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Abstract

The supply chain has potential for growth. Many different parts can be optimized,
and every possible improvement has not yet been tested. This study focuses on
route optimization with the specific goal of figuring out how machine learning can
be applied to route planning and how key factors that impact travel time for a route
can be taken into account for this problem.

Time was dedicated to learning about machine learning, how it is applicable to
route planning, as well as potential key factors that can be used with different
machine learning algorithms. Once enough knowledge had been gathered, a
prototype was implemented to verify key factors usability in route planning and
test different route planning problems, such as point-to-point routes and traveling
salesman problem.

Key factors were gathered during the thesis work, and based on the result of the
thesis, their ability to be used in route optimization was verified. Methods of
collecting the key factors were looked into, and two algorithms were tested that
had the potential of using these factors. The two algorithms proved the usability of
key factors and showed their potential in route planning problems. First, the
“Neural Evolution of Augmenting Topologies™ algorithm was tested and verified
that it could solve simple route planning problems. Although, it was later
overshadowed by a genetic algorithm solution, which could solve point-to-point
travel better and showed usefulness in the traveling salesman problem.

The thesis work did not provide a full-scale solution to optimizing route planning.
However, several conclusions were made on the topic, such as the possibility of
training neural networks using supervised learning to calculate edge cost and
genetic algorithms showing its potential in multi-stop route planning. We believe
that several of the conclusions made in the thesis could show promise in the area
of route optimization given enough resources.
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Sammanfattning

Forsorjningskedjan har stor potential till optimering. Manga olika delar av kedjan
kan optimeras och alla tdnkbara forbéttringar har inte testats d4n. Denna studien har
sitt fokus pa ruttoptimering, med det specifika mélet att forsta hur maskininldrning
kan anvéndas inom ruttplanering, samt hur nyckelfaktorer som paverkar restiden
for en rutt kan tas i atanke for problemet.

Tid lades pa att studera maskininlédrning, hur maskininlérning kan anvidndas inom
ruttplanering samt vilka potentiella nyckelfaktorer som kan anvéndas i olika
maskininldrnings algoritmer. Nér god kunskap inom maskininldrning hade
erhallits, skapades en prototyp for att verifiera om nyckelfaktorerna var
anvéndbara inom ruttplanering. Prototypen anvéindes dven for att testa olika typer
av ruttplaneringsproblem, sasom punkt-till-punkt rutter och handelsresande-
problemet.

Nyckelfaktorer samlades in under examensarbetet och baserat pa resultatet av
examensrapporten sa utviarderades mdjligheten att anvdnda dem i ruttplanering.
Metoder for att samla faktorer undersoktes, och tvd algoritmer testades som hade
mdjligheten att utnyttja nyckelfaktorerna. Dessa tvé algoritmerna visade formagan
att anvinda nyckelfaktorer samt potential i ruttplanering. Forst sé testades “Neural
Evolution of Augmenting Topologies™ algoritmen och dess egenskap att 16sa enkla
ruttplaneringsproblem verifierades. Dock s& Overtriffades den senare av en
genetisk algoritm, som kunde 16sa punkt-till-punkt planering battre men ocksa
visade sin anvéndbarhet i handelsresandeproblemet.

Under examensarbetet sa skapades ingen helhetslosning for att optimera
ruttplanering. Dock s& kunde ménga slutsatser dras under examensarbetets géng,
sdsom att det kan vara gynnsamt att trdna neuronnit med Overvakad inldrning for
att berdkna kostnader av bagar, samt att genetiska algoritmer visar potential i
fler-stop ruttplanering. Vi tror att flera av de slutsatserna som har gjorts i denna
examensrapport kan bidra till att forbéttra ruttoptimering om tillrdckligt mycket
resurser laggs pa att undersdka dem.



Nyckelord

Ruttoptimering, Ruttplanering, NEAT, Genetisk algoritm, nyckelfaktor, Planering
av last, Maskininldrning.
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1. Introduction

As commonly used routing algorithms cannot keep up with the advancing
complexity of delivery routes within the supply chain, new methods that can deal
with the complexity have to be explored.

The following chapter introduces the concept of route optimization and provides
the background information needed to understand why this area has to be
optimized. The chapter also brings up ideas pertaining to how the routes can be
optimized and explains the proposed way to tackle this problem with a couple of
limitations to narrow the scope.

1.1 Capgemini Sverige AB

This thesis was done with the cooperation of Capgemini Sverige AB. Capgemini is
working with consulting, digital transformation, technology, and engineering
services, to address the entire breadth of clients’ opportunities in the evolving
world of cloud, digital, and platforms. Capgemini's experience and knowledge
within the Digital Supply Chain were leveraged to study this topic.

In cooperation with Capgemini Sverige, two supervisors from the company helped
in realising this thesis work, Amit Chougule and Rahul Baviskar.

Amit is leading end to end delivery and sales for a cluster within one of the
world’s top furniture retailers from Nordics. He also has the role of Capability
management within the Helsingborg area.

Amit has 19+ years of progressive leadership experience within the Software
Industry and has seen significant success in delivering ‘Application Development’
& ‘Support’, as well as ‘Pre-sales’ for leading companies which include
CapGemini and Tata Consultancy Services (TCS). One of his goals is to build
consultative relationships with the Fortune 500 client base, envisioning
cutting-edge business and technical solutions for clients across the U.S., Europe,
India, and APAC.

Rahul is an Enterprise/Lead Architect who works with decision makers, bridging
the gap between business and IT to enable digital transformation for various
customers across the world. He is leading and delivering modernization initiatives
including digital transformation, strategies, IT roadmaps as well as hands-on
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implementation of enterprise applications portfolio development for large scale
transactions.

Rahul’s key responsibilities are to engage with sector experts, CoE's, CTO
networks and Partner/Vendor Key Account executives across the world to follow
up on emerging market/technology trends and advise on opportunities for how
these trends can impact the business.

Optimizing the supply chain is interesting for Capgemini as they have many
clients who would benefit from it. Capgemini's supply chain sector (CP&R)
provides over €500 million of services annually, and consists of a network with
more than 5,000 resources. Optimization in the supply chain could help improve
their clients' infrastructure and in that sense increase Capgemini's influence.

1.2 Background

Society is becoming increasingly reliant on having supplies delivered in a fast and
timely manner. Thus, the supply chain has to constantly evolve to meet the needs
of the population and support corporate expansion. Add to this the fact that the
market competition is tough, and any way to reduce cost and increase efficiency
helps supply the ever-growing demand.

The supply chain is a vast area with many different parts which could be
optimized. One of the most relevant parts of this is route optimization, specifically
the delivery of goods using trucks. The area is currently seeing attention from
worldwide corporations like Amazon and Google. Amazon, in cooperation with
MIT, is even hosting a competition with the task of exploring route optimization as
this thesis is written [1].

Currently, there is no best method to plan routes for delivery trucks to use. Instead,
companies that handle route planning follow different solutions. Generally, this is
done in one of four different approaches.

Driver discretion

Manually pre-planned route
Using a GPS

Using route planning software

b e

As the supply chain is constantly expanding and routes are getting more complex
due to the increasing number of deliveries, using route planning software is slowly
becoming the dominant choice by companies in the area of route optimization. As
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this is happening, approaches 1 - 3 are slowly becoming inefficient and infeasible.
While route planning software is seeing breakthroughs in recent years, it is still
faced with concerns due to route planning’s rapidly evolving complexity.

In order to plan efficient routes, information such as road restrictions (weight,
height, and truck restrictions) and stops required (eating, sleeping, resting) have to
be taken into account. Furthermore, if an optimal route is planned using software,
traffic accidents or road maintenance can disturb the route and cause delays. This
entails that another approach to the problem is needed that can handle the more
complex cases.

What is needed is a method that can incorporate more key factors, real-time data,
and prior routes. The solution proposed in this thesis should help delivery
companies lower their transportation costs, CO2 emissions, and time spent
delivering goods. This will allow the companies to save money, keep up with the
growing demands, and grant them an edge over their competitors.

In order to be able to incorporate the key factors, real-time data, and prior routes,
artificial intelligence (AI) and, more specifically, machine learning (ML) will be
utilized. Which ML algorithms that will be used, which the key factors are, and
how the data can be collected will be determined in the study.

In addition to what has been previously mentioned, the thesis work also consists of
surveying which machine learning algorithm is the best to use for solving route
planning problems and what key factors need to be incorporated to receive the best
result. A prototype has been developed to visualize the potential of the developed
ML algorithm, which offers a starting point for future work on route planning. It
also provides insight into the effectiveness and potential of the chosen key factors
and the ML algorithms.

1.3 Purpose

The purpose of this thesis is to survey how Al can be used to optimize how route
planning is done within the supply chain. The expected result was to find a method
that successfully utilizes Al to ensure that deliveries of goods arrive on time, at a
lower cost and energy expenditure than today.

1.4 Goals

The thesis explored which key factors could be utilized to create a route
optimization tool using Al. The thesis also determined how the data of these
factors could be collected and used in real-time. Additionally, the thesis also
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explored which ML algorithms that suited the development of a route optimization
software best based on the key factors. Finally, a working prototype incorporating
the chosen ML algorithms and key factors was developed and evaluated in order to
expand and discuss the information gathered during the thesis work.

1.5 Problem Description

In this thesis, the following questions are answered to help utilize Al in route
planning solutions.

1. How is route optimization done today?

2. Which key factors can be used in route optimization?

Which key factors have the most significant impact on transport efficiency
and utilization of fleets?

How can data relevant to these key factors be collected?

Which ML algorithm can utilize these key factors?

Which ML algorithm can utilize the key factors the best?

How can load planning be incorporated to optimize routes further?

W

Nk

1.6 Motivation

We chose this thesis topic to deepen our knowledge about Al and contribute to the
optimization of the supply chain. In addition, this thesis also grants us experience
within a relevant topic, which provides us with merit for our future job search.

This thesis’s subject is relevant for Capgemini as they are currently looking for
ways to optimize the supply chain. The thesis focuses on an essential part of this
chain and will provide insights into Al as a solution to route optimization. If done
well, our thesis work could save Capgemini's clients time and money while also
helping the environment.

Optimizing the supply chain contributes to the whole of society, both in the way of
faster delivery of products and limiting detrimental factors to earth like vehicle
emissions.

1.7 Limitations
The following limitations were applied to the thesis:
1. The selection of optimal ML algorithms could easily be a thesis of its

own. Therefore the selection was scaled down, and the algorithms were
selected based upon the initial study:.
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2. An endless amount of key factors could be gathered. However, many of
them would have a minimal impact on performance. Therefore the key
factors used were limited to only the ones that made a noticeable
difference in the optimized route.

3. The prototype and the data to test it were entirely theoretical as setting up
the collection of data for these would be a whole problem on its own.

4. The prototype made was not to be seen as a finished product but rather a
tool to deepen understanding and contribute to the result.
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2. Technical Background

This chapter presents the technical aspects needed to understand the rest of the
thesis better. The information in this chapter does not serve to provide a deeper
understanding of the topic but rather explain it to make the rest of the thesis more
comprehensible. The aspects introduced range from common concepts within
route optimization to algorithms able to solve the questions presented in the
problem description.

2.1 Route Planning

Route planning as a concept appears in many ways. It can signify something as
simple as finding the path from one place to another but can also mean mapping
out the exact routes vehicles have to follow to visit several stops within a certain
timeframe. While these problems can and have been solved by hand, computers
introduce a more efficient approach.

Visualizing all roads as a node network with nodes and edges makes it possible to
think of route planning as graph traversal. This problem is now solvable by
computers and can introduce breakthroughs in route efficiency. UPS managed to
apply this by utilizing Google Cloud Service. The service helped UPS improve
their supply chain and managed to save them up to $400M and 10M gallons of
fuel a year [2] [3].

The node network in question can be modeled by using intersections as nodes and
combining one node to another with edges. This creates a node network able to be
solved by graph traversal algorithms. Graph traversal solutions generally utilize
depth-first search and breadth-first search[4]. However, these techniques tend to
fall flat in modern-day route planning solutions. When the cases become more
complex, such as when several nodes must be visited, the number of possible
combinations becomes too many for computers to process, and different
approaches have to be made. By using ML algorithms, it is possible to avoid
testing every single combination in a node network, and instead create optimal
routes based on the algorithm's ability to make intelligent choices.

There are two essential topics to understand in route planning: The traveling
salesman problem (TSP) and the vehicle routing problem (VRP). These problems
are two of the most researched problems in route planning as they handle some of
the most common cases in the delivery industry.
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TSP: Given a pool of nodes, where each node has a distance to all other nodes in
the graph, how can all nodes be visited and then the start returned to, at the lowest
cost (distance traveled) possible. In practical terms, this can be seen as a truck
having to deliver goods to a certain amount of delivery points.

VRP: VRP, just like TRP, focuses on a routing problem. However, instead of just
trying to figure out the fastest route for one vehicle that must visit a certain
number of nodes, it does the same but with several vehicles and within a specific
timeframe. Traditionally VRP is utilized to optimize fleets.

Different algorithms have been used to find solutions to these two problems.
However, it is possible to wonder why software such as Google Maps cannot be
used for these problems. According to [5], Google Maps utilizes graph traversal, a
node network, and Dijkstra’s algorithm. Because of this, Google Maps is bound by
some limitations. For example, the service can only plan a route between one point
and another and does not solve problems such as VRP and TSP. The reason for
this being that the visitation order of the nodes matter in these problems.

2.2 Genetic Algorithms

A genetic algorithm (GA) is a heuristic search that is deeply inspired by Charles
Darwin’s Theory of natural evolution, more specifically survival of the fittest. The
algorithm aims to emulate the process of natural selection, where the fittest
individuals have a much higher chance to reproduce and pass on their DNA to the
next generation [6].

Genetic algorithms (GAs) can be applied to optimization problems when no
standard optimization algorithm is suitable. GAs function as follows. [7]

A GA repeatedly iterates over, evaluates, and modifies a population of elements,
where each element contains DNA. Additionally, each element also has a variable
for keeping track of its “Fitness score.” The fitness score is an evaluation of how
well the element performed during the iteration. After each iteration over the
population, three main steps are performed.

1. Selection - Elements (parents) from the population are selected based on
their fitness score. A higher fitness score means that the element has a
higher probability of being selected.

2. Crossover - Parents pair up and combine their DNA in order to generate
children. As a result, each child's DNA will consist of some mix of its
parents’ DNA.

3. Mutation - Each child has a slight chance to have some bits of its DNA
randomly changed.
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Generate the initial population
Compute the fitness of the population
REPEAT:

Selection

Crossover

Mutation

Compute fitness
UNTIL Condition is met

Fig. 1. Pseudo-code for a generic GA.

When all children are generated, they form a new population and have their fitness
score evaluated. The process then repeats until a specific condition is met, as
shown in Fig. 1. An example of a condition could be that the fitness score
surpasses 100. [7]

Even though the concept of GAs has been around since the 1950s[8], the
technique is still widely used today. It is a versatile algorithm that can be applied
in many different cases and be tweaked and improved to fit the desired solution
better. GAs have previously been used to solve both the VRP and the TSP [9]
[10][11].

2.2.1 Implementation

When it comes to the actual implementation of a GA, some extended knowledge
on implementation is needed. The elements in the population are often represented
as objects in the code. These objects can then contain the required variables such
as the fitness score and DNA for that individual object. The DNA is often
represented as an array or list. The contents of the DNA array depend on what
problem is being solved, and the behavior of the element is directly linked to what
this content is. [12]

When the population is filled with elements, the algorithm can start looping
through the steps described in Fig. 1. to find the desired solution.

18



2.3 Neural Networks

Artificial intelligence is a field dedicated to teaching computers to mimic intellect.
There are many methods of doing so, but one of the most utilized methods is
neural networks.

Neural networks can be seen as a system focused on fulfilling a purpose.
Moreover, depending on the nature of that purpose, different neural networks can
be utilized to solve the issue. There are many types of neural networks, the most
common being perceptrons, multi-layer perceptrons, convolutional neural
networks, and recurrent neural networks. [13]

2.3.1 Perceptron

Neural networks dated back to the beginning of the perceptron algorithm in 1958.
The algorithm was invented by Frank Rosenblatt and showed potential in the field
of mimicking human intellect. Rosenblatt even presented the perceptron as a way
for computers to potentially walk, talk, see, write, reproduce and be conscious of
its existence [14]. Although the perceptron has not accomplished all of this, it was
the first-ever neural network and caused an expanding amount of research within
the area.

X1
WA1
W2

X2 >» Y
Wn

Xn

Fig. 2. Picture depicting a perceptron



The perceptron, depicted in Fig. 2, can be seen as the computational model of a
single neuron[12]. The model has at least one input, a processor, and a single
output. The X’s represents inputs, and Y represents the output. The W’s represent
weights that generally are a value between -1 and 1 and define the neural
network’s overall behavior.

f (X) = { 0 otherwise

Equ. 1. Formula sending active/inactive signal

1ifwXxx+b>0,

If the perceptron only has one input, the output Y = f(x) can be calculated with the
function shown in (1). The equation can handle more inputs by expanding upon
the formula, which generally is done by calculating the sum of all inputs
multiplied by their weight and utilizing an activation function to receive a
non-linear value within a specific boundary. Activation functions will be expanded
upon later in the chapter.

2.3.2 Layers

Neural networks utilize a layered structure in order to recognize patterns. Every
neuron can be imagined to look for a particular condition. If the condition is
fulfilled, the neuron will send its signal further into the network, combining
several of these signals and giving a final output.
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Fig. 3. A simple neural network with one hidden layer.

Fig. 3. shows how a neural network can be set up. It consists of three layers that
mimic how regular neurons work together. The three layers have the following
behavior.

1. Input layer - The input layer describes which data goes into the network.
Generally, these inputs can be varying depending on the nature of the
problem. For pattern recognition, such as utilizing neural networks to
recognize handwritten numbers, the input would generally be an image
split up into pixels and fed into the network [15]. However, for problems
such as route planning, it is possible to consider factors such as day, time,
weather, and more. Based on the information in [15], these inputs are of
varying importance based on their effect on the neural network’s output.
Some inputs can be of great importance to increase the network’s
efficiency and sought-out behavior, while some can be disruptive.

2. Hidden layer - The hidden layer can consist of many layers of nodes.
These layers are traditionally utilized to feed forward information in the
network. The layer recognizes if specific patterns have been fulfilled and
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feeds forward this information to the next layer. This process is repeated
until the information reaches the output. [15]

3. Output layer - The output layer simply returns the result that the neural
network decided on, given the inputs into the network.

2.3.3 Activation Functions

Neurons have two states: active or inactive, signified by 1’s or 0’s in computer
terms. Activation functions are generally utilized to mimic this behavior and
introduce non-linearity into the system [16]. By converting inputs to numbers
between a lower boundary and upper boundary, the signals are converted into
easier data for the network to utilize for training.

Activation functions can have varying ranges and varying efficiency in neural
networks. While there is no solid theory behind choosing an activation function
[15], some activation functions are still more popular than others as they can have
a better probability of being applicable to different problems.

ReLU(x) = max(0,x)

Equ. 2. Activation function returning a value between [0,o0]

Equation (2), shows the ReLU activation function, which is the most widespread
activation function and has proven to be both efficient and consistent[17]. This
means that ReLU has proven to help train a varied range of neural networks faster
than most of its predecessors, such as the sigmoid function.

2.3.4 Feedforward and Backpropagation

Most Neural Networks utilize feedforward and backpropagation. Feedforward is a
concept very commonly used in neural networks. It is the process of input data
traveling through the system to the output without looping any of this information
back through the network. However, some networks, such as recurrent neural
networks (RNN), utilize a loop of information to solve problems of sequential
nature [18].

While the feedforward process travels from the start to the end of the neural
network, backpropagation does the same but reversed and with additional
functionality. Backpropagation is the process of teaching the neural network what
changes it needs to make to its weights. This is generally done by changing the
neural networks’ weights based on a cost function and gradient descent.
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Cost function

Cw,b) = =Sly(x) — al .

Equ. 3. The MSE cost function, often utilized in neural networks.

Cost functions are utilized to calculate an error rate by comparing the neural
networks’ results with the expected result. The error rate is later used to update the
weights in the neural network. There are many different Cost functions, and one of
the most used is the quadratic cost function, also known as the mean squared error
(MSE), which is shown in function (3).

QGradient descent

Gradient descent and cost functions build upon each other. The goal of any neural
network that utilizes cost functions is to minimize the error rate. By doing so, the
neural network’s behavior aligns with the intended purpose of the network[15].

When we have a function that needs minimization, an algorithm that can solve this
problem is the next line of action, and this is where gradient descent can be
introduced. Gradient descent focuses on finding which direction the function has
to go in order to minimize the cost as fast as possible[15].

Process

The entire process of having inputs feed forward through the system and then the
system backpropagating can be summarized as follows, based upon [15]:

1. Input data is fed into the system and is fed forward towards the output
layer.

2. The output is compared with the expected result by using a cost function.

3. The cost is calculated by utilizing derivatives to see how much of an effect
the change in weights have on the intended result.

4. In order to optimize the previous step, gradient descent is utilized to figure
out the most optimal way of changing the weights for the intended result.

2.3.5 Learning Algorithms

For neural networks (NNs) to learn, they must know what is wrong and what is
right (or what is desired and what is not). There are several different learning
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algorithms available, and the three most utilized ones are the following, as
described in [19].

Supervised Learning

Supervised learning is the means of inputting labeled data into the NN to train it.
The labeled data consists of the input that the NN will take and the desired output
that the NN should give. Labeled data is also known as “training data” when used
for training and “testing data” when used to test the network’s ability to classify
data correctly.

The labeled data will go into the NN, and the NNs output will be compared with
the desired answer. The error that this produces is calculated using a cost function
and is used in conjunction with backpropagation to teach the NN the correct
answer.

Unsupervised Learning

Unsupervised learning, on the other hand, only provides the NN with an input. No
other direction is given to the NN. Since there is no labeled answer to compare
with, no backpropagation or tweaks to the weights can be done.

As a result of this, the NN cannot “learn” how to correctly classify the data, but
rather it orders the data into groups based on similarities and patterns in the data.

Another approach is to utilize a reward system. By using this reward system, the
NN can be rewarded or punished based on the actions it performs.

Reinforcement Learning

Reinforcement learning has many similarities with GAs. When using
reinforcement learning, the NN is trying to maximize some fitness score based on
how well the NN performs. After the NN has been evaluated, crossover and
mutation can be applied to evolve the NN, where a NN with a higher fitness score
has a higher chance to reproduce.

2.3.6 Deep Learning

Deep learning can be seen as a subset of neural networks (NNs). Deep learning
incorporates a NN and expands and enhances it by adding more hidden layers to
the network. This expanded NN that features multiple hidden layers is called a
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deep neural network (DNN). The word “deep” stems from the fact that it is several
hidden layers deep.

K
0
coe
SO

_ ’r’;‘rr’x‘

output layer

2
ol
.

input layer
hidden layer 1 hidden layer 2
Fig. 4. ADNN featuring multiple hidden layers.

As shown in Fig. 4. a NN does not need more than two hidden layers to be
classified as a DNN. However, the more hidden layers the network has, the deeper
it is [20].

This structure causes deep learning to be a powerful algorithm with many benefits.
For example, it can handle complex problems such as speech recognition, image
classification, and natural language processing[21].

There is no easy solution or optimal method for finding the optimal number of
hidden layers and nodes per layer. However, a few different main approaches can
be utilized to solve this problem, “neuro-evolution” being one of them. [22]

2.4 Neuro-evolution

Neuro-evolution can be seen as a mix between neural networks (NNs) and genetic
algorithms (GAs). It is a ML technique that uses the concept of GAs to generate
and optimize NNs. The neuro-evolution algorithm will take into consideration the
architecture and topology of the NN and try to optimize it to achieve better
performance (fitness)

Neuro-evolution can be used together with deep learning to help optimize the NNs
depth, and thus a more efficient deep learning algorithm can be obtained [23].
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As mentioned in subsection 2.3.4, most NNs use gradient descent as their
backpropagation method (training the NN). However, recent studies have shown
that simple GAs can train DNNs with millions of parameters to outperform NNs
trained with modern techniques and perform the training faster as well [24].

2.4.1 NEAT Algorithm

NEAT stands for “Neuro-Evolution of Augmenting Topologies” and is technically
a GA. According to [25], the algorithm aims to evolve NNs by changing weights
and the networks’ topology. Since NEAT is a GA, it follows the same steps as
mentioned in the GA section 2.2.

The algorithm starts with a population consisting of minimal NNs. A minimal NN
is a network that only consists of input and output nodes, no hidden layer, and no
connections between the nodes. During the crossover and mutation phase, the
algorithm gradually adds new connections and nodes to the NNs (thus augmenting
the topology) and changes the weights between the connections.

Like other GAs, the algorithm repeats its evaluation, crossover, and mutation
phases until a condition is met. That condition could be that an optimal NN has
been found or that no improvement to the NN can be found.

NEAT has specific methods in place that are used during the different stages of the
algorithm to ensure that during every mutation and crossover step, no progress is
lost and the algorithm is evolving in the right direction.[25]

2.5 Libraries

A library is a collection of functions containing written and compiled code.
Libraries are used to lower time spent on reinventing functionality, and allows for
easy access to code that can be used or expanded.

2.5.1 Cytoscape.js

Cytoscape is a graph library with functionality to initialize, traverse and visualize
node networks consisting of nodes and edges. The functions in the library are
optimized, and the library is compatible with most browsers. The library is made
for JavaScript and can therefore easily be visualized in HTML.

The library is open source and is used by several worldwide companies. The
complete documentation and user description can be found on their website.[26]
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2.5.2 Neataptic.js

Neataptic is a library that offers NNs with many options to modify and functions
to use. The library contains all functions needed to initialize, train, evolve, and use
NNs. Neataptic uses neuro-evolution to evolve and optimize the topology of the
NNs. Since Neataptic is made for JavaScript, it also offers a function to display the
created NNs in HTML, which makes it easy to visualize the networks.

The library is outdated, as it is no longer maintained. Thus the library contains a

few known bugs and problems that need to be worked around. The complete
documentation can be found on the creator’s GitHub page. [27]
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3. Method and Analysis

The method of the thesis work consisted of four main phases, with each phase
consisting of a few steps each.

Phase One: Phase Two: ) Phase Four:
Initial Study Targeted Phase Three: Thesis report
About Al > Study and {mplementation Finalization and
and ML Planning of Prototype Presentation
Genetic Decide which
| Algorithms L, ML - Plan out a
algorithm(s) prototype
Neural are optimal
™| Networks
Learn more Implement
. bout thesse >
Deeplearnin a rototype
™ P 9 ™1  specific prototyp
algorithms
Learning-
1 nng - Collect and
algorithms Decide L, compile
uppon . .
Collect and | optimal key information
compile factors
™1 information
gathered Compile
- gathered
Interview - ™| knowledge
—>| How route and decisions
optimization
is done today

Fig. 5. Sketch showing the phases and steps that make up the thesis work

The phases and steps can be seen in Fig. 5. The phases were worked through one
at a time, completing all steps in a phase before moving on to the next one, and
each phase has a section in the current chapter.

The thesis work started with an initial study to learn more about machine learning
(ML) in general. Afterward, in phase two, more specific knowledge was gathered
regarding the algorithms and key factors that were deemed optimal for the thesis
work. The gathered knowledge was then put to use in phase three, where a
prototype was created to test the eligibility of the algorithms and key factors that
were decided on in the previous phase. Finally, in phase four, the thesis will be
finalized.

However, before the phases started, some planning was done, as described in
section 3.1
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3.1 Planning and Work Structure

The whole thesis work process began with reaching out to Capgemini and booking
a meeting. At the meeting, discussion ensued, and it was decided that a thesis
would be cooperated upon. Capgemini wanted the thesis topic to be focused on the
optimization of the supply chain. As a common interest, it was decided that the
application of machine learning would be involved. A couple more meetings were
booked to determine the specifics, and after some discussion, the topic of this
thesis was decided.

With the specifics out of the way, the initial background, Chapter 1, was written
and approved by the supervisors at Capgemini and LTH, and planning of the thesis
could commence.

At this point, the creation of the timeline for the thesis work was set in motion, and
certain decisions were made that would have a direct impact on the timeline. It
was decided that the thesis work will follow the waterfall model in the sense that
every step would be pre-planned and finished before moving onto the next step
[28]. However, upon agreement with the supervisors at Capgemini, it was also
decided that the prototype would be worked on according to an agile model and
that the model would be specified when the prototype phase began.

The waterfall model was chosen because each subsequent step of the thesis
required a fundamental understanding of the previous steps. The model enforced
this by requiring pre-planning, which helped create a logical structure of the thesis
work.

By working on the prototype according to an agile model, a few benefits were
seen. Knowledge gathered during the prototype phase was utilized to introduce
changes in how the prototype was worked upon. Additionally, it made sure there
was always something to work on, allowing time to be distributed effectively
during the phase.[29]

Because of the ongoing pandemic and governmental restrictions, it was decided
that all work on the thesis would be done from home. This means that all
communication was done digitally, including communication with the supervisors
at Capgemini and the university.

To make the communication with the supervisors at Capgemini as fluent as
possible. Bi-weekly meetings were pre-scheduled for the entire duration of the
thesis work. In addition to this, the supervisors made it clear to mail them with any
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issues that would surface during the thesis work. A similar method was to be
followed regarding the communication with the supervisor at the university.
Meetings were to be scheduled in advance, and any questions or ideas that
appeared before the meetings could be discussed over email.

All communication between the thesis workers took place in Discord [30]. Discord
allows for communication using both voice and text-chat and allows for managing
relevant information in different channels.

This structure for communication worked well for all parts involved, and much
time was saved by not having to gather at a specific location to meet up in person.

Work on the thesis took place five days a week, starting at 9 o’clock, for at least 6
hours per day. This led to the thesis workers working from 9-15/16 most of the
days, working primarily on weekdays but sometimes moving a workday to the
weekend if needed.

When working on the thesis, information was stored in Google Drive and Discord.
Discord stored information that could be interesting to look into, such as articles
and different GitHub projects. If the information in the Discord channel was worth
mentioning in this report, the information was added to Google Drive. Either by
writing a new document with the relevant information that could be used as
material when writing the thesis or as notes inside the thesis. This allowed
information to be managed efficiently and made it possible to distinguish
important information from non-important information.

During the entire thesis, all information was studied and learned together by the
thesis workers. This was done in order to share knowledge between both parties
through communication.

3.2 Thesis Work Timeline

A timeline, devised as a GANTT chart, was created for the thesis in order to
structure the work that has to be done. The timeline also served to grant an
overview of the project. Furthermore, the timeline served as a schedule that could
be used to make sure that all work was done in time. The timeline was divided into
four phases, which can also be seen in Fig. 5.

Phase 1. Initial study about Al and ML
Phase 2. Targeted study and planning
Phase 3. Implementation of prototype
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Phase 4. Thesis report finalization and presentation

As specified in section 3.1, the waterfall model was chosen, which is represented
in the timeline. The phases were selected with the model in mind by allowing for a
gradual build-up of knowledge through each phase. The results and findings from
each previous phase were built into the next one while also limiting stagnation by
distributing time effectively through proper planning.

When devising the timeline, work was done to determine which ML techniques
should be considered to learn more about during the first phase. After reading
previous work on route optimization, the techniques that were decided upon were:
genetic algorithms, neural networks, and deep learning. These were chosen since
they had shown promise within the field previously, and served as a useful starting
point for learning ML.

The final thesis timeline was followed throughout the entire thesis work, and no
changes to the phases or steps were made. An aspect that could have been
improved was to have a more prolonged prototype phase. However, for the thesis
to come to a result, limitations had to be made. Overall the timeline is deemed to
have been satisfactory. The thesis plan can be seen in full here [31].

As specified in the introduction to this chapter, the phases are divided into several
steps. The steps that phase 1 consists of focus on learning about the ML techniques
previously decided upon, which is done to have a solid foundation of knowledge
to build upon. The phase also consists of documenting the information learned and
conducting interviews regarding route optimization.

The steps in phase 2 consist of deciding the optimal ML algorithms for route
optimization, learning more about the chosen algorithms, deciding upon optimal
key factors, and documenting all information and decisions of the phase. The steps
were selected to gain a deeper understanding of ML techniques that can be used in
cooperation with key factors while developing the prototype.

The steps in phase 3 consist of planning, implementing the prototype, and
documenting any conclusions or results retrieved during the phase. The steps were
chosen to construct a logical order for implementing the prototype during the
phase. Not much time is allocated for planning the prototype because the
implementation requires experimentation with the ML algorithms, which is why
this phase worked on following an agile model.
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Phase 4 is time set aside for finishing the thesis and preparing for the final
presentation of the thesis. The phase does not contain any steps, and therefore it
will not be discussed in the methodology.

3.3 Initial Study

The first phase of the thesis work was the initial study. Its purpose was to provide
a fundamental understanding of how machine learning works, making sure that no
misunderstandings follow into the other phases of the study.

The phase consists of six steps. The first four of these steps cover learning about
different ML algorithms and concepts. The last two steps cover collecting and
compiling information and conducting interviews on how route optimization is
done today. How these steps were conducted will be explained in this section.

3.3.1 Information Gathering

The phase started with information gathering, focused on finding a varied range of
sources to learn from. The first four steps of this phase cover learning about
different ML algorithms and concepts. The time had to be spent efficiently by
gathering knowledge, from basic information to scientific articles that properly
relate to route planning and ML.

Three main ways of gathering resources were used. First, LTHs courses on ML
were surveyed to see if they have any recommendations for ML material. Second,
Youtube was used to gather sources, as many videos on the topic of genetic
algorithms, neural networks, and deep learning can be found. Mostly videos
recommended by professors or uploaded by renowned universities were used to
gather information, but also videos uploaded by people who want to share their
knowledge on ML. Third, articles on route planning solved with ML were looked
for by using Google Scholar and LUBSearch.

3.3.2 Learning

Many sources were gathered in subsection 3.3.1, and a process of gradually going
through them was needed, which led to the following process:

1. Youtube - Used to gather an initial understanding of a topic.

2. Books - To skim through and gain a more nuanced understanding.

3. Articles - To understand how route planning and machine learning can be
intertwined.
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Every week that was spent learning about a specific technique of machine learning
ended with documentation of different critical points of these techniques. The
information was documented in Google Drive and included: how the algorithm
works, how it can be implemented in practical terms, and how it can be utilized for
a route planning solution. This allowed for planning into later phases, for instance,
giving a general idea of implementation for the prototype. But also to document
specific techniques in chapter 2 of this thesis.

3.4 Targeted Study and Planning

The second phase of the thesis work was based on preparing for the prototype and
getting a better understanding of specific algorithms that can be implemented in
the prototype.

This phase consists of four different steps, evaluating ML techniques and looking
into which techniques to utilize for the prototyping phase, learning more about the
techniques that will be used in the prototype, deciding upon optimal key factors,
and compiling the information gathered and any decisions made. This section of
the thesis will cover the process behind these steps.

3.4.1 Evaluation of ML Algorithms

There are many different ML algorithms, and it would be impossible to study
every algorithm’s usability within route planning. Because of this, the evaluation
starts by limiting this amount.

Initially, this was done by studying commonly used ML algorithms and concepts
that could potentially be implemented in the prototype and adding them to a list.
How common the algorithms and concepts are were based upon how widespread
their usage is.

The population of the list was mostly done using different books and articles such
as these sources. [12] [32] [33]. Less commonly used algorithms were also added
to the list if they have previously been utilized in graph traversal solutions. At this
point, the list contained the following algorithms and concepts.

Genetic algorithm

Linear regression

Binary decision trees

Neural networks

Deep learning (DL)

Recurrent neural networks (RNN)
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e Ensemble learning
e Ant colony optimization (ACO) algorithms

Filtering of this list was done after a more extensive study regarding what the
listed algorithms were used for. For example, some algorithms have not been
utilized in optimization problems and graph traversal previously and were
therefore removed from the list. This was done since these algorithms have existed
for a long time and would already have been used for route optimization problems
if possible.

While learning more about the concepts and algorithms in the list, another way to
teach neural networks was found. Combining genetic algorithms (GAs) and neural
networks (NN) introduces a new concept called neuro-evolution, which has shown
promise in optimizing NNs. Thus it was added to the list.

Since both neuro-evolution and deep learning are implemented using NN, it was
redundant to keep NNs in the list as a concept. Therefore NN was removed from
the list.

Table 1. was created to evaluate the different algorithms. The criteria used to
assess each algorithm are based upon if the algorithm can be used for graph
traversal, optimization problems, or route optimization, if it has been used for
route optimization, and if the algorithm can somehow be expanded upon.

If the algorithm can be expanded upon is one of the more important criteria. Since
if the algorithm has no potential of expansion, working with the algorithm would
not contribute with any new knowledge to the field of route optimization. Instead,
the algorithm and previous findings regarding the algorithm should be able to be
expanded upon for it to be valuable to the thesis.

34



Table 1. The evaluation table used for deciding upon which algorithms to
consider. The boxes with green color and an X signifies that a criterion is fulfilled,
while the boxes with red color and no marking indicate the opposite.

Algorithm

Genetic
algorithm

Linear
regression

Binary
decision
trees

Neuro-
evolution

Deep
learning

Recurrent
neural
networks

Ensemble
learning

ACO
algorithms

Can be
used for
graph
traversal

Can be
used for
optimizat
ion
problems

Can be
used for
route
optimiz
ation
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Table 1. was filled out by the following process:

1. Studying the algorithms and figuring out how they work and what they
traditionally are used for.

2. Using google scholar and LUBSearch to search for the specific algorithm
with keywords such as optimization, route optimization, route planning,
and graph traversal.

3. The “Previous findings can be expanded upon” criteria was filled by
browsing conclusions from different articles and verifying if the authors
believed there were findings to expand on, and by thinking about ways to
potentially apply/improve the algorithms’ ability to solve route planning
problems.

The algorithms that remained in the list were the ones who fulfill most of the
criteria and can also be expanded upon, which are:

1. Genetic algorithm
2. Deep learning
3. Recurrent neural networks

However, suppose the algorithm has not been used before within the field of route
optimization. In that case, this will correlate to it being impossible to expand on
the algorithm as well since expansion signifies that it has already been tested prior.
However, this would not necessarily be negative since it would allow for exploring
an algorithm that has not been tested previously. Therefore neuro-evolution was
still considered a prime candidate and was added to the final list.

The final list of algorithms to be implemented in the prototype, which will be
referred to as “the final algorithm list”, is shown below:

Genetic algorithm

Deep learning
Neuro-evolution
Recurrent neural networks

D=

Having a list with multiple algorithms made it possible to explore several solutions
in this thesis work, which was thought to correlate to a more diverse study and
limit problems such as stagnation if the study cannot easily be expanded upon.
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3.4.2 Targeted Study of Algorithms

To prepare for the prototype, decisions regarding how the algorithms in the final
algorithm list would be studied had to be made. Thanks to earlier planning, the
final algorithms aligned with what had been previously studied in phase one. With
this in mind, less time could be spent on learning the theoretical parts of the
algorithms, and more time could be spent focusing on how they were implemented
in practice.

To learn the general approach of implementing the algorithms, the initial plan
consisted of two steps. The first step was to watch Youtube videos implementing
the techniques. This was done to gain an understanding of the step-by-step process
to follow when implementing the algorithms and pick up any general tips that
would be communicated through the videos. An example of this can be seen here
[34].

Step two was to move on to browsing through projects on GitHub and reading
their code to more quickly gain an understanding of how certain problems are
solved. Many types of problems were looked into. However, GitHub projects
closer to the topic of route optimization with ML were prioritized.

3.4.3 Key Factors for Route Planning

The list of key factors in this subsection was made by looking at route planning
solutions [35] [36] [37] and by brainstorming potential key factors based on the
experience acquired during phases one and two. This list, sorted in alphabetical
order, will be referred to as the “key factor list”.

e Break frequency for the trucker - Helps to plan when a spot for a break
needs to be passed.

e End node - An end node is required for every route.

o Nodes to visit - If several nodes are to be visited, these have to be included
as input.

e Road angle - How much of a slope the road has, impacts fuel usage.

e Road availability - If the road is often closed, it becomes a risk when
dealing with timely deliveries.

e Road conditions - A poorly maintained road can cause damages to the
vehicle; snow and rain on the road will affect traveling speed.

e Road length and speed limit - Can be used to calculate how long a road
takes to travel.
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e Service areas - The planned route has to take service areas into account
during long routes.

e Start node - A start node is required for every route.

e Temperature - Cold conditions can raise the risk of accidents. If the driver
has to drive in hot conditions, then taking breaks and having time to drink
water is essential.

e Time of day the road will be traversed - Can be used to identify rush
hours.

e Truck capacity - Can be used to incorporate load planning.

e Weather - Can cause effects such as roads shutting down, diminishing
speed for deliveries, and risk for accidents.

e Which day the road will be traversed - Can be used to predict traffic
patterns such as an increase in traffic during holidays.

The intention was to evaluate all key factors while testing the prototype.

3.4.4 Collection of Key Factors

Since it was impossible to retrieve real data for all key factors, theoretical values
had to be applied to the prototype regarding these factors. Some key factors where
real data could be collected used theoretical values, to begin with. This was done
to focus on getting the intended behavior of the prototype working.

Methods for retrieving data relevant to the key factors:

Amazon - Amazon is, as of writing this thesis, hosting a routing challenge where
they want contestants to build an Al solution for routing. To help the contestants
train their ML models, Amazon is distributing data regarding previous deliveries
they have done. This data includes historic routes, the distance traveled, and the
time it took. This will be leveraged in order to receive realistic routes for the
prototype to train with.

OSM - OpenStreetMap can be used to generate a node network from a map.
Cytoscape - Can be used to create and display node networks.

Trafikverkets API [38] - Can be used to obtain information regarding roads,
weather, and other conditions.

These methods were kept in mind while developing the prototype in case their
application was deemed useful.
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3.4.5 Collection of Key Factors for Real-world Application

During the process of collecting key factors, different methods for collecting key
factors were found, and the methods were documented in Google Drive. Certain
choices were looked into, such as Trafikverket’s API, Control towers, and others.
The results from these were also documented in Google Drive and were leveraged
to answer questions in the problem description.

3.5 Implementation of Prototype

To answer the questions in the problem description, a prototype that allowed for
visualization and efficient testing was needed. Planning went into the prototype
phase to make it possible to test multiple algorithms. This allowed for comparison
between different algorithms and increased the possibility of finding a solution to
the problem described in chapter one.

The purpose of the prototype was to gain experience with the algorithms and
experiment with them to answer several of the questions in the problem
description. The prototype approached this by first checking the algorithms’ ability
to traverse node networks. As this quality was confirmed, more complex route
problems could be tested, such as TSP and VRP. The algorithm’s ability to use key
factors was confirmed by assessing how the key factors were incorporated into the
algorithm and by monitoring their effect on the algorithm’s performance.

The prototype phase consisted of planning and implementing the prototype as well
as compiling any information or decisions made during the phase. This segment
covers the process behind how these steps were fulfilled.

3.5.1 Prototype Ideas

Based upon the algorithms in the final algorithm list in subsection 3.4.1, ideas for
potential prototypes were devised. These ideas were brainstormed and will
therefore be accommodated with a proper explanation as to why they were chosen.
The prototype ideas that were devised are as follow:

NEAT

NEAT allows for a solution that can take all the key factors from the key factor list
into account. Either as inputs or general guidelines for the node network.

Since deep-learning, NNs, and GAs have been used previously to solve route
optimization problems, they are known to work. However, the use of
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neuro-evolution has not been as deeply explored when it comes to route
optimization. Nevertheless, since the potential is there, and route optimization
using neuro-evolution has not been widely researched before. Therefore, NEAT
would be a prime candidate for solving route optimization problems.

GA with NN

While NEAT utilizes a GA architecture to evolve and augment its NN, it is also
possible to combine both GAs and NNs with a different approach. The envisioned
algorithm is based upon the idea of using a NN to rate a road's probability of being
the optimal choice to reach the end node. By using supervised learning, it is
possible to use the NN to take a multitude of key factors into account. The NN can
then be trained to a point where it can present a statistical probability of how prime
a road is to traverse in order to reach the end node. The GA then uses the
calculated probabilities to travel through the node network. This allows the
algorithm to potentially find better solutions than if NN was not used initially.

RNN with reinforcement learning

RNNs are built upon NNs and allow for solving problems of sequential nature. As
route planning can be seen as a sequential problem, since routes tend to be based
upon prior routes, RNNs could show promise in the field. If reinforcement
learning is incorporated, it would be able to modify its weights based upon how
well the network performs. Since RNNs utilize NNs, they would also be able to
use the key factors from the key factor list.

3.5.2 Prioritization of Algorithms

Ideally, all the ideas listed in subsection 3.5.1 would be able to be implemented
and tested. However, if this could not happen because of the timeframe of the
thesis work, prioritization had to be made to counteract this problem.

The prioritization was made following this reasoning. NEAT has not been
explored previously but follows a NN structure which likely would lead to fast
implementation and easily verifiable differences between itself and other NN
structures. It was therefore chosen as a starting point for the prototype
implementation. GA with NN was put second, as NEAT and RNN share the same
structure, both being different ways to implement NNs. GA with NN was assumed
to be hard to implement. Still, since it differentiated itself and because GAs were
deemed successful in solving difficult optimization problems, it was put second in
prioritization.[39] RNN was put last to ensure that there was something to work on
if the first two algorithms stagnate in performance.
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The prioritized list was thus the following:

1. NEAT
2. GA with NN
3. RNN

This led to an initial plan of dedicating two weeks to NEAT and the following two
weeks to GA with NN. RNN was seen as a substitute if the first two
implementations did not go the intended way because of stagnation. The reason
time was distributed this way was because the entire phase stretched four weeks,
and it was presumed that after two weeks, enough information would be retrieved
to answer questions in the problem description.

3.5.3 Tools

Several tools were used to simplify the implementation of the prototype.

Initially, three different programming languages for implementing the prototype
were considered. These were JavaScript, Python, and Java. These were considered
because of a few reasons:
e They are well-known languages used by many developers, which means
that help and libraries can be found online with ease.
e They were the main languages used in other articles and academic texts
that were read in preparation for the thesis work.
e The thesis workers have previous knowledge of these three languages.

However, it was finally decided that JavaScript would be used. The main reason
being that it was the language that the thesis workers had the most experience
with, and Node.js being convenient to use for utilizing external libraries.
Additionally, JavaScript made it easy to visualize the results using HTML. More
information on what JavaScript is and how it works can be found in the following
sources[40][41].

Node.js is a JavaScript runtime designed to build scalable network applications. It
was used while creating the prototype to simplify the process of installing and
using libraries. Further reading regarding Node.js can be done on the official
Node.js website[42].

Visual Studio Code (VSC) was chosen as the IDE to use while implementing the
prototype. It was chosen because it is powerful while still being easy to use. VSC
features a wide library of addons that can be used, which contributes to
pair-programming and development being a smoother experience. The IDE also
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features a built-in GUI for using GIT, which is more accessible than using the
terminal.

Two add-ons were used in VSC, namely “Live Share” and “Live Server.” Live
Share is used because it allows multiple developers to simultaneously edit and
write code inside the same document. Live Server was used since it automatically
sets up a local server where the code is deployed each time a document is saved.
This simplifies the processes of writing HTML and CSS since there is instant
feedback on the code written.

Since JavaScript is a programming language that many developers use, many
libraries exist that can be used to ease the workload. Two libraries were chosen to
be used in the prototype.

Neataptic.js was chosen because it has efficient NN and neuro-evolution
algorithms built into it and offers the possibility to display the NN on an HTML
page. It is also the library with the most active users out of the ones investigated.

Cytoscape.js was chosen because it offers functions to set up, visualize, and later
access a graph consisting of nodes and edges. The selected libraries can be read
about more in-depth in section 2.5.

3.5.4 Work Structure

The algorithms specified in subsection 3.5.1 were decided to be implemented
using a similar structure of work. It was specified in section 3.1. that work should
be done according to an agile model. Scrum was chosen as the agile model, and all
principles were followed with the extensions of using pair programming for the
entire duration of the prototype.

When working on the prototype, the following principles were followed:

e Setup any libraries needed and troubleshoot any immediate problems
before starting.

e Try solving an easy problem first to become familiar with the libraries.

e Pre-plan every part of the implementation to make sure that a direct line of
thinking can be followed.

e Start solving a simple route planning problem and add more functionality
in increments.

Other than following these steps, the following points were also taken into
consideration during every part of the prototype:
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e Store all written code in a GitHub repository.

e Document every finding in the thesis either as notes or fully explained
paragraphs.

e Continuously find and record problems with the prototype and document
them.

e Send a daily email to the supervisors at Capgemini containing: What was
accomplished yesterday, What will be accomplished today, What are the
current impediments.

Every two weeks of implementation led to a meeting where the findings and the
current prototype were presented to the supervisors at Capgemini. This was done
by preparing documents, screenshots, concepts, and code to show. Feedback was
then received, and future plans for the line of work were discussed.

3.5.5 NEAT

Based on the prioritization specified in subsection 3.5.2, NEAT was the first
algorithm to be implemented. However, before this could be done, some initial
preparations were needed.

The workspace was initially set up containing HTML- and JavaScript files and
Node.js. However, this led to some unexpected problems. Node.js could not
communicate well with the front-end client-side application. More specifically, the
imported libraries could not be reached client side. Solutions to the problem were
found on Stack Overflow, and it was decided to run the code through the browser
instead of using Node.js.

When the libraries were imported, getting acquainted with how the libraries work
was the next step. Neataptic was looked into first, as a basic understanding of how
the library works was required to start working on the route planning solution.
This experience was gathered by training a NN to solve the XOR problem, a
typical example NN are trained to solve.
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var network = Architect.Perceptron(2, 3, 1);

var trainingSe
{ input: 0], output:
{ input: 1], output:
{ input: [1,@], output:
{ input: [1,1], output:
15

network.train(trainingSet, {

console.log(network.

Fig. 6. A neural network trained to solve the XOR problem.

Fig. 6. shows the implementation of a solution to the XOR problem using the
neataptic library. This was planned to be done using the NEAT algorithm. Still,
since supervised learning fits the problem better, the focus was directed to learning
the library and testing the different ways to manipulate the NN.
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Fig. 7. Node network featuring nodes and edges in a grid layout.

The next step to start working on the route planning solution was to create a node
network, as seen in Fig. 7. To make it harder for the NN to find paths in the node
network and make the node network more similar to a road system in the real
world, some way to make the optimal route between two specified nodes less
straightforward had to be implemented. This was done by giving every edge a
random cost to travel, making it possible for the best path to consist of more nodes
while still being the cheapest path. With this structure, the NEAT algorithms’
proposed route through the system could easily be compared with a route
calculated by Dijkstra's algorithm to see how well the NEAT algorithm was
performing. It is also worth noting that the node network was created with the
ability to scale up the number of nodes in the network easily.

With the node network created, it was displayed on the HTML page to allow
visualization of the network. This made it possible to visualize any paths created
when the solution started to produce a result.

With all the needed preparations made, implementation of the NEAT algorithm
started, and the first goal of making the NN pick a path between two nodes in the
network went underway. However, before implementing the solution, decisions
regarding which inputs would be used and how the output of the NN would be
utilized had to be made.
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To decide the inputs to the neural network, a precise plan of implementation had to
be specified. This plan was based upon the initial idea specified in subsection
3.5.1, and with this in mind, three specific approaches to the problem were
planned.

The first approach was to think of the solution to the problem as a sequence. Every
node in the network has an optimal edge to travel in order to reach the destination.
With this in mind, the NN could potentially be used to evaluate which the best
edge to reach the destination is and solving the problem with the following steps:

Select a start and end node

Set current node = start node

Evaluate all edges from the current node with the NN
Select the edge that the NN classifies as most optimal
Set current node to the destination node of the edge
Loop steps 3 - 6 until the end node has been reached

S

The second approach was to feed a neural network all relevant information for a
certain node, such as its edges, their costs to travel, and its destination. These
could then be used to create an output of which node the network should travel to.

The third approach has been explored before [43] and was to train the NN using
supervised learning. This would allow the NN to be trained with paths generated
by Dijkstra’s algorithm and would provide the NN with a general idea of how to
find the best paths in node networks given the correct inputs.

By comparing the different approach against each other, it was decided that the
first approach would be implemented because of the following reasons:

e Approach one can easily use attributes of an edge as inputs. For instance,
factors such as traffic conditions, weather, and road condition, could be
easily retrieved and evaluated by the NN.

e Approach two follows the same idea as approach one, but with more
uncertainties as no immediate solution to make the NN evaluate several
nodes at once could be brainstormed.

e Approach three has previously shown that it yields slightly worse results
than simply using Dijkstra’s algorithm.

® Approach two and three would require more inputs to be fed into the
neural network. This would be a problem because neural networks tend to
work better with fewer inputs. With more inputs, any new inputs added

46



would have a smaller effect on the output, causing key factors not to be as
important.

With the chosen approach in mind, the following inputs were chosen as a starting
point before gradually adding new key factors:

Current node coordinates

Coordinates to a neighbor in the graph

The cost of traveling from the current node to the potential next node
Coordinates to the end node

With the inputs to the NN chosen, implementation could move onto making the
NN understand its purpose. This has to be done using a training method. In this
case, reinforcement learning was chosen for a couple of reasons:

Training a NN with a fitness score allows for many key factors to be taken
into consideration. Evaluations can be made for specific key factors, and
scores can be given based on how well the route adheres to the key
factors.

The possible alternative, supervised learning, has some problems. As
specified with the third approach earlier in this subsection, Dijkstra’s
algorithm cannot train a NN to always find the best path and
simultaneously limits the application of key factors.

The NEAT architecture is created to utilize fitness scores to augment the
NNs weights and topology.

Using reinforcement learning for the NN worked well, and the following factors
were used to calculate its fitness score:

Reaching the final node would reward the NN with a great amount of
score - To make sure the NN prioritizes routes that reach the end.

The entire cost of the route would be subtracted from the score - This
makes the NN prioritize low-cost routes.

If the route would randomly go back to the node it came from, the score
would be subtracted - This makes sure that the algorithm does not loop
between two roads with 0 cost.

This scoring system ensured that the NNs that reached the end, with the cheapest
path possible and no backtracks, gained the most score. Thus the NNs were trained
to find the most optimal paths.
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At this point, the prototype showed signs of giving the intended result, but the data
would become “Not a Number” (NAN) at later generations. While
troubleshooting, a correlation between specific activation functions built into the
neataptic library and the data that turned into NAN was made. By looking into the
neataptic issues on GitHub, other people with the same problem were found, and
the problem was fixed by looking into which activation functions worked and
specifying which of the functions in the library are allowed to augment the NNs
structure.

With no noticeable problems left, optimizing and scaling up the solution to more
difficult route optimization problems remained. There was, however, only a couple
of days left of the current implementation idea to stay on schedule. At this point,
there were two potential choices, either moving on or continuing with the NEAT
solution. Moving on was eventually decided on, as a couple of limitations were
noticed in the NN architecture that was believed not to be fixable and would cause
problems in more advanced cases such as TSP. Because of this, the remaining days
were spent understanding the issues and documenting them.

The last important decision made during this phase was not to test all key factors
in the implementations. The following list, which will be called “Key factor
limitations”, shows the reasons that led to this:

e Time was limited.

e The gain from using theoretical values as key factors seemed redundant as
the ability to utilize them had already been verified.

e Without real data, it would be impossible to verify their application to the
algorithms.

The decisions and experience gathered during the implementation of the NEAT
solution will be leveraged into the upcoming two weeks of work on the GA with
NN solution. Because of this, it is expected that the process will go smoother.

3.5.6 GA with NN

As described in subsection 3.5.1, this idea requires a NN to function, and therefore
one has to be trained. However, a new NN did not have to be implemented since
the idea could be tested with the NN generated by the NEAT algorithm described
in subsection 3.5.5.

Before the implementation started, some other parts from the NEAT solution could
be copied and modified to save time. The same node network could be used, as
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well as the HTML page displaying the nodes and eventual path taken by the
algorithm.

According to the work structure specified in subsection 3.5.4, the implementation
should start by solving a simple route planning problem. Therefore, it was decided
that just like for NEAT, the initial goal would be to find the path between two
nodes. To accomplish this, a function that utilizes the NN to assign probabilities to
all edges in the node network was implemented.

However, when looking at the probabilities generated by the newly implemented
function, it was discovered that the NN would assign inaccurate probabilities to
the edges in the node network. The probabilities set by the NN did not show any
signs of pointing towards an optimal path, but rather, an edge leading directly to
the destination node often had a lower probability than an edge leading in the other
direction. As a result of this, it was decided to entirely rule out the NN solution
and instead focus on a solution using only a GA.

Ruling out NNs from the solution was not without drawbacks. By using a NN, the
goal was that a more general path towards the destination would be found.
Compared to using solely a GA solution, more combinations had to be tested, and
thus more iterations had to be done. However, by using a GA solution, an optimal
route would be able to be found, which it was concluded that the NN could not
guarantee.

Because the initial idea of using a NN to evaluate edges was deemed unfavorable,
a new method of selecting routes was needed. When looking at how this was done
in other solutions, the standard concept was to do it randomly. This benefits the
GA because it allows it to test many more combinations, gradually optimizing the
paths and eventually finding the best path. Therefore, it was decided that all edges
would have the same probability of being chosen while traversing the node
network.

With a solution to the problem found, discussions between the thesis workers
ensued regarding every aspect of the GA solution to figure out how every part
could be implemented. Finally, deciding that the specific features of the algorithms
would be implemented with the following approach.

The general structure of a GA described in section 2.2 was followed. First, a

population of trucks was created, and later it was augmented according to the steps
described below.
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Starting at a start node, the trucks are to traverse the node network, saving their
path along the way. At each node, a random edge departing from that node is
chosen, with each edge having an equal probability of being picked. This process
is repeated until the destination node has been reached.

The trucks’ paths to the destination node are then evaluated, and the trucks are
scored based upon how well they perform. The truck will gain score if it reaches
the destination node and lose score exponentially based on the cost of the path
taken. This scoring system will ensure that the trucks that reach the end, with the
cheapest path possible, will gain the most score, and thus the most optimal path is
found.

For the GA to use the score as efficiently as possible, it has to be normalized
before using it in crossover. This is done by adding together all the scores to
receive a sum and then divide each score by the sum. The normalization ensures
that all scores consist of a value between 1 and 0 while still being proportional.
This is important to ensure that scores do not differ significantly between each
other since this would greatly favor a high score of being chosen, almost
completely negating any truck with a lower score.

After the trucks have acquired a path and a normalized score, crossover is the next
step. There was no immediate idea regarding how crossover within a route
optimization GA could be implemented. However, generally, crossover is
implemented by combining the genes of two different objects. In this case, the
path taken by the trucks can be seen as the genes, and thus the implementation of
crossover performed the following:

Steps for crossover:

1. Randomly pick two trucks (truckA and truckB) out of the population. A
truck's likelihood of being picked is proportional to the score of that truck,
whereas a high score relates to a high probability of being picked.

2. Extract all nodes that both trucks have visited in their path.

3. Choose one random node out of the nodes that the paths had in common.
If the paths did not have any nodes in common, go back to step 1.

4. Create a new empty path.

5. Extract the nodes from truckA’s path, from the starting node up until the
common node, and add it to the new path

6. Extract the nodes from truckB’s path, starting at the common node up until
the destination node, and append it to the new path

7. The resulting path consists of a combination of the two truck paths.
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While performing crossover, the split has to happen where a common node is
present. This is because if a random spot in both paths were chosen, the odds are
that the resulting path would not be a possible path most of the time. This means
that the path would consist of a sequence of nodes that cannot be traversed because
no edges exist between the nodes at the splitting point.

The problem with crossover is that it only takes into consideration the paths that
already exist. This means that no new information would be added to the system
after the initial population has generated its path. Hence, mutation was a critical
aspect of the algorithm. Mutation made sure that new paths could be found and
introduced more randomness to the system, which raised the likelihood of finding
the optimal path. The implementation of mutation performed the following:

Steps for mutation:
1. Randomly pick trucks based upon a mutation rate. The mutation rate
decides the percentage chance of a truck being chosen to be mutated.
2. Choose a random node somewhere in the truck's path traveled.
3. Starting at that node, randomly traverse the node network until the
destination is found or the path reaches a specific length.

After implementing the crossover and mutation, the algorithm was finished and
ready to be tested. The results were reviewed and more functionality was to be
added. Therefore, the ability to solve routes where multiple points had to be visited
was added. This required a few minor changes and additions to the algorithm:

e The ability to input an array of nodes that should be visited was added.

e Modified the scoring method, making score be gained for each node
visited.

e Score was also gained if the last node visited was the same as the start
node. This decision was made since the delivery truck most likely wants to
return to the depot after being done delivering in a real-life scenario.

The algorithm showed promising results, and therefore the node network was
enlarged to make it harder for the algorithm and make the network more similar to
a real-world scenario. The node network was changed from 5x5 to 10x10,
quadrupling the number of nodes in the node network.

The algorithm was still performing well; however, performing many generations

took a long time. The code contained many necessary intertwined loops.
Therefore, to optimize the code, the functions that were in the most inner loops
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were looked at first. It was discovered that some of the functions from the
imported libraries were slower than anticipated.

The functions in question served to retrieve data stored in objects that were
constructed in the libraries. The way to optimize this was to retrieve all the
required information once when the algorithm was first run and store it locally in
the client. This small change made the algorithm run on average 24 times faster.

As the algorithm now ran faster than before, it could be tested with larger
populations and more generations.

The next step would have been to incorporate load planning and implement the
solution for this. However, as the end of the prototype phase was coming, only
enough time to devise some general ideas on the subject was possible. The
consensus was that load planning could easily be incorporated by dividing which
nodes to visit across several trucks. A couple more specific implementation ideas
were made on this topic, but since it was not possible within the time frame of the
thesis work, the prototype phase was deemed over, and work on the thesis would
begin.

3.6 Considerations

Several choices were made to limit certain aspects of the thesis. These choices
were done for different reasons, either because they would take too much time or
because different problems would accompany their usage.

The first choice on this matter was not to use OSM. OSM was intended to be used
to create node networks based upon actual roads in cities. This would provide the
ability to understand the implementations in the prototype better and figure out
their real-world application. This was decided against after looking into how to do
this, as an extensive amount of time would have to be dedicated to understanding
APIs, translating and retrieving this data, as well as there being no direct examples
of how this could be done from what could be found.

Not using the data supplied by Amazon was the next of these choices. Amazon
was going to provide real data of different routes that trucks have taken in the
USA. However, when this data was released, it only consisted of point 1, point 2,
and how long it took between them. This was deemed unusable for the thesis
work, as it would limit the usage of key factors.
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Trafikverkets API was also intended to be used but was decided against for the
same reason as OSM. Much time would have to be dedicated to figuring out how
to collect and apply their data.

No interviews were conducted during the thesis work, even though this was a step
in the timeline. The plan was to contact different delivery companies and ask them
how they plan routes today. However, getting a hold of this information was more
challenging than expected. Most delivery companies that were looked into would
advertise that they were using software to plan routes, but getting a hold of
specific information regarding this software was impossible. The problem stems
from two facts.

1. Companies have no reason to share how they optimize their routes
2. Only developers at the company, who cannot be contacted easily,
understand how the software was created.

Because of these problems, it was decided that the question would be answered by
gathering information online instead of conducting interviews as initial search
results showed promise. Therefore this was instead done during the interview step
of phase one.

3.7 Source Criticism

Many sources were used in this thesis, and to prove their validity, this chapter will
motivate why they were chosen.

Sources [1], [2], [3], [7] ,[13], [20], [24], [30], [38], [44], [45], and [46] were all
chosen because they provide information from well known companies. These
companies would receive serious backlash if they provided false information and
are therefore likely to release correct information.

Similarly to the sources from the companies [40], [41], and [42] contain
information from JavaScript and Node.js. JavaScript is a worldwide programming
language, and Nodejs is a popular runtime in the software development
community.

The sources [26] and [27] are libraries used while implementing the prototype and
were chosen because they are well documented and have seen many downloads
and much use.

The books [4], [8], [18], [19], and [32] were chosen to be trustworthy as they have
all gone through a process to be published. Generally, this process weeds out any
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misinformation. Furthermore, the messages of the books also aligned with what
was learned during the thesis work.

The academic texts [5], [9], [11], [14], [17], [25], [33], and [39] are sources taken
from academic journals. These can be trusted since all material published in these
journals are thoroughly examined and approved by experts before being published.

Source [10] was chosen as it is from the Conference on Machine Learning and
Cybernetics. To become approved for a conference like this, proof of information
validity is required.

The thesis [43] has been published and thoroughly explains the process by which it
got to its result, as well as providing information on how the result was achieved.

The blog posts [6], [16], and [21] were deemed as trustworthy and accurate after
cross-referencing the information gathered with other sources to validate its
authenticity. Furthermore, the blogs have many followers, and the articles have
many likes and comments, which further adds to their credibility.

Book [12] is self-published. However, it is still deemed trustworthy after
cross-referencing the information read and since the author has much knowledge
within the field of which the book is written. This knowledge stems from the fact
that he has published hundreds of videos of himself coding in which he references
and explains his process of doing so.

The video [34] is published by the same person as [12]. The video shows an entire
implementation process of neuro-evolution, all code and the result can be seen in
the video, making it credible.

The online book [15] was used to create a youtube video series on Neural
Networks by 3BluelBrown. The video has been recommended by several
professors and has seen its use as an introduction for deep learning in several
courses. Based on the video's approval by many professors, the book’s eligibility
can also be approved. The author also has a Ph.D. which means he has a reputation
to uphold and much experience in research.

The blog in source [22] is run by a person who has a Ph.D. in artificial
intelligence, and therefore, the information regarding Al and ML found in the blog

is deemed credible.

Source [23] is an article about the NEAT algorithm and neuro-evolution written by
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the person who invented the algorithm.

The PDF linked in [29] is created and used by a coach who has been teaching agile
work methods for 12 years.

The waterfall model, as described in [28], aligns with what the thesis workers
previously learned about the model, making it credible for its use.

The sources [35], [36], and [37] are route planning software that had approval on
the web.

The thesis plan in [31] is the plan followed while doing this thesis work and is
therefore regarded as highly credible.
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4. Results

This chapter contains the result received from following the methodology. The
chapter touches on subjects such as how route optimization is done today, how key
factors can be collected and used, as well as the result of the prototype.

The sections are categorized with the problem description in mind, apart from
section 4.2, which applies to the thesis but does not directly correlate to a question
in the problem description.

4.1 Route Optimization and the Supply Chain

Companies plan routes in very different ways. For example, if a company delivers
packages to the same place for an extended period, they only have to plan the best
route once and then use that route for all future deliveries. However, for companies
that handle deliveries to new locations every day, route planning software becomes
more beneficial as it can improve the efficiency of the deliveries. On the web,
many different companies provide route planning solutions of this type
[35][36][37].

For companies that handle point-to-point travel, Google Maps is a valid choice.
This is because Google Maps finds routes with the use of Dijkstra’s algorithm but
also makes logical choices based upon real-time data [44].

Route optimization is not completely limited to optimizing which roads to travel.
Optimizing parts of the supply chain can show effects on the logistics of route
optimization and save fuel usage [3].

Google is actively working with UPS, the world's largest package distribution
company, by helping them optimize their supply chain. This project is a part of
Google Cloud and covers supply chain logistics. Google optimizes several parts of
the supply chain using Al, thereby showing its potential in route optimization.

It is interesting to note that many areas within the supply chain can still be

optimized as it consists of many different parts and many specifics that can be
looked into. [45]
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4.2 Route Planning Incorporation in Chosen ML
Algorithms

While working on the prototype, in subsection 3.5.5 and 3.5.6, knowledge
regarding how the NEAT and GA algorithms adapt to route planning problems
was obtained. With this knowledge, information regarding what the algorithms can
do, what they cannot do, and what they are suited for was documented. This
information will be presented in this section even though it does not directly
correlate to the questions in the problem description, as this information could be
used to draw conclusions later in this thesis.

A visualization of node networks will be presented in subsection 4.2.1 and 4.2.2.
To understand how the node network is visualized, the following knowledge is
required:

Table 2. Description of the colors in the figures in section 4.2

Color Meaning
Red node Start point, also end point in multi-stop graphs.
Purple node Nodes that should be visited. If there is only one, then it is

also the final node.

Blue edge Edge traversed by the algorithm.

Green edge Edge traversed by Dijkstra’s algorithm.

If both algorithms traverse the same edge, then the edge will be colored blue in the
figure.
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4.2.1 NEAT

The NEAT algorithm initially showed that it could solve simple route planning
problems when the node network described in subsection 3.5.5 contained 25
nodes.

Dijkstra path is green, cost: 33

NEAT path is blue, cost: 33

0 1 2 3 4

23 24

® ——— @

Fig. 8. Unbiased and average path in 5 x 5 network calculated by NEAT.

Fig. 8. shows a path generated by the NEAT algorithm. Fig. 8. is proclaimed to be
unbiased and average as it was the first route the algorithm generated specifically
for this use. When running the algorithm in a new randomly generated node
network, with the same start and end node 10 times, the best path was found 5/10
times. Although, when the best path was not found, there were only slight
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differences in cost between the path generated by Dijkstra's algorithm and the path
generated by NEAT.

Fig. 9. Settings for the generated path in Fig. 8.

If the settings in Fig. 9. would be changed by adding more generations, or if the
initial population would be increased, the probability of finding the best path
would increase at the expense of increasing how long the algorithm takes to run.
However, training and running the network took roughly a minute using these
settings, which seemed like an appropriate breakpoint, as waiting excessive time
per path to potentially receive a higher probability of finding the best path seemed
redundant. It is also worth noting that major differences in efficiency can be made
by finding the best combination of settings. A large part of training a NN is
making sure that the settings are tailored for the problem they are used to solve.
For this specific problem, the settings in Fig. 9. are considered optimized.
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Dijkstra path is green. cost: 47

NEAT path is blue, cost: 54
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Fig. 10. Path in 10 x 10 network calculated by NEAT

When the node network is scaled up to containing 100 nodes, the probability of
finding the best route diminishes completely. The route in Fig. 10 was the first
path generated when using a 10x10 node network. Ten more routes were created
with similar settings, as shown in Fig. 9. apart from generations and iterations
being changed to 500 and 50, respectively. After 10 paths had been generated
using the same node network with the same start and end node, 0/10 paths found
the same path that Dijkstra’s algorithm generated, as well as there being significant
differences in total cost. However, the path still reached the end node every time.

Based on these tests, it was concluded that the implementation and utilization of

NEAT would not be useful for planning routes. As this was explored, as specified
at the end of subsection 3.5.5, two conclusions to the problem were made.
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The first conclusion is that NEAT, and specifically NNs, make predictions based
on their input data. When the number of predictions the NN has to make increases,
the overall probability of making a wrong decision also increases. This leads to
apparent differences in the overall cost of the path taken in the network.

The second conclusion is that the NN prefers to make logical choices, making it
not select potential routes that could present an overall lower cost. For instance,
when moving towards the end node, the NN is reluctant to make choices that could
provide a worse score. This can be seen in Fig. 10. as described below.

The path 13 - 14 - 24 - 23 adds three more nodes instead of going directly 13 - 23.
Dijkstra finds the path containing more nodes to be optimal, as it always finds the
cheapest path. However, the NN does not recognize the path 13- 14 -24 -23 as a
valid option. This is likely because the NN assumes that 14 - 24 and 24 - 23 should
grant an average cost of 5 each, as every edge has a cost between 0 and 10. Instead
of gaining a potential extra cost of 10, it should simply go directly to 23 from 13
and gain a cost that is on average lower than making the detour. However, it is
possible that 14 -24 and 24 -23 both cost 0, making it a way more optimal path.
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4.2.2 GA with NN
As described in subsection 3.5.6, the intended GA with NN solution had problems.

0o a4z 3 mow ez Tmeeerioeee |

15 16

Fig. 11. Node network with a path generated by Dijkstra’s algorithm. The console
on the right-hand side contains data regarding the edges in the node network. The
“source” attribute corresponds to what node the edge starts in. The “target”
attribute corresponds to what node the edge ends in. The “weight” attribute
corresponds to the cost of traveling the edge.

The cheapest path, as calculated with Dijkstra’s algorithm, is marked with green
edges in Fig. 11. In the console in Fig. 11., all the outgoing edges from a specific
node are confined within white boxes. Within the white boxes, each green box
corresponds to the green edges in the node network.

The solution did not work as expected, which will be explained using Fig. 11.
Since the goal was to find the cheapest path, the probabilities generated by the NN
should correspond to the green path. Meaning that the edges within the green
boxes in the console should have the highest probability of all outgoing edges
from a particular node. As can be seen, this is not the case. Rather, the best edge is
only chosen one time out of four. Additionally, the edge connecting node 18 to
node 17, the final node, has the lowest probability of all the outgoing edges from
node 18.
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Similar results to the ones seen in Fig. 11. was seen when using several other
examples. Therefore, it was decided that giving all edges an equal probability of
being picked was more advantageous since the calculated probabilities were wrong
and would have led to worse routes being generated by the GA.

The main problem with the “GA with NN” solution is that in order to work, the
NN used must be thoroughly trained. If the NN does not understand its purpose,
and when used on its own, cannot solve routes, as seen in subsection 4.2.1, it
cannot be used effectively in cooperation with a GA either.

The GA solution that was implemented to utilize the equal probabilities showed
great ability in solving routes.

0 1 2 3 4
| o L ]

6 7 8 9
9 — —@— |

10 11 12 1 14
@ S o
16 16 1 18 19
20 21 2, 23 24
® ® o —@

Fig. 12. Path generated by the GA in a 5x5 node network.

As shown in Fig. 12., the GA finds its way to the goal node and chooses the
cheapest path there, as confirmed by comparing with paths generated by Dijkstra’s
algorithm. When running the algorithm in a new randomly generated node
network, with the same start and end node 10 times, the best path was found 10/10
times. Thus, showing more promise than the NEAT algorithm in success rate while
taking 4.5s compared to the NEAT solution, which took 60s, making it about 13
times faster.
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Fig. 13. Path generated by the GA in a 10x10 node network

With the larger node network in place and using the same settings (amount of
generations, iterations, and population size) that were used with the smaller node
network, the algorithm found its way to the goal, but not with the best path. This is
displayed in Fig. 13.
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Fig. 14. Path generated by the GA in the same 10x10 node network as in Fig. 13.

After increasing the number of generations, iterations, and population size, the
path shown in Fig. 14. was generated. The algorithm was still not finding the best
path every time. When running the algorithm in the same node network, with the
same start and end node 10 times, the best path was found 2/10 times. However, a
near-optimal path was found every time, with an average deviation from the
cheapest path being a cost of 3, which corresponds to the GA finding paths that are
on average 6% slower than the ones calculated using Dijkstra’s algorithm.
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Fig. 15. Multi-point path generated by the GA in the same 10x10 node network
and with the same settings as earlier.

After adding the ability to find paths featuring multiple stops in the 10x10 node
network, Fig. 15. was generated. As shown in Fig. 15., the algorithm visits all the
nodes and returns to the starting point. The paths generated by the GA always find
their way around all nodes and back to the red node again when testing the
algorithm. This is a positive finding since a working path will always be generated
for a truck to traverse when making deliveries.

Each time after running the algorithm in the same node network, with the same
nodes to visit, a different resulting path is returned. This is due to the fact of how
the GA is built upon randomness. With a large enough population size, amount of
generations, and high enough mutation rate, the same best path will always be
found. However, this is not realistic to test as it could take several days to generate
one path. Therefore, it cannot be known whether these paths are the paths with the
lowest possible cost or not.
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Table 3. shows the result of running the algorithm in the same node network, with
the same start and end node ten times. The best out of the paths generated is shown
in Fig 13. More can be found in the appendix under section 8.2.

Table 3. A table showing the results from running the multipoint GA ten times.

Iterations Path cost
1 171
2 160
3 185
4 185
5 190
6 177
7 154
8 185
9 149
10 187

The shortest path that was found had a cost of 149, and the average cost of the
paths in Table 3. is 174.3, which is 14.4% more than the cheapest found. However,
as mentioned above, this does not mean that 149 is the cheapest path possible for
that specific node network.

It can be concluded that the final GA implementation performs well and finds
decent paths.

Another conclusion can be made while comparing paths generated using the GA in
the large node network. Because of the randomness that lies in the nature of the
GA, the more possible paths that the GA can choose from, the more deviations
there will be between the paths generated.
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4.3 Key factor utilization

The application of key factors within machine learning is a wide area. It is possible
to apply key factors in many different ways and the ML algorithms that were
surveyed in this thesis work do not have any limitations on their potential usability.
The key factor list in subsection 3.4.3 specifies some of the initial key factors that
were going to be tested in the prototype. Out of those factors, not all were tested,
as explained in subsection 3.5.5 in the key factor limitation list. Instead, only the
following were tested in the prototype:

e Cost (A value used to provide the algorithms with a sense of how long an
edge takes to travel)

e Start node
e Nodes to visit
e Endnode

Other than the factors mentioned in the key factor list, coordinates of the nodes
were also tested to provide the NEAT algorithm implemented in subsection 3.5.5
with a general idea of direction.

By working on the prototype and assessing the key factors usability in route
optimization, it was concluded that the only limitation on which key factors that
can be used is if the key factors affect the time it takes to traverse a route. This
means that the key factors mentioned in the key factor list definitely can be used in
route optimization and, more specifically, for route planning. It would also be
possible to utilize factors such as traffic, vehicle or driver information. Therefore,
it is more interesting to think about the key factors in the sense of their application
to route planning solutions using ML algorithms.

The key factors that were tested in the prototype worked well, and it is presumed
that applying any of the other key factors in the key factor list in subsection 3.4.3
would be possible because of the following reason: The two algorithms that were
implemented, described in subsections 3.5.5 and 3.5.6, utilize a fitness score. By
using a fitness score, the problem of applying key factors to the ML model directly
correlates to how the fitness function is implemented and which data is available
in the function. Given enough data and analysis, it would be possible to apply
fitness correctly and make the routes selected be fine-tuned to any key factors.

Key factors can be used in any machine learning algorithm that can be used to plan
routes. However, the application is different for every algorithm. With the result
retrieved in this thesis work, only ML algorithms that utilize fitness (GA and
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NEAT) or algorithms that use a NN to make decisions can be confirmed as their
ability has been tested. NNs ability was confirmed as they have many different
learning methods, reinforcement learning being one of them, which makes it
possible to apply fitness scores to them. Therefore, the problem is not necessarily
“which ML algorithms can use key factors” but rather how the key factors can be
utilized effectively.

In subsection 4.2.2, it was confirmed that the GA could find paths with multiple
stops in a node network. To do this, the GA needed a node network to traverse and
edge costs associated with the edges in the network. With these two factors the GA
could find routes. Theoretically, the only difference that has to be made to make
the GA find more efficient routes would be to revise the edge costs in the system
to take key factors into consideration and correspondingly use more precise edge
costs than previously.

Based on the information retrieved and the experience obtained from the
prototype, the best ML algorithm for evaluating edge cost would also be the best
ML algorithm to utilize key factors.

At this point, the main problem is that the cost associated with an edge is hard to
calculate. Many probability-based key factors have to be applied to calculate the
actual cost, and this would require a thorough study of each key factor and its
application. However, NNs are useful for analyzing data and making predictions,
given the proper training. Reinforcement learning would not work for this, as this
would lead to equally complex solutions as previously mentioned, however,
supervised learning might.

The solution to this problem comes from a conclusion drawn after working with
the ML algorithms, learning about them, and thinking about their application to
route optimization.

The conclusion is that a NN could likely be trained to assess how long a certain
edge takes to travel. If the NN is trained using supervised learning, it would be
able to connect certain aspects such as traffic density and time of day, along with
other aspects that affect time spent traveling. If this is implemented, it could
increase the efficiency of the routes generated by Dijkstra’s algorithm as the costs
in the system would be more precise, compared to only using factors such as speed
and distance. Although, a problem with this solution is that the key factors have to
be retrieved in real-time using a method, such as control towers.
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While working on the prototype, an issue within the problem description regarding
key factors was found. During the writing of Chapter 1, it was expected that key
factors would easily be tested in the prototype to confirm their application and
potential efficiency. However, as implementation started, the idea of verifying key
factors in the prototype was seen as impossible without using data from real-world
scenarios.

This problem had already been noticed when writing the background as the third
limitation specified that data used in the prototype would be theoretical. While it is
possible to verify the ability to use key factors using theoretical values, it is
impossible to make any direct conclusions on how well they perform. This means
that the question in the problem description, “Which key factors have the most
significant impact on transport efficiency and utilization of fleets?” cannot be
answered.

4.4 Key factor collection

Some of the key factors discussed in the key factor list in subsection 3.4.3 will be
easily available, such as what time of the day and which day the route is for, as this
information can easily be gathered. The same goes for start, end, and nodes to visit
since they have to be known to create a route. Policies regarding how often the
trucker needs to have breaks might differ between different companies. Thus this
information has to be input by the user.

It is worth noting that the time of day will vary depending on how far into the
route that has been traveled. Although this can be calculated since each edge
should have a factor regarding how long it takes to travel, and thus it would
always be known at what time each edge is traversed.

As for the other key factors in the key factor list, namely road length, speed limit,
road availability, road conditions, weather, temperature, and road angle, these can
be acquired for swedish roads from Trafikverkets API. More can be read regarding
Trafikverkets API and its documentation here [38].

Another solution that was found for this problem was using control towers.
Control towers within the supply chain could be used to collect, store, and utilize
key factors in real-time. Information regarding previous routes could be stored to
later be utilized as training data for ML algorithms. More can be read about
control towers and their features at IBM [46].
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4.5 Load planning

As mentioned towards the end of subsection 3.5.6, a plan was devised for how
load planning could be incorporated in the prototype.

If each truck has an attribute containing its max load capacity, then that attribute
can be utilized while calculating the route to travel. Each node that needs to be
visited will contain a new attribute corresponding to the amount of load that needs
to be delivered at the node. If the truck's maximum load capacity is too small to
supply all the nodes, additional trucks will be brought into the calculation.

With this logic added to the previously implemented GA, along with other
functionality to support dividing a route across several trucks at once, the GA
would be able to find optimal routes for several trucks delivering goods. Each
truck would then be packed according to what goods the nodes it has to visit need.

Implementing this would ensure that each route receives an optimal number of
trucks and that the trucks always depart with an optimal amount of load. The result
of this would be cheaper deliveries and less emissions since potentially less trucks
would be on the roads. Additionally, if the routes are planned in such a way that
the heaviest load the truck carries is delivered first, it could lower emissions even
further.
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5. Conclusions

Route optimization can be applied to many fields, but route planning was the focus
of this thesis work. The GA solution showed potential in finding multi-stop routes
and optimizing the routes by using a fitness function. The most critical aspect to
increase the overall route efficiency was deemed to be related to edge cost. By
calculating edge cost in a more precise manner, further optimizations were deemed
possible by utilizing relevant key factors.

NEAT and NNs showed promise in solving simple route planning problems.
However, as the problems got more complex, it showed that NNs had some
underlying issues making them unfit for route planning. With this in mind, another
way to utilize NNs was devised. Although it has not been tested, the potential of
using NNs to calculate edge cost using supervised learning is seen.

The GA solution showed that it could often find the best path in point-to-point
travel in a node network. When the problem was changed to multi-point, correct
routes were always found, but it was impossible to verify if the best route was
found. The GA solution showed the most promise in this thesis work. It worked
well for traversing node networks and performing route planning. Given enough
time, GAs could definitely be useful for problems such as planning routes when
there are multiple stops.

Key factors showed great potential when used within a node network to decide
edge costs, but more factors have to be further tested and with real data to be
confirmed as a valid method.

5.1 Answers to the Problem Description

In this thesis work, ML application to route optimization was studied. More
specifically, three main parts were looked into.

- ML application in route planning.
- Key factors utilization in ML algorithms
- Incorporating load planning in ML route planning solutions.

Seven questions pertaining to these parts were specified in the problem
description. Only “Which key factors have the most significant impact on
transport efficiency and utilization of fleets?” was not answered following the
reasoning at the end of section 4.3.
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Howisr imization don 2

Route optimization is not completely limited to finding the most optimal route.
Optimizing other parts of the supply chain can have effects on the routes planned.
Such as improving the storage capacity of delivery trucks which could ultimately
lead to less total routes having to be planned. How route optimization is done
today can therefore be seen as optimizing the supply chain as a whole. However,
route planning is still the primary concern of this question, as it has the most direct
effect on route optimization.

Route planning is done in many different ways. For point-to-point delivery,
Google Maps seems like the safest and overall most efficient alternative. However,
data gathered from previous routes can still be leveraged to make potential
optimizations in point-to-point travel. For the multi-stop problem, utilizing this
data becomes more challenging as the number of possible routes that could be
planned drastically increases with the number of nodes to visit. Therefore,
software that can make efficient routes using algorithms and data analysis
becomes more lucrative and seem to be a popular alternative.

Which kev f E T T

All key factors listed in the key factor list in subsection 3.4.3 are usable in route
optimization. However, theoretically, every factor that has an impact on a planned
route could be used. This includes factors such as traffic, vehicle, and worker
information.

It is worth noting that the overall usability of the factors is directly correlated to
their application, meaning that they would have to be individually tested and
evaluated to see if they can be incorporated in route optimization.

H r h 7. 2

Two different methods of gathering data relevant to key factors were discovered.
First, a control tower can be used to collect, store, and use data in real-time while
vehicles are in use. Alternatively, they can be retrieved for swedish roads by using
the API supplied by Trafikverket. As mentioned earlier Trafikverket only has this
available for Sweden, which means that if the key factors are needed in other
countries, a different solution has to be found.

ML rithm 113 rs?

Any ML algorithm that can be used to plan a route is able to handle key factors as
well. This stems from the fact that most, if not all, key factors can be applied
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directly onto the node network instead to generate edge costs. However, this does
require implementation of how the edge cost should be calculated.

Which ML algorith ilize the key fi he best?
For route optimization, this thesis showed that both NEAT and GAs could be used

in route planning. GAs showed promise in solving multi-stop route planning
problems and, given enough optimization, could be utilized for problems of this
type. NEAT showed that it could be used to plan routes but severely lacked
efficiency compared to routes planned using Dijkstra’s algorithm.

The most beneficial way to apply key factors was deemed to use them as a way to
evaluate edge cost. This would improve the GA solution and Dijkstra's algorithm’s
ability to find the best routes. Theoretically, this could be done by training a NN
using supervised learning. Then, given enough real data, the network could start
making logical predictions taking into account any factors the network was trained
with.

H n nin incorpor: jmize r. rther?

Load planning can be incorporated by adding attributes to the nodes in the network
corresponding to the load size to be delivered and to the trucks to show how much
load they can carry. By thereafter planning routes while considering these
attributes, each truck will be assigned a route with an optimal amount of goods to
deliver.

5.2 Fulfillment of Purpose, Goal, and Motivation

With the result presented in chapter 4, deductions in the area of route optimization
can be made. Two algorithms have been tested and had their abilities verified in
route planning scenarios. GAs showed promising results in solving complex route
planning problems with efficiency and great potential for improvement.

However, it was not possible to verify that the conclusions made in this thesis
fulfill the initial purpose, which is that goods would arrive on time, at a lower cost
and energy expenditure than today. Instead, the potential of these conclusions lay
in their ability to be worked on in the future, given more testing and better
implementation. With this, the purpose of the thesis, presented in section 1.3, is
considered to be partly fulfilled.

Hopefully, Capgemini will be able to utilize the result and studies done in this

thesis to optimize the supply chain, and with that, further, fulfill the motivation
described in section 1.6 of this thesis.
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5.3 Ethical Aspects

The social benefit from this thesis work is significant. Since the thesis supplies
knowledge on how routes can be optimized both looking at environmental and
efficiency aspects, the routes found could lead to less vehicles on the road overall.
This, in turn, helps the environment by lowering emissions and benefits the
population with faster deliveries. However, if the improved delivery service leads
to more people shopping online, it can harm the local shops already struggling in
smaller cities.

An ethical dilemma that posed during the thesis work was that since it took place
during a global pandemic, it had to be decided that all work and meetings would
take place from home. This included meetings with the supervisors both at
Capgemini and the university.

5.4 Future Work

This section covers the parts that can be expanded upon, such as, optimizing the
algorithms, verifying certain conclusions, and figuring out real-world applications
of the result discovered in this thesis.

The NEAT solution did not present a satisfying result. However, given more
thought into certain aspects of the solution, it might be possible to improve the
overall ability of the algorithm implementation. The aspects and the reason why
they could be improved will be explained in the following list:

Mutation rate - With a higher mutation rate, it is possible that the algorithm would
have an easier time finding weights better suited to the NN. It was found that using
a low mutation rate worked best for the current solution. However, if the mutation
rate was increased and the method of applying mutation to the network was
changed, there might be some potential for optimization.

Mutation elitism - Every generation, a couple of the best networks are added to the
new generation to ensure that no potential is lost going from one generation to
another. However, an underlying problem with the library neataptic is that it
applies mutation after these networks have been added to the next population. This
means that there is a probability that all the best networks can be mutated, and
progress could be lost.

Fitness calculation - The fitness calculation for the route planning implementation
did not take many factors into account. Given a better method of rating the
networks, it is possible that a better network, more suited to the problem, could be
generated.
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Normalization - NNs tend to work better depending on how the data is normalized.
Therefore, it could be worthwhile to look into other methods of normalization.

Instead of creating a NN using NEAT, the RNN structure might be better suited for
finding routes in a node network as RNNs work well with problems of sequential
nature. When working with a RNN, it would also be possible to utilize
TensorFlow, an optimized and up-to-date library for machine learning that
companies like Google utilize for their ML needs.

Given that the GA solution could solve TSP and VRP in node networks, certain
aspects would have to be optimized to make it more applicable to actual real-life
route planning scenarios.

The overall efficiency of the implementation of the GA could be surveyed. The
most costly operations were optimized, but certain algorithms in the
implementation could probably see a reduction in run time, given a more thorough
investigation.

As specified in the methodology, crossover and mutation were challenging to
implement. If the two functions were given more focus, it could be possible to find
better ways to implement them, which could show an increased efficiency in
routes found. A potential improvement that could be tested is making crossover
only select common nodes within the middle nodes of the truck's paths. This could
lead to better paths since crossover generally is done by combining equal parts
from both parents.

The idea of applying probabilities to how the edges are selected when the GA
algorithm operates is still valid, even though there were complications to how the
neural network was utilized for this problem. If the probabilities in the node
network could be tailored to decrease the probability of picking roads that lead in
wrong directions, breakthroughs in efficiency and the overall routes found could
be made.

The problem of calculating edge cost would require much research. Time would
have to be dedicated to implementing a fitness function in one of two ways. Either
by analyzing data, making predictions, and testing the function. Alternatively, by
retrieving data, applying it to a neural network, and testing its ability to predict
edge cost.
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An idea regarding load planning was devised in section 4.5, but was never
implemented. Therefore, trying to implement and test this idea could be a valid
step in order to test and verify its usefulness.
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6. Terminology

Description of technical terms:

Al - Artificial intelligence, the simulation of human intelligence in machines.
Control tower - A central hub for data and metrics regarding the supply chain.
Provides end-to-end visibility across the full supply chain. Utilizes technologies
such as ML to function.

Fleets - Groups of delivery trucks all owned by the same company.

Heuristic search - A search strategy which finds approximate solutions, which are
iteratively improved until a “good enough” solution is found. This is often used
when classic search algorithms cannot find a solution.

Key factors - The machine learning algorithm will have to look at different values
in order to be able to make decisions. We call these values “key factors” and these
can be something like a speed limit for a road, how often the road is closed down
for various reasons, how much of a slope the road has, how long the road is, how
often the trucker needs breaks, where the trucker can take breaks, e.t.c.

Load planning - Describes the planning going into loading delivery trucks.
Specifically optimizing what cargo goes in which truck. By doing this fewer trucks
can be used and more optimal routes created.

ML - Machine learning, a subset of Al. With the specialization of analyzing data
and creating analytical models from said data.

Route optimization - The route will be optimized in a way that reduces
transportation costs, CO2 emissions and time spent delivering goods. It should
also reduce the time real people have to spend on planning routes.

Topology - In the regards of neural networks, the topology describes how the
network is structured, which includes the neural network’s size, amount of hidden
layers, and connections between the nodes.

Transport efficiency - The efficiency at which an independent truck or a fleet of
trucks operate at. The factors we incorporate into the efficiency are transportation
cost, CO2 emissions, and time spent on the road.
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8. Appendix

Contains lists and pictures that would take up to much space in the other chapters
in the thesis.

8.1 List of Acronyms

Al Artificial Intelligence

API Application Programming Interface
DL Deep Learning

DNN Deep Neural Network

GA Genetic Algorithms

GPS Global Positioning System

HTML HyperText Markup Language

IBM International Business Machines Corporation
IDE Integrated Development Environment
LTH Lunds Tekniska Hogskola

MIT Massachusetts Institute of Technology
ML Machine Learning

NAN Not A Number

NEAT Neural Evolution of Augmenting Topologies
NN Neural Networks

OSM Open Street Map

RNN Recurrent Neural Networks

TSP Travelling Salesman Problem

UPS United Parcel Service

VRP Vehicle Routing Problem

VSC Visual Studio Code
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8.2 Figures relating to Table. 3.

This section contains more multipoint routes created by the GA in subsection
4.2.2. The figures relate to entries in Table. 3. with corresponding shortest paths
found.
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