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Abstract

As the ASIC designs continue to grow in complexity, traditional RTL level of
abstraction is becoming a productivity bottleneck. The RTL design process re-
quires extensive time and effort for verification of algorithmic correctness as well
as correct timing and interface behavior. Furthermore, a non-trivial change to the
algorithm often results in a complete rewrite of the RTL implementation. High
Level Synthesis (HLS) solves this issue, by allowing the designer to focus on the
functionality while the tool takes care of implementation details such as finite state
machines and timing. HLS vendors promise considerable savings in development
time.

In this master’s project, we have implemented a template of parameterizable
polyphase filters in C++. The design was then synthesized using Mentor Cat-
apult HLS. The number of polyphases, bitwidth, number of taps, and coefficient
binding were made parameterizable.

Simulation and verification results show the functional correctness of the design.
Also, a thorough comparison of the RTL reference design and an equivalent HLS
design, using the same parameter set, has been carried out. Results reveal that
the HLS design achieves higher performance in both area and latency. Taking the
symmetric FIR filter as an example, the latency is reduced by up to 5 clock cycles,
and the area decreased 21% compared to the reference design. The main reason
for reduction in latency and area is the ability of HLS tool to reduce and balance
the pipeline stages more efficiently compared to the manual RTL design.
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Popular Science Summary

In today’s digital reality, computer chips are everywhere. From personal devices
like our computers and smartphones, to cars, airplanes, refrigerators and even
microwave ovens – all have at least one computer chip. Of these products, the
smartphone is probably among the most advanced ones – at least from the per-
spective of the functionality of the chips inside it. A smartphone is required to
have a wealth of diverse functionality, such as a processing unit, a graphics unit,
a cell modem, WiFi, etc, all of which today are integrated on a single chip – a
so-called System on a Chip (SoC). The same is true for the equipment at the other
end of the radio-link, the base station, which is manufactured by the Swedish com-
pany Ericsson, among others.

The defining feature of the business environment in the contemporary technology
sector, including the sub-sector of chip development, is the increasingly rapid pace
of product development, paired with the customer expectation of an increasingly
feature-rich and complex product. At the same time, the current chip development
methodology and the related software tools have both not developed noticably
since the late 1990s. A methodology, that requires the chip developer to describe
his digital circuit at the so-called “register transfer level” (RTL) of abstraction.
This involves specifying in detail what happens in every single clock cycle of the
chip. As a result, a bottleneck has appeared in the implementation- and verifica-
tion parts of the development cycle, due to the sheer complexity and size of digital
systems today.

This thesis has investigated a relatively new method of development, namely High
Level Synthesis (HLS). Here, an algorithm written in the regular computer pro-
gramming languages of C or C++ can be synthesized directly to hardware, by the
use of a special software tool. We have implemented a template library of FIR
filters using this technology, and compared it with an existing RTL-based design
provided by Ericsson. The results show improvements across the board, both in
terms of area, latency and power consumption, while also adding design flexibility
and shortening development time.
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Chapter 1
Introduction

1.1 Background and Motivation

The connectivity company Ericsson develops their own customized radio integrated
circuits (ICs) for their Fifth Generation (5G) base stations. The digital predis-
tortion (DPD) section of these ICs makes heavy use of various digital filters, all
of which today are manually implemented and verified at the Register-Transfer
(RTL) level of abstraction.

This approach has several drawbacks: First, the translation from a high-level algo-
rithmic description in Matlab or C/C++ to a specific hardware micro-architecture
in RTL is a manual endeavor, making it tedious and time-consuming to explore the
architectural design-space and evaluate various hardware tradeoffs. Furthermore,
the human nature of the translation process is highly susceptible to the intro-
duction of bugs, requiring extensive verification efforts (not only for algorithmic
correctness, but also for correct timing and interface behavior, etc.). Finally, if
the design requirements of the overall project changes, the RTL implementation is
often so customized that a total reimplementation is necessary – wasting precious
time as a result.

High-Level Synthesis (HLS) technology has set out to change that. While mainly
being a subject of academic interest in the 1990s, the technology has steadily
progressed and is now mature enough for many digital design tasks – and is of-
fered commercially by several EDA vendors[1]. It allows the designer to describe
a circuit on an algorithmic level in C++ (with some restrictions), without con-
cerning himself with implementation details such as timing, interface, state ma-
chines,datapath, pipelining, parallelism or the number of functional units.These
details are all taken care of by the HLS tool, working under a set of constraints
given by the designer.

1.2 Thesis Structure

The structure of this thesis is organized as follow:

• Chapter 1 is the introduction and motivation of this thesis.

1



2 Introduction

• In Chapter 2, the theory of basic filters that implemented in this thesis is
given, including lowpass fir filter and half-band fir filter.

• Chapter 3 introduces the theory of the polyphase filter, it consists of the
multirate system knowledge and also the polyphase theoretical implemen-
tation.

• The Catapult design flow and the parameterizable polyphase library imple-
mentation details are presented in Chapter 4.

• In Chapter 5, the results of comparison between the reference RTL design
and the HLS design. The analysis of the reason that causes the difference
of these two design is illustrated.

• Chapter 6 gives the conclusion of this thesis and further work.



Chapter 2
FIR filter theory

FIR filter and IIR filter are two types of digital filters.[2] Generally, IIR filters
have wide application since they have low computation complexity and latency
and when the linear phase response is not necessary. And In this case, they are
chosen to be employed in biomedical sensor signal processing, audio equalisation
and telecommunication applications.

Despite the advantages of IIR filters, FIR filters become the first option when
the linear phase response comes into a vital requirement. In contrast to an IIR
filter, the FIR filter has no feedback loop, which brings a distinct advantage to the
FIR filter as stability. With these two strengths, the downside of the FIR filter,
like more computation complexity, can be disregarded. In this way, FIR filters
are preferred over the IIR counterparts and applied in digital signal processing
applications.[3]

The comparison between the FIR filter and IIR filter can be seen in the table
below to make it clear.

2.1 FIR filters

Generally, the output of a discrete linear time-invariant(LTI) system in the time
domain can be represented as:

y(n) =
m∑
i=0

bix(n− i)−
l∑

j=1

ajy(n− j) (2.1)

The following system is named Infinite Impulse Response(IIR). In this system, the
output depends on input and previous result, which is so-called feedback. Such a
structure causes instability. When the feedback part of this system is removed by
setting l to be zero, the output then only depends on the input data. While the
stability can be fulfilled, typically, the FIR filter requires a higher order for the
same performance as IIR filters. At the same time, a higher delay is caused by a
higher order. The FIR filter structure can be described below. The output of an
FIR filter is the accumulation of the delayed input sample multiplied by the filter

3



4 FIR filter theory

Figure 2.1: Comparison between FIR and IIR filters

coefficient.

y(n) =
m∑
i=0

bix(n− i) ≡
m∑
i=0

hix(n− i) (2.2)

The system has m order and non-recursive. The impulse response h = h0, h1, h2, ..., hm

is limited to m + 1 taps. There are many structures of FIR filter, the basic di-
rect form architecture, and other types like direct form transposed; it can also be
symmetrical or asymmetrical.

Figure 2.2: The structure of direct form FIR filter

2.1.1 Linear Phase FIR filter

As described before, the distinct advantage of the FIR filter is that the phase
response is linear, which refers to the condition that the phase response of the
filter is a linear function of the frequency. Correspondingly, the delay through
the filter is the same at all frequencies. The delay of a linear phase FIR filter is:
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(N − 1)/(2fs), where N is the number of taps and fs is the sampling frequency.

Therefore, the filter will not cause phase distortion or delay distortion. Lacking
phase and delay distortion results in a critical advantage over IIR filters and ana-
log filters, especially in specific systems such as digital data modems.

Apart from the characteristics of linear phase response and constant delay, the lin-
ear phase filters will preserve the waveshapes of the input signal, which causes the
application to the communications area—for example, the coherent signal process-
ing and demodulation. Preserving or recovering the waveshape without distortion
in such applications is essential when the waveshape takes the thresholding deci-
sions.

Designing a linear phase FIR filter can be straightforward since the filter is linear
phase if and only if the impulse response is symmetrical. At the same time, the
number of taps can be odd or even. This characteristic also causes the possibilities
for the design optimisation to accumulate the data with the same coefficients first.
In this way, half of the multiplication can be saved, which reduces area since a
multiplier has much less area than an adder.

Figure 2.3: Block diagram of linear phase fir filter

The block diagram in figure 2.3 is the structure of a linear phase FIR filter[4].
The basic idea of this structure is very similar with the direct-form FIR filter, but
the difference is that the taps with same coefficients are added together before the
multiplication. The number of coefficients is reduced to half. When the number
of taps is odd, the central tap will be multiplied by the last coefficient.

2.2 Low-pass FIR filter

A lowpass filter functions as passing low-frequency signals and attenuates signals
with frequencies higher than the cutoff frequency. The cutoff frequency of an ideal
low-pass filter is wc = (wp +ws)/2, Where wp is the passband and ws is the stop-
band.

For an ideal low-pass FIR filter, the frequency response is rectangular. Theoret-
ically, it can be realised by convolution with the impulse response in the time
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domain, which is a sinc function[5]. However, the ideal filter is impossible to im-
plement in reality since the filter would need infinite order and delay. Real-life
filters usually approximate ideal ones by truncating and windowing the infinite
impulse response.

w[n] =

{
0.54− 0.46cos( 2nπM ) 0 ≤ n ≤ M

0 otherwise
(2.3)

Take the Hamming window as an example. The equation is described as 2.3, where
M is the order of the filter. And to have a linear phase response for the filter, a
time shift equal to M/2 should be applied by multiplying the result by w[n].

h[n] = [0.54− 0.46cos( 2nπM )][wc

π sinc(wcn
π )] 0 ≤ n ≤ M (2.4)

Figure 2.4: Frequency response of low pass filter

The impulse response contains the coefficients with a proper delay of the filter.
When the input signal x[n] equals σ[n], the output will be the impulse response,
which means y[n] equals h[n]. It is evident that the impulse response fits the sinc
function but windowed.

2.3 Halfband Filter

Halfband filters are one specific lowpass filter with the cut-off frequency of one-
quarter of sampling frequency fs and odd symmetry about fs/4.[6] Halfband filters
are widely applied in multirate systems, especially when interpolating or decimat-
ing by a factor of 2. Normally, the halfband filter is implemented in the form of
polyphase structure to avoid unnecessary computation, since almost half of the
filter coefficients are zero. When the number of taps is odd, the property of the
halfband filter causes every other coefficient to be zero except the central one.

There are two main characteristics of halfband filters which causes it becomes the
specific case of lowpass filter.
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Figure 2.5: Impulse response of low pass filter

• The passband and stopband ripples must be the same

• The passband-edge and stopband-edge frequencies have equivalent distance
from the halfband frequency, and they are both fs/4. When normalized,
the frequencies become π

2 rad/sample.

The properties of halfband filter bring a restriction on the number of filter taps.
When designing a linear-phase N-tap halfband filter, with alternating zero-coefficient
to be zero, N+1 must be an integer multiple of four. If this condition is not met,
then the first and last coefficient will be discarded.

Figure 2.6: Frequency response of halfband filter

Figure 2.6 is the frequency response of the halfband filter with the fs equals to
100KHz, the blue curve is the magnitude response and the red curve is the phase
response respectively.
This characteristic is illustrated in the impulse response as figure 2.7 clearly. Since
every other coefficient in the halfband filter is zero, the structure of the halfband
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Figure 2.7: Impulse response of halfband filter

filter can thus be reduced to approximately half the area compared to the low-pass
filter.



Chapter 3
Polyphase Filters Theory

In this chapter, the theoretical knowledge of polyphase filters is introduced. Firstly,
the basic information of multirate systems is presented, including the application
field and the concept of decimation and interpolation[7], which are the two signifi-
cant processes in the multirate system. Then the polyphase is presented afterward,
while polyphase is used to solve the problem of unnecessary computations in dec-
imation and interpolation. A detailed description of how the filtering is executed
and wherewith the polyphase filter be designed will be illustrated in this section.

3.1 Multirate Systems

The past decades have seen the rapid development of multirate digital filters and
filter banks, which have many applications in the field of communication, spectrum
analysis[8], radio systems, image and video processing. Compared to the single-
rate system, the multirate system shows an obvious advantage in processing the
signals efficiently since the sampling spaces can be changed internally. Although
aliasing can happen due to this portrait, it can be discarded with careful design.

Multirate system research involves sample rate conversion, the concept of deci-
mation and interpolation. The sample rate conversion is unavoidable in real-time
signal processing when the two separate hardware units operating in two different
sampling rates and must communicate with each other.[9] For certain narrow-band
systems, sample rate conversion can reduce computation and complexity.

3.1.1 Decimation

Decimation is a non-time-invariant process that contains two steps, first low pass
filtering and following as downsampling.

The concept of downsampling can be explained as retaining every Mth sample in
the input signal and discard the rest data. Express the original sample frequency
as fs,in, then the current sample rate is:

fs,out = fs,in/M (3.1)

9



10 Polyphase Filters Theory

The downsampled output is:

x′(n) = x(Mn),M = 0, 1, 2, ... (3.2)

In the time-domain, the output can be written as:

y [n] =
∑
k

h[k]x[(n− k)M ] (3.3)

Figure 3.1: Demonstration of decimation by factor of 4

Based on Nyquist Theorem[10], the new sample rate should be larger than 2 times
bandwidth to avoid overlapped spectral replications, also known as aliasing errors.
To prevent this error, a low pass filter is required before downsampling. The
structure of a typical decimator is :

Figure 3.2: Process of decimation

Where h[k] is the impluse response of each tap in the low pass filter, and M is the
decimation factor.
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The convolution process of the low pass filter can be expressed as:

V z (z) = Xz (z)Hz
(
zM

)
(3.4)

After the filtering, the downsampled signal in z-transform is

Y z (z) = V z(z)(↓M)

=
1

M

M−1∑
m=0

V z(z1/MW−m
M )

=
1

M

M−1∑
m=0

Xz(z1/MW−m
M )Hz((z1/MW−m

M )M )

(3.5)

3.1.2 Interpolation

In contrast to decimation, the process of interpolation includes upsampling to
increase the sample rate by inserting zero-valued data. Given the original sample
rate as fs,in, L-1 zero-value data must be inserted between each input sample to
increase the sample rate by a factor of L.

fs,out = L · fs,in
Similar to decimation, a low pass filter should be applied, but after the process
of upsampling. It can reduce the distortion caused by the undesired mirroring
spectrum images of the signal centred at the multiple of original signal.

Figure 3.3: Process of interpolation

Given the input signal x(m), the upsampled output is:

x′(m) =

{
x(mL ), m = 0, L, 2L, ...

0 otherwise
(3.6)

In the z-domain, the upsampled input signal can be expressed as:

V z (z) = Xz
(↑L) (z) (3.7)

The undesired mirror images in the spectrum caused by upsampling can be reduced
by a low pass filter, the z-transform of output is:

Y z (z) = V z (z)Hz(zL)

= Xz(zL)Hz(zL)
(3.8)
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Figure 3.4: Demonstration of interpolation by factor of 4

In frequency domain, the final output is:

YL(w) = XL(w)HLP (w) (3.9)

Where for a low pass filter, the frequency response is given by:

HLP (w) =

{
1, if | w |≤ π

L

0 if π
L ≤| w |≤ π

L

(3.10)

3.2 Polyphase Filters

In the last section, the concept of decimation and interpolation are explained. The
polyphase decomposition was originated from the work by Bellanger et al.[11], and
is significant in the application of multirate DSP. Consider the process of inter-
polation, in every L operations,L − 1 zeros multiplication are executed. Which
causes unnecessary computation and memory usage. And for the decimation, M-1
computation results are discarded after the filtering. The digital polyphase filter
design reveals this problem by splitting the filter taps into several subfilters, avoid-
ing inefficiency.

The following is an example that describes the process of how the polyphase filter
works. Figure 3.5(a) shows the input data samples after interpolation by 4, the
squares in Figure 3.5(a) are the original input data and the dots are the interpo-
lated zeros. Figure 3.5(b) is the impose response of a 12-tap FIR filter in reversed
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order, where triangles are the filter coefficients. Initially, the filter operates by the
convolution of the input signal and the coefficient. Apparently, to get the result of
xnew, 9 out of 12 computations are wasted because of interpolated zeros in each
convolution.

Figure 3.5: Interpolation by factor of 4 for a 12-tap filter. (a) Input
data samples; (b) Impulse response of the filter

To make the convolution more efficient, Figure presents how to get the result of
xnew(11), xnew(12), xnew(13) and xnew(14) to find the regularity of the polyphase
filter since the interpolation factor is 4. In Figure 3.6 (a) ,the input data and
impulse response are overlapped in 12 samples. As mentioned before, only four
computation times are necessary, in which the input data is non-zero, and the
corresponding filter coefficients are h(11). h(7) and h(3). The next step is to
slide one sample of the impulse response to the right to compute xnew(12), and
now the valid computation is where the non-valued input data and the coefficients
overlapped. Similarly, Figure 3.6 (c) and (d) illustrate how to compute xnew(13)
and xnew(14). To make it more visualized and for better understanding, the
equations are presented as follows.

xnew(11) = h(3)xold(2) + h(7)xold(1) + h(11)xold(0)
xnew(12) = h(0)xold(3) + h(4)xold(2) + h(8)xold(1)
xnew(13) = h(1)xold(3) + h(5)xold(2) + h(9)xold(1)
xnew(14) = h(2)xold(3) + h(6)xold(2) + h(10)xold(1)

(3.11)
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Figure 3.6: The process to calculate the filter output

The below steps not only present how the prototype filter works but also provide
the method to implement a polyphase filter. Rather than 12 times multiplications,
only three of them are needed in each clock cycle and the whole process to compute
the output of the 12-taps filter can be divided into four clock cycles and then add
them together to get the final result.

Figure 3.7 shows the block diagram of the polyphase filter with interpolation by
4. The filter bank consists of four subfilters, and each subfilter has a different
coefficient set. For each input sample, four output samples are computed and
accumulated. The number of subfilters is typically the same as the interpolation
factor. Thus the number of taps N can be chosen as multiple of the interpolation
factor for convenience. Due to the zeros inserted and the filtering process, there is
a gain loss in the polyphase filter, and the gain is the same as interpolation factor
L. There are two ways to reimburse for this amplitude loss. One is to increase the
filter’s coefficients by a factor of L, and the other one is to multiple the output
xnew(14) by L.

The decimation process in the polyphase filter is similar to the interpolation. In
figure 3.8, the block diagram presents the decimation of a 12-tap prototype filter
by a factor of 4. The number of subfilters is typically the same as the decimation
factor M . In this way, four Four subfilters are applied with different coefficient sets,
and the output of each subfilter will be accumulated, but four input samples will
be computed in the subfilters for one result. In this way, the decimation process
is before the filtering and no discarded computation, which avoiding unnecessary
hardware usage.
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Figure 3.7: Interpolation block diagram of polyphase filter

Figure 3.8: Decimation block diagram of polyphase filter
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Chapter 4
Implementation

4.1 Catapult design flow

With the increase of complexity in electronics design(ASIC and FPGA), traditional
manual RTL implementation can be time-consuming, especially when verifying the
hardware-specific constraints like timing and interfaces. Furthermore, when the
design specifications are changed, the whole design may need to be modified, which
wastes enormous developing time and effort. In comparison, the High-Level Syn-
thesis was introduced and revealed the problems mentioned before, allowing the
designer to focus on the implementation of the algorithm itself.

Throughout the thesis, the tool used for the high-level synthesis design is Catapult
HLS from Mentor Graphics. In this section, the introduction of Catapult and the
design flow is given.

4.1.1 Introduction to Catapult

Catapult is a product of Mentor Graphics for high-level synthesis. Some other
similar products that are widely used, are Vivado HLS of Xilinx and Cadence.
Catapult allows designers to develop C/C++ code and generate RTL code auto-
matically by the tool. Moreover, for the generated RTL files, the target hardware
device can be both FPGA and ASIC. The design flow of traditional RTL is differ-
ent from Catapult design flow and can be illustrated in the figure 4.1.

As presented in the figure 4.1, both of the designs should include algorithm de-
scription using C/C++, and manual written RTL or generated by the tool, then
the RTL synthesis and lastly integrated to ASIC or FPGA. The main difference
between RTL design flow and Catapult design flow is the Catapult synthesis part.
Conventionally, manual RTL design requires manual verification, which the timing
and other interfaces behavior could take numerical time. While for the catapult
synthesis, the only thing is to set constraints in the tool and be verified at the
algorithm level with the testbench written in C/C++.

Unlike standard behavioral C/C++, there are some constraints in the High-level
language to make it hardware-friendly. As it is known, the RTL description con-
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Figure 4.1: Traditional RTL design flow and Catapult design flow[1]

sists entity or module and always be a pipelining process. Since the High-level
synthesis should generate corresponding RTL, the structure should be the same.
In this way, the HLS should include functions as blocks, and each one can be called
or call another function. Like the hierarchy in RTL, there should also be a top-level
function in HLS to connect each block(function) and define the interfaces, such
as port definitions of the complete design, bit widths and data type. Generally,
the design that builds in high-level synthesis is synchronous. The output of the
top-level design is usually stored in registers to ensure that the timing is matched
when communicating with other designs.

Another point that worth mentioning is that the HLS design always uses bit-
accurate data types[12] to make the design more efficient for synthesize. This data
type makes it possible to have the same interfaces with RTL and reduces hardware
resources since it avoids the default assigned bit width for the standard C++ data
types, such as a 128-bit integer. Generally, apart from the conventional data types
in C++, Catapult provides the ac_int <> and ac_fixed <> types for the bit
accurate data type for integer and fixed-point numbers , both signed and unsigned.
The declaration and configurable parameters are explained as follows.

• ac_int < W,S > x: defines the signal x with W bit as the bit-width and
signed when the boolean parameter is set as true. The numerical range for
x is [0, 2W − 1] by increments of 1 when x is unsigned, and respectively
[−2W−1, 2W−1 − 1] by increments of 1 for signed number.

• ac_fixed < W, I, S > x: defines the signal x with W bit where I bit as
integer part, and (W − I) as fractional part. Same as ac_int, S means
signed when the boolean value is true. For unsigned signal, the numerical
range is [0, 1− 2−W 2I ] by increments of 2I−W , and [−0.5 ∗ 2I , 0.5− 2−W 2I ]
by increments of 2I−W when signed.



Implementation 19

• ac_fixed < W, I, S,Q,O > x: defines the signal with quantization and
overflow mode. The default mode is to truncate and overflow in ac_int <
W,S > and ac_fixed < W, I, S >. Truncate means throw the bits to
the right LSB away, which does not cost extra area but might not be ideal
for some applications that high accuracy is required. Instead of throwing
the data away, the rounding mode will round up or down depending on
the fractional value. To enable this mode, Q is set to ac_RND. There
is another mode to detect overflow in the design. Although the overflow
should never occur in some applications, especially in the control and image
processing area. By enabling the overflow mode, O should be set as ac_ACT
to prevent this situation.

4.1.2 Design Flow in Catapult

In this section, the design flow in Catapult will be introduced step by step, which
starts from the project creation, significant setups and constraints throughout
the design, following dataflow and resource allocation, architecture mapping, and
lastly synthesis, and design verification. The design flow can be presented as the
flow chart as below.

Figure 4.2: Design flow in Catapult

1. In the first step, to create a project, the input files should be specified.
Typically, the input files are the C/C++ source files. Catapult will include
them by the directory path for the header files, so the manual operation
is unnecessary. The testbench is always excluded from design; otherwise,
it will be implemented into the RTL and cause extra area. Catapult will
automatically structure the design when the top-level function is assigned.
There are also two types of functions called block and inline. Apart from the
top-level function, other functions can be set as block, which is one hierarchy
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level down than the top function, or inline, meaning that it is inside of the
hierarchy block.

2. The design setup is mainly to set the libraries used for later synthesis. In
this step, the synthesis tool, vendor and technology can be specified. There
are also memory libraries that can be used. Apart from these libraries,
previously synthesized blocks and designs can be included in the present
generation. This is because Catapult allows bottom-top and top-bottom
design methods. For the bottom-top way, each block will be generated into
RTL, the performance such as latency and throughput for each block can be
evaluated. While the top-bottom method(no previous design is included),
all the functions will be in the same RTL and each as an entity. The per-
formance is for the whole design.

3. After the design setup, the following are data flow analysis and resource
allocation. The data flow analysis will generate DFG(data flow graphics)
showing the data dependencies and operations order inside the function.
Timing and area constraints are applied during resource allocation. In the
extracted DFG, each operation has corresponding hardware implementa-
tions. Catapult provides a list of the components in the libraries determined
during setup with different behavior of area and latency that the designer
can assign.

4. In the scheduling step, the tool specifies the operations be executed in every
clock cycle. Pipelining can be applied in this step to reduce combinational
delays. The more detailed knowledge is explained in the later part Design
Constraints in the last of this section.

5. Then the next step is architecture mapping. The hardware architecture
depends on the previous setup of resource allocation and the number of
loop unrolling. The top-level function is also interpreted as the main loop
and can be unrolled. There is a detailed example in the constraints part
for the loop unrolling in the typical loop, such as for loop. The number of
overlapped loops is called Initiation Interval(II).

6. The following is the synthesis of the design. Catapult will synthesis the
design automatically. The signals clock, enable and reset can be added in
this step. In this step, the RTL files are generated but can be challenging to
read and understand. The synthesis output also includes the schematic, and
the data path and critical path can be retrieved. Meanwhile, the schedule
of the design is presented in the Gantt chart. The designer can also get
the hardware resource information such as area and timing in the summary
table or more detailed information in the result reports. In this thesis,
another synthesis tool called Design Vision is also used for the result of
power consumption.

7. To verify the implementation, Catapult allows two types of testbench: for
the C/C++ code and the other is for the RTL files. The testbench to verify
the algorithm’s correctness is at the behavioral level, written in C/C++.
The functionality in the generated RTL can be tested and compared with
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the source file in C/C++ in ScVerify. It generates verification infrastructure
automatically, and the signals like input/output and internal signals can be
seen in the wave and make it easier to solve errors.

Design Constraints

Pipelining

Pipelining is also known as pipeline processing, enabling multiple functional units
to execute concurrently. By inserting registers between these combinational com-
ponents, the instructions are conducted in an orderly process. The registers can
store data and perform combinational logics. Pipelining can increase overall in-
struction throughput. Different from parallelism, pipelining will not use more
hardware resources and can achieve speed enhancement.

This project mainly aims to design FIR filters. Thus the analyze of pipelining of
FIR filters can be essential. Pipelining reduces the critical path and results in a
higher sampling rate. The following is an example to explain how pipelining works.

Figure 4.3: FIR filter without pipelining

Figure 4.4: Pipelined FIR filter

For a 3-tap FIR filter, suppose the calculation time unit of multiplier and adder are
Tm and Ta separately. Initially, the minimum sampling period should be Tm+2Ta

without pipelining with the restriction of the critical path. When the pipelining
is introduced, a register is inserted in the critical path, and the sampling period
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can be reduced to Tm + Ta at the lowest.

Pipelining can also help reduce power consumption. The power consumption in
the original structure can be described as:P = fCV 2

DD. Reducing the critical path
can cause a higher sampling frequency, resulting in double throughput, or with
the same sampling frequency but a lower supply voltage βVDD. Thus the power
consumption is reduced to Ppipe = fCL(βVDD)2 = β2Pseq.

Loop Unrolling

Loop unrolling[13] is a technique to add parallelism to a design. Unlike loop
pipelining, which permits loop iterations to start at every second clock cycle, loop
unrolling can execute all current loop iterations in the design in one clock cycle
when there are no dependencies in the successive loop iterations.

Partial loop unrolling means the unrolling takes place in the loop iteration inter-
nally. Take the example of unrolling by a factor of two, and it is equivalent to
duplicating the loop body by two and cut down the loop iterations to half. In this
way, the loop can be performed by half number of clock cycles.

The fully unrolling loop separates all iterations and permits them to execute in
the same clock cycle, while assuming sufficient time to compute the dependencies
among the iterations. The following example presents the fully unrolled loop
iteration. When the unrolling is applied, the original loop is divided into four
sequential accumulations. Without the control logic for the loop iteration, the
unrolled function can be executed within one clock cycle, causing less latency
than the standard loop.

Figure 4.5: Normal Loop and fully unrolled Loop

4.2 Design of polyphase filter template library

The main goal of this thesis project has been to design a library of parametrizable
polyphase filters - or a template library, in other words. The library implements
a generic polyphase filter structure, which by parametrization can be customized
into a specific realization. The structure is shown in figure 4.6. It contains a
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Figure 4.6: Generic polyphase filter structure

number of parallel input and output streams (the polyphases), as well as FIR
subfilters, to and from which data can be routed in different ways. For example,
in a configuration where we have 4 polyphases, they could all be assigned to one
data source, which would then be sending 4 samples in parallel per clock cycle.
In another configuration, there could be two data sources, each sending 2 samples
per clock cycle. Depending on the desired configuration, the MUX will route data
differently.
"Polyphase mode" is not the only configurable parameter, however. We have added
support for tuning a lot of different properties of the filter structure, including,
but not limited to:

• FIR subfilter type: Generic, Symmetric or Half-band

• Number of polyphases: 1, 2, 4, or 8

• Bitwidths of input, output and coefficient data types

• Option to use runtime-changeable coefficients, or constant compiled-in ones

• etc...

Although we call our creation a template library, it is not a template in the C++
sense of the word. Rather, it is a piece of generic code written in a mix of C and
preprocessor macros. By including a central file, the user will trigger the instan-
tiation of the template, which is accomplished by the expansion of macros. The
macros, in turn, get their values from constants that the user has defined. Checks
have been added to insure that mandatory parameters are defined by the user,
and that their values are all legal.

One of the benefits of using preprocessor macros in the library code, is that we can
tightly control what hardware will be generated or not. For example, depending
on how the filter type parameter has been specified, we use different subfilter



24 Implementation

implementations. As a result, no "dead" hardware will be sitting around. The
different subfilter implementations - namely symmetric and half-band FIR filters
- can help save area for cases when the impulse response is symmetric, and in the
half-band case, where every other sample/coefficient furthermore is zero.

4.3 Verification

Verification can be a significant part of the whole design since the design will
be considered valid after verifying the functional correctness and evaluating the
hardware performance if it meets the design specification. The implementation
throughout this project is based on C++ development, and naturally the test-
benches are written in C++ for convenience. The testbench can be executed in
the built-in Catapult verification flow or the GCC compiler. After Catapult gen-
erating RTL files automatically, the simulation for the RTL can also be executed
by SCVerify(SystemC Verify), which is a powerful tool for hardware verification
without writing the VHDL or Verilog testbench manually.

Functional verification is a process that tests all the expected behavior of the de-
sign. Typically, it is performed by comparing the expected results with the output
of the function. The verification method used in this project is from bottom to
top-level. Firstly, the individual blocks are tested, such as the MUX and subfil-
ters, including the symmetrical FIR filter and the halfband filter. The MUX will
be tested for the input data distribution to each subfilter. And the subfilters will
be verified if the impulse response corresponds with the filter coefficients with a
unity input signal. After all the basic modules are tested correctly, the top-level
verification can be performed. The modifiable parameters in the top-level, such as
the number of polyphase and number of taps, can be tested if the proper hardware
structure will be generated by the tool after synthesizing.

To check the generated RTL netlist, SCVerify is applied. It can be executed by
modifying the written C++ testbench and automatically simulating the design
with Questa, VCS or NCSim. Figure 4.7 illustrates the block diagram of the
SCVerify flow.

Verification with SCVerify is accomplished by the following: test stimuli provided
in the C++ testbench will be both applied in the original C++ source code and
the RTL netlist wrapped with SystemC. The testbench generated by SCVerify
will compare the result of the RTL netlist placed by a SystemC wrapper and the
C++ testbench to check if they are identical. Meanwhile, Catapult also generates
SystemC code that includes the interconnect of the design and interface translator
objects. The interface connections of the RTL blocks will be provided by the
interface translator objects. Also, the data type will be translated to logic vectors
of the RTL netlist. The timing behavior can also be given with built-in functions.
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Figure 4.7: Block diagram of SCVerify

4.4 Synthesis

The synthesis in Catapult is done with the tool DesignComplier, which is the last
step in the design flow of Catapult, and running synthesis can extract the RTL
netlist and generate VHDL/Verilog files. The data path and critical path in the
schematics folder are given to review the hardware architecture. The netlist can
also be used to calculate the power consumption by Catapult. At the same time,
the designer can also get other performance information, including the area and
delay of each component. Since Catapult always overestimates the score value
of the area and underestimates the slack when generating RTL, running synthe-
sis avoids this problem and can check if there are any timing violations in the
design.[14] By analyzing the generated VHDL/Verilog files, the interfaces of the
implementation can be examined and compared with the reference design in this
project.

The comparison between the HLS design and the reference RTL design is a signifi-
cant part of this project. Since Catapult can only synthesis the design by C/C++,
another tool to evaluate the reference design should be applied. DesignVision can
make this possible by compiling and synthesizing the RTL files to generate the
area and power consumption of the design. The following are the steps to synthe-
sis RTL files in DesignVision.

• The first step is to include the input RTL files, which should be in the de-
pending sequence(from bottom to top), so that the tool can understand the
hierarchy of the design and analyze them properly. Also, the corresponding
libraries utilized in the design should be specified in the setup step, which
define the technology and components in the hardware architecture.

• After analyzing the RTL files, the next step should be to elaborate the
design. In this step, the top-level module should be filled in the design blank,
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and all the parameters should be defined. This step makes the schematics
available once the design is elaborated successfully. As mentioned before,
the schematics of the design can be reviewed to investigate if the hardware
architecture is correct as expected.

• Then, to synthesis the design, the clock signal should be specified in a certain
frequency, while the port name of the clock signal must be the same port in
the RTL to ensure it will synthesis the design properly.

• The last step is to run the synthesis and generate the reports. The timing,
area, and power consumption reports are available to compare for the RTL
design and HLS design performance. The results are recorded and analyzed
detailedly in the next chapter.



Chapter 5
Results

In this chapter, the verification and simulation result of the parameterizable polyphase
filter designed by HLS is given, then the comparison between the reference design
and equivalent HLS design is presented and the reason for the differences is an-
alyzed. Besides, the arguments in the HLS design are also varied to investigate
their effect on performance in latency and area.

5.1 Simulation Result

The simulation result of the reference design and equivalent HLS design of sym-
metric FIR filter is shown in figure 5.1. Both of the two design have the same
parameters. The number of taps is 19 and 10 coefficients. The coefficients are set
as linear constant(1.0, 0.9, 0.8, ... , 0.1). And the input is a constant value 1.
Thus the output of the two design are impulse response.

Figure 5.1: Simulation of the reference RTL design and equivalent
HLS design

To highlight the output, figure 5.2 is given. The right part is the output of the
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reference design and the left is the output of the equivalent HLS design. From the
figure, the values of the reference design and HLS design are same. But there are
fractional delay in the reference design but not in the HLS design. This can be
fixed in the future work,by modifying the MUX.

Figure 5.2: Simulation output of the two design

5.2 Comparison between HLS and RTL

The comparison was carried out in the ASIC flow and the methodology in the
comparison of the reference RTL design and equivalent HLS design is as follows.
First, synthesize the reference design, which RTL includes symmetric and half-
band FIR polyphase filters written manually in VHDL, with the same parameter
settings including the number of polyphase, number of taps, input/output width,
coefficient width and frequency. Then, synthesize the equivalent HLS design with
the same arguments. At last, vary one parameter in the HLS design while keeping
the others steady to investigate how the varied parameter influences the perfor-
mance of the design. There are mainly three parameters we examined: the branch
mode (variable, 1TX, 2TX and 4TX),the number of polyphases (1,2,4 and 8), and
the coefficients setting (variable, constant with linear numbers and constant with
all the numbers are the power of 2).

Table 5.1: Parameter setting for the comparison in Table 5.2

No. of PP No. of Taps BR_Mode Data Width Coeff Width

4 19 Variable 16 bits 18 bits

Table 5.1 presents the parameters for the comparison between reference design
and HLS design. Both of the two design are synthesized with 4 polyphases, 19
taps, and variable br_mode. The data width of input/output and coefficient are
16 bits and 18 bits separately.
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Table 5.2: Comparison of performance in different frequency

Filter Type Performance Frequency RTL HLS Diff (%)

Symmetric

Latency 1GHz 8 3 -

(clock cycles) 2GHz 8 5 -

Area 1GHz 5126.3 4043.3 -21.1

(no. of gates) 2GHz 5456.3 4690.2 -14.0

Half-Band

Latency 1GHz 8 3 -

2GHz 8 4 -

Area 1GHz 2843.4 2471.6 -13.1

2GHz 3004.1 2946.7 -1.9

Generic

Latency 1GHz - 3 -

2GHz - 5 -

Area 1GHz - 6371.8 -

2GHz - 7989.4 -

Table 5.2 shows the overall results of the performance in the reference RTL design
and equivalent HLS design. The HLS design has reduced up to 5 clock cycles
compared to the RTL design and spends less time in each clock cycle. The latency
for both RTL design and the equivalent HLS design is both from input to output,
which means the delay in MUX in the HLS design is also included. The area of
HLS design is reduced 21.1% and 13.1% for symmetric filter and half-band filter
separately with the clock frequency at 1 GHz. When the sampling frequency
increases to 2 GHz, the improvement of HLS has decreased especially for the half-
band filter. This is because in the reference RTL design, the central tap was
hard-coded and the multiplication was replaced by shifting. In this way, the area
is reduced at the cost of flexibility. The generic FIR filter in HLS has more area
than the RTL design due to the fact that the generic filter is the direct form of
the FIR filter without pre-adders and the multipliers are close to two times the
symmetric FIR filter.

Table 5.3: Parameter setting for the comparison in Table 5.4

Filter type No. of PP No. of Taps BR_Mode Data Width Coeff Width Freq

Symmetric 4 19 Variable 16 bits 18 bits 1 GHz

In Table 5.4, it shows more details of the results displayed previously. Not only
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Table 5.4: Comparison between reference RTL design and HLS de-
sign

Performance RTL HLS Diff (%)

Latnecy (cc) 8 3 -

WNS (ns) 0.29 0.33 -

Area

Total 5126.3 4043.3 -21.1

Comb 3775.9 3409.3 -9.7

Non-comb 1350.3 634 -53.0

Buf/Inv 200.3 151.8 -24.2

No. of

Cells

Total 53444 43342 -18.9

Comb 46979 40179 -14.5

Seq 6304 2960 -53.0

MISC
No. of ports 17356 15718 -9.4

No. of nets 81655 69277 -15.2

No. of buf/inv 8462 6433 -24.0
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the total area, the combinational and non-combinational logic area are also given
which assist the analysis of the result. Also, the number of cells, number of ports
can be extracted from the result report. From the non-combinational area and the
number of sequential cells, it reveals that the main reduction of the area comes
from registers, which contributed to a 53% reduction in the area.

To investigate the difference between the reference RTL design and equivalent HLS
design, the schedule of both design are given. Figure 5.3 and figure 5.3 show the
schedule of HLS design working in 1 GHz and 2 GHz separately. With a lower
frequency, the schedule will be more compact and the design is more efficient.
Compared to 2 GHz, the read operation, mux, and pre-adder are finished within
one clock cycle when the frequency is 1 GHz. And the adder trees are in parallel
to reduce latency. In conclusion, the HLS design can achieve a higher frequency
but in the cost of more latency and area.

Figure 5.3: Schedule of the HLS design with clock frequency 1 GHz

Figure 5.4: Schedule of the HLS design with clock frequency 2 GHz
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To make the analysis of the difference between RTL and HLS design more intuitive,
the schedule of symmetric FIR reference design is also derived from the synthesis
tool Design Vision and as shown in figure 5.5. The RTL design has more slack in
each clock cycle. And it also has an empty clock cycle after the MAC. The main
difference exists in the addition algorithm in the two designs. While actually, the
reference design can be intelligent in the MACs, an adder chain is used in RTL,
which makes sure only one clock cycle is spent. And the HLS design is a more
balanced implementation. This leads to the potential for further latency reduction
in HLS design at expense of more area. In conclusion, the reduction in the area is
mainly caused by a reduction of pipeline stages.

Figure 5.5: Schedule of the reference RTL design with clock fre-
quency 2 GHz

Figure 5.6 presents the hardware structure of symmetric FIR reference design in
RTL, which is drawn after analyzing the VHDL codes of the reference RTL de-
sign. The stages are separated by the registers. The architecture of the reference
design is similar to the HLS design besides more registers, the main difference is
the MACs. The adder chain in this structure shortens the latency for the addition
to 1 clock cycle but in cost of more inserted registers between the adders and thus
causes more area.

After the comparison between the reference design and HLS design, the following
part is to investigate the effect of different arguments in HLS design. There are
mainly three arguments we have examined. The branch mode, coefficients setting
and the number of polyphases. While other parameters can also be varied, such
as the bitwidth of input/output and coefficient, these are not so interesting.

Table 5.5: Parameter setting for the comparison in figure 5.7

Filter type No. of PP No. of Taps Data Width Coeff Width Freq

Symmetric 4 19 16 bits 18 bits 1 GHz

The bar charts in figure 5.7 show the result of different branch mode in the sym-
metric filter in HLS. From the figure, it is clear that the combinational logic takes
the most area. And for different branch modes, the variable one costs more area,
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Figure 5.6: Hardware architecture of the reference RTL design
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Figure 5.7: Area of different branch mode in HLS symmetrical filter

especially in the non-combinational logic. For the constant branch mode, the mul-
tiple TX means they need more room in the shift registers to process more input
data, and hence the non-combinational logic area increases.

The next argument varied is the coefficients setting. When the coefficients are
constant and power of 2 (1.0, 0.5, 0.25, ... during the synthesis), the area can
be reduced to a large proportion. That is because the multipliers are replaced
by shifts. Things are different when the coefficients are chosen to be linear con-
stants(1.0, 0.9, 0.8, ...). It will cost more area than the variable ones. That might
be account of the fact that Catapult implements multiplication with constants as a
series of shifts and adds but no multiplications. To find out if this can be changed
will be the in the future work.

Table 5.6: Comparison of performance with various coefficient sets

Coeff Set Performance HLS Diff (%)

Variable Latency 5 -

Area 4690.2 0

Constant,

power of 2

Latency 5 -

Area 1184.3 -74.7

Constant,

linear

Latency 10 -

Area 5509 17.5
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Last but not least parameter is the number of polyphase. The number of polyphase
means the number of subfilters. And from the bar chart in figure 5.8, it is clear
that the area is a linear function of number of polyphase, which corresponds with
the theoretical knowledge since the subfilters are all same. And also, the ratio of
sequential to combinational logic is approximately constant.

Table 5.7: Parameter setting for the comparison in figure 5.8

Filter type No. of Taps BR_Mode Data Width Coeff Width Freq

Symmetric 19 Variable 16 bits 18 bits 1 GHz

Figure 5.8: Area of different No. of Polyphase in HLS symmetrical
filter
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Chapter 6
Conclusion and Future work

In this chapter, a short conclusion of this thesis project is given. Also, there are
some imperfection in the design, and will be carried out in the future work.

6.1 Conclusion

During the 5-month thesis project, we have implemented a template of parameteri-
zable polyphase in HLS, the design includes the MUX, three filter types(symmetric,
half-band and generic). The parameterizable arguments are number of polyphase,
bitwidth, number of taps and coefficient binding. We verified the functional cor-
rectness by the C++ compiler. And simulated both design to check their timing
behaviour. Then we carried out a thorough comparison between the reference RTL
design and HLS design by synthesizing them separately and get the results from
the report. Finally, the analyse of the reason that causes the difference among the
two design is given.

From the results in Chapter 5, it seems that the HLS design has less latency and
area compared to the reference RTL design. But it is worth pointing out that the
results are based on the fact that the reference RTL design is not optimized and
can be improved by a more compact implementation and reducing unnecessary
pipeline stages. The main advantage of the HLS implementation is the more
efficient design flow and less redundant efforts for designers.

6.2 Future work

There are some possible improvement that found out in the analysing part and can
be carried out in the future. First is the addition algorithm in the HLS design, it
can be modified as the adder chain as the reference design to reduce latency. The
second is the fractional delay in the HLS design should be same as the reference
design, which can be done by modifying the MUX.
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