
Indoor Positioning and Machine Learning
Algorithms

RAAVI UTTARWAR AND JULIÁN VALENTÍN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

R
A

A
V

I U
TTA

R
W

A
R

 A
N

D
 JU

LIÁ
N

 V
A

LEN
TÍN

Indoor Positioning and M
achine Learning A

lgorithm
s

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-822
http://www.eit.lth.se

Indoor Positioning and Machine Learning
Algorithms

Raavi Uttarwar and Julián Valentín
ra3878ut-s@student.lu.se,ju4508va-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Meifang Zhu, Peter Karlsson

Examiner: Fredrik Rusek

June 11, 2021

© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

This master thesis focuses around improving the efficiency and accuracy of
existing indoor positioning systems with the help of Machine Learning (ML). Our
work is based on Bluetooth Low Energy (BLE) v5.1. Position estimation is cur-
rently being carried out using the Least-Squares (LS) method in the framework.
Introducing Machine Learning to position estimation can reduce computation time
and increase accuracy of the system because of the additional “learning” in the form
of Machine Learning models that is done by the system. An attempt has been
made to extract information from the Direction-finding feature that BLE v5.1
presents, and combine it with ML to potentially improve the current position es-
timation.
In order to test the efficacy of these ML algorithms, a wide range of data has been
used for these experiments. This included data from different simulated indoor en-
vironments and from measurements done physically in a real office environment.
We have experimented with three different Machine Learning algorithms for clas-
sification and regression: Random Forest, Support Vector Machine and k Nearest
Neighbors. Each algorithm has shown impressive results with centimetre-level
accuracy, indicating that it can be rewarding to explore ML even more for the
purpose of indoor positioning.

Keywords: Indoor Positioning, Machine Learning, Bluetooth Low Energy

i

ii

Popular Science Summary

Indoor positioning comes into play when satellite-based systems such as Global
Positioning System (GPS) are not able to provide accurate information. This
happens because these systems generally require a direct Line-Of-Sight (LOS) to
communicate effectively, or the device to have access to as many satellites as pos-
sible. This is not always the case indoors. GPS systems do not work well inside
closed structures, especially those built primarily of concrete, because these signals
are too weak to be able to penetrate solid structures, which result in high loss in
received signal power [1].
In these situations, short-range systems such as Bluetooth and WiFi work very
well, where a high level of accuracy cannot be met using GPS. Indoor position-
ing systems are useful in scenarios where tracking and location-based information
of objects are required. This includes Internet of Things (IoT) - e.g. home au-
tomation systems - airports, factories, warehouses, places providing healthcare,
and transportation facilities [2]. There is a large variety of areas in day-to-day life
where positioning using Bluetooth can prove to be helpful, and can make tasks eas-
ier. Bluetooth positioning is able to bring the positioning error down to sub-metre
accuracy [3]. Indoor positioning with BLE works best when multiple BLE beacons
are working together. This usually increases position accuracy. Bluetooth devices
carry out positioning using Received Signal Strength Indicator (RSSI), Angle of
Arrival or Angle of Departure (AoD).
We have mainly worked on improving the position estimates of a Bluetooth tag
provided by four anchor points in an office environment. One of the key features of
BLE v5.1 is direction finding, so Bluetooth beacons can provide information about
the direction of the incoming signal. We have used the AoAs and RSSI provided
by four anchor points to give a better estimate of the position of the Bluetooth
device in question using Machine Learning algorithms.

iii

iv

Table of Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Methodology . 2
1.3 Literature Survey . 2
1.4 Thesis Organization . 3

2 Theoretical Background 5
2.1 Multiple Antenna Systems . 5
2.2 Multipath Propagation . 5
2.3 Bluetooth Low Energy v5.1 . 9
2.4 Introduction to Machine Learning 10
2.5 Machine Learning Algorithms . 11
2.6 Least-Squares . 15

3 Positioning Estimation with Machine Learning 17
3.1 Arranging Testbench Data . 17
3.2 Parameter Optimization . 19
3.3 Estimations in Different Indoor Environments 24
3.4 Cross-prediction with Simulated Indoor Environments 33
3.5 Estimations using Measurement Data 35
3.6 Position Estimation Results . 40
3.7 Discussions and Future Work . 48

4 Conclusions 51

References 53

v

vi

List of Figures

2.1 Scattering . 6
2.2 Reflection . 6
2.3 Diffraction . 6
2.4 Refraction . 6
2.5 Angle of Arrival and Angle of Departure [8] 8
2.6 Azimuth and Elevation [10] . 8
2.7 Examples of Classification and Regression. [12] 11
2.8 k Nearest Neighbors [15] . 12
2.9 Random Forest [16] . 13
2.10 Support Vector Machine [20] . 13

3.1 Bluetooth positioning scheme performed at u-blox. 18
3.2 Scheme of a Machine Learning process. 18
3.3 Different Parameters in the Simulated Scenario: Regression 21
3.4 Different Parameters in the Real (Measured) Scenario: Classification. 22
3.5 Different Parameters in Real Scenario: Regression. 23
3.6 Floor Plan of an Office Environment. 25
3.7 Simulated Environments. 25
3.8 LOS Distribution for High Concrete/Wood. 26
3.9 LOS Distribution for Mid Concrete/Wood. 26
3.10 LOS Distribution for Low Concrete/Wood. 26
3.11 RSSI for Concrete Scenarios. 27
3.12 RSSI for Furniture Scenarios. 27
3.13 LOS vs. Furniture Scenario. 27
3.14 LOS vs. Concrete Scenario. 27
3.15 Error Distribution for RF. 30
3.16 Error distribution for SVM. 30
3.17 Error Distribution for kNN. 31
3.18 Error Distribution for LS. 31
3.19 Comparison of Error Distribution in a Concrete Scenario. 32
3.20 Comparison of Error Distribution in a Furniture Scenario. 32
3.21 Cross-Prediction with RF Regressor. 34
3.22 Cross-Prediction with SV Regressor. 34
3.23 Cross-Prediction with kNN Regressor. 35

vii

3.24 Floor Plan of a Real-Life Office Environment. 36
3.26 CDF of Positioning Error from Regression. 38
3.27 CDF of Positioning Error from Classification. 38
3.28 X-coordinate: RF . 39
3.29 Y-coordinate: RF . 39
3.30 X-coordinate: SVM . 39
3.31 Y-coordinate: SVM . 39
3.32 X-coordinate: kNN . 39
3.33 Y-coordinate: kNN . 39
3.34 Proposed ML System. 40
3.35 True and Estimated Path of the tag using LS Technique. 41
3.36 Position Estimations using RF in High Concrete Scenario. 41
3.37 Position Estimations using SVM in High Concrete Scenario. 42
3.38 Position Estimations using kNN in High Concrete Scenario. 42
3.39 Position Estimations using RF in High Furniture Scenario. 43
3.40 Position Estimations using SVM in High Furniture Scenario. 43
3.41 Position Estimations using kNN in High Furniture Scenario. 44
3.42 Position Estimation using RF Classifier in Office Environment. 45
3.43 Position Estimation using SV Classifier in Office Environment. 45
3.44 Position Estimation using kNN Classifier in Office Environment. . . . 46
3.45 Position Estimation using RF Regressor in Office Environment. . . . 46
3.46 Position Estimation using SV Regressor in Office Environment. . . . 47
3.47 Position Estimation using kNN Regressor in Office Environment. . . . 47
3.48 Mechanism of the Kalman Filter [29]. 48

viii

List of Tables

2.1 Computational Complexity for each algorithm. [22] 14

3.1 Parameter values used for Optimization. 19
3.2 Optimized parameters. 19
3.3 Training and Testing Times: Random Forest. 21
3.4 Training and Testing Times: SV Regressor. 22
3.5 Training and Testing Times: kNN Regressor. 23
3.6 Dielectric Properties of Wood and Concrete. 24
3.7 MAE for x and y using RF. 28
3.8 MAE for x and y using SVM. 28
3.9 MAE for x and y using kNN. 29
3.10 Mean Euclidean Distance. 29
3.11 Average Positioning Error for Measurement Data. 37

ix

x

Chapter 1
Introduction

1.1 Background and Motivation

Due to the rapid increase in smartphones and the spread of many other differ-
ent wireless devices over the last decade, IoT is becoming an area of tremendous
interest for different kinds of industries. Traffic monitoring, wearables, healthcare,
and energy saving are some of the many different application areas for IoT. The
addition of location-based systems (LBS) to such a developing field provides richer
and more accurate service to the end users.
Location-based technologies such as GPS and Galileo have proven to be of great
importance and reliance for outdoor scenarios. Nevertheless, in indoor scenar-
ios, where the positioning must be more accurate as compared to the metre to
sub-metre precision achieved by outdoor LBS, multipath propagation of the in-
formation transmitted plays a crucial role in the system performance. GPS and
Galileo have been discarded for indoor purposes due to their low performance.
Therefore, it is time for technologies such as Wi-Fi and BLE to deal with indoor
positioning, which faces inconveniences caused by multipath propagation due to
objects present in every room.
Indoor positioning has been a field of study for over 30 years and yet, new tech-
nologies are in constant development. Depending on the signal and the environ-
ment, some existing indoor positioning technologies give better results. System
requirements such as power consumption and computational complexity also play
an important role at the point of deciding which technology should be used for
indoor localization.
The motivation behind introducing ML to position estimation is its unparalleled
ability to adapt to different scenarios, which makes it desirable in so many different
applications, may it be engineering, economics, or even medicine. This is because,
essentially, ML is statistics and numbers, which are present in every aspect of life
in the form of data. Using this data to enhance the understanding of a system on
how to generate an output proves to be beneficial because not only is the system
adapting to the data, but is also being taught how to learn, process, and use the
data through a large variety of ML methods that we know of today.
Combining ML with applications in almost all cases simply leads to better results
and enhanced efficiency of the system.

1

2 Introduction

1.2 Methodology

The project revolves around comparing the performance of different ML mod-
els in estimating the position of a Bluetooth tag.
Along with real-time measurement data, we have also worked with 7 different sim-
ulated indoor scenarios. We studied the error performance of three ML algorithms:
Random Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbors
(kNN), to compare them to the currently used Least-Squares (LS) estimation.
We plan to propose brief theoretical approaches using the estimates from the se-
lected ML model, the LS method and the Kalman Filter (KF) to show different
ways of performing position estimation and tracking of the tag. This will be done
in the Discussions and Future Work section of Chapter 3.
The differences between the sizes of the datasets that had been created through
simulations and that obtained by physical measurements make it somewhat dif-
ficult to propose just one ML model. Hence, our work is a comparative study of
some ML algorithms. A limitation that we faced was that the data provided to us
which was obtained from measurements had sparse number of positions, making
it slightly insufficient for ML training. However, experiments were performed to
observe the functioning of ML models with such kind of data.

1.3 Literature Survey

The field of indoor positioning is continuously growing and has a lot to ex-
plore.The thesis finds its core in the basics of Wireless Communication channels
and Bluetooth. This included academic papers about different propagation mech-
anisms, how 5G systems are different from those belonging to previous cellular
generations [4], and the working of and concepts involved in the new version of
Bluetooth, Bluetooth Low Energy v5.1. Herein, direction-finding was crucial to
be kept in mind as the basic mechanism in order to understand the positioning.
Direction-finding in BLE v5.1 is done using Angle of Arrival (AoA) or Angle of
Departure (AoD) [3].
We then moved to reading papers about Bluetooth indoor positioning, also in-
cluding papers that discussed implementation of ML algorithms to improve indoor
positioning estimation with Bluetooth. These papers were very helpful in giving
us a starting point since they were in line with our thesis topic, and gave us good
insight to ML combined with indoor positioning.
To get better acquainted to ML, we decided to study some of the most important
concepts related to our tasks. For this, we read some specific chapters from the
book Introduction to Machine Learning by Ethem Alpaydin.These chapters ex-
plained the basics of supervised Machine Learning, which is what we have used in
this thesis.
We referred to a paper which talked about combining Kalman Filter and Machine
Learning to understand KF for our theoretical proposal [5].

Introduction 3

1.4 Thesis Organization

This thesis document consists of four chapters, starting with the Introduction
where we give a brief background about the thesis topic, the reasons or motivation
why this topic is of interest, the methodology followed, and the reading that we
carried out during the thesis as part of research.
Chapter 2 delves deeper into the theoretical concepts that we have used in the
thesis to explain each component before we dive into our practical work, which is
contained in Chapter 3. We have mainly described our experiments with different
ML algorithms in different indoor scenarios and laid out our results.
In the last chapter of the thesis, we elaborate on the observations we make in
the previous chapter. We discuss some theoretical approaches in addition to or
as modifications of the models we have already created that we think are good
options for improving position estimation accuracy using learning algorithms.

4 Introduction

Chapter 2
Theoretical Background

2.1 Multiple Antenna Systems

The knowledge of multiple antenna systems has been a topic of major interest
over the last three decades [6]. In order to take full advantage of such a scarce
resource that the spectrum is, investigation on improving crucial factors in every
wireless communication system such as capacity or coverage, led to the utilization
of multiple antennas, usually at both sides of the communication link.
Multiple antenna systems offer such a possibility for many different scenarios, and
indoor positioning is no exception. Specifically, in every indoor communication
link, several inconveniences arise, which are explained in the following sections.
With regard to location estimation, knowledge of the DOA, especially for the Line-
Of-Sight component, will considerably improve with an increase in the number of
antennas.

2.2 Multipath Propagation

Unlike outdoor positioning, where satellite communication is being used and
therefore, the location of the users on the ground are in LOS paths to the satellite
and are free from scattering, indoor positioning must deal with multipath propaga-
tion experienced by any signal transmitted. These different paths that the signal
follows are due to different kinds of propagation that arise when waves encounter
obstacles such as walls, furniture or even people present in any environment.
Wireless communication channel models commonly take into account different
propagation mechanisms which can individually influence the LOS path and the
strength of the signal. Therefore, each of them needs to be considered separately
for a proper analysis of how the signal fades from the transmitter to the receiver
via the wireless channel.
The propagation mechanisms are the following:

• Scattering (Figure 2.1), meaning the signal is spread out in many different
directions.

• Reflection (Figure 2.2), referring to how the signal is reflected off a surface.

• Diffraction (Figure 2.3), where the wave is influenced by passing an aperture
or an edge.

5

6 Theoretical Background

Figure 2.1: Scattering Figure 2.2: Reflection

Figure 2.3: Diffraction Figure 2.4: Refraction

• Refraction (Figure 2.4), in which the transmission of the signal goes through
a different medium at a different angle.

The combination of the different propagation mechanisms mentioned above is what
causes the phenomenon known as small-scale fading of the information signal.
Multipath propagation forces the signals to echo within the channel. Each of them
interacts in various different ways with the environment and spread in different di-
mensions. These dimensions are delay spread, Doppler spread and angular spread.
These have a big impact on the signal and will be explained in the following sub-
sections.

2.2.1 Delay Spread

According to [7], in a multipath environment, the received signal rays arrive
in clusters. Several delayed and scaled versions of the signal transmitted arrive at
the receiver in different clusters. Within each cluster, each version of the signal
decays exponentially in power. In order to be able to distinguish between fading
components, and therefore differentiate various clusters, it is crucial to obtain a
measure of the coherence bandwidth. The coherence bandwidth is defined by
Equation 2.1:

Bc ≈
1

τRMS
, (2.1)

Theoretical Background 7

where τRMS is the RMS delay spread.
Depending on whether the coherence bandwidth is lower than the bandwidth of
the signal, the channel is said to be frequency selective. Hence, different frequency
components of the signal transmitted suffer uncorrelated fading.

2.2.2 Doppler Spread

The Doppler spread refers to the movement of the transmitter and/or the
receiver and the scatterers’ presence in the room, the carrier frequency can spread
over a finite spectral bandwidth. If this were the case, the coherence time, Tc in
the equation below, provides us with a measure of how fast the channel is changing
in time and therefore, be aware of how fast the wireless channel fluctuates. The
coherence time is defined by Equation 2.2:

Tc ≈
1

νRMS
, (2.2)

where νRMS is the Doppler spread

2.2.3 Angular Spread

Finally, the spatial location of the antenna also matters. Space-selective fad-
ing causes the signal power to depend on the spread in AOAs of the MPCs at the
receive antenna array or the spread in AODs that arrive at the receiver. There-
fore, the coherence distance, or spatial separation, will give a measure of how
distant each of the antennas should be from the other in order to be statistically
independent. The coherence distance is defined by Equation 2.3:

Dc ∝
1

θRMS
, (2.3)

where θRMS is the angular spread.

2.2.4 Azimuth and Elevation (φ,θ)

Bluetooth direction-finding is done mainly using two methods: Angle of Arrival
and Angle of Departure. Both these methods need one of the two end terminals
to have an antenna array.
In the AoA method, which is used in this project, the receiver end includes an
antenna array whereas, it is the transmitter end consisting of an antenna array in
the AoD method. This is clearly because the AoA and AoD are observed at the
receiver and transmitter, respectively. These techniques make use of the phase
shifts that occur due to the multiple antenna elements [8]. Figure 2.5 portrays
both Bluetooth direction-finding methods.
In this thesis, the AoA information has been used for position estimation. This
is because one of the main applications of AoA is the geolocation of Bluetooth
devices, such as cellphones. AoA can be measured by the direction of signal trans-
mission which is incident on the antenna array at the receiver, or by the highest
received signal strength by rotating the antennas [9]. AoD on the other hand, is

8 Theoretical Background

Figure 2.5: Angle of Arrival and Angle of Departure [8]

Figure 2.6: Azimuth and Elevation [10]

measured with an antenna array at the transmitter using the phase differences
between them.
Both angles actually contain the information about the azimuth and the elevation
angles. Azimuth (φ) is the angle measured clockwise between North and the ob-
server’s horizon (in this case, the observer is an anchor point). Elevation (θ) is the
vertical angular distance between the tag and the anchor point’s horizon. Essen-
tially, azimuth tells us which direction to look and the elevation tells us how high
to look. Figure 2.6 represents both angles in relation to the Cartesian coordinates.
We have used both angles to obtain position estimates.

2.2.5 Line-of-Sight

The simulation data that we have used to obtain position estimates was cre-
ated based on different indoor environments, specifically an office environment

Theoretical Background 9

with solid structures. These structures and objects have different orientations and
sizes. This indicates towards whether there is anything which obstructs the signal
transmission between the tag and anchor point in question, which in turn deter-
mines if the signal propagation is in Line-Of-Sight (LOS) or Non-Line-Of-Sight
(NLOS). LOS propagation means that there is a direct path between the trans-
mitter and receiver. NLOS implies that there are obstructions in the direct LOS
path. This implies that the signal propagation has occurred through an indirect
and partially-obstructed path, such as through reflections from the various surfaces
in the room.

2.2.6 Received Signal Strength Indicator

In addition to the AoA explained above, a correct estimation of the position
can be achieved by capturing the power of the received signal. This parameter is
known as Received Signal Strength Indicator (RSSI). It is measured in decibels
(dB) and it will serve as another input to the ML system.
The indication of how much power the received signal has at every snapshot is a
useful measure of how far the position of the user is. Depending on the intensity,
a higher RSSI will mean a closer distance and a lower RSSI will mean a further
distance between the receiver and the location of the user.
According to [3], distance estimation with RSSI is deficient. Distance estimation
has not been attempted during this thesis. However, the more inputs we provide
about the position of the tag to the ML system, a more accurate prediction of the
final coordinates of the user will be achieved.

2.3 Bluetooth Low Energy v5.1

Bluetooth technology has been used for various types of LBS for many years
[3]. In 2019, a new version of Bluetooth called Bluetooth Low Energy (BLE) v5.1
was released, which not only includes previous advantages such as low cost and
energy efficiency, but additional new abilities as well.
The new features in the most recent release of this Bluetooth specification mainly
focus on the enhancement of indoor positioning capabilities. In the previous ver-
sions of Bluetooth, positioning mainly relied on the RSSI in order to provide a
proper estimate of the location of a user device, giving a metre-level accuracy.
However, BLE v5.1 now also takes into account the new and important direction
finding, therefore improving the accuracy of positioning.
Starting with v5.1, an optional feature allows detecting signal direction. To achieve
this, it utilizes one of the next two methods: Angle of Arrival (AoA) at the re-
ceiver or Angle of Departure (AoD) at the transmitter. In the case of AoA, it is
primarily used for Real-Time Location Services (RTLS) (Figure 2.5). On the other
hand, indoor positioning systems make use of AoD. However, this thesis attempts
to explore the usage of AoA for indoor positioning.
With this new feature, the accuracy of positioning achieved reaches the centimetre
level.

10 Theoretical Background

2.4 Introduction to Machine Learning

The applications of Machine Learning are found everywhere and are manifold.
It is a branch of statistics and computer science in which data is collected and
processed in a way in which it can identify patterns and inter-dependencies in
the data. The unique thing about ML is that to obtain a result, the system only
needs to learn these patterns according to a certain ML algorithm, and there is no
specific computation required to do so. The data is generally split into two, the
better part of which is usually used to train the system and the remaining part
for testing the model that was implemented.
Machine Learning is broadly classified into the following techniques:

• Supervised Machine Learning

• Unsupervised Machine Learning

• Reinforcement Learning

Supervised learning is one in which the system is given a set of data as well as the
expected output. This allows the system to have an idea about what the output is
supposed to look like. The methods that are most often used are Regression and
Classification. In this project, mainly regression has been used. Both methods
will be discussed in detail in the following subsections.
Unsupervised learning on the other hand, does not require users to specify depen-
dencies and how inferences are to be drawn from the data. Instead, the system
itself performs the tasks of observing patterns in the data, while having some or
no knowledge of what the result is expected to be. Examples of unsupervised
Machine Learning are Clustering and Principal Component Analysis (PCA).
In reinforcement learning, the system works on maximizing the “reward”. Training
is not required. Instead, a reinforcement agent decides how the given task can be
done. Based on the performance, the system is either penalized or rewarded. In
this way, the system makes a chain of decisions based on trial and error to find
the best solution.

2.4.1 Regression

Regression is a method which determines the dependencies of a given data
with its outcomes. Here, we study the relation between a dependent variable on
one or more independent variables. This explains why the main uses of regression
are predicting and forecasting. In both cases, we try to predict the state of a
particular variable, such as the weather, given that we have information about the
factors that the weather depends on, such as temperature, moisture content, etc.
It has consistently been a valuable tool in economics and business. For example,
annual food expenditure can be predicted based on at least one variable income.
It is known that as incomes rise, food expenditure also increases (for clarification,
by Engel’s law, the expenditure on other things also increases with increase in
income, so the total expenditure on food as a share of the total income declines)
[11]. Hence, this can be modelled as a linear regression problem. Increasing the
number of independent variables makes it a multiple linear regression problem.
Figure 2.7 shows an example of linear regression and explains how regression works

Theoretical Background 11

Figure 2.7: Examples of Classification and Regression. [12]

as a concept, simply a line that fits all data points in the best way possible.
Regression is categorized based on various factors such as the number of indepen-
dent and dependent variables, and nature of the regression plot. Popular types of
regression are: logistic, polynomial, Bayesian linear, and Ridge.

2.4.2 Classification

Classification works on the idea of grouping things into categories. Based
on the dataset provided, the system learns how to classify new observations into
predefined categories. It does not exactly perform prediction of any outcomes like
regression, but instead, states what the outcome is, and is most useful when there
are distinct categories in the data. It is widely used in image, pattern and language
recognition, and in scenarios where labelling is required such as categorizing books
into genres. Classification is further divided into binary, use cases having two
categories, and multi-class, use cases having more than two distinct categories.
Often, multi-class problems are a group of binary classifiers.
Figure 2.7 gives us an example of a simple classification problem. A decision
boundary exists which decides which class every datapoint gets sorted into.

To elaborate more on this, the data which we worked with during this thesis
has decided what kind of supervised Machine Learning we chose. Some parameters
showed some correlation with others but the scenario is not one where there were
distinct classes into which data could be categorized into. This made it more of a
regression problem than a classification problem and hence, we have mainly chosen
different regression algorithms.

2.5 Machine Learning Algorithms

2.5.1 k-Nearest Neighbors

The algorithm k-Nearest Neighbors (kNN) a non-parametric (a branch of
statistics which does not work only on probability distributions [13]) ML algo-
rithm which was developed as a classification algorithm but is actually used for

12 Theoretical Background

Figure 2.8: k Nearest Neighbors [15]

regression problems as well [14].
This algorithm takes k of the nearest training data samples as input and outputs
a class that the observation has been put into if the model is a classifier, or the
average of the k nearest data samples if the model is a regressor. As an example,
in Figure 2.8 k=5, meaning the data point selects the 5 closest neighbors. The
estimated class of that specific data point is determined by the dominant class,
green colour in this example. We decided to explore kNN based on [1].

2.5.2 Random Forest

Random Forest (RF) or Random Decision Forest is an interesting ML method
which is used for both regression and classification. The principle behind RF is the
creation of a specified number of decision trees, a predictive modelling technique
in which information about an observation is contained in the “branches” of a tree
and the target value in the “leaves”. When the target variable takes on discrete
values, it implies that the trees are being used for classification, and for regression
when the target variable can take on continuous values. Figure 2.9 is a graphic
explanation of the algorithm.
While creating a random forest, we generally specify the number of decision trees
and the depth until which we want each tree to split into branches. Higher the
depth, more the tree will split, and more amount of data will be captured. From
[17], we decided to attempt the decision tree approach using RF, especially for
classification.

2.5.3 Support Vector Machine

Based on the Vapnik-Chervonenkis theory, Support Vector Machine (SVM) is

Theoretical Background 13

Figure 2.9: Random Forest [16]

a robust ML technique. It is used for a variety of use cases, such as regression,
linear and non-linear classification, and even clustering in spite of primarily being
a supervised Machine Learning algorithm [18].
SVM uses kernels, which define how the input is read and transformed into a
specific form. Kernels help us find a hyperplane in high-dimensional data. This
hyperplane separates two data classes in case of Support Vector Classification
and creates a decision boundary in case of Support Vector Regression [19]. The
widely used types of kernels used in SVM are: linear, radial basis function (RBF),
polynomial, and sigmoid.The principle of SVM is graphically explained in Figure
2.10. It shows the hyperplane separating two classes of data with the help of
support vectors.

Figure 2.10: Support Vector Machine [20]

14 Theoretical Background

2.5.4 Computational Complexity

The term complexity in the Machine Learning context tells us how many it-
erations are required to run the training and how much time these iterations take
based on the number of training samples and number of features. Similarly, it also
tell us how long the prediction takes based on the parameters that are passed to
the algorithm.
Ensemble type learning methods use multiple algorithms, hence the term “ensem-
ble” [21]. An example of this is Random Forest. Let us say that the original
complexity is x. Because of multiple decision trees (say n), this complexity is
multiplied by the number of trees and becomes nx.
For Support Vector Machine, the complexity follows a similar path except for the
role of the kernel being used [22].
The training in k Nearest Neighbors involves calculating the distance between the
data point in question and all others in the dataset. If there are n samples in the
dataset, the number of iterations required for training will also be n.
Just as the most suitable algorithm changes from application to application, so
does the acceptable time and computational complexity. Some require fast results,
thus requiring low complexity algorithms. Often in some applications, generally
where the size of data and complexity of the application itself is more, the high
time and complexities are excused in order to obtain accurate results. On the
other hand, in scenarios where highly accurate results are not expected, we can
afford sacrificing some of the complexity and accuracy.
Computational complexity is commonly denoted by the Big O notation. It tells
us how many resources, such as time and space, are required to run a particular
algorithm. Take for example a list with n elements. The worst-performing search
algorithm would be one which runs through every element once, which would also
be the simplest search. This means that the complexity of this algorithm is O(n).
To explain it further, say the element we are searching for is the first element of
the list. This gives us the best-case scenario O(1) [23]. Expressed using the Big
O notation, in Table 2.1 we can find the computational complexities of the three
algorithms we have experimented within this thesis. Note that n is the number of
samples, p is the number of features, t is the number of trees (for RF), and n_sv
is the number of support vectors (for SVM).

Algorithm Training Prediction
Random Forest O(n2pt) O(pt)

Support Vector Machine O(n2p+n3) O(nsvp)

k Nearest Neighbors O(1) O(np)

Table 2.1: Computational Complexity for each algorithm. [22]

Theoretical Background 15

2.6 Least-Squares

The positioning engine that is being used at the company currently is based
on the Least-Squares method, as mentioned before. This method is a popular
and effective way of minimizing the error in linear regression models, where it
minimizes the sum of the squares of the difference between the true and predicted
value, as shown in Equation 2.4:

S =

n∑
i=1

(pi − p̂i)2, (2.4)

where pi and p̂i are the actual value and the value predicted by the model, respec-
tively. The outcome S refers to the sum of the squares of the mentioned difference.
However, the positioning engine does not use linear regression. Instead, the best-fit
is computed using the Moore-Penrose inverse. This is essentially the pseudoinverse
of a matrix and is more formally defined as the generalization of an inverse matrix,
i.e., the square matrix P is invertible if there is another matrix Q that fulfills the
criterion. Equation 2.5 shows the above mentioned mathematically:

PQ = QP = In, (2.5)

where n is the dimension of both these square matrices, and In is an identity
matrix of n x n dimensions.
In other words, if the matrix is invertible, the pseudoinverse equals the matrix
inverse. The Moore-Penrose inverse is useful for solving a large number of least
squares in a system [24]. In Equation 2.6

p̂LS = (HTH)−1HTB, (2.6)

the matrices H and B contain information about the direction of the target with
respect to the local coordinate system of each anchor and the location of the
target.Local coordinate system refers to the set of x,y and z coordinates that are
associated with each component of the system, in this case, the anchor points.
Each anchor point has a local coordinate system which describes its location and
orientation.

16 Theoretical Background

Chapter 3
Positioning Estimation with Machine

Learning

The processing of the input data to the Machine Learning system is key for
proper estimation of the positions. The goal of our project is to predict future po-
sitions accurately, and to perform such predictions we have decided to use inputs
such as AoAs in azimuth and elevation (in degrees), RSSIs, and true Cartesian
coordinates of the tag.
As Figure 3.1 portrays, the AoAs, together with RSSI, are provided from four
different anchor points. Each of these anchors are placed in different regions of
an office environment, either simulated or real. Therefore, these four anchors
experience different path loss between themselves and the position of the tag. Ad-
ditionally, together with the ground truth coordinates provided by u-blox, we have
sufficient inputs to start the computation of the estimates of the future positions.
During this chapter, the outcome of our work will be shown. To give a better
understanding of our project and its placement scenarios, floor plans of both sim-
ulated and real-life environments will be available for the reader.

3.1 Arranging Testbench Data

All datasets we were provided with are a compound of subsets of data, each of
them corresponding to the values obtained during the simulations run at each of
the three BLE advertising channels and with different polarization at the anchor
side. Channels 37 (2402 MHz), 38 (2426 MHz) and 39 (2480 MHz), together with
horizontal and vertical polarization of the antennas at every anchor, make up six
subsets of available data for the training of ML models for positioning.
Every subset of data within a testbench (testing environment) has very similar
values. Consequently, any subset could have been selected. Our choice was based
on the highest average RSSI among those received when the anchor points were
oriented in both horizontal and vertical polarization, and through all three chan-
nels. Channel 37 with horizontal polarization of the antennas is the environment
we worked with for all experiments we did during the thesis.
The arrangement of the data is key for a good performance of every ML algorithm.
Our case belongs to supervised learning, where the algorithms are trained using
labeled examples, such as an input where the desired output is already known.

17

18 Positioning Estimation with Machine Learning

Figure 3.1: Bluetooth positioning scheme performed at u-blox.

Figure 3.2: Scheme of a Machine Learning process.

We modify the model accordingly by adjusting parameters to achieve the best
performance possible.
As depicted in Figure 3.2, the first step is to actually get the data. The process
of data acquisition has been described above. Once we actually acquire the data,
the next step is to decide how to arrange our data for our models to be able to
process it. In our case, the first decision was to include information about each
of the four anchors. Considering that each of the anchors suffers from different
path losses, the information of each anchor needs to be treated separately in or-
der to provide a proper accuracy of what we are going to predict subsequently.
Therefore, the columns (features to the ML model) from every simulated dataset
provide information about the azimuth and the elevation angles and the RSSI, all
at every snapshot taken. The rest of the columns are the true coordinates of the
position of the tag. Therefore, either the scenario is simulated or real, the inputs
to our ML system will consist of 15 features, corresponding to 8 AoAs (in azimuth
and in elevation), 4 RSSIs and 3 for Cartesian coordinates (x, y and z).

Positioning Estimation with Machine Learning 19

Furthermore, we split the data into training and testing data. Here, we take some
portion of the data, usually between 50% and 80% of the total for the training data
and the rest for the testing data. We will delve deeper into this subject in later
sections. Following the diagram from Figure 3.2, we use that specific training set
in order to fit a model to it. As a way to comprehend how well our model actually
performed, we run that test data through the model and compare the prediction
of the model to the true labels of the test data.

3.2 Parameter Optimization

Every ML algorithm has parameters that define how it predicts. The same
algorithm might require different parameters, which differ based on the size of the
data and the patterns in the data. Selecting the optimum parameters is known as
hyperparameter optimization.
Since each of the test benches we worked with were different in various ways which
are explained in the next section, we performed a grid search to find the best model
for the learning to be done with the test bench in question. This was done using
GridSearchCV in the model_selection library in scikit-learn. A grid is created by
specifying which parameters we want to optimize, along with possible values that
we are interested in exploring. For this thesis, we ran a grid search for each of the
three algorithms. The parameters optimized and used are listed in Table 3.1 and
selected values in table 3.2.

Algorithm Parameter Range
RF n_estimators,

max_depth
[1,100],[1,10]

SVM kernel [rbf,linear,sigmoid,poly]
kNN n_neighbors [1,5]

Table 3.1: Parameter values used for Optimization.

Algorithm Classifier Regressor
RF n_estimators=40,

max_depth=4
n_estimators=40,

max_depth=5
SVM kernel=rbf kernel=rbf
kNN n_neighbors=1 n_neighbors=2

Table 3.2: Optimized parameters.

We created a base model for the algorithms and performed the grid search
based on this grid, and then fit the different datasets to this search. As we would
expect, the optimum parameters were different for each dataset. The results of the

20 Positioning Estimation with Machine Learning

grid searches varied slightly with different datasets. To keep the implementation as
general as possible, we selected middle-ground parameters for similar algorithms.
For example, say we are performing a grid search for the optimum number of trees
(n_estimators) for RF. The optimum number of trees by grid search for dataset
A was 40, and that for dataset B was 50. We select 40 because the algorithm
performs similarly with both 40 and 50 trees, and selecting the option with lesser
trees would also mean that less time is taken for computation, as seen in Figures
3.3(a), 3.4(a) and 3.5(a).
A similar case was observed for the best kernel for SVM; the grid search returned
linear kernel for some datasets but rbf (Radial Basis Functions) for most. The rbf
kernel works well with data that cannot be divided simply by finding a straight
line to separate it, meaning that it is not linearly separable. The rbf kernel finds
a hyperplpane by computing the distance between all data points and one single
point, which is referred to as the centre [25]. This is depicted in Figures 3.3(c),
3.4(c) and 3.5(c).
It is safe to assume that in a real-world situation, the movement pattern of a Blue-
tooth tag (the user) is just as likely to be random or haphazard as walking in a
straight line. Hence, in these scenarios, using the linear kernel might not necessar-
ily imply correct estimation. Therefore, we selected the rbf as the more realistic
option. The grid search is a simple and effective way of finding the parameters
that suit your dataset the best, which consequently gives you a better performing
algorithm. The plots shown in Figures 3.3, 3.4 and 3.5 tell us the performance of
ML algorithms with various parameters.
Tables 3.3 to 3.5 give us an idea about how much time is taken to train each
ML algorithm as a regressor, as well as the time taken for each algorithm to
compute estimates or to test based on new observations. We have used only the
X-coordinate estimations as an example of the different training and testing sizes.
These tables show the time taken for training to be performed by each algorithm
and the time taken for testing to be complete. Along with this information, they
also includes the inference time for each model, which is the average time taken
for one training or testing iteration to be run. Only regression (performed by all
three algorithms) has been used to display these times because this method seems
to be the most likely to be used in real-world positioning situations.
In both cases, RF takes the most time to train. The reason for this is because there
are two parameters n_estimators and max_depth that have been used, unlike for
the other two algorithms, where only one parameter has been passed. The number
of trees used in RF lead to more computational time.
The testing time taken by kNN is exceptionally low as compared to SVM and RF.
This gives kNN an added advantage. If a system as this one is implemented in
a real-world scenario, it will be pre-trained and the important aspect to consider
would be the amount of time this pre-trained system takes to estimate positions
based on new measurements. This means that kNN would take the least time to
perform estimation in a real-time situation.
Judging from the three tables, we decided to split the data equally, i.e., 50% for
training and 50% for testing. This was to maintain a better balance, because the
difference between the testing times with varying test sizes is negligible; approxi-
mately 9ms for RF, 25ms for SVM, 4.5ms for kNN. However, with respect to the

Positioning Estimation with Machine Learning 21

training time, the size of the training data makes a noticeable difference, especially
for SVM in Table 3.4. Here, we can see a gap of about 35ms comparing 80% and
50% training data size.

(a) Number of Trees in RF. (b) Maximum Depth in RF.

(c) Kernel in SVM. (d) Number of Nearest Neighbors in kNN.

Figure 3.3: Different Parameters in the Simulated Scenario: Regres-
sion

Train Size Train Time (s) Inference Times (s)
Test Size Test Time (s)

80%, 0.0988, 1.57x10−4,
20% 0.0087 1.38x10−5

70%, 0.1086, 1.72x10−4,
30% 0.0092 1.46x10−5

60%, 0.0915, 1.45x10−4,
40% 0.0080 1.28x10−5

50%, 0.0899, 1.42x10−4,
50% 0.0118 1.87x10−5

Table 3.3: Training and Testing Times: Random Forest.

22 Positioning Estimation with Machine Learning

(a) Number of Trees in RF. (b) Maximum Depth in RF.

(c) Kernels in SVM. (d) Number of Nearest Neighbors in kNN.

Figure 3.4: Different Parameters in the Real (Measured) Scenario:
Classification.

Train Size Train Time (s) Inference Times (s)
Test Size Test Time (s)

80%, 0.0434, 6.89x10−5,
20% 0.0213 3.38x10−5

70%, 0.0308, 4.89x10−5,
30% 0.0258 4.09x10−5

60%, 0.0236, 3.75x10−5,
40% 0.0297 4.71x10−5

50%, 0.0174, 2.76x10−5,
50% 0.0311 4.94x10−5

Table 3.4: Training and Testing Times: SV Regressor.

Positioning Estimation with Machine Learning 23

(a) Number of Trees in RF. (b) Maximum Depth in RF.

(c) Kernels in SVM. (d) Number of Nearest Neighbors in kNN.

Figure 3.5: Different Parameters in Real Scenario: Regression.

Train Size Train Time (s) Inference Times (s)
Test Size Test Time (s)

80%, 0.0028, 4.45x10−6,
20% 0.0042 6.67x10−6

70%, 0.0024, 3.80x10−6,
30% 0.0045 7.11x10−6

60%, 0.0023, 3.70x10−6,
40% 0.0050 8.05x10−6

50%, 0.0023, 3.73x10−6,
50% 0.0053 8.47x10−6

Table 3.5: Training and Testing Times: kNN Regressor.

24 Positioning Estimation with Machine Learning

Wood Concrete
Rel. Permittivity 3 6
Rel. Permeability 1 1

Conductivity [S/m] 0.022 0.078

Table 3.6: Dielectric Properties of Wood and Concrete.

3.3 Estimations in Different Indoor Environments

Given the optimal parameters for the best performance of each of the ML
algorithms, it is time to put those concepts into practice by applying them on
different indoor scenarios. Here, the contexts vary depending on different factors
which can be found in every real-life indoor environment. In total, we were given
seven different simulated environments, which are depicted in the Figures 3.6 and
3.7:

• Testbench_01: Each of the four anchors are in LOS with the tag position.
No obstacles present in the room obstruct the signal (see Figure 3.6).

• Testbench Furniture_High: As depicted in Figure 3.7(a), in this indoor
scenario there are many MPCs due to objects made of wood which obstruct
the LOS path.

• Testbench Furniture_Mid: A few objects, also made of wood, can interfere
with the communication between the four anchors and the tag (see Figure
3.7(b)).

• Testbench Furniture_Low: Indoor scenario with only one high object present
in the room (depicted in Figure 3.7(c)).

• Testbench Furniture_High_Concrete: Similar to the testbench furniture
high, but those objects are made of concrete instead of wood.

• Testbench Furniture_Mid_Concrete: A few objects made of concrete are
present in the room.

• Testbench Furniture_Low_Concrete: Only one high object made of con-
crete is in the indoor environment.

As explained above, the main difference between each of the scenarios is the
amount of objects present in the room. Plus, within those objects, the material in
which they have been made of can be either wood or concrete, which is explained
after, can have a big impact on the path loss of the signal transmitted. That
impact is due to the frequency dependent properties of the material, which are
resumed in Table 3.6.
Emphasizing on those properties where there is a big gap between wood and con-
crete, both the relative permittivity and the conductivity of the materials clearly
need to be taken into consideration. The relative permittivity refers to the factor
by which the electric field between the charges of a material is decreased relative

Positioning Estimation with Machine Learning 25

Figure 3.6: Floor Plan of an Office Environment.

(a) High Density. (b) Mid Density. (c) Low Density.

Figure 3.7: Simulated Environments.

26 Positioning Estimation with Machine Learning

Figure 3.8: LOS Distribution for
High Concrete/Wood.

Figure 3.9: LOS Distribution for
Mid Concrete/Wood.

Figure 3.10: LOS Distribution for
Low Concrete/Wood.

to the vacuum. The conductivity measures how much an electric charge can pass
through a material. Therefore, judging by Table 3.6, one can expect that concrete
scenarios are more prone to errors in communication.
Taking a look at the input data for our ML training models, an important aspect to
take into account when the amount of obstacles in a room increases is the strength
of the received signal. Additionally, we were provided with the LOS components
of each simulated scenario in order to observe the amount of snapshots in which
the tag is in LOS with each anchor. Figures 3.8-3.10 portray the distribution of
LOS and NLOS components in each testbench (Testbench 01 is discarded from
plotting due to its full LOS scenario). Figures 3.11-3.14 portray the average RSSI
at every snapshot.

As expected, a large number of obstructions make the path between the tag
and any of the anchors less direct, thus increasing the NLOS components. The
distribution of LOS components for wooden scenarios has been discarded from the
plot because of its similarities with the concrete scenarios.
When we discuss the RSSI feature, the strength of the received signal depends
not only on the path between the tag and the anchor, but also on the dielectric
properties of both materials. Figures 3.11 and 3.12 show how the signal power
decays with the amount of obstacles present. Note how the levels of power also
change for wooden and concrete materials, where the latter, due to its higher
density, shows more drastic power drops. Figures 3.13 and 3.14 compare the
average wooden and concrete scenarios with the LOS testbench. A decrease in

Positioning Estimation with Machine Learning 27

Figure 3.11: RSSI for Concrete
Scenarios.

Figure 3.12: RSSI for Furniture
Scenarios.

Figure 3.13: LOS vs. Furniture
Scenario.

Figure 3.14: LOS vs. Concrete
Scenario.

signal power can be perceived with the presence of furniture in the room.

3.3.1 Error Performance Criteria

Regression is a method used when a model attempts to predict continuous
values. Here, we are trying to predict future Cartesian coordinates of the position
of a tag, which is why regression seems to be the correct strategy. This ML tech-
nique is characterized by the way it comprehends the relationship between one
dependent variable and one or more independent variables. Hence, in this thesis
we treated the X- and Y-coordinates as two separate dependent variables. The
Z-coordinate was discarded for estimation since all the inputs had the same value.
When it comes to measuring the performance of regression models, there are vari-
ous evaluation metrics which can be carried out [26]. In the following two subsec-
tions, two evaluation methods are going to be described for a proper understanding
of our error performance criteria.

Mean Absolute Error

One of the most common evaluation metrics is the Mean Absolute Error
(MAE)[27]. As seen in Equation 3.1, we compare the predictions with the true val-
ues by taking the difference between the two. Technically, our predictions could
be positive or negative value, which is why it is necessary to take the absolute

28 Positioning Estimation with Machine Learning

value. Finally, we compute the average of these errors.

1

n

n∑
i=1

|pi − p̂i|, (3.1)

where pi refers to the true coordinate (either x or y) and p̂i refers to the predicted
coordinate.
As mentioned before, the MAE has been calculated for both X- and Y-coordinates
separately. Tables 3.7-3.9 show the MAEs for every ML algorithm at each test-
bench:

X-Coordinate (m) Y-Coordinate (m)
High Concrete 0.043 0.012
Mid Concrete 0.053 0.009
Low Concrete 0.040 0.010
Testbench 01 0.048 0.010

High Furniture 0.043 0.009
Mid Furniture 0.047 0.009
Low Furniture 0.043 0.010

Table 3.7: MAE for x and y using RF.

X-Coordinate (m) Y-Coordinate (m)
High Concrete 0.120 0.073
Mid Concrete 0.116 0.076
Low Concrete 0.118 0.075
Testbench 01 0.112 0.075

High Furniture 0.115 0.074
Mid Furniture 0.119 0.074
Low Furniture 0.115 0.074

Table 3.8: MAE for x and y using SVM.

Euclidean Distance

A different approach to computing the positioning error is the Euclidean Dis-
tance, which calculates the distance between two points, as shown in Equation
3.2:

d(pi, p̂i) =
√

(xi − x̂i)2 + (yi − ŷi)2, (3.2)

where pi is the true position and p̂i the estimated position, both at snapshot i.
The result is a vector of positioning errors between the predicted x and y coordi-
nates and the true values of x and y. In Table 3.10 we can observe the average

Positioning Estimation with Machine Learning 29

X-Coordinate (m) Y-Coordinate (m).
High Concrete 0.143 0.111
Mid Concrete 0.132 0.103
Low Concrete 0.126 0.095
Testbench 01 0.115 0.092

High Furniture 0.121 0.099
Mid Furniture 0.134 0.105
Low Furniture 0.121 0.099

Table 3.9: MAE for x and y using kNN.

RF SVM kNN
High Concrete 0.048m 0.154m 0.204m
Mid Concrete 0.055m 0.151m 0.189m
Low Concrete 0.044m 0.153m 0.178m
Testbench 01 0.050m 0.148m 0.166m

High Furniture 0.045m 0.150m 0.175m
Mid Furniture 0.050m 0.154m 0.193m
Low Furniture 0.047m 0.150m 0.175m

Table 3.10: Mean Euclidean Distance.

Euclidean Distance for every testbench and for each of the ML algorithms in con-
sideration.

3.3.2 Error Distribution

The Euclidean Distance, together with the CDF, is a useful tool in order to
comprehend the distribution of the positioning error. The CDF of the error tells
us how those are distributed across the error vector and it gives us a proper under-
standing and further analysis of how each algorithm performs at each simulated
indoor scenario.
The procedure is to examine how each algorithm performs in the worst scenarios.
Therefore, each algorithm has been applied to indoor environments with a large
amount of obstacles present, regardless of the material. In order to give a proper
comparison of each algorithm, the LOS scenario, that is, the ideal environment, is
also present in the following CDF plots. The plot of the density of errors can be
observed in Figures 3.15, 3.16, 3.17 and 3.18.

Considering the aforementioned, we deem a more dense environment as a more
suitable indicator to real-life indoor scenarios. In order to provide a good overview
of the positioning error performance, the ideal scenario has also been visualized
along with the other two scenarios. From Figures 3.15, 3.16 and 3.17 we can

30 Positioning Estimation with Machine Learning

Figure 3.15: Error Distribution for RF.

Figure 3.16: Error distribution for SVM.

Positioning Estimation with Machine Learning 31

Figure 3.17: Error Distribution for kNN.

Figure 3.18: Error Distribution for LS.

32 Positioning Estimation with Machine Learning

Figure 3.19: Comparison of Error Distribution in a Concrete Sce-
nario.

Figure 3.20: Comparison of Error Distribution in a Furniture Sce-
nario.

Positioning Estimation with Machine Learning 33

observe that 95% of the positioning errors are below approximately 0.1m for LOS.
We use this value as a benchmark to compare the efficiency of the three algorithms
on the other two scenarios. On the other hand, from Figure 3.18, LS gives 95% of
the errors below 1.8m.
From Figure 3.15, we can see that 95% errors using RF are below 0.11m for concrete
and below 0.1m for wooden obstacles. Observing the next figure where SVM is
used, the 95% of errors give very similar results, where the errors are below 0.3m.
Lastly, from Figure 3.17, we can see that kNN gives slightly different results to
the other two algorithms. The 95% of errors are below 0.4m.
Judging by these results, it is clear that RF outperforms SVM and kNN, with
a much lower range of errors. If we refer to Section 3.2, we have talked about
how the time taken for training different models is different for varying sizes of
the training dataset. Given the training size, number of trees (40) and maximum
depth (5), the time taken for training the RF regressor, although higher than the
other two algorithms, can be excused because of its greater performance.
To summarize the above discussion, Figures 3.19 and 3.20 clearly show how RF can
be the better choice in a real-world indoor scenario among the three ML algorithms
studied. From these figures, we can observe how LS clearly underperforms as
compared to the other three.

3.4 Cross-prediction with Simulated Indoor Environments

Cross-prediction is a method in which testing is done using data which is not
a part of the data used for training, also called sample testing. The information
given by the cross-prediction method is helpful to understand how well the model
we have trained in a specific indoor environment performs when new observations
are given to it.
As mentioned in the previous sections, we worked with 7 testbenches that cor-
respond to different indoor environments with varying parameters and structures
made of concrete and wood. Cross-prediction was performed for every combina-
tion of datasets. For example, we trained the RF, SVM, and kNN regressors with
the all-LOS testbench and predicted position estimates by testing this model with
itself and all the other six testbenches. The result is therefore a 7x7 matrix for
each algorithm utilized consisting of average positioning errors.
The next step is to give a proper visualization of the outcomes of cross-prediction.
To portray the mentioned matrices, we make use of a heatmap from the seaborn
library of Python. A heatmap suitable by depicting the correlation between two
variables in a more detailed fashion.
The values mapped into the heatmap also show us the patterns in the data if any.
Figures 3.21-3.23 display the cross-prediction results as a function of the position-
ing errors for each of the ML algorithms. The colorbar on the right-hand side
indicates the range of the positioning errors.
From the heatmaps, we can see that when the models are trained using the worst-
case scenario, Furniture_High_Concrete, all three algorithms give good results,
most noticeably RF.
We can also observe that when the models are trained by the LOS testbench,

34 Positioning Estimation with Machine Learning

Figure 3.21: Cross-Prediction with RF Regressor.

Figure 3.22: Cross-Prediction with SV Regressor.

Positioning Estimation with Machine Learning 35

Figure 3.23: Cross-Prediction with kNN Regressor.

the cross-prediction errors are higher. This could be because in this environment
where all paths are LOS, this testbench is something of an “ideal” indoor scenario.
All other testbenches have at least some NLOS components, making them less
ideal. The model trained with LOS testbench is not aware of worse cases of indoor
environments, such as the High Concrete and High Furniture scenarios. This can
be directly related to the fact that wood is less dense than concrete, complying
with the dielectric parameters used, especially relative permittivity and conductiv-
ity, when simulations were run to obtain these testbench datasets, given in Table
3.6 in the previous section.

3.5 Estimations using Measurement Data

The data obtained through simulations is as close to real-life scenarios as pos-
sible, but does not take into account the constantly changing environment due to
various movements of people and objects in an indoor space, which is the true
nature of real indoor scenarios.
The dataset created by taking measurements in the company’s office (Figure 3.24)
in Malmö was also provided to us. Similar to the testbenches obtained from sim-
ulations, this measurement data also contains information about the AoAs, RSSI,
estimates done using the LS method, and the ground truth values of the location
of the tag. The measurement was done by placing the tag at 14 positions. At
each position, 90 snapshots were captured holding information from all four an-
chor points, including tag location estimates in the form of Cartesian coordinates.

36 Positioning Estimation with Machine Learning

Figure 3.24: Floor Plan of a Real-Life Office Environment.

(a) The red circles refer to the 14 positions of the tag and the blue rectangles to the four
anchor points.

Since there were 14 distinct locations of the tag, we decided that we can treat
this as more of a classification problem than a regression problem, which was also
used. The idea was to arrange the data in such a way that information from half
of the positions can be used for training and the other half for testing. The origi-
nal dimensions of the dataset were 14x90x4 for each of the features (i.e., AoAs in
azimuth and elevation, RSSI, and X-, Y- and Z-coordinates), which correspond to
90 snapshots from all 4 anchors, taken at 14 positions. We rearranged the data
to make the dimensions 1260x15. The 15 features were made of 4 columns each
(corresponding to 4 anchor points) consisting of φ, θ and RSSI. Since 90 snapshots
were taken at each of the 14 positions of the tag, meaning that there were only
14 sets of tag coordinates, the corresponding set of coordinates was repeated 90
times. This was done for each position.
Similar to regression used to treat the testbenches, we keep X- and Y-coordinates
separate and estimate them independently in case of measurement data. Note
again that Z-coordinate estimation has not been done because it is constant, i.e,
the tag is at a constant height throughout the time the measurements were being
taken.
All three algorithms were used to perform the classification. To do so, we first
used the LabelEncoder() available in scikit-learn in order to assign a unique value
to each datapoint in the target variables (x or y), since classifiers do not accept
continuous values of the target variable while training. Note that the positon esti-
mates by classification presented in section 3.6.2 have values corresponding to the

Positioning Estimation with Machine Learning 37

actual position coordinates given by the LabelEncoder(). We referred to the grid
searches for the best parameters from Table 3.2.
Table 3.11 shows the average positioning error from each of the algorithms as a
classifier and a regressor trained using the optimal parameters, along with the
average positioning error given by the currently-used LS method. Note that the
error is actually the mean Euclidean distance.

Algorithm Classifier Regressor
RF 0.01m 0.17m

SVM 0.68m 0.31m
kNN 0.02m 0.01m

LS (not ML) 1.78m 1.78m

Table 3.11: Average Positioning Error for Measurement Data.

From Table 3.11, we can draw two conclusions directly: every ML algorithm
performs better than LS; and that for this specific dataset with very distinct ground
truth coordinates used for training, classifiers perform better than regressors.
The CDF plots in Figures 3.26 and 3.27 show the positioning errors obtained
from all three algorithms used as classifiers and regressors, compared with those
obtained using LS method.
From both CDFs, we can broadly comment that error density is in centimetre-
range for all ML algorithms, and a higher error density lies above 1m for LS.
These plots also clearly indicate that ML algorithms outperform LS.
Another interesting way of visualizing the estimates from classification algorithms
with the true values is the confusion matrix. It tells us how many estimates
were done correctly and how many incorrectly, given the knowledge of the true
values. The confusion matrices computed from all three classifiers are shown in
Figures 3.28-3.33. The elements of the matrices have the total number of estimates
obtained. Hence, the diagonal elements are the ones with the total number of
correct estimates, and the rest are incorrect estimates.

38 Positioning Estimation with Machine Learning

Figure 3.26: CDF of Positioning Error from Regression.

Figure 3.27: CDF of Positioning Error from Classification.

Positioning Estimation with Machine Learning 39

Figure 3.28: X-coordinate: RF Figure 3.29: Y-coordinate: RF

Figure 3.30: X-coordinate: SVM Figure 3.31: Y-coordinate: SVM

Figure 3.32: X-coordinate: kNN Figure 3.33: Y-coordinate: kNN

40 Positioning Estimation with Machine Learning

3.6 Position Estimation Results

As a final presentation of our work, in this section we show the estimated posi-
tions of the tag obtained from each algorithm in highly dense simulation scenarios
and from physical measurements taken in an office environment. These estimates,
along with the true coordinates of the tag, give a clear view of the performance of
ML algorithms. Figure 3.34 includes a concise representation of the ML system
designed during this thesis. In a real-world scenarios, it is difficult to estimate

Figure 3.34: Proposed ML System.

whether a received signal has travelled via an LOS path or NLOS path. If it is
possible to extract this information in real-time, it can add to position estimation.
Hence, we have mentioned the LOS indicator as a potential feature that might be
of use in the future if hardware systems permit.
We also worked with a simulation programme of the current positioning engine
that uses the LS method. As an added comparison and representation of how the
LS technique works, Figure 3.35 shows how the positioning engine performs the
task. The figure has plots of the true path followed by the tag and the estimated
coordinates obtained from the engine. This is demonstrated using a simulator of
the positioning engine.

3.6.1 Estimates in Simulated Environments

The estimation of the position of the tag is done using regression. In Figures
3.36-3.41, we can see these position estimates plotted along with the corresponding
true coordinates, i.e., where the tag was actually located. We use the most dense
indoor scenarios, testbenches high concrete and high furniture. As mentioned
previously, we think that these are the closest at describing how the position
estimation would take place in similar real-world situations.

The size of the dataset procured from the simulated environments was higher
than that of the data obtained from measurements. Hence, we have a high number
of coordinate estimates. In both scenarios, we can observe RF to perform better
with more precise estimations. But, from the results that we have presented in
the earlier chapters, we also can conclude that all three algorithms perform better
when compared to LS.

3.6.2 Estimates in Office Environment

In Figures 3.42-3.47, the true position of the tag is plotted along with its
estimated position computed by each ML algorithm trained as both classifiers and
regressors. This gives us a good picture about how classification and regression

Positioning Estimation with Machine Learning 41

Figure 3.35: True and Estimated Path of the tag using LS Tech-
nique.

Figure 3.36: Position Estimations using RF in High Concrete Sce-
nario.

42 Positioning Estimation with Machine Learning

Figure 3.37: Position Estimations using SVM in High Concrete Sce-
nario.

Figure 3.38: Position Estimations using kNN in High Concrete Sce-
nario.

Positioning Estimation with Machine Learning 43

Figure 3.39: Position Estimations using RF in High Furniture Sce-
nario.

Figure 3.40: Position Estimations using SVM in High Furniture
Scenario.

44 Positioning Estimation with Machine Learning

Figure 3.41: Position Estimations using kNN in High Furniture Sce-
nario.

both perform.
The two figures also hint towards the fundamental difference between classification
and regression. Classification algorithms simply label new observations based on
the labels that they already know, whereas regression algorithms perform more of
a prediction. Hence, we can see a cluster of estimates around the true coordinates.
The important thing to note here is that even in the figure showing estimates
obtained from regression, which is less suitable than classification in this scenario,
there is less clustering of estimates around a ground truth value and visually more
precise estimates than the LS method.

Positioning Estimation with Machine Learning 45

Figure 3.42: Position Estimation using RF Classifier in Office Envi-
ronment.

Figure 3.43: Position Estimation using SV Classifier in Office Envi-
ronment.

46 Positioning Estimation with Machine Learning

Figure 3.44: Position Estimation using kNN Classifier in Office En-
vironment.

Figure 3.45: Position Estimation using RF Regressor in Office En-
vironment.

Positioning Estimation with Machine Learning 47

Figure 3.46: Position Estimation using SV Regressor in Office En-
vironment.

Figure 3.47: Position Estimation using kNN Regressor in Office
Environment.

48 Positioning Estimation with Machine Learning

3.7 Discussions and Future Work

As we have learnt while working on our thesis, there is a lot to explore in
this area of indoor positioning and ML. In addition to the ML models we have
presented in the thesis so far, we also have some ideas on how some more learning
or processing can be done in addition to ML, such as tracking using a Kalman
Filter. We got inspiration to discuss ML and KF and suggest exploration in this
direction from [5].
In this thesis, data from only one out of three available channels and two polar-
izations was used. Merging all available channels to increase the effectiveness of
the ML estimation is definitely something that can be implemented.
The Kalman filter is a recursive algorithm used widely in tracking applications,
like navigation and control in aircrafts and naval scenarios, robotics, signal pro-
cessing, smoothening of data, etc., where there is significant uncertainty arising
from statistical noise due to continuously changing states. It works on prediction
and updation, and uses a series of measurements made over time (which makes it
a time series analysis method) and outputs estimates of unknown variables.
The estimates are made by taking into account the previous and current states
of the variable, which requires very little memory. In tracking applications, the
“state” generally includes the position, velocity and acceleration information of
the variable. These state variables are assumed to be random Gaussian variables.
The interesting aspect about this algorithm is its straightforwardness; that it needs
the state transition matrix and covariance matrix [28]. The state transition matrix

Figure 3.48: Mechanism of the Kalman Filter [29].

describes how the state changes from one to the next and the covariance matrix
captures the correlation between the state variables which are being used for es-
timation. For example, the covariance matrix of a tracking system for which the
filter is being used describes how the velocity and position are related. There is a
wide range of modifications to the Kalman filter to make it suitable for even more
varied scenarios, including non-linear filters such as the Extended, Unscented, and
Cumulative Kalman filters.
The tracking of the tag can be done with its movement information, velocity and
acceleration, so that the future “state”, i.e., position, can be estimated using the

Positioning Estimation with Machine Learning 49

previous position of the tag. We think that using a Kalman Filter to track the
tag’s movement and further passing the filter’s outputs to a ML algorithm to fur-
ther improve these estimates is an interesting approach.
Another approach to using the Kalman Filter is to use it as a layer after the ML
estimates have been made, in order to smoothen the outputs using the velocity
and acceleration information at each time instance.
We suggest one more approach where we use estimates done by both methods and
within a specific time window, select the estimate which gives the smaller error.
In this scenario, the selection between the two methods, LS and ML, could give an
even more improved accuracy. The difference between the models we have trained
in this thesis and this approach is that estimation is done by giving ground truth
values to an ML model that does not use the LS method at all. This approach uses
both methods for estimation, which potentially takes longer, since it is an added
step in the estimation process and might not be suitable in situations where fast
computing is required.
The above approaches can be explored if the trade-off between computation time
and accuracy is weighed, and time is the resource we are willing to sacrifice.

50 Positioning Estimation with Machine Learning

Chapter 4
Conclusions

We presented possibilities of the potential that Machine Learning brings to the
field of indoor positioning by comparing the algorithms Random Forest, Support
Vector Machine and k-Nearest Neighbors. Using optimal parameters and tailoring
them to realistic scenarios, we have tried to show the superior outcomes of ML
over the pre-existing Least-Squares method.
In this work, we investigated the features of each algorithm. Firstly, we exam-
ined the computational complexities of each algorithm by varying the size of the
training and testing datasets, and studied the impact of varying parameters of
the ML models on the outcomes. The important observations made are that RF
gives the lowest positioning error whereas kNN gives the fastest predictions. But,
as discussed previously, there are two parameters being used for the RF models
and only one for kNN and SVM. Hence, relatively slower training and testing is
expected in the case of RF. Considering both these observations, we can say that
RF is a viable option. However, if the goal is to execute faster training, we suggest
exploring different training sizes to come to a conclusion.
Secondly, we studied the behaviour of the three algorithms modelled as regressors
in high-density simulated environments, imitating day-to-day indoor spaces. Al-
though the LS method has shown to be accurate, all three ML algorithms in this
project have proven remarkably noteworthy.
Thirdly, the estimations done in a physical environment add to the fact that ML,
done with both classification and regression, performs better than LS. However,
with higher number of measurements, the results could be more promising. In this
specific measurement scenario, classification seemed to be the more suitable option
but regression performs similarly, especially RF and kNN. The cross-prediction re-
sults and confusion matrices support the efficacy of ML.
Despite the approach of using the Angle of Arrival along with the RSSI is not
very popular for position estimation, combined with Machine Learning, it shows
promising results and has broad scope for research.

51

52 Conclusions

References

[1] Peng Dai, Yuan Yang, Manyi Wang, Ruqiang Yan, "Combination of DNN
and Improved KNN for Indoor Location Fingerprinting", Wireless Com-
munications and Mobile Computing, vol. 2019, Article ID 4283857, 9
pages, 2019. https://doi.org/10.1155/2019/4283857 https://www.hindawi.
com/journals/wcmc/2019/4283857/

[2] Internet of Things,
https://en.wikipedia.org/wiki/Internet_of_things

[3] Martin Woolley, Bluetooth Direction Finding, A Technical Overview
https://www.bluetooth.com/bluetooth-resources/
bluetooth-direction-finding/

[4] J. Zhang, M. Shafi, A. F. Molisch, F. Tufvesson, S. Wu and K. Kitao, "Chan-
nel Models and Measurements for 5G," in IEEE Communications Magazine,
vol. 56, no. 12, pp. 12-13, December 2018, doi: 10.1109/MCOM.2018.8570033.

[5] Jia-You Hsieh, Chun-Hung Fan, Jian-Zhi Liao, Jyh-Yih Hsu and Huan Chen,
"Study on the application of indoor positioning based on low power Blue-
tooth device combined with Kalman filter and machine learning" https:
//easychair.org/publications/preprint/VhvV

[6] Arogyaswami Paulraj, Rohit Nabar and Dhananjay Gore Introduction to
Space-Time Wireless Communications 2003

[7] A. A. M. Saleh and R. Valenzuela, "A Statistical Model for Indoor Multipath
Propagation," in IEEE Journal on Selected Areas in Communications, vol. 5,
no. 2, pp. 128-137, February 1987, doi: 10.1109/JSAC.1987.1146527. https:
//ieeexplore.ieee.org/document/1146527

[8] Bluetooth Core Specification Version 5.1 Feature Overview,
https://www.bluetooth.com/bluetooth-resources/
bluetooth-core-specification-v5-1-feature-overview/

[9] Angle of Arrival https://en.wikipedia.org/wiki/Angle_of_arrival#
Applications

[10] Zhang, H.; Zhang, Z. AOA-Based Three-Dimensional Positioning and
Tracking Using the Factor Graph Technique. Symmetry 2020, 12, 1400.

53

https://www.hindawi.com/journals/wcmc/2019/4283857/
https://www.hindawi.com/journals/wcmc/2019/4283857/
https://en.wikipedia.org/wiki/Internet_of_things
https://www.bluetooth.com/bluetooth-resources/bluetooth-direction-finding/
https://www.bluetooth.com/bluetooth-resources/bluetooth-direction-finding/
https://easychair.org/publications/preprint/VhvV
https://easychair.org/publications/preprint/VhvV
https://ieeexplore.ieee.org/document/1146527
https://ieeexplore.ieee.org/document/1146527
https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-v5-1-feature-overview/
https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-v5-1-feature-overview/
https://en.wikipedia.org/wiki/Angle_of_arrival#Applications
https://en.wikipedia.org/wiki/Angle_of_arrival#Applications

54 References

https://doi.org/10.3390/sym12091400 https://www.mdpi.com/2073-8994/
12/9/1400#cite

[11] Burk, M. (1962). Ramifications of the Relationship between Income and Food.
Journal of Farm Economics, 44(1), 115-125. doi:10.2307/1235490 https://
www.jstor.org/stable/1235490?seq=1

[12] Supervised vs. Unsupervised Learning https://towardsdatascience.com/
supervised-vs-unsupervised-learning-14f68e32ea8d

[13] Nonparametric Statistics,
https://en.wikipedia.org/wiki/Nonparametric_statistics

[14] k-Nearest Neighbors algorithm,
https://en.wikipedia.org/wiki/Nonparametric_statistics

[15] Building a k-Nearest-Neighbors (k-NN) Model with Scikit-learn
urlhttps://towardsdatascience.com/building-a-k-nearest-neighbors-k-nn-
model-with-scikit-learn-51209555453a

[16] Decision Tree vs. Random Forest – Which Algorithm Should you Use?
https://www.analyticsvidhya.com/blog/2020/05/
decision-tree-vs-random-forest-algorithm/

[17] S. Bozkurt, G. Elibol, S. Gunal and U. Yayan, "A comparative study on
machine learning algorithms for indoor positioning," 2015 International Sym-
posium on Innovations in Intelligent SysTems and Applications (INISTA),
2015, pp. 1-8, doi: 10.1109/INISTA.2015.7276725. https://ieeexplore.
ieee.org/document/7276725

[18] Support Vector Machine,
https://en.wikipedia.org/wiki/Support-vector_machine

[19] Support Vector Regression Tutorial for Machine Learning,
https://www.analyticsvidhya.com/blog/2020/03/
support-vector-regression-tutorial-for-machine-learning/

[20] Support Vector Machine (SVM)
https://www.mathworks.com/discovery/support-vector-machine.html

[21] Ensemble Learning https://en.wikipedia.org/wiki/Ensemble_learning

[22] Computational Complexity of Machine Learning Algorithms,
https://www.thekerneltrip.com/machine/learning/
computational-complexity-learning-algorithms/

[23] Big O Notation Explained with Examples https://www.freecodecamp.org/
news/big-o-notation-explained-with-examples/

[24] Fast Computation of Moore-Penrose Inverse Matrices,
https://arxiv.org/abs/0804.4809v1

[25] Support Vector Machine-Simply Explained, https://towardsdatascience.
com/support-vector-machine-simply-explained-fee28eba5496

https://www.mdpi.com/2073-8994/12/9/1400#cite
https://www.mdpi.com/2073-8994/12/9/1400#cite
https://www.jstor.org/stable/1235490?seq=1
https://www.jstor.org/stable/1235490?seq=1
https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Nonparametric_statistics
https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm/
https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm/
https://ieeexplore.ieee.org/document/7276725
https://ieeexplore.ieee.org/document/7276725
https://en.wikipedia.org/wiki/Support-vector_machine
https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://www.mathworks.com/discovery/support-vector-machine.html
https://en.wikipedia.org/wiki/Ensemble_learning
https://www.thekerneltrip.com/machine/learning/computational-complexity-learning-algorithms/
https://www.thekerneltrip.com/machine/learning/computational-complexity-learning-algorithms/
https://www.freecodecamp.org/news/big-o-notation-explained-with-examples/
https://www.freecodecamp.org/news/big-o-notation-explained-with-examples/
https://arxiv.org/abs/0804.4809v1
https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496
https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496

References 55

[26] Chris Albon Machine Learning with Python Cookbook: Practical Solutions
from Preprocessing to Deep Learning p.235-238, 2018

[27] C3, What is Mean Absolute Error?, https://c3.ai/.

[28] FilterPy Documentation, KalmanFilter https://filterpy.readthedocs.
io/en/latest/kalman/KalmanFilter.html

[29] Kalman Filter https://en.wikipedia.org/wiki/Kalman_filter

https://c3.ai/.
https://filterpy.readthedocs.io/en/latest/kalman/KalmanFilter.html
https://filterpy.readthedocs.io/en/latest/kalman/KalmanFilter.html
https://en.wikipedia.org/wiki/Kalman_filter

Indoor Positioning and Machine Learning
Algorithms

RAAVI UTTARWAR AND JULIÁN VALENTÍN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

R
A

A
V

I U
TTA

R
W

A
R

 A
N

D
 JU

LIÁ
N

 V
A

LEN
TÍN

Indoor Positioning and M
achine Learning A

lgorithm
s

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-822
http://www.eit.lth.se

	Exj_Uttarwar_Valentin.pdf
	Introduction
	Background and Motivation
	Methodology
	Literature Survey
	Thesis Organization

	Theoretical Background
	Multiple Antenna Systems
	Multipath Propagation
	Bluetooth Low Energy v5.1
	Introduction to Machine Learning
	Machine Learning Algorithms
	Least-Squares

	Positioning Estimation with Machine Learning
	Arranging Testbench Data
	Parameter Optimization
	Estimations in Different Indoor Environments
	Cross-prediction with Simulated Indoor Environments
	Estimations using Measurement Data
	Position Estimation Results
	Discussions and Future Work

	Conclusions
	References

