of course be trained much faster on a GPU. The neuron model is hard to com-
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pare with this, because it was not implemented to be GPU comparable and might
not be as serializable. On the other hand, the neuron model was implemented
in a high-level programming language (Julia [27]), during the course of a master
thesis and could be optimized much more, while the ANNs were implemented in
TensorFlow.

Even larger and more optimized ANNs could probably perform even better,
but with more parameters, overfitting become more problematic and training times
increases.



Chapter 5

Conclusions and Future Work

5.0.1 Conclusions

The biologically inspired system demonstrates a novel, yet promising method for
object classification in video data. With very little computational power and
unlabeled training data, compared with traditional methods, it is able to pick out
useful features in a dynamic environment. The system performed on pare with
a classical ANN consisting of a convolutional LSTM. The LSTM was better at
generalizing to new light conditions, but worse with new speeds. On the CPU our
model also trained faster. This shows that a biologically inspire model with orders
of magnitude fewer parameters can perform the same tasks as an ANN, at least
for these experiments.

The preprocessor, paired with a cheap camera, shows a low price option to get
retinomorphic like data without an expensive event camera. This data also show
benefits in learning, at least to this system, compared with normal frame based
videos. The results are promising, although further work is needed to prove the
system in useful applications.

5.0.2 Future Work

This work has proven the usefulness of a biomimicking approach to computer vi-
sion in an experimental setting. Future work could thus continue to extend the
model to more general applications in real-world situations. For more complex
tasks, a multi-layer network of neurons might prove useful and would be an inter-
esting continuation. Deployment of the model with continuous live learning in an
embedded system could be an additional aspect to explore.

43
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Conclusions and Future Work
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