
Ethernet DMA Datapath Performance
Optimization for 5G Radios

SARANYA BALATHANDAPANI & SUNIL NANJIANI
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

SA
R

A
N

YA
 B

A
LA

TH
A

N
D

A
PA

N
I &

 SU
N

IL N
A

N
JIA

N
I

Ethernet D
M

A
 D

atapath Perform
ance O

ptim
ization for 5G

 R
adios

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-833
http://www.eit.lth.se

Ethernet DMA Datapath Performance
Optimization for 5G Radios

Saranya Balathandapani
saranya.balathandapani.4464@student.lu.se

Sunil Nanjiani
sunil.nanjiani.7228@student.lu.se

Department of Electrical and Information Technology
Lund University

Academic Supervisor: Steffen Malkowsky

Supervisor: Aravind Annavaram (Ericsson)

Examiner: Erik Larsson

June 24, 2021

© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

Acknowledgements

We would like to thank our supervisor Aravind Annavaram (ASIC Architect, Er-
icsson) for his constant support, encouragement and guidance during this thesis
project. We thank our academic supervisor Steffen Malkowsky (Postdoctoral Fel-
low, Lund University) for his guidance, supervision and valuable feedback during
the project.

We are grateful to our manager Fredrik Angsmark (Manager, Ericsson) for giving
us the opportunity to work on this thesis project at Ericsson in his team. He
has always been there to support us and tracking the progress of the project. We
would also like to thank JayaKrishna Gundala (Ericsson) for his guidance during
the thesis, which helped us gain more knowledge about industrial designs.

Finally, we express our gratitude to our families for their support in our degree at
Lund University.

i

ii

Abstract

Direct Memory Access (DMA) is a feature of computer systems that allows hard-
ware subsystems to access the main memory of the system independent of the
Central Processing Unit (CPU). With the rise of big data transfers from/to dif-
ferent I/O devices, the use of DMA controllers has increased significantly. The
work of DMA is not limited to only offloading processor data transfer tasks, but it
can transfer data at much higher rates than processor reads and writes. Scatter-
Gather DMA further enhances this technique by providing data transfers from
one non-contiguous block of memory to another by means of a series of smaller
contiguous-block transfers unlike normal DMA.

This thesis project explores Ericsson’s Ethernet DMA, which is used in the 5G
radios for high speed Ethernet data transfer. The ASIC hardware design was
synthesized and programmed on Intel’s Agilex development board. A test case
has been written to measure the performance of Ethernet DMA’s datapath. The
test case was run first to check the functionality of the design in a loop-back
scenario. A packet generator module was integrated to generate ethernet pack-
ets in the Ethernet DMA and the packets were sent through the datapath to be
written to the memory. Besides, ethernet packets were read from the memory
and transmitted from memory-mapped to streaming path. The performance of
Ethernet DMA datapath was measured for both streaming to memory-mapped
and memory-mapped to streaming paths. To get more reliable results, perfor-
mance was measured directly from the design hardware using oscilloscope. The
obtained results are analyzed and some suggestions are proposed to optimize the
performance of Ethernet DMA.

iii

iv

Popular Science Summary

With the advent of 5G wireless communication, the data rate will increase po-
tentially (Gbps order), with low latency, and better quality of service (QoS) to
the users compared to previous generation cellular networks. CPU performances
and storage capacity has also increased with the miniaturization of the devices
and technological advancement. We are transferring more and more data in the
system, which is taking a big percentage of CPU usage. In modern processors,
more energy is consumed in moving data than on computational tasks.

To lessen the workload of the CPU, some tasks can be performed with the help of
supporting controllers. For example, we are using more and more Graphic Process-
ing Units (GPUs) for the graphics processing tasks, and Google launched Tensor
Processing Unit (TPU) in 2016 for the dedicated computations involving machine
learning applications. Similarly, to transfer the data between the peripherals and
the memory, Direct Memory Access Controller (DMAC) was introduced to offload
the CPU from data transfer tasks. DMAC helps the system by doing the dedicated
task of the data transfer so that the CPU can focus on other tasks.

Ethernet is a wired computer networking technology which is commonly used in
local area networks (LAN), metropolitan area networks (MAN) and wide area net-
works (WAN). Owing to its adaptability to new requirements, Ethernet succeeded
to become dominant LAN technology and its data transfer rate has increased sig-
nificantly over the years, starting from 2.94 Mbps to 400 Gbps.

The advancement in chip design has integrated the system with the network and
all the peripherals on a single chip. More and more dedicated hardware is being
developed for application specific tasks to increase the performance of the modern
systems. Ethernet DMA controller is a dedicated hardware used to transfer Eth-
ernet data packets with much higher speed than a normal processor.

This thesis work studies Ericsson’s Ethernet DMA controller and measures its per-
formance. The Ethernet DMA uses scatter-gather direct memory access (SGDMA)
technique which allows data transfer of data that can be written to non-contiguous
areas of memory. With this mechanism, it can perform transaction using buffer de-
scriptors which can be placed in memory. As a result, high performance is achieved

v

using scatter-gather DMA. A test case written in C language is used to measure
the performance of Ethernet DMA’s datatapath by sending 10,000 ethernet pack-
ets of different packet sizes. The measurements are taken from real hardware using
oscilloscope and the results presented show that the Ethernet DMA is configured
to work at optimal performance. Based on the results obtained for the perfor-
mance of Ethernet DMA controller, improvements have been suggested to further
increase its performance.

vi

Table of Contents

1 Introduction 1
1.1 Background & Motivation . 1
1.2 Previous Work . 2
1.3 Thesis Outline . 3

2 Background & Theory 5
2.1 Data Transfer Methods . 5
2.2 DMA Controller . 7
2.3 Ethernet Protocol . 10

3 Hardware Design & Test Case 13
3.1 Hardware Design of Ethernet DMA Datapath 13
3.2 Test Case Structure . 17
3.3 Loop-back Test Case Scenario . 19

4 Implementation 25
4.1 Test Case Scenario . 25
4.2 Performance Measurement using Hardware 39

5 Results 43
5.1 Packet Drop . 43
5.2 IPG Calculations . 44
5.3 Ethernet DMA Datapath Performance 46
5.4 Effect of IPG on performance . 48
5.5 Performance for Different Number of Packets 51

6 Improvements & Future Work 55
6.1 Analysis . 55
6.2 Optimization . 56

7 Conclusion 59

Bibliography 61

vii

viii

List of Figures

2.1 Polling Based Data Transfer . 6
2.2 Interrupt Based Data Transfer . 6
2.3 DMA Based Data Transfer . 7
2.4 Direct Memory Access Controller 8
2.5 Descriptor Example . 10
2.6 Ethernet II Frame Structure . 11
2.7 Ethernet Frame Example . 12

3.1 System Overview . 14
3.2 Ethernet DMA Datapath . 14
3.3 RX DMA Core . 16
3.4 TX DMA Core . 17
3.5 Descriptor Format . 18
3.6 Loop-back Test Datapath . 19

4.1 Ethernet Header Structure . 26
4.2 Ethernet Header Example . 26
4.3 Ethernet Packet Generator Registers 27
4.4 Ethernet DMA with Packet Generator 27
4.5 Streaming to Memory Mapped Datapath 29
4.6 Memory Mapped to Streaming Datapath 35
4.7 Pulse Signal Measurement Circuit 39
4.8 Lab Test Measurement Setup . 40
4.9 Oscilloscope Output . 40
4.10 Oscilloscope Output - Start of First Packet Transfer 41
4.11 Oscilloscope Output - Writing Last Packet 41

5.1 Relation of Packets Dropped vs. Number of Packets 45
5.2 Best IPG Values for Different Packet Sizes 46
5.3 S2MM Performance . 48
5.4 MM2S Performance . 49
5.5 Effect of IPG on Performance . 50
5.6 S2MM Performance for Different Number of Packets 52
5.7 MM2S Performance for Different Number of Packets 52

ix

5.8 Data Rate for Writing Ethernet Packets 53
5.9 Data Rate for Reading Ethernet Packets 54

6.1 Design of Ethernet DMA Datapath 56
6.2 Proposed Improvement to Design 57

x

List of Tables

2.1 VLAN Ethernet Frame Structure . 11
2.2 DVLAN Ethernet Frame Structure 12
2.3 Untagged VLAN Ethernet Frame Structure 12
2.4 Jumbo Frame Structure . 12

5.1 Packet Drop for Different Number of Packets 44
5.2 Packet Drop for Different Number of Packets & Sizes 45
5.3 Best IPG Values for Different Packet Sizes 46
5.4 S2MM Performance of Ethernet DMA 47
5.5 MM2S Performance of Ethernet DMA 49
5.6 Performance with Higher IPGs for Different Packet Sizes 50
5.7 Performance for Different Number of Packets 51
5.8 Data Rates for Different Number of Packets 53

xi

xii

List of Abbreviations

ARCNET Attached Resource Computer Network
ASIC Application Specific Integrated Circuit
AXI Advanced eXtensible Interface
BBM Baseband Module
CCU Cache Coherency Unit
CPU Central Processing Unit
DDR Double Data Rate
DMA Direct Memory Access
DMAC Direct Memory Access Controller
DSP Digital Signal Processor
EOP End of Packet
EPG Ethernet Packet Generator
FDDI Fibre Distributed Data Interface
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
Gbps Gigabits Per Second
GDMA Graph DMA
GPU Graphic Processing Units
HPS Hard Processor System
I/O Input/Output
IPG Inter Packet Gap
LAN Local Area Network
MAN Metropolitan Area Networks
Mbps Megabits Per Second
MTU Maximum Transmission Unit
MM2S Memory-mapped to Streaming
MPSoCs Multiprocessor System on Chip
QoS Quality of Service
RX DMA Receiver DMA
S2MM Streaming to Memory-mapped
SGDMA Scatter Gather Direct Memory Access
SFD Start Frame Delimiter
SoC System on Chip

xiii

SOP Start of Packet
TCI Tag Control Information
TPID Tag Protocol Identifier
TPU Tensor Processing Unit
TRX Transceiver
TX DMA Transmitter DMA
VLAN Virtual LAN
WAN Wide Area Network

xiv

Chapter1
Introduction

The evolution of cellular networks over the last few decades have made signifi-
cant improvements in data rates, latency and quality of service for the users. At
present, the work on the development for the 5G has paved the way for very high
data rates i.e. it offers data rates in orders of Gbps [1], [2]. To handle the high
data rate, we need hardware infrastructure to efficiently transfer data without
burdening the main processor with it. Ethernet is an IEEE standard for com-
munication between different electronic devices connected through the internet or
local area network. It is one of the oldest, but still the largest form of technology
being used for networking and it has proven itself as a very popular, fast and rela-
tively inexpensive LAN technology [3]. The data transfer using Ethernet happens
frequently in the processor subsystem for communication. Direct Memory Access
is the hardware mechanism that allows peripheral components to transfer their
I/O (input/output) data directly to and from main memory without the need to
involve the system processor. Direct memory access mechanism offloads the pro-
cessor by taking the bus control between memory and I/O, thereby, increasing the
throughput of a system [4].

This thesis project focuses on a DMA engine and try to measure the perfor-
mance of existing Ethernet DMA controller’s datapath at Ericsson, which is used
in company’s 5G radio systems.

1.1 Background & Motivation
With the huge growth in ASIC technology, memory has been playing a crucial
role in the performance of SoC (System on Chip) design systems. Data is writ-
ten to and read from memory quite frequently from different peripherals of the
computer system. The processor of a computer usually performs a wide range of
tasks and it is occupied with some task at hand all the time. In order to speedup
and improve the performance of overall system, it is better to use dedicated hard-
ware for different tasks. Data transfer is one such task which happens quite often
in a computer system. If the processor dedicates itself to data transfer tasks, it
would not get enough time to perform other tasks. As a result the performance
may get affected, and the system would be slow. In recent years, the use of DMA
controllers (DMAC) have played an important role in the performance of multipro-

1

2 Introduction

cessor system-on-chip (MPSoCs) designs that require a transfer of large data sets.
The main job of a DMA controller is to offload the processor from data movement
tasks. When the processor needs data, it issues command to the DMA controller
by specifying the source address, the destination address and the amount of data,
then the DMA controller takes charge of the transfer. After handing over the
necessary information to the DMAC, the processor is free to do other tasks while
the DMAC transfers the data. Thus, a DMA controller improves the performance
of a system by taking control of the data transfer tasks.

Ethernet is a wired computer networking technology which is commonly used
in local area networks, metropolitan area networks and wide area networks. It is a
dominant LAN technology and its data transfer rates have increased significantly
with the evolution of cellular networks, i.e. in orders of Gbps. To process data
at such a high speed, dedicated DMA controllers need to be designed to handle
it and write to the memory. Different types of DMA controllers connect DSPs
(Digital Signal Processors) to a DDR (Double Data Rate) memory controller, a
major hurdle is the rate at which DMA blocks transfer Ethernet packets between
DSPs and DDR memory. This thesis project tries to look into this problem for
Ericsson’s Ethernet DMA controller and its datapath, which is a part of the com-
pany’s ASIC targeting 5G Mid-band and High-band radio products.

The main motivation behind this thesis project is to understand the full ar-
chitecture of Ethernet DMA and work to improve performance of the datapath
of the system. We would analyze the results of different performance parameters
and would propose improvements to enhance the performance of Ethernet DMA
controller. This thesis will pave a way to improve the performance of the DMA
controller and increase the rate of ethernet packet transmission to DDR memory
by analyzing the DMA path and applying different solutions. This thesis would
briefly describe the challenges that occurred and their possible solutions along with
results that can show how our proposed improvements can help.

1.2 Previous Work
Different designs of DMA controllers have been proposed in the literature and
they have been tested on different peripherals for the performance measurements.
Some relevant previous works will be introduced below.

A design of DMA controller for SoC based embedded systems[5] which increases
the data transfer rate compared to conventional DMA methods. Asynchronous
FIFO (First In First Out) is used for buffering the data and an FSM (Finite State
Machine) is implemented based on the FIFO signals. This approach achieves a
maximum frequency of 306.24 MHz and it gives better performance than polling
method. A DMA controller[6] using AMBA (Advanced Microcontroller Bus Archi-
tecture) is proposed, which can be used in SoC based design. The proposed design
supports memory to memory, memory to peripherals and peripheral to memory

Introduction 3

transfer and it achieves a maximum frequency of 476 MHz and it data transfer
rate of 1904 MB/s. This work has significant improvements in data transfer rate
compared with embedded processors used in SoC, which we can take as an in-
sight to get some improvements with our ethernet DMA where we are using AXI
(Advanced eXtensible Interface) interconnect. An optimized PCIe DMA control
flow[7] proposes timing optimizations by using FIFO cascade connection method.
It uses cascading FIFOs with pipeline to replace a large FIFO to improve timing
without errors. FIFO can be a bottleneck to our system which needs improvement.
The DMA engine[8] uses a ring buffer to write data and adopts a handshake se-
quence between FPGA and Linux driver to avoid data loss and throughput reduc-
tion. PCIe Avalon MMDMA bridge has been used with Avalon FIFO memory and
tri-speed ethernet which can be used in high throughput ethernet applications[9].
These solutions could avoid data loss and achieve high throughput, which are also
concerns in datapath optimization in our project. A hardware controlled graph
DMA (G-DMA) based on scatter-gather DMA engine[10] fetches new data based
on memory request. It decreases the processing time greatly over using standard
CPU and standard AXI memory requests.

This thesis will explore Ericsson’s ASIC design which uses Ethernet DMA whose
performance has not been measured before. The above mentioned previous works
make a good ground for the motivation to measure the performance of Ethernet
DMA’s datapath and propose improvements to optimize it.

1.3 Thesis Outline
This thesis attempts to analyze and measure the performance of an existing Ether-
net DMA’s datapath. Based on the results, some solutions to improve the perfor-
mance are proposed. The data rate improvement of ethernet packets transferred
between baseband module (BBM) and memory can improve the performance of
5G radios. The rest of the thesis is organized in the following way.

• Chapter 2: Background and theory

• Chapter 3: Hardware Design and Test Case

• Chapter 4: Implementation

• Chapter 5: Results

• Chapter 6: Improvements & Future Work

• Chapter 7: Conclusion

4 Introduction

Chapter2
Background & Theory

A computer consists of a CPU, memory, I/O interfaces and peripherals. A CPU
usually performs two kinds of tasks, computations and communication. Memory in
a computer is used to store data and programs. I/O interface helps in transferring
data between peripherals and the CPU.

2.1 Data Transfer Methods
In a computer system, data transfer is one of the main tasks which takes a good
amount of computer resources and time. Different peripherals attached to the
system need to access the data in the memory, that is, either it is read from
the memory or it is written to the peripherals attached. In all cases, the CPU
needs to allocate the resources for these tasks to be completed. Some well known
approaches of data transfer are discussed below.

2.1.1 Polling Based Transfer
In the polling based transfer method, CPU continuously checks the peripheral
status whether it is ready to transmit or receive data or it is busy. Figure 2.1
presents a system with three peripherals. The CPU will check each peripheral
repeatedly in loops if it needs to be served. If there is a data at Peripheral 1,
it will serve it until it finishes the task. Peripheral 2 and peripheral 3 would be
waiting while the CPU serves peripheral 1. Next it will check peripheral 2 if there
is any service request. In polling method, CPU wastes a lot of time monitoring
peripherals to check if there is any service request. This method transfers data at
a high rate, but it has a major drawback, that is, processor cannot perform any
other activity during the data transfer.

2.1.2 Interrupt Based Transfer
The second method of data transfer is interrupt based data transfer mode, which
is shown in Figure 2.2. In this data transfer mode, whenever the device is ready
for data transfer, it raises interrupt to processor. Once the interrupt for the data
transfer is raised (CPU sends the Interrupt Ack signal to the Interrupt Controller),
the processor completes its ongoing instruction and saves its current status. Then

5

6 Background & Theory

System Bus

Memory Peripheral 1

CPU

Peripheral 2 Peripheral 3

Figure 2.1: Polling Based Data Transfer

it switches to the data transfer mode to serve the interrupt, thus, starts data
transfer with a delay. In this method, the processor does not keep scanning for
peripherals for data transfer, but it is fully involved in the data transfer process.
Therefore, this method is also not an effective way of data transfer.

System Bus
CPU

Memory

Local B
us

PeripheralInterrupt
Controller

Interrupt Request

Interrupt A
ck

Interrupt

Figure 2.2: Interrupt Based Data Transfer

2.1.3 DMA Based Transfer
Both polling and interrupt based data transfer methods involve CPU directly for
the data transfer. To offload the CPU from the data transfer tasks, direct memory
access mechanism is used, which helps in data transfer directly from peripherals
to the memory and vice versa. A DMA controller as shown in the Figure 2.3 is
used to transfer data between peripherals and memory. A more detailed overview

Background & Theory 7

of DMA controller is given in the following section.

System Bus
CPU

Memory

Peripheral 2 Peripheral 3Peripheral 1

DMA
Controller

Figure 2.3: DMA Based Data Transfer

2.2 DMA Controller
The term DMA stands for Direct Memory Access. It is a hardware mechanism
that allows peripheral components to transfer their I/O data directly to and from
main memory without the need to involve the system processor. The hardware de-
vice used for direct memory access is called the DMA controller which allows I/O
devices to directly access the memory with minimal participation of the processor.
The job of a DMA controller is to transfer/copy data from one memory location to
another without involving the processor. When the processor needs data, it issues
command to the DMA controller by specifying the source address, the destination
address and the amount of data, then the DMAC takes charge of the transfer.
After handing over the necessary information to the DMAC, the processor is free
to do other tasks while the DMAC transfers the data. Even though the DMA
controller transfers data without the involvement of processor, it is controlled by
processor. A DMA controller provides an interface between peripherals and the
system bus. More than one peripherals can be connected to a DMA controller.

A DMA controller can transfer the data in three modes:

Burst Mode: In this mode, once the DMA controller gets the charge of the sys-
tem bus, it releases the system bus only after completion of data transfer. The
CPU needs to wait for the system bus until DMA controller releases it.

Cycle Stealing Mode: DMA controller forces the CPU to halt its operation
and abandon the control over the system bus for a short duration to give it to
DMA controller. In this mode, DMA controller steals the clock cycle for trans-
ferring every byte, that is why it is called cycle stealing mode. DMA controller

8 Background & Theory

releases the bus after every byte transfer and requests it again for the next transfer.

Transparent Mode: In the transparent mode, the DMA controller takes charge
of system bus only when the processor does not need it.

2.2.1 Working of DMA Controller
A DMA controller acts as an interface between the system bus and the peripheral.
It transfers data without the intervention of the main processor, but it is controlled
by the processor. The main processor initiates the operation of the DMA controller
by sending the addresses, the size of data to be transferred and the direction of
transfer i.e. from peripheral to memory or from memory to peripheral. A DMA
controller can have more than one peripherals connected.

Request to use busCPU

Memory

System Bus

Grant to use bus

DMA Controller
(DMAC)Hard Disk

Hard Disk
Controller

Figure 2.4: Direct Memory Access Controller

DMA controller contains an address unit, for generating addresses and select-
ing I/O device for transfer. It also contains the control unit and data count for
keeping counts of the number of blocks transferred and indicating the direction of
transfer of data. When the transfer is completed, DMA informs the processor by
raising an interrupt. DMA controller has to share the bus with the processor to
make the data transfer. The device that holds the bus at a given time is called
bus master. When a transfer from I/O device to the memory or vice versa has
to be made, the processor stops the execution of the current program, increments
the program counter, moves data over stack then sends a DMA select signal to
DMA controller over the address bus. If the DMA controller is free, it requests the
control of the bus from the processor by raising the bus request signal. Processor
grants the bus to the controller by raising the bus grant signal, now the DMA con-
troller is the bus master. The processor initiates the DMA controller by sending
the memory addresses, number of blocks of data to be transferred and direction
of data transfer. After assigning the data transfer task to the DMA controller,
instead of waiting ideally till completion of data transfer, the processor resumes
the execution of the program after retrieving instructions from the stack.

Background & Theory 9

A DMAC contains several registers like address register, byte count register, and
control register. The address register specifies the start address of memory. A byte
count register is used which specifies the number of bytes to be transferred. The
control registers are used to specify the I/O port and the direction of the transfer
(reading from the I/O device or writing to the I/O device). The CPU can write
data to these registers. Once the DMAC is initialized, it sends a signal to the
CPU to request the memory bus. The CPU acknowledges the request by sending
a grant signal to DMAC and releasing the bus (floating the output signals). Then
the bus control is taken by DMA controller for data transfer. Bus is released back
to the CPU by the DMA controller once the specified amount of data is transferred
[11].

2.2.2 Scatter Gather DMA

Scatter-Gather Direct Memory Access (SGDMA) is a DMA data transfer tech-
nique which allows the transfer of data from/to multiple memory areas in a single
DMA transaction. This mechanism is equivalent to having multiple simple DMA
requests together. Thus, it can off-load multiple input/output interrupt and data
transfer tasks from the CPU. Scatter/gather is supported through the use of linked
lists, which means that the source and destination areas do not have to occupy
contiguous areas in memory. Therefore, scatter/gather is used to do DMA data
transfers of data that is written to non-contiguous areas of memory [12]. With
the scatter gather mode, a DMA can perform transaction and management us-
ing buffer descriptors which can be placed in any storage like DDR. As a result
high performance can be achieved by using the DMA in scatter gather mode [13].
SGDMA controller core implements high-speed data transfer between two compo-
nents and it can be used in the following modes to transfer data from:

• Memory to memory

• Data stream to memory

• Memory to data stream

The SGDMA controller core transfers and merges non-contiguous memory to a
continuous address space, and vice versa [14]. The core reads a series of descriptors
that specify the data to be transferred. SGDMA controller has its own series of
descriptors specifying the data transfers. Let’s take an example of descriptor used
by Xilinx’s AXI DMA IP when it is configured for scatter-gather mode. The
descriptor is made up of eight 32-bit base words and 0 or 5 User Application
words as shown in Figure 2.5. Buffer address field gives the address of data which
needs to be processed. The descriptor has future support for 64-bit addresses and
support for user application data. These descriptors can be described for data
transfer in streaming to memory direction and vice versa.

10 Background & Theory

0x0

AddressOffset

0x4

0x8

0xC

0x10

0x14

0x18

Address Offset

0x0

0x4

0x8

0x0

0x4

0x8

0x28

0x2C

0x30

0x1C

0x20

0x24

Descriptor Field

Upper 32 bits of Next Descriptor Pointer

Reserved

Status

Control

Descriptor Field

Next Descriptor Pointer

Buffer Address

Upper 32 bits of Buffer Address

Reserved

APP0

APP1

APP4

APP2

APP3

Figure 2.5: Descriptor Example

2.3 Ethernet Protocol
Ethernet is a wired computer networking technology which is commonly used in
LAN, MAN and WAN networks. Ethernet was first commercially introduced in
1980 when Xerox, Intel and DEC together published a modified Ethernet version,
which came to be known as DIX Ethernet II version, and it was standardized in
1983 as IEEE 802.3. Ever since it has been standardized and commercially avail-
able, Ethernet has evolved to support higher bit rates, backward compatibility,
longer link distances and higher number of nodes. Owing to its adaptability to
new requirements, Ethernet succeeded to become dominant LAN technology and
replaced competing wired LAN technologies such as Token Ring, fibre distributed
data interface (FDDI) and attached resource computer network (ARCNET) [15] .
Ethernet data transfer rate has increased significantly over the years, starting from
2.94 Mbps to 400 Gbps. In the following section, Ethernet frame will be discussed.

2.3.1 Ethernet Frame
Ethernet is an IEEE standard which works in the data link layer and physical
layer of the OSI model. An Ethernet frame is a data link layer protocol data unit
and it uses the underlying Ethernet physical layer transport mechanisms. In other
words, a data unit on an Ethernet link transports an Ethernet frame as its pay-
load. IEEE 802.3 defines different Ethernet frame formats and this section gives
an overview of most common Ethernet frame formats.
An Ethernet frame consists of 3 major fields; namely, header, payload and frame
check sequence (FCS). Each Ethernet frame starts with an Ethernet header, which

Background & Theory 11

contains destination MAC address and source MAC address as its first two fields.
The second part of the Ethernet frame contains payload data, and the last part of
the frame is called frame check sequence which is a 32-bit cyclic redundancy check
used to detect any in-transit corruption of data.

2.3.2 Ethernet Frame Structures
IEEE 802.3 specifies the internal structure of an Ethernet frame. In today’s LANs,
the most dominant Ethernet version is Ethernet II with the type field indicating
the payload type as shown in the Figure 2.6. An Ethernet packet starts with a
seven-octet preamble and one-octet start frame delimiter (SFD). Then it is followed
by destination MAC address and Source MAC address fields. Depending on the
type of the Ethernet frame, some bytes are used to specify the type before the
start of the payload. The type of Ethernet is defined by 4 bytes field in which
the first 2 bytes represent the tag protocol identifier (TPID) and the second 2
bytes indicate tag control information (TCI) field. The length of the payload is
indicated by 2 bytes.
For different types and tags, there are different Ethernet frame formats, which
are discussed below. Ethernet II packet size varies based on tagging. There are 3
types of tagging; namely, Untagged, Single VLAN and double VLAN.

Preamble SFD Destination
MAC Address

Source MAC
Address

Ethernet
Type FCSPayload

Figure 2.6: Ethernet II Frame Structure

Virtual LAN (VLAN) Tagging – In this tagging structure, also known as
Single VLAN, 2 bytes are used for each TPID and TCI fields. The frame format
for Single VLAN is shown in the Table 2.1. The size of header is 18 bytes which
is fixed for single VLAN. The minimum packet size is 18 bytes.

Table 2.1: VLAN Ethernet Frame Structure

Destination MAC Source MAC TPID TCI Payload Size Payload
6 bytes 6 bytes 2 Bytes 2 Bytes 2 Bytes 0-1500 Bytes

Let’s take an example ethernet frame with fields defined as below:
Destination MAC Address: 0xAA0475C82865
Source MAC Address: 0xAA0102FA70AA
TPID: 0x8100
TCI: 0x0000A
Payload Size: 0x0004
Payload: 0xFFFFFFFF
Using these fields values, an ethernet frame can be formed as shown in Figure 2.7.

12 Background & Theory

This frame uses 4 bytes for tag fields and 2 bytes for payload size field, thus, it is
a Single VLAN frame structure.

Destination MAC
Address

Source MAC
Address

Ethernet Type
(Tag Fields - Payload Size) Payload

0xAA0475C82865 0xAA0102FA70AA 0x8100 0xFFFFFFFF0x00040x000A

Figure 2.7: Ethernet Frame Example

Double VLAN Tagging – In the double VLAN tagging, 4 more bytes are added
to the Ethernet type field for TPID and TCI. The frame size is 4 bytes greater
than single VLAN structure as shown in the Table 2.2. The minimum packet size
is 22 bytes.

Table 2.2: DVLAN Ethernet Frame Structure

Destination MAC Source MAC TPID + TCI TPID TCI Payload Size Payload
6 Bytes 6 Bytes 4 Bytes 2 Bytes 2 Bytes 2 Bytes 0-1500 Bytes

Untagged VLAN – In this frame format, there is no tagging used and the
structure is shown in the table 2.3. The minimum packet size is 14 bytes which
includes source and destination addresses and payload size.

Table 2.3: Untagged VLAN Ethernet Frame Structure

Destination MAC Source MAC Payload Size Payload
6 Bytes 6 Bytes 2 Bytes 0-1500 Bytes

Jumbo Frame – Some variants of Ethernet support larger frames which are
known as jumbo frames. The payload size for the jumbo frames is greater than
the maximum transmission unit (MTU), an example frame structure of jumbo
frame is shown in the table 2.4.

Table 2.4: Jumbo Frame Structure

Destination MAC Source MAC TPID TCI Payload Size (>1500) Payload
6 Bytes 6 Bytes 2 Bytes 2 Bytes 2 Bytes >1500 Bytes

Chapter3
Hardware Design & Test Case

In this chapter, the hardware design of the project and initial test case will be
discussed. In the second chapter, an overview of the background knowledge of the
subject was provided and using the basics from it, this chapter discusses design
setup and the test case.

The main goal of this thesis project is to measure the performance of Ethernet
DMA which is a part of Ericsson’s ASIC design, that targets 5G Mid-band and
High-band radio products. As a part of testing the design, Intel’s Agilex FPGA
Dev-Kit has been used to measure the performance and a test case was devel-
oped in C programming language. The following sections go through the design
specifications and test case used to achieve the results.

3.1 Hardware Design of Ethernet DMA Datapath
In the first step of the project, the Ethernet DMA design was synthesized using
Intel Quartus Prime Tool. Then, the FPGA image was loaded onto the FPGA
Dev-Kit. Figure 3.1 presents an overview of the system which shows the full dat-
apath from DDR memory to BBM devices and vice versa. The design consists of
a Hard Processor Subsystem (HPS) which contains CPU, Cache Coherency Unit
(CCU), DDR Controller and interconnects. The design implements two separate
Ethernet links at 10.3125 Gbps towards each BBM. One of the links is used for
standard Ethernet packages, which connects to DDR controller through a sub-
system of two scatter-gather DMA controllers, known as Ethernet DMA. There
are two Ethernet DMA controllers in the system, one for each BBM device. The
other link is intended for BBM trace data, which connects to the DDR through
Trace DMA block. Trace DMA block is a simple Ethernet packet inspector and
DMA controller, connecting a BBM device to the DDR controller of the processor
subsystem. Similar to Ethernet DMA, there are two instances of Trace DMA,
each connecting to one of the two BBM devices. As shown in the datapath, the
Ethernet data follows from DDR memory to BBM devices via interconnects, Eth-
ernet DMA and transceiver (TRX) modules, and vice versa. The system design
has been created integrating the third party design IPs. The datapath from BBM
devices to DDR memory is called Streaming to Memory-mapped (S2MM) path.
The datapath from DDR memory to BBM devices is called Memory-mapped to

13

14 Hardware Design & Test Case

Streaming (MM2S) path. In the next section, more detailed view of Ethernet
DMA is given.

TRX

TRX

TRX

TRX
BBM 1

CPU CCU

DDR
Controller

Trace DMA0

DDR

Ethernet DMA0

Ethernet DMA1

Trace DMA1

HPS

BBM 0

System Top

Figure 3.1: System Overview

3.1.1 Ethernet DMA
The Ethernet DMA controller offloads the HPS subsystem from the data transfer
tasks. Each Ethernet DMA subsystem consists of two instances of DMA cores.
The top level view of Ethernet DMA is presented in Figure 3.2. Ethernet DMA
consists of two DMA cores; one instance is for receiving data streams, that is,
streaming data from BBM to memory mapped data to DDR; the other instance
is for transmitting data streams, that is, memory mapped data from DDR to
streaming data to BBM. The Ethernet DMA works at a frequency of 156.25 MHz.
The description of main components of Ethernet DMA is given below.

DMA

DMA

FIFO Packet
Drop

FIFO

Bridge

Bridge

Bridge

Bridge

Bridge

Bridge

RX

TX

TRX

Ethernet DMA

Figure 3.2: Ethernet DMA Datapath

FIFO – FIFO register is used to hold the packet until the previous packet is get-
ting processed by the DMA. FIFO stores a complete ethernet packet and it has a

Hardware Design & Test Case 15

size of 2 KB.

Packet Drop Block – Packet Drop block in the Ethernet DMA uses a mechanism
to drop ethernet packets depending on the following three reasons.

1. Based on the FIFO availability, either packets are transferred to FIFO or
dropped. When there is no sufficient space in the FIFO, then the incoming
packet is dropped.

2. A packet is dropped if there is an error in the packet, i.e. packet is corrupt
or not in proper format.

3. Transmitter Ready error, i.e. problem at the transmitter side.

Bridges – Bridges and inter-connectors are used to convert AXI to streaming
and streaming to AXI. Each port from Ethernet DMA to DDR controller is con-
nected through individual bridge. These bridges can be individually run-time
configured by SW to decide if the data stream over that specific interface shall
be cache coherent, i.e. routed through the CCU unit of HPS or non-coherent, i.e.
routed directly to/from the DDR controller. Each bridge contains one SW con-
trol register. Bridges are also used to improve the performance through pipelining.

DMA – Ethernet DMA employes two SGDMA cores, one is used to receive the
data and the other is used to transmit the data.

3.1.2 DMA Core
Ethernet DMA consists of two SGDMA cores, one is used for streaming to memory
mapped data transfer (Figure 3.3) and the other is used for memory mapped to
streaming data transfer (Figure 3.4). Each SGDMA core consists of three main
blocks; namely, Prefetcher, Dispatcher and Read/Write Master. The Prefetcher
fetches a series of descriptors from memory before passing them to the Dispatcher.
The series of descriptors in memory can be linked together to form a descriptor
list. This allows the SGDMA to execute multiple descriptors in a single run, thus
enabling transfers to/from non-contiguous memory spaces and thereby improving
system performance. Each descriptor specifies a data transfer to be performed.
The dispatcher receives and decodes the descriptors and dispatches instructions
to the Read Master or Write Master blocks for further operation. Each time a de-
scriptor has been processed, number of bytes transferred, status and control fields
of the descriptor are updated and written back to memory. The details of DMA
core blocks is discussed below.

Receiver DMA – Receiver DMA (RX DMA) is used to receive data as input
from the streaming side and send it to the memory, hence, it is used in streaming
to memory mapped datapath. The block diagram of RX DMA core is shown in
the Figure 3.3, which consists of three blocks; Prefetcher, Dispatcher and Write
Master block. Prefetcher reads the descriptors from the memory and then they
are sent to Dispatcher block which decodes them and gives write command to the
Write Master block. As the new data (Data In) comes in to Write Master block,

16 Hardware Design & Test Case

it writes data to memory and sends write response signal to the Dispatcher block
once the data is written to the memory.

Data In

Read Descriptor

Prefetcher

W
rit

e
C

om
m

an
d

Dispatcher

W
rit

e
R

es
po

ns
e

Write
Master

Write Descriptor

Descriptor

Response

Write Data

RX DMA

Figure 3.3: RX DMA Core

Transmitter DMA – Transmitter DMA (TX DMA) is used to transmit data
from the memory to streaming side, i.e. it is used to read ethernet data packets
from memory and send them out to transmit. Figure 3.4 shows the block diagram
of TX DMA core and it consists of three blocks; Prefetcher, Dispatcher and Read
Master. Prefetcher reads the descriptors from the memory and then they are sent
to Dispatcher block which decodes them and gives read command to the Read
Master block. As the new data (Read Data) comes in to Read Master block, it
reads data out to transmit and sends read response signal to the Dispatcher block
once the data is read from the memory.

Prefetcher – The Prefetcher block is used to fetch the descriptors from the mem-
ory and have it as a linked list before it gets processed by the next stages. With
the Prefetcher block, addressing of next descriptors becomes simpler and faster as
it works as a linked list.

Dispatcher – The Dispatcher receives one descriptor at a time and dispatches
the instruction to the Read/Write master block. It understands the descriptor by
opening it and sends the instruction to Read/Write Master modules.

Write Master – Write Master receives the instruction from the dispatcher and
executes it. i.e, it receives a packet and writes it into the memory. The size of
the packet and memory location where it needs to be written are specified by
dispatcher’s instruction. It will write the response back to the descriptor upon
completion of execution of the instruction specified by the dispatcher based on the
descriptor.

Hardware Design & Test Case 17

Read Data

Read Descriptor Descriptor

Write Descriptor Prefetcher

R
ea

d
R

es
po

ns
e

Data OutRead
Master

R
ea

d
C

om
m

an
d

Response Dispatcher

TX DMA

Figure 3.4: TX DMA Core

Read Master – Read Master receives the instruction from the dispatcher and
executes it. i.e, it reads a packet from the memory and sends it to the FIFO.
The size of the packet and memory location from where it needs to be read are
specified by dispatcher’s instruction. It writes the response back to the descriptor
upon completion of execution of the instruction specified by the dispatcher based
on the descriptor.

3.2 Test Case Structure
Once the design is synthesized and FPGA is programmed using Intel Quartus
Prime tool, the next step is to test the working of the design. For this purpose,
the test case has been written using C programming language. The test case
verifies the working of the datapath of the design and it follows a sequence of
steps to run the design on the FPGA Dev-Kit HW. The following sections talk
more about the essential parts of the test case and the sequence of steps it follows.

3.2.1 Ethernet Packets
Initially, the ethernet packets were created from the software code written in the
test case. The ethernet packets created used Single VLAN ethernet frame structure
which was introduced in Chapter 2.

3.2.2 Descriptors
Descriptors can be considered as the instruction packages containing instructions
about the data to be transferred. Descriptors are created in a way that it specifies
the size and memory location of the packets where it needs to be read from or

18 Hardware Design & Test Case

written to. The descriptors are connected with one another using a linked list
structure, which means that each descriptor has an address field which points to
address of the next descriptor. Figure 3.5 gives the structure of a descriptors which
consists of the following fields.

Descriptor Field
Read Address [31-0]

Write Address [31-0]

Length [31-0]

Next Descriptor Pointer [31-0]

Actual Bytes Transferred [31-0]

Status [15:0]

Control Register [31-0]

0x0

AddressOffset

0x4

0x8

0xC

0x10

0x14

0x3C

Address Offset Descriptor Field
0x0 Read Address [31-0]

0x4 Write Address [31-0]

0x8 Length [31-0]

Figure 3.5: Descriptor Format

Read Address – This field specifies the address of the memory location where
the packets need to be read from.

Write Address – It specifies the address of the memory location from where the
packets need to be written to.

Length – This field gives the size of the Ethernet packet.

Next Descriptor Pointer – This field gives the address of the next descriptor.

Actual Bytes Transferred – Specifies the actual number of bytes written to the
memory and gets updated by the write master at the end of write operation. This
field is applicable only for Streaming to Memory-Mapped transfer configuration.

Status – This field is used to give the status of streaming to memory-mapped
data transfer. It is not applicable to memory-mapped to streaming configuration.

Control Register – Control Register is a 32 bit register which sets some useful
bits and interrupts like, Start of Packet (SOP), End of Packet (EOP), Transfer
complete Interrupt. A bit called ’Owned by Hardware’ determines whether hard-
ware or software has write access to the current descriptor.

The test case has been written to accommodate different configurations of the
Ethernet packets and descriptors, which include:

• Single DMA Descriptor and Single Packet: In this configuration,

Hardware Design & Test Case 19

descriptors are created in such a way that each descriptor carries only one
Ethernet packet.

• Multiple DMA Descriptors and Single Packet: In this configuration,
the descriptors are created in such a way that multiple descriptors can carry
one Ethernet packet. In this configuration, an ethernet packet header can
be carried with one descriptor and its payload can be carried with other
descriptor.

• Multiple DMA Descriptors and Multiple Packets: In this configura-
tion, multiple descriptors are created to carry multiple Ethernet packets.

3.3 Loop-back Test Case Scenario
In order to measure the performance of the Ethernet DMA datapath, the first
step is to verify the functionality of the design. Different approaches can be used
to check the working of different modules. As introduced in Section 3.1, there
are two paths in the design which need to be tested, one is from streaming to
memory-mapped and the other is from memory-mapped to streaming. The best
way to verify the functionality of the datapath is to perform a loop-back test,
which allows one test to verify the functionality of both paths. For that purpose,
a test case has been written to read and transmit the data from the memory and
receive the same data from the streaming side and write it back to the memory.
Thus, the loop-back test helps in verification of both datapaths.

RX DMA

TX DMA

FIFO Packet
Drop

FIFO

Bridge

Bridge

Bridge

Bridge

Bridge

Bridge

RX

TX

HPS
SubsystemDDR

Figure 3.6: Loop-back Test Datapath

The working of Ethernet DMA datapath is confirmed with successful transmission
and reception of the same packets through loop-back test. Figure 3.6 presents
the block diagram of the loop-back test, where the Ethernet packets are created
and stored in the memory. The packets are then transmitted from the memory
to streaming path through the TX DMA. Then the packets are sent back to be
written to the memory following the streaming to memory-mapped path through

20 Hardware Design & Test Case

the RX DMA. The datapath of the this loop-back test case scenario is highlighted
in the brown in Figure 3.6. The descriptors and Ethernet packets are are created
using the functions defined in the test case.

Using the test case for the loop-back, a number of different Ethernet packets and
descriptors were processed. The test case follows a series of steps to configure and
check certain registers to run. Here, we take an example of test case where ’Single
DMA Descriptor and Single Packet’ configuration has been used to follow all the
important steps, which are discussed below.

Listing 3.1 shows the log output of the initial setup of hardware while running the
test case. The test case starts with checking PLL locking status and release reset
to initialize the modules of the design.

1 int_loopback = 1 num_pkts = 1 payload_size = 128 perf = 0 dma
= 0 cbuff = 1 setuptrx = 0 fpgadownload = 0 firewall = 0
initbbms = 0 setup_switch = 0 tdmaenable = 0 seqmemaddr = 0

value = 3 c008008 dump_ddr =0 init_ccr =1 untag_vlan_dvlan =1
cyclic_bd_enable =0

2 IO_BASE_CCR :0 xf919f000 IO_BASE_CCR + CCR_TEST_RD_OFFSET :0
xf919f144

3

4 read_value :0 x55555555
5

6 Checking writing to CCR test register
7

8 Poll PLLs B and C some time and report error if not all of
them are locked .

9

10 For max R/W and also to check PLL reset , perform reset (should
be set for at least 1us!) and then check for lock again

11

12 CCR_PLL_RESET_CTRL address :0 xf919f15c read_value :0 x333
exp_value :0 x33

13

14 ERR - CCR Max RW Value: 0x333 expected : 0x33
15 ADDING SOME OF THE OTHER ACCESSES HERE TO MAKE SURE WE GET AT

LEAST 1us RESET ASSERTED
16 Read CCR_DEBUG_STATUS
17 address :0 xf919f164 read_value :0x0 exp_value :0 x22200
18

19 ERR - CCR Max RO Value: 0x0 expected : 0 x22200
20 Release Reset
21 Poll for Lock again
22 INFO - Poll for PLLs B and C Lock after soft reset
23

24 After PLL are Locked , Release clock gating of B and C, writing
0x3 and then 0x0 at address : 0 xf919f16c

25 Release TRX reset , writing 0x0 at address : 0 xf919f170
26 Release all blocks from reset , writing 0x3FFF and then 0x0 at

Hardware Design & Test Case 21

address : 0 xf919f160
27 Check PLL locked again , and IC reset control partly to pass

time to make sure all resets are fully released at end of
this function , reading value at 0 xf919f17c

28 INFO - Read out at address :0 xf919f148 LOCKSTATUS :0x7 exp_value
:0x7

29 INFO - No switch setting provided
30 # NOTE: Test has ended with 2 error(s) and 0 warning (s) in

test

Listing 3.1: Loop-back Test Initial Setup

Ethernet Packet Creation: After starting the system, the test case works with
the creation of ethernet packets, which are generated using a function in the test
case. The memory is cleared before populating it with the ethernet packets. The
header of ethernet packet is created with Single VLAN tag structure which takes
18 bytes and a payload of 128 bytes is created. Thus, Ethernet packets of size 146
bytes are created and stored in the memory location specified through the test
case. The log output of the test case in showing these steps is presented in Listing
3.2.

1 INFO - FUNC_DMA_ETH_Test 235 int_loopback = 1 num_pkts = 1
payload_size = 128 dma = 0 check_buff = 1 setuptrx =0
vlantag =1 tdmaenable =0

2

3 INFO - clear_buffer 158
4 INFO - clear_buffer 158
5 INFO - Clear TX buffer memory 4000030 e before populating it
6 INFO - Create 2 tx buffers
7 19 : set_eth_type_ii_frame_header a_frame_addr = x40000280

payload_size =128 payload_size =x80
8 139 : set_eth_type_ii_frame_payload a_frame_addr = x4000028e

a_size =128 a_size =x80
9 dump_buffer_contents 147 sizeof (buff)=8 buff =0 x40000280 ##

index =0 read_byte =0 xaa :
10 ## index =1 read_byte =0x4 : ## index =2 read_byte =0 x75 : ##

index =3 read_byte =0 xc8 : ## index =4 read_byte =0 x28 : ##
index =5 read_byte =0 x65 : ## index =6 read_byte =0 xaa : ##
index =7 read_byte =0x1 : ## index =8 read_byte =0x2 :

11 ## index =9 read_byte =0 xfa : ## index =10 read_byte =0 x70 : ##
index =11 read_byte =0 xaa : ## index =12 read_byte =0 x81 : ##
index =13 read_byte =0x0 : ## index =14 read_byte =0x0 : ##
index =15 read_byte =0xa : ## index =16 read_byte =0x0 :

12 ## index =17 read_byte =0 x80 : ## index =18 read_byte =0xa : ##
index =19 read_byte =0xa : ## index =20 read_byte =0xa : ##
index =21 read_byte =0xa : ## index =22 read_byte =0xa : ##
index =23 read_byte =0xa : ## index =24 read_byte =0xa :

13 ## index =25 read_byte =0xa : ## index =26 read_byte =0xa : ##
index =27 read_byte =0xa : ## index =28 read_byte =0xa : ##
index =29 read_byte =0xa : ## index =30 read_byte =0xa : ##

22 Hardware Design & Test Case

index =31 read_byte =0xa : ## index =32 read_byte =0xa :

Listing 3.2: Loop-back Test Packet Creation

Descriptor Creation: Once the Ethernet packets are created, the next step is to
create descriptors with information about the data to be transferred. Descriptors
are created using the functions in the test case, which allow to create descriptors
based on the configurations through which the packets need to be send. As an
example, one descriptor created for memory-mapped to streaming transaction is
shown in Listing 3.3 of log output. The descriptor address is 0x50000280. The
first field in the descriptors is the read address (0x40000280) and it is the address
at which Ethernet packet data starts. The second field at address 0x50000284
indicates the write address which is not applicable to memory-mapped to stream-
ing transactions. Third field of descriptor shows the length of the ethernet frame,
which is 0x92 (146 bytes). The fourth field shows the next descriptor pointer ad-
dress is 0x50000980 which indicates that each descriptor has been allocated 0x100
(256 bytes). Next two fields which give actual bytes transferred and status value
are are not applicable for memory mapped to streaming transaction. The last field
shows control register and has a value of 0xC200D300.

1 INFO - Dumping MM2S and S2MM descriptors before DMA has
started operation

2 INFO - Dumping mm2s descriptor number 0 contents at address 0
x50000280

3 DEBUG : dump_mm2s_scatter_gather_descriptor line no 219
4 DEBUG : Address = 0 x50000280 Value = 0 x40000280
5 DEBUG : Address = 0 x50000284 Value = 0x0
6 DEBUG : Address = 0 x50000288 Value = 0x92
7 DEBUG : Address = 0 x5000028c Value = 0 x50000380
8 DEBUG : Address = 0 x50000290 Value = 0x0
9 DEBUG : Address = 0 x50000294 Value = 0x0

10 DEBUG : Address = 0 x500002bc Value = 0 xc200d300
11 DEBUG : dump_mm2s_scatter_gather_descriptor line no 301

completed

Listing 3.3: MM2S Descriptor Creation Log Output

DMA Configuration: Once the ethernet packets and descriptors are created,
the next step is to configure the Ethernet DMA. Prefetcher block is configured
with descriptors’ physical addresses as shown in the line 11 and 12 in log output
in Listing 3.4. Dispatcher block’s control register is configured by setting the bit
number 4, which enables global interrupt as shown in the lines 9 and 10 in the
log output. Once all the modules complete their operations in the DMA, then the
prefetcher blocks are reset, dispatchers are stopped and then reset.

1 INFO - clear_buffer 158
2 IO_BASE_ETH_DMA0_TX_PREFETCHER_CONFIG is f91a7920
3 IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG is f91a7960
4 IO_BASE_ETH_DMA_0_MM2S_CSR_BASE is f91a7900
5 IO_BASE_ETH_DMA_0_S2MM_CSR_BASE is f91a7940

Hardware Design & Test Case 23

6 IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG is f91a7960
7 IO_BASE_ETH_DMA0_TX_PREFETCHER_CONFIG is f91a7920
8 start_dma_and_wait_for_done 870 s2mm_desc_phyaddr_current

=50003800 mm2s_desc_phyaddr_current =50000280
9 IO_BASE_ETH_DMA_0_MM2S_CSR_BASE + 0x4=0 xf91a7904 value =0 x10

10 IO_BASE_ETH_DMA_0_S2MM_CSR_BASE + 0x4=0 xf91a7944 value =0 x10
11 IO_BASE_ETH_DMA0_TX_PREFETCHER_CONFIG + 0x4=0 xf91a7924 value =0

x50000280
12 IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG + 0x4=0 xf91a7964 value =0

x50003800
13 IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG =0 xf91a7960 value =0x8
14 IO_BASE_ETH_DMA0_TX_PREFETCHER_CONFIG =0 xf91a7920 value =0x8
15 INFO - HL1_DMA_wait_dma_done 900
16 INFO : MM2S IRQ at IO_BASE_ETH_DMA_0_MM2S_CSR_BASE + 0x0

received : 200
17

18 INFO : S2MM IRQ at IO_BASE_ETH_DMA_0_S2MM_CSR_BASE + 0x0
received : 200

19

20 INFO : MM2S IO_BASE_ETH_DMA0_TX_PREFETCHER_CONFIG + 0x10 at
IO_BASE_ETH_DMA0_TX_PREFETCHER_CONFIG + 0x10 received : 1

21

22 INFO : MM2S IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG + 0x10 at
IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG + 0x10 received : 1

23

24 INFO - get_status_dma 970
25 INFO - HL1_DMA0_reset 982
26 Reset Prefetcher : 0
27 Stop Dispatcher : 17
28 Reset Dispatcher : 0

Listing 3.4: DMA Configurations Log Output

Test Completion: The test case completes with the transfer of ethernet packets
from memory to outside Ethernet DMA through the transmit DMA path, and
then the same packets are sent back to be written to the memory. To check if
the test worked, buffer values of the ethernet frames transmitted and received are
printed in the log. Listing 3.5 shows log output comparing the contents of an eth-
ernet frame transmitted and received, indicating that the packet was transmitted
and received properly.

1 Comparing 146 values : eth_frame_size
2 TX Buffer Value: 0xaa , RX Buffer Value: 0xaa
3 TX Buffer Value: 0x4 , RX Buffer Value: 0x4
4 TX Buffer Value: 0x75 , RX Buffer Value: 0x75
5 TX Buffer Value: 0xc8 , RX Buffer Value: 0xc8
6 TX Buffer Value: 0x28 , RX Buffer Value: 0x28
7 TX Buffer Value: 0x65 , RX Buffer Value: 0x65
8 TX Buffer Value: 0xaa , RX Buffer Value: 0xaa
9 TX Buffer Value: 0x1 , RX Buffer Value: 0x1

10 TX Buffer Value: 0x2 , RX Buffer Value: 0x2

24 Hardware Design & Test Case

11 TX Buffer Value: 0xfa , RX Buffer Value: 0xfa
12 TX Buffer Value: 0x70 , RX Buffer Value: 0x70
13 TX Buffer Value: 0xaa , RX Buffer Value: 0xaa
14 TX Buffer Value: 0x81 , RX Buffer Value: 0x81
15 TX Buffer Value: 0x0 , RX Buffer Value: 0x0
16 TX Buffer Value: 0x0 , RX Buffer Value: 0x0
17 TX Buffer Value: 0xa , RX Buffer Value: 0xa
18 TX Buffer Value: 0x0 , RX Buffer Value: 0x0
19 TX Buffer Value: 0x80 , RX Buffer Value: 0x80
20 TX Buffer Value: 0xa , RX Buffer Value: 0xa
21 TX Buffer Value: 0xa , RX Buffer Value: 0xa
22 TX Buffer Value: 0xa , RX Buffer Value: 0xa
23 TX Buffer Value: 0xa , RX Buffer Value: 0xa
24 TX Buffer Value: 0xa , RX Buffer Value: 0xa
25 TX Buffer Value: 0xa , RX Buffer Value: 0xa

Listing 3.5: Ethernet Frame Comparison

Listing 3.6 shows one of the updated descriptors for streaming to memory-mapped
transaction. The second field the write address (0x50000500) where the first packet
has been written in the memory. Descriptor field at address 0x50003808 gives the
length of the ethernet packet, which is 0x92 (146 bytes). Actual bytes transferred
field at address 0x50003810 gives the total total bytes written to the memory, in
this case it is 0x92 (146 bytes) which is the size of the ethernet packet. Status field
at address 0x50003814 gives 0x100, which shows that there is no error and Early
Termination bit (bit 8) is set indicating that all the bytes are transferred suc-
cessfully and the operation has been completed. Control register field at address
0x5000383C generated a value of 0x82FFD300. This register sets some useful bits
and IRQs, like GO bit (bit 31) which indicates that this particular descriptor has
been written successfully, Transfer Complete IRQ Enable (bit 14) indicates that
the transfer has completed, i.e. write master has finished its job.

1 DEBUG : dump_s2mm_scatter_gather_descriptor line no 474
2 DEBUG : Address = 0 x50003800 Value = 0x0
3 DEBUG : Address = 0 x50003804 Value = 0 x50000500
4 DEBUG : Address = 0 x50003808 Value = 0x92
5 DEBUG : Address = 0 x5000380c Value = 0 x50003900
6 DEBUG : Address = 0 x50003810 Value = 0x92
7 DEBUG : Address = 0 x50003814 Value = 0x100
8 DEBUG : Address = 0 x5000383c Value = 0 x82ffd300

Listing 3.6: S2MM Descriptor Updated

Chapter4
Implementation

In this chapter, the implementation of design and test case setup for measurements
will be discussed. The following sections explain the approaches and implementa-
tions used to achieve the performance measurements.

4.1 Test Case Scenario
In the previous chapter, the test case structure was discussed. A loop-back test
case scenario which was used to verify the functionality of the design was presented.
However, the loop-back test can not be used to measure the performance of the
design because: (1) Both the data links are active in the loop-back test case
scenario. (2) Packets may drop due to different processing times for S2MM and
MM2S paths. (3) Ethernet packets were created using the C language function in
the test case, not from real hardware.

Therefore, in order to measure the performance of the Ethernet DMA datapath
for S2MM and MM2S, both the hardware design and the test case was modified.
The following sections talk more about the implementation of design and test case.

4.1.1 Ethernet Packet Generator
The Ethernet Packet Generator (EPG) is a hardware module which has been writ-
ten in SystemVerilog, and it generates ethernet packets. It creates ethernet packets
which are composed of two parts, header and payload. Ethernet Packet Generator
creates a packet with dedicated 50 bytes for the header, while the payload of the
packet may vary. The structure of Ethernet header is shown in Figure 4.1. EPG
module is designed to generate ethernet packet of specific header structure, which
uses 6 words of 8 bytes and 2 bytes, making a total of 50 bytes. Header consists of
6 bytes of destination MAC address, 6 bytes of source MAC address, 4 bytes are
dedicated to the Ethernet type, 2 bytes are used for the length field. The next 4
bytes are not used which are followed by 4 bytes of start address. The remaining
bytes are unused in our case. An example ethernet header generated from EPG
module is shown in Figure 4.2. EPG module uses a parameter called Inter-Packet
Gap (IPG), which gives the time gap between two ethernet packets.

25

26 Implementation

Ethernet Header Structure
Destination MAC [47:0] + Source MAC [47:32]

Source MAC [31:0] + Ethernet Type [31:0]

Length[15:0] + Unused [31:0] + Start Address [31:16]

Start Address [15:0] + Unused

Unused

Unused

Unused

Byte

48 - 49

40 - 47

8 - 15

16 - 23

32 - 39

24 - 31

0 - 7
Bit Length

64

16

64

64

64

64

64

Figure 4.1: Ethernet Header Structure

Destination MAC

0x111111111111 0x00x040C0x222222222222 0xEBC01110

Source MAC Ethernet Type Length

0x40000100

Start Address Unused

6 Bytes 6 Bytes 4 Bytes 24 Bytes4 Bytes

Unused

4 Bytes

0x0

2 Bytes

Figure 4.2: Ethernet Header Example

4.1.2 Test Case using Ethernet Packet Generator
Ethernet Packet Generator module, which produces ethernet packets is connected
directly to the DMA via packet drop checker and the new design is synthesized and
built. The test case was modified to run on the new synthesized design. Now, the
test case uses the EPG module to create ethernet packets to send them through
the Ethernet DMA datapath. To get the proper performance measurements, first
the packets need to be received at the receiver without any packet drop. A test
is carried out for a fixed IPG to find the number of packets dropped for different
numbers of packets received. The test case is repeated with different IPGs to find
the best IPG for which packet loss is zero for different packet sizes.

Ethernet Packet Generator has a number of registers that are used to configure the
ethernet packet size and header. A list of useful registers is shown in Figure 4.3.
Each register is of size 32 bits. First 2 registers are used to control the operation
of it. Only one bit is used in both the registers. Data setting register is used to
set the data length, i.e., payload size. Transfer setting register is used to set IPG
value and number of packets. Address setting register represents the address of
DDR where the ethernet packet needs to be written.

Figure 4.4 shows the design of Ethernet DMA after integrating Ethernet Packet
Generator module. A number of tests were carried out to understand the be-
haviour of the Ethernet DMA when it receives different numbers of packets with
different packet sizes. Using the register configurations for the packet generator,
the test case was run to observe the number of packets dropped while sending the
packets to RX DMA. The number of packets dropped were read from the Packet

Implementation 27

Descriptor Field
Read Address [31-0]

Write Address [31-0]

Length [31-0]

Transfer Setting

Address Setting

0x0

AddressOffset

0x4

0x8

0xC

0x10

Address Offset Register
0x0 Control/Status Register

0x4 Loopback Control

0x8 Data Setting

Figure 4.3: Ethernet Packet Generator Registers

Drop module register present in the Ethernet DMA. The test case was run to
create 10000 ethernet packets from Ethernet Packet Generator. A number of tests
were performed for different ethernet packet sizes to observe the packets dropped
and keeping the inter packet gap value as 1. It was found that number of packets
dropped for different packet sizes.

Test case was run again by changing the IPG values for different packet sizes
and it was observed that as the IPG values were increased, the number of packets
dropped were reduced. A number of tests were performed to find the best IPG val-
ues for different packet sizes where the number of packets dropped reduced to zero.

Once the best IPG values for different number of packet sizes were found, the next
step was to measure the performance by writing the ethernet packets to memory.
A number of different tests were run to measure the performance for both the
streaming to memory-mapped and the memory-mapped to streaming paths. The
test case steps for these tests are explained in the next sections.

RX DMA

TX DMA

FIFO Packet
Drop

FIFO

Bridge

Bridge

Bridge

Bridge

Bridge

Bridge

RX

TX

Ethernet DMA

Ethernet
Packet

Generator

Figure 4.4: Ethernet DMA with Packet Generator

28 Implementation

4.1.3 Streaming to Memory Mapped Test
Streaming to memory-mapped path starts with the Ethernet Packet Generator
module which creates ethernet packets which are sent to be written to the DDR
memory. The full datapath of the scenario is given in Figure 4.5, which uses RX
DMA of the Ethernet DMA to process ethernet packets generated from EPG mod-
ule. The packets are first fed into the Packet Drop module and then to the FIFO.
The DMA core, which is a scatter-gather DMA is configured with the descriptors
which are fetched in the Prefetcher module of the RX DMA. Then the descriptors
are sent to the Dispatcher module which decodes them and issues the write com-
mand to the Write Master module. Following the command, Write Master sends
Ethernet packets arriving at its input from FIFO towards the HPS subsystem to
write them to the DDR. When the Write Master finishes writing a packet to the
DDR, it sends the Write Response signal to the Dispatcher, which then sends a
response signal to Prefetcher module. Prefetcher then updates the descriptor con-
firming the write operation. The datapath of the test is highlighted in brown in
the Figure 4.5.

The test case follows a series of steps to run properly. Some important steps
to run the test case used are given below:

• In this first step, it is made sure the FPGA sleeps for some time before
starting it. It is also made sure that it completes the previous operations,
if it is running any.

• The test case starts with the initialization of the clocks and reset configura-
tion.

• Before starting the Ethernet Packet Generator module to generate the ether-
net packets, the DDR memory is cleared according to the size of the packets
and number of packets.

• Once the DDR memory is cleared, the Ethernet Packet Generator is config-
ured with required settings using its registers.

• After configuring the Ethernet Packet Generator, the next step is to create
the descriptors. The descriptors are created according to the configuration
provided in the test case. The configuration used in the test case is multiple
descriptors and multiple packets. Multiple descriptors are created wherein,
each descriptor carries one packet. Hence, the descriptors are written in a
way that the number of packets is equal to the number of descriptors.

• Once the descriptors are created, the next step is to configure the Prefetcher
and Dispatcher of the Ethernet DMA.

• After configuring all the modules, Ethernet DMA is started.

• A timestamp is created, once Ethernet DMA starts. The test case uses a
timestamp to measure the time with software.

• Ethernet Packet Generator starts generating packets and send them to the
Receiver DMA.

Implementation 29

• Ethernet Packet Generator completes generating all the packets.

• Once all the packets have been transferred, Prefetcher and Dispatcher of
RX DMA complete their operation.

• Create one more timestamp to measure time after completion of operation.

• Check Packet drop registers if there are any packets dropped.

• Check DDR values with manually calculated values using a function which
follows same logic as Ethernet Packet Generator does.

FIFO

Packet
Drop

Read DescriptorBridge

Bridge

Bridge

RX

Ethernet
Packet

Generator

Prefetcher

W
rit

e
C

om
m

an
d

Dispatcher

W
rit

e
R

es
po

ns
e

Write
Master

Write Descriptor

Descriptor

Response

Write Data

HPS
CCU

DDR
Controller

CPU

DDR

RX DMA

Figure 4.5: Streaming to Memory Mapped Datapath

4.1.4 S2MM Test Example
The test case as explained in the previous section follows steps to send ethernet
packets to write to the memory. The test case was run to transfer a number of
different ethernet packet sizes. The test case uses multiple descriptors and multi-
ple packets configuration, i.e. each descriptor will have the instructions to transfer
one ethernet packet. Let’s take an example run of the test case, where we run
the test to generate 10,000 ethernet packets of size 450 bytes each from the EPG
module and send them through Ethernet DMA to write to the memory.

Initial Setup: The test case starts with initial setup of design. A screenshot of
the log file showing the initial setup of hardware while running the test case is
shown in Listing 4.1. The test case starts with checking PLL blocks and locking
them and all the resets are released to initialize the modules of the design.

1 autorun =0 num_pkts = 10000 ebcom_payload_size = 400 eth_dma =
1 cbuff = 1 dump_ddr =0 ipg_length =152

2 INFO - run_ethdma_test has started
3

4 DEBUG - IO_BASE_CCR :0 xf919f000 IO_BASE_CCR + CCR_TEST_RD_OFFSET
:0 xf919f144

5

6 DEBUG - read_value :0 x55555555
7

8 Checking writing to CCR test register
9

30 Implementation

10 Poll PLLs B and C some time and report error if not all of
them are locked .

11

12 For max R/W and also to check PLL reset , perform reset (should
be set for at least 1us!) and then check for lock again

13

14 DEBUG - CCR_PLL_RESET_CTRL address :0 xf919f15c read_value :0 x333
exp_value :0 x33

15

16 WARN - CCR Max RW Value: 0x333 expected : 0x33
17 DEBUG - ADDING SOME OF THE OTHER ACCESSES HERE TO MAKE SURE WE

GET AT LEAST 1us RESET ASSERTED
18 DEBUG - Read CCR_DEBUG_STATUS
19 address :0 xf919f164 read_value :0x0 exp_value :0 x22200
20

21 WARN - CCR Max RO Value: 0x0 expected : 0 x22200
22 DEBUG - Release Reset
23 DEBUG - Poll for Lock again
24 INFO - Poll for PLLs B and C Lock after soft reset
25

26 DEBUG - After PLL are Locked , Release clock gating of B and C,
writing 0x3 and then 0x0 at address : 0 xf919f16c

27 DEBUG - Release TRX reset , writing 0x0 at address : 0 xf919f170
28 DEBUG - Release all blocks from reset , writing 0x3FFF and then

0x0 at address : 0 xf919f160
29 DEBUG - Check PLL locked again , and IC reset control partly to

pass time to make sure all resets are fully released at
end of this function , reading value at 0 xf919f17c

30 DEBUG - INFO - Read out at address :0 xf919f148 LOCKSTATUS :0x7
exp_value :0x7

31 DEBUG - RD_CCR_TRX_RST_CTRL_ETH10G_TRX_PHY_RST =0x0
32 DEBUG - RD_CCR_BLOCK_RESET_CTRL_TRACE_DMA0_RST =0x0
33 DEBUG - Enabling requested blocks address =0 xf919f000
34 INFO - run_ethdma_test 506 num_pkts = 10000 ebcom_payload_size

= 400 dma = 1 check_buff = 1

Listing 4.1: S2MM Test - Initial Setup

Ethernet Packet Generation: After starting the system, the Ethernet Packet
Generator module is configured to create ethernet packets. The packets with the
frame format explained in Section 4.1.1 are created by configuring the registers
of EPG module as explained in Section 4.1.2. The packet consists of 50 bytes of
header and 400 bytes of payload size. Thus, a toal of 10,000 Ethernet packets of
size 450 bytes are created from EPG module. The log output showing the config-
uration of registers for generating the packets is shown in Listing 4.2.

1 DEBUG - configure_bridge 450 address =0 xf91a79c0 initial
read_value =0 x60f82f02

2 DEBUG - configure_bridge 454 address =0 xf91a79c0 write_value =0
x3c008008

3 DEBUG - configure_bridge 458 address =0 xf91a79c0 final

Implementation 31

read_value =0 x3c008008
4 INFO - prim_header_include =0 buffer_size =0
5 DEBUG - disable_ebcom_generator_loopback 413 returning

read_value =0x0
6 DEBUG - disable_ebcom_generator_loopback 415 returning

read_value =0x1
7 DEBUG - data_seed =0 x7b data_length =0 x190 writing data_settings

=0 x7b0190 at memlocation =0 xf91a0008
8 DEBUG - Reading EBCOM DATA SETUP Address = f91a0008 Value =1
9 DEBUG - error , write_value =0 x7b0190 is not equal to read_value

=0x1 at address =0 xf91a0008
10 DEBUG - Reading 2nd time EBCOM DATA SETUP Address = f91a0008

Value =7 b0190
11 DEBUG - transfer_type =0x0 ipg_length =0 x98 transfer_length =0

x2710 writing transfer_settings =0 x982710 at memlocation =0
xf91a000c

12 DEBUG - Reading EBCOM TRANSFER SETUP Address = f91a000c Value =7
b0190

13 WARN - write_value =0 x982710 is not equal to read_value =0
x7b0190 at address =0 xf91a000c

14 DEBUG - Reading 2nd time EBCOM TRANSFER SETUP Address = f91a000c
Value =982710

15 DEBUG - writing start_ddr_address =0 x40000100 at memlocation =0
xf91a0010

16 DEBUG - Reading EBCOM ADDR SETUP Address = f91a0010 Value =982710
17 WARN - write_value =0 x40000100 is not equal to read_value =0

x982710 at address =0 xf91a0010
18 DEBUG - Reading 2nd time EBCOM ADDR SETUP Address = f91a0010

Value =40000100
19 DEBUG - Returning from configure_ebcom_generator

Listing 4.2: S2MM - Ethernet Packet Creation

Descriptor Creation: Once the Ethernet packets are created after configuring
the EPG module, the next step is to create descriptors. In our case, 10,000 de-
scriptors are created for 10,000 ethernet packets with packet size of 450 bytes.
Listing 4.3 shows the log output displaying the function call where the descriptors
are being created.
DMA Configuration: After the EPG module is configured to generate packets
and descriptors are created, the next step is to configure the SGDMA. Listing 4.3
shows the log file output displaying configuration of Prefetcher and Dispatcher
block of RX DMA. Once all the blocks of RX DMA are configured to transfer the
ethernet packets, the Ethernet DMA starts its operation and the data is sent to
be written to the memory.

1 INFO -Create s2mm desc
2 create_s2mm_descriptors 1192 payload_size =400 length_buff =450

header_size =36 is_ebcom_test =0
3 create_s2mm_descriptors 1215 first descriptor i=0 next_id =1
4 create_s2mm_descriptors 1227 last descriptor i=9999 next_id

=9999

32 Implementation

5 start_dma_and_wait_for_done 870 s2mm_desc_phyaddr_current
=50003800 mm2s_desc_phyaddr_current =50000280

6 IO_BASE_ETH_DMA_0_S2MM_CSR_BASE + 0x4 = 0 xf91a7944 value =0 x10
7 IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG + 0x4 = 0 xf91a7964 value

=0 x50003800
8 IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG = 0 xf91a7960 value =0x9
9 INFO - Starting timer and the EBCom packet generator

10 DEBUG - start_ebcom_generator 421 Writing value =0x1 at
memlocation =0 xf91a0000

11 DEBUG - write_value =0x1 NOT MATCHING read_value =0x1 at address
=0 xf91a0000

12 DEBUG - Returning from start_ebcom_generator reading value at
memlocation =0 xf91a0000 value =0x1

13 INFO - HL1_DMA_wait_dma_done 900
14 INFO : S2MM IRQ at IO_BASE_ETH_DMA_0_S2MM_CSR_BASE + 0x0

received : 200
15

16 INFO : S2MM IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG + 0x10 at
IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG + 0x10 received : 1

17

18 DEBUG - poll_ebcom_generator 441 returning state =0x1
19 DEBUG - poll_ebcom_generator 443 returning state =0x1
20 INFO - HL1_DMA_wait_dma_done 900
21 INFO : S2MM IRQ at IO_BASE_ETH_DMA_0_S2MM_CSR_BASE + 0x0

received : 200
22

23 INFO : S2MM IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG + 0x10 at
IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG + 0x10 received : 1

24

25 DEBUG - poll_ebcom_generator 441 returning state =0x1
26 DEBUG - poll_ebcom_generator 443 returning state =0x1
27 INFO - HL1_DMA_wait_dma_done 900
28 INFO : S2MM IRQ at IO_BASE_ETH_DMA_0_S2MM_CSR_BASE + 0x0

received : 200
29

30 INFO : S2MM IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG + 0x10 at
IO_BASE_ETH_DMA0_RX_PREFETCHER_CONFIG + 0x10 received : 1

Listing 4.3: S2MM - Descriptor Creation & DMA Configuration

Completion of Test: The test case completes with the transfer of 10,000 ethernet
packets from the EPG module to DDR memory. As shown in the log output in
Listing 4.4, the test took 0.026095 seconds time to write 10000 packets of size 450
bytes. To verify that all the packets were written properly in the memory, we read
the registers for packet drop. As the log output printing the register values shows
that there were no packet dropped, and all the packets sent and received in the
memory are compared and they match as shown in the log file (here, showing first
two packets only).

1 DEBUG - elapsed =0.026095 secs
2

3 DEBUG - Reading Packet drop count due to error Address =

Implementation 33

f919f184 Value =0
4 DEBUG - Reading Packet drop count due to no space Address =

f919f188 Value =0
5 DEBUG - Reading Packet drop count due to Transmitter ready

Address = f919f18c Value =0
6 DEBUG - Resetting ETH DMA
7 INFO - HL1_DMA0_reset 983
8

9 ########################## PACKET NO
0000###############################

10 DEBUG - Compare a_tx_buffer = 0 xaaaad6347310 , a_size :450
a_rx_buffer = 0 x40000100 for packet 0

11

12 DEBUG - Compare a_tx_buffer = 0 xaaaad6347310 a_rx_buffer = 0
x40000100 for packet 0

13

14 ########################## PACKET NO
0001###############################

15 DEBUG - Compare a_tx_buffer = 0 xaaaad6347310 , a_size :450
a_rx_buffer = 0 x400002c2 for packet 1

16

17 DEBUG - Compare a_tx_buffer = 0 xaaaad6347310 a_rx_buffer = 0
x400002c2 for packet 1

Listing 4.4: S2MM - Test Completion

Finally, the descriptors contents are printed to verify the operation. Listing 4.5
presents updated descriptors after the ethernet packets are written to the mem-
ory. As shown in the log output, the read address field (0x50003800) of of the
first descriptor is 0x0 as it is not applicable for S2MM case. Write address field
(0x50003804) has the starting address (0x40000100) where the ethernet packet
has been written to. Address field 0x50003808 shows the size of the ethernet
packet, that is 0x1C2 (450 bytes). Next descriptor pointer points to the address
0x50003E00 as each descriptor occupies a size of 0x600. Actual bytes transfer field
gives the total bytes transferred, which in this case is 450 bytes as each descriptor
has one ethernet packet. Status field at address 0x50003814 gives 0x100, which
shows that there is no error and Early Termination bit (bit 8) is set indicating that
all the bytes are transferred successfully and the operation has been completed.
Control register field at address 0x5000383C has generated a value of 0x82FFD300.
This register sets some useful bits and IRQs, like GO bit (bit 31) which indicates
that this particular descriptor has been written, Transfer Complete IRQ Enable
(bit 14) indicates that the transfer has completed, i.e. write master has finished
its job. Early Termination IRQ Enable (bit 15) is set which signals an interrupt as
the transfer completes early. Similar to the first descriptor, all other descriptors
are updated for all the packets transferred.

1 DEBUG : dump_s2mm_scatter_gather_descriptor line no 474
2 DEBUG : Address = 0 x50003800 Value = 0x0
3 DEBUG : Address = 0 x50003804 Value = 0 x40000100
4 DEBUG : Address = 0 x50003808 Value = 0x1c2

34 Implementation

5 DEBUG : Address = 0 x5000380c Value = 0 x50003e00
6 DEBUG : Address = 0 x50003810 Value = 0x1c2
7 DEBUG : Address = 0 x50003814 Value = 0x100
8 DEBUG : Address = 0 x5000383c Value = 0 x82ffd300
9 DEBUG : dump_s2mm_scatter_gather_descriptor line no 555

completed
10 DEBUG : dump_s2mm_scatter_gather_descriptor line no 474
11 DEBUG : Address = 0 x50003e00 Value = 0x0
12 DEBUG : Address = 0 x50003e04 Value = 0 x400002c2
13 DEBUG : Address = 0 x50003e08 Value = 0x1c2
14 DEBUG : Address = 0 x50003e0c Value = 0 x50004400
15 DEBUG : Address = 0 x50003e10 Value = 0x1c2
16 DEBUG : Address = 0 x50003e14 Value = 0x100
17 DEBUG : Address = 0 x50003e3c Value = 0 x82ffd300
18 DEBUG : dump_s2mm_scatter_gather_descriptor line no 555

completed
19 DEBUG : dump_s2mm_scatter_gather_descriptor line no 474
20 DEBUG : Address = 0 x50004400 Value = 0x0
21 DEBUG : Address = 0 x50004404 Value = 0 x40000484
22 DEBUG : Address = 0 x50004408 Value = 0x1c2
23 DEBUG : Address = 0 x5000440c Value = 0 x50004a00
24 DEBUG : Address = 0 x50004410 Value = 0x1c2
25 DEBUG : Address = 0 x50004414 Value = 0x100
26 DEBUG : Address = 0 x5000443c Value = 0 x82ffd300
27 DEBUG : dump_s2mm_scatter_gather_descriptor line no 555

completed

Listing 4.5: S2MM - Updated Descriptors

4.1.5 Memory-mapped to Streaming Test
Memory-mapped to streaming test attempts to measure the performance of the
Ethernet DMA with the datapath starting from the DDR memory to the FIFO
output as shown in the datapath in Figure 4.6. Ethernet packets are read from
the memory and transmitted to the BBM of the system top through the TX DMA
present in the Ethernet DMA. The DMA core, which is a scatter-gather DMA is
configured with the descriptors which are fetched in the Prefetcher module of the
TX DMA. Then the descriptors are sent to the Dispatcher module which decodes
them and issues the read command to the Read Master block. Following the com-
mand, Read Master sends ethernet packets arriving at the input of Read Master
from DDR via interconnects and bridges to FIFO to transmit them to the outside
to BBM device. When the Read Master reads a packet from the DDR, it sends
the Read Response signal to the Dispatcher, which then sends a response signal
to Prefetcher module. Prefetcher then updates the descriptor confirming the read
operation. The path highlighted in brown in Figure 4.6 shows the datapth of
MM2S test case. MM2S test case follows a series of steps to run properly which
are explained below:

• To read the packets from the memory, first the Ethernet packets are gen-

Implementation 35

erated with the Ethernet Packet Generator module present in the Ethernet
DMA. Then the ethernet packets are written to the memory via S2MM
datapath as explained in the previous section.

• Once, it is made sure that all the packets generated have been written to
the memory, the FPGA is kept on sleep mode for some time.

• Next, the test case for MM2S path starts with initialization of the clocks
and reset configuration.

• MM2S descriptors are created according to the configuration provided in the
test case. The test case uses multiple descriptors and multiple packets con-
figuration in which multiple descriptors are created wherein, each descriptor
carries one ethernet packet.

• The Prefetcher and Dispatcher blocks are configured in the TX DMA of
Ethernet DMA.

• A timestamp is created, once Ethernet DMA’s modules are configured. The
test case uses a timestamp to measure the time with software

• Ethernet DMA starts its operation.

• Once all the packets are read, then Ethernet DMA’s modules complete their
operation.

• Check the FIFO almost empty bit in FIFO_STATUS_LEVEL register to
check if all the packets have been transmitted successfully.

• Create one more timestamp to measure time after completion of operation.

FIFORead Data

Read Descriptor

TX

Write Descriptor

R
ea

d
R

es
po

ns
e

Read
Master

R
ea

d
C

om
m

an
d

TX DMA

Bridge

Bridge

Bridge

HPS
CCU

DDR
Controller

CPU

DDR

Prefetcher Dispatcher
Descriptor

Response

Figure 4.6: Memory Mapped to Streaming Datapath

4.1.6 MM2S Test Example
MM2S path can be tested by reading the ethernet packets from memory and send-
ing them through the DMA to transmit. As explained in the test case flow for
the memory-mapped to streaming datapath, we ran a test to read 10,000 ethernet
packets of size 450 bytes from memory. The test case uses multiple descriptors
and multiple packets configuration, i.e. each descriptor will have the instructions

36 Implementation

to transfer one ethernet packet.

Initial Setup: The test case starts with initial setup of design. A log file showing
the initial hardware setup while running the test case is shown in the Listing 4.6.
The test case checks PLL blocks and locking is done and all the resets are released
to initialize the modules of the design.

1 autorun =0 num_pkts = 10000 ebcom_payload_size = 400 eth_dma =
1 cbuff = 0 dump_ddr =0 ipg_length =1

2 INFO - run_ethdma_test has started
3

4 DEBUG - IO_BASE_CCR :0 xf919f000 IO_BASE_CCR + CCR_TEST_RD_OFFSET
:0 xf919f144

5 DEBUG - read_value :0 x55555555
6 Checking writing to CCR test register
7 Poll PLLs B and C some time and report error if not all of

them are locked .
8 For max R/W and also to check PLL reset , perform reset (should

be set for at least 1us!) and then check for lock again
9 DEBUG - CCR_PLL_RESET_CTRL address :0 xf919f15c read_value :0 x333

exp_value :0 x33
10

11 WARN - CCR Max RW Value: 0x333 expected : 0x33
12 DEBUG - ADDING SOME OF THE OTHER ACCESSES HERE TO MAKE SURE WE

GET AT LEAST 1us RESET ASSERTED
13 DEBUG - Read CCR_DEBUG_STATUS
14 address :0 xf919f164 read_value :0x0 exp_value :0 x22200
15

16 WARN - CCR Max RO Value: 0x0 expected : 0 x22200
17 DEBUG - Release Reset
18 DEBUG - Poll for Lock again
19 INFO - Poll for PLLs B and C Lock after soft reset
20

21 DEBUG - After PLL are Locked , Release clock gating of B and C,
writing 0x3 and then 0x0 at address : 0 xf919f16c

22 DEBUG - Release TRX reset , writing 0x0 at address : 0 xf919f170
23 DEBUG - Release all blocks from reset , writing 0x3FFF and then

0x0 at address : 0 xf919f160
24 DEBUG - Check PLL locked again , and IC reset control partly to

pass time to make sure all resets are fully released
25 at end of this function , reading value at 0 xf919f17c
26 DEBUG - INFO - Read out at address :0 xf919f148 LOCKSTATUS :0x7

exp_value :0x7
27 DEBUG - RD_CCR_TRX_RST_CTRL_ETH10G_TRX_PHY_RST =0x0
28 DEBUG - RD_CCR_BLOCK_RESET_CTRL_TRACE_DMA0_RST =0x0
29 DEBUG - Enabling requested blocks address =0 xf919f000
30 INFO - run_ethdma_test 505 num_pkts = 10000 ebcom_payload_size

= 400 dma = 1 check_buff = 0
31

32 DEBUG - configure_bridge 450 address =0 xf91a79c0 initial

Implementation 37

read_value =0 x60f82f02
33 DEBUG - configure_bridge 454 address =0 xf91a79c0 write_value =0

x3c008008
34 DEBUG - configure_bridge 458 address =0 xf91a79c0 final

read_value =0 x3c008008
35 INFO - prim_header_include =0 buffer_size =0
36 DEBUG - IO_BASE_CCR :0 xf919f000 IO_BASE_CCR + CCR_TEST_RD_OFFSET

:0 xf919f144

Listing 4.6: MM2S Test - Initial Setup

Descriptor Creation: MM2S descriptors are created using the functions in the
test case based on the configuration through which the packets need to be sent.
As in this example, 10,000 descriptors are created for 10,000 ethernet packets with
packet size of 450 bytes, which is shown as log output in the Listing 4.7.

1 DEBUG - configure_bridge 450 address =0 xf91a79c0 initial
read_value =0 x60f82f02

2 DEBUG - configure_bridge 454 address =0 xf91a79c0 write_value =0
x3c008008

3 DEBUG - configure_bridge 458 address =0 xf91a79c0 final
read_value =0 x3c008008

4 create_mm2s_descriptors 1178 payload_size =400 length_buff =450
header_size =36 is_ebcom_test =0

5 create_mm2s_descriptors 1199 first descriptor i=0 next_id =1
6 initialize_mm2s_scatter_gather_descriptor 46 eth_frame_size

=450 , mm2s_desc_phyaddr =50000280 , mm2s_buff_addr =40000100 ,
descposition =3, mm2s_desc_phyaddr_next =50000880

7 create_mm2s_descriptors 1229 i=1 next_id =2
8 initialize_mm2s_scatter_gather_descriptor 46 eth_frame_size

=450 , mm2s_desc_phyaddr =50000880 , mm2s_buff_addr =400002 c2 ,
descposition =3, mm2s_desc_phyaddr_next =50000 e80

9 create_mm2s_descriptors 1229 i=2 next_id =3
10 initialize_mm2s_scatter_gather_descriptor 46 eth_frame_size

=450 , mm2s_desc_phyaddr =50000 e80 , mm2s_buff_addr =40000484 ,
descposition =3, mm2s_desc_phyaddr_next =50001480

11 create_mm2s_descriptors 1229 i=3 next_id =4
12 initialize_mm2s_scatter_gather_descriptor 46 eth_frame_size

=450 , mm2s_desc_phyaddr =50001480 , mm2s_buff_addr =40000646 ,
descposition =3, mm2s_desc_phyaddr_next =50001 a80

13 create_mm2s_descriptors 1229 i=4 next_id =5
14 initialize_mm2s_scatter_gather_descriptor 46 eth_frame_size

=450 , mm2s_desc_phyaddr =50001 a80 , mm2s_buff_addr =40000808 ,
descposition =3, mm2s_desc_phyaddr_next =50002080

15 create_mm2s_descriptors 1229 i=5 next_id =6
16 initialize_mm2s_scatter_gather_descriptor 46 eth_frame_size

=450 , mm2s_desc_phyaddr =50002080 , mm2s_buff_addr =400009 ca ,
descposition =3, mm2s_desc_phyaddr_next =50002680

17 create_mm2s_descriptors 1229 i=6 next_id =7
18 initialize_mm2s_scatter_gather_descriptor 46 eth_frame_size

=450 , mm2s_desc_phyaddr =50002680 , mm2s_buff_addr =40000 b8c ,

38 Implementation

descposition =3, mm2s_desc_phyaddr_next =50002 c80
19 create_mm2s_descriptors 1229 i=7 next_id =8
20 initialize_mm2s_scatter_gather_descriptor 46 eth_frame_size

=450 , mm2s_desc_phyaddr =50002 c80 , mm2s_buff_addr =40000 d4e ,
descposition =3, mm2s_desc_phyaddr_next =50003280

Listing 4.7: MM2S - Descriptor Creation

DMA Operation: Once descriptors are created, TX DMA is configured to read
descriptors to transmit ethernet packets out. Listing 4.8 shows the log output
displaying configuration of TX DMA and its operation. The DMA operation com-
pletes with 0.000344 seconds time elapsed calculated from the test case to transmit
10000 packets. Once the Ethernet DMA finishes its job, it gets reset.

1 initialize_mm2s_scatter_gather_descriptor 46 eth_frame_size
=450 , mm2s_desc_phyaddr =50 ea5c80 , mm2s_buff_addr =4044 a95e ,
descposition =3, mm2s_desc_phyaddr_next =50000280

2 start_dma_and_wait_for_done_mm2s 896 mm2s_desc_phyaddr_current
=50000280

3 IO_BASE_ETH_DMA_0_MM2S_CSR_BASE + 0x4=0 xf91a7904 value =0 x10
4 IO_BASE_ETH_DMA0_TX_PREFETCHER_CONFIG + 0x4=0 xf91a7924 value =0

x50000280
5 IO_BASE_ETH_DMA0_TX_PREFETCHER_CONFIG =0 xf91a7920 value =0x9
6 INFO - HL1_DMA_wait_dma_done_mm2s 987
7 INFO : MM2S IRQ at IO_BASE_ETH_DMA_0_MM2S_CSR_BASE + 0x0

received : 200
8

9 INFO : MM2S IO_BASE_ETH_DMA0_TX_PREFETCHER_CONFIG + 0x10 at
IO_BASE_ETH_DMA0_TX_PREFETCHER_CONFIG + 0x10 received : 1

10

11 INFO - get_status_dma_mm2s 1071
12

13 DEBUG - elapsed =0.000344 secs
14

15 DEBUG - Resetting ETH DMA
16 INFO - HL1_DMA0_reset 1083
17 # NOTE: Test has ended with 0 error(s) and 4 warning (s) in

test

Listing 4.8: MM2S - DMA Operation

4.1.7 Drawbacks of Software Testing
The test case was initially run to get the performance measurements using the
software, wherein the particular registers were read to get the values and time-
stamp was used to measure the time. To get the more realistic and accurate
measurements, the results obtained through software can’t be relied upon. There
is always a chance to get incorrect reading. Timestamp works based on the system
clock. It may add some overhead to the timing which needs to be measured.

Implementation 39

4.2 Performance Measurement using Hardware
The performance of the Ethernet DMA can be measured using both software
and hardware approaches. Initially, the performance was measured using the test
case by reading the relevant registers in the software. To get the real time more
accurate numbers, the performance was measured from the hardware using an os-
cilloscope. To get the proper signal values and time from the design, the relevant
signal outputs were taken from the FPGA board pins to connect to the oscillo-
scope. Considering both the streaming to memory-mapped and memory-mappped
to streaming datapaths, it was decided to take particular signals which would de-
fine the test completion. The methodology of the measurement is described below.

DMA0

read_waitrequest
read_read

read_readdatavalid
Read
Master

Pulse

MM2S_0_pulse

Write
Master

write_waitrequest
write_write

writeresponse
S2MM_0_pulse

DMA1

read_waitrequest
read_read

read_readdatavalid
Read
Master MM2S_1_pulse

Write
Master

write_waitrequest
write_write

writeresponse
S2MM_1_pulse

Figure 4.7: Pulse Signal Measurement Circuit

Figure 4.7 shows the implemented logic to get a pulse signal from the design to
measure using the oscilloscope. As shown in the circuit, the relevant signals are
taken from the DMA cores. The wait_request signal, which is active low (when it
has value 1), indicates that DMA is not performing any operation and waiting for
the data to be ready in FIFO or there is sufficient space available in FIFO to send
in the packet. There are 2 signals connected to the master read/write modules of
Ethernet DMA. Write Master uses two signals ’write’ and ’writeresponse’ in the
streaming to memory-mapped path. Read Master uses ’read’ and ’readdatavalid’
signals in memory-mapped to streaming path. Whenever the DMA initiates a new
transfer, read or write signal will become 1. When DMA completes an operation

40 Implementation

based on the descriptor, it will be indicated by writeresponse and readdatavalid.
So in order to get the total time period, the time between start of first packet
transmission/reception and the response of the last packet transmission/reception
needs to measured. The NOT of waitrequest indicates the DMA is active which
is ANDed with the 2 signals from master and ORed to produce the pulse output
as shown in Figure 4.7.
Pulse from each DMA is taken and ORed together which produces a single output.
At a time only one DMA will be active to make sure that measurement is per-
taining to that particular DMA operation. The pulse signal is taken out through
FPGA’s GPIO_TEST pin and connected to the oscilloscope shown as a block
diagram Figure 4.8.

FPGA_TESTIO8

GND

Intel Agilex
FPGA Dev-Kit Oscilloscope

Figure 4.8: Lab Test Measurement Setup

Figure 4.9: Oscilloscope Output

The oscilloscope output in Figure 4.9 shows the total time period calculated using
two markers M1 and M2, when Ethernet packets were sent from the packet gener-

Implementation 41

ator to be written to the memory. The difference between the two markers gives
the time it takes to write total packets to the memory.

Figure 4.10: Oscilloscope Output - Start of First Packet Transfer

Figure 4.10 shows the first rising edge of the pulse signal which gives the start
time when the first ethernet packet is written to the memory. In other words, it is
the starting of the first packet from the FIFO to be sent to memory through the
S2MM path.

Figure 4.11: Oscilloscope Output - Writing Last Packet

42 Implementation

Figure 4.11 shows the pulse output which is measured at the falling edge and it
gives the time when the last packet is written to the memory.

Chapter5
Results

The implementation of the design and test case is presented in the last chapter.
The results obtained from the performance measurement tests of Ethernet DMA
are discussed in this chapter. The test case, which is written in C programming
language, as explained in the previous chapters has been used to measure the
performance of the design. Test case was run to measure certain performance
parameters. These parameters include:

• Ethernet packets dropped
• Inter-Packet Gap
• Streaming to memory-mapped datapath performance
• Memory-mapped to streaming datapath performance

We will go through all the experimental results obtained for the performance
measurement in the following sections.

5.1 Packet Drop
As discussed in the Chapter 3, there is a packet drop mechanism in the S2MM
path which is handled by Packet Drop module. To get the number of packets
dropped, we observe the packets dropped due to no space in the FIFO by reading
the relevant register. After integrating Ethernet Packet Generator module to the
design, the test case was run to check the number of packets dropped while sending
the packets from the packet generator to write them to the memory. Table 5.1
presents the number of packets dropped when different numbers of packets were
sent to the Ethernet DMA to write to the memory. The test case was run for
multiple iterations to check and it was observed that for the same number of pack-
ets, the number of packets dropped remained almost same. However, it was found
that the number of packets dropped increased considerably when the number of
packets were increased. It can be observed from Table 5.1 that as the number
of packets rose, the percentage of packet dropped rose significantly, starting with
10.5% drop for 80 packets to 47% drop for 10000 packets. The packets were sent
through Ethernet DMA to write to the memory with a fixed packet size of 1050
bytes and IPG value of 1. The design uses a FIFO block and a Packet Drop mod-
ule. While sending more number of packets, more packets are dropped because the

43

44 Results

inter-packet gap value is fixed to 1. With more packets coming in, the FIFO does
not have enough space to accommodate incoming new packets. Thus, the Packet
Drop module drops the packets due to no space in the FIFO. The graph in Figure
5.1 presents the trend of dropped packets as the number of packets sent to the
Ethernet DMA increase. As the number of packets increases, the number of pack-
ets dropped also increases and the percentage of packets dropping gets repeated
from 1000 to 10000 packets so the curve starts to almost saturates from 3000 to
10000 packets. There is no linear relation for number of packets and percentage
of packets dropped.

Table 5.1: Packet Drop for Different Number of Packets

No. of Packets 80 90 100 110 150 200 250 500 750 1000 3000 5000 10000
Number of Packets Dropped

Run 1 9 14 18 23 42 64 90 207 327 450 1400 2353 4733
Run 2 8 14 19 23 41 64 91 206 327 448 1399 2351 4732
Run 3 9 14 19 23 42 64 90 207 328 449 1400 2352 4734
Run 4 8 14 18 23 42 65 90 207 327 448 1400 2354 4733
Run 5 8 14 19 23 42 64 91 207 328 449 1399 2356 4733
Run 6 9 14 18 23 41 65 90 207 327 448 1400 2354 4735
Run 7 8 14 19 23 42 64 90 207 327 448 1399 2353 4734
Run 8 8 14 18 23 42 64 90 207 326 449 1399 2354 4733
Run 9 8 14 18 23 42 64 90 207 327 449 1401 2354 4735
Run 10 9 14 19 23 42 64 90 207 327 449 1398 2355 4735
Average 8.4 14 18.5 23 41.8 64.2 90.2 206.9 327.10 448.7 1399.5 2353.6 4733.7
Drop (%) 10.5 15.5 18.5 20.9 27.8 32.1 36.08 41.38 43.61 44.87 46.65 47.07 47.34

To check the effect of the packet size to the packets dropped, the tests were con-
ducted on different packet sizes. Different numbers of packets (100 to 5000) were
sent to the Ethernet DMA to be written to the memory. The purpose of measur-
ing the packets dropped was to check the behaviour of Ethernet DMA whether it
is dropping more packets as we increase packet size and number of packets. The
test case was run with setting IPG value as 1. As presented in Table 5.2, the
packets dropped have increased as we increase the number of packets and also
more number of packets are dropped if we increase the packet size. However, the
packets dropped are not linear with respect to the increase in number of pack-
ets. Let’s take the number of packets dropped while processing 200 packets and
400 packets. The rise of packets dropped is not in proportion to the number of
packets, because of many reasons. It can be affected by how the DMA is acting
at that point, how much there is load on the CPU and whether the bus is busy.
So, a relationship between increase of packets dropped and number of packets is
difficult to find as a lot of other processes are running in the hardware at one point.

5.2 IPG Calculations
Different numbers of packets had a different number of packet drop when the inter
packet gap value was set to 1. To make a zero packet drop, the best IPG value was
found for each of different packet sizes by running the test multiple times. The
packet sizes were chosen randomly and it was found that different packet sizes

Results 45

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000 12000

P
ac

ke
ts

 D
ro

pp
ed

 (
%

)

Number of Packets

Figure 5.1: Relation of Packets Dropped vs. Number of Packets

Table 5.2: Packet Drop for Different Number of Packets & Sizes

Number of Packets 100 200 300 400 500 600 700 800 900 1000 3000 5000
Packet Size Number of Packets Dropped

50 0 0 0 0 0 54 148 242 336 430 2311 4192
150 0 4 91 178 265 352 439 526 614 700 2444 4186
250 0 35 116 198 279 361 442 523 605 686 2312 3941
350 0 68 145 221 298 374 451 528 604 682 2214 3745
450 9 80 152 223 295 367 439 512 583 654 2088 3523
550 12 80 144 216 284 352 420 489 555 624 1986 3346
650 17 81 144 208 272 336 399 463 527 591 1860 3131
750 16 78 139 199 259 319 380 440 501 561 1765 2972
850 20 76 133 188 244 299 355 411 467 523 1638 2750
950 19 71 124 176 230 283 335 388 440 493 1542 2593
1050 18 64 114 163 210 258 307 353 400 449 1399 2354

had different best IPG values. Table 5.3 presents best IPG values for randomly
chosen different packet sizes between 50 bytes to 4096 bytes. Figure 5.2 shows the
plot of the best IPG values against different packet sizes. The chart shows that
as the packet size is increasing, the best IPG value is decreasing. The IPG value
decreases till packet size of 2200 bytes, after which, an IPG value of 1 works as
the best IPG for packet size higher than 2200 bytes. For a smaller packet size,
the operation needs to be done faster which is not possible. The next packets
in FIFO need to wait to get it processed by Ethernet DMA. Thus, there is a
packet loss for smaller packet sizes ranging from 50 bytes to 2199 bytes. This can
be addressed by adjusting the IPG value as best IPG values given in the Table 5.3.

46 Results

Table 5.3: Best IPG Values for Different Packet Sizes

Packet Size (Bytes) Best IPG IPG Time (nsec)
50 136 870.4
250 151 966.4
450 152 972.8
650 148 947.2
850 139 889.6
1248 60 384.0
1448 64 409.6
1648 35 224.0
1848 28 179.2
2048 23 147.2
2200 1 6.4
2548 1 6.4
3048 1 6.4
3548 1 6.4
4096 1 6.4

136

151 152 148
139

60 64

35
28

23

1 1 1 1 1
0

20

40

60

80

100

120

140

160

50 250 450 650 850 1248 1448 1648 1848 2048 2200 2548 3048 3548 4096

B
es

t I
P

G

Packet Size (Bytes)

Figure 5.2: Best IPG Values for Different Packet Sizes

5.3 Ethernet DMA Datapath Performance
Once the best IPG values were measured for different packet sizes, the next phase
was to measure the performance of the Ethernet DMA. Running the test case with
the best IPG values ensure that there would be no loss of packets. To measure the
performance of both S2MM and MM2S, EPG module was used to generate 10,000
ethernet packets to be sent to Ethernet DMA. The datapath from streaming to
memory-mapped was used to write those packets to the memory. Once ethernet

Results 47

packets were written to the memory, a test case was run to read 10,000 packets
from memory and transmit them through memory-mapped to streaming datapath.

5.3.1 Performance for Writing Ethernet Packets
Table 5.4 presents the measurements made after processing 10000 ethernet packets
of different sizes through S2MM datapath. The size of the packets were varied
from 50 bytes to 4096 bytes randomly and the best IPG for the specific packet
size was used to make sure that there is no packet drop. The measurements
presented were taken once for each packet size and do not show the average. The
performance of Ethernet DMA for writing ethernet packets (streaming to memory-
mapped path) is plotted for different packet sizes in Figure 5.3. The minimum
packet size is 50 bytes at which the Ethernet DMA takes 18.431 milliseconds to
process 10,000 ethernet packets. For the packet size of 4 KB (4096 bytes), the
Ethernet DMA takes 61.515 milliseconds to process 10,000 ethernet packets. The
plot presents almost linear curve behaviour which indicates that the Ethernet
DMA is functioning as it should. The performance depends on two factors, packet
size and inter-packet gap. For the packet size of 1248 bytes, it takes 27.902 ms to
process 10,000 packets as compared to packet size of 850 bytes which took 31.744
ms. This indicates that higher IPG value for packet size 850 bytes impacts its
performance compared with packet size of 1248 bytes. This factor account for the
glitch in the curve. Thus, it can be said that IPGs do not have a linear relation
to packet size which is evident from the Figure 5.2.

Table 5.4: S2MM Performance of Ethernet DMA

Packet Size (Bytes) S2MM Time (msec)
50 18.431
250 23.678
450 27.006
650 29.695
850 31.744
1248 27.902
1448 32.894
1648 31.102
1848 33.406
2048 35.966
2200 35.582
2548 41.213
3048 49.148
3548 57.212
4096 61.515

48 Results

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
(m

il
li

se
co

nd
s)

Packet Size (Bytes)

Figure 5.3: S2MM Performance

5.3.2 Performance for Reading Ethernet Packets
Table 5.5 presents the measurements made after processing 10000 ethernet pack-
ets of different sizes through MM2S datapath. The size of the packets were varied
from 50 bytes to 4096 bytes randomly. The measurements presented were taken
once for each packet size and do not show the average. The performance of Eth-
ernet DMA while reading ethernet packets (memory-mapped to streaming path)
is plotted for different packet sizes in Figure 5.4. For 50 bytes packet size, Ether-
net DMA takes 12.753 milliseconds to read 10,000 ethernet packets and transmit
them, while for a packet size of 4 KB (4096 bytes), it takes 65.563 microseconds
to process 10,000 ethernet packets. The plot presents a linear curve behaviour as
the packets size increases which indicates that the Ethernet DMA is performing
as it should. However, from the plot it can be observed that for the packet sizes
which are multiples of 1 KB (1024, 2048), there is a dip in the curve due to the
boundary condition that we have in the SGDMA IP.

5.4 Effect of IPG on performance
Once the performance for writing and reading ethernet packets was measured, the
next step was to measure the effect of IPG on the performance. For that purpose,
the tests were run to measure the performance at IPG values higher than the best
IPG values already calculated. A number of different packet sizes were selected
to run the test case. The performance was measured to run tests by increasing
the IPG values beyond the best values achieved for different packet sizes. Again,
10,000 ethernet packets were sent to write to the memory via streaming to memory
mapped path. Table 5.6 shows the performance measurements with higher IPGs
than the best IPG for different packet sizes. As it can be seen from the table,

Results 49

Table 5.5: MM2S Performance of Ethernet DMA

Packet Size (Bytes) MM2S Time (msec)
50 12.753
250 23.531
450 32.083
650 41.737
850 45.8
1024 16.402
1248 46.23
1448 49.61
1648 49.89
1848 51.72
2048 32.796
2200 53.493
2548 55.438
3048 57.405
3548 60.111
4096 65.563

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
(m

il
li

se
co

nd
s)

Packet Size (Bytes)

Figure 5.4: MM2S Performance

the time elapsed to write 10,000 ethernet packets increases as the IPG value is
increased. Let’s take a look at the performance numbers for packet size of 1248
bytes. It can be seen that for the measurements taken at IPG values higher than
the best IPG (60), the time elapsed increases from 27.902 milliseconds to 33.022
milliseconds. Similar behaviour can be observed for all other packet sizes.
The resulting graph from Table 5.6 showing the effect of IPGs on performance is

50 Results

plotted in Figure 5.5. It can be observed from the plots, there is a linear relation-
ship between the IPG and time for different packet sizes. This shows that as we
increase the IPG value beyond the best IPG value for a particular packet size, the
performance gets affected. This may help us in saving the loss of packets by send-
ing packets at higher inter-packet gaps, but it affects the performance adversely.

Table 5.6: Performance with Higher IPGs for Different Packet Sizes

Time Elapsed (milliseconds)
Packet Size Best IPG Best IPG Best IPG + 10 Best IPG + 20 Best IPG + 30 Best IPG + 40

50 136 18.431 19.710 20.990 22.270 23.550
250 151 23.678 24.958 26.238 27.518 28.798
450 152 27.006 28.286 29.566 30.846 32.126
650 148 29.695 30.974 32.254 33.534 34.814
850 139 31.744 33.023 34.302 35.582 36.862
1248 60 27.902 29.182 30.462 31.742 33.022
1448 74 32.894 34.173 35.454 36.734 38.014
1648 35 31.102 32.383 33.662 34.942 36.222
1848 28 33.406 34.686 35.966 37.246 38.526
2048 23 35.966 37.246 38.526 39.805 41.085
2200 1 35.582 36.862 38.142 39.421 40.701
2548 1 41.213 42.493 43.773 45.053 46.333
3048 1 49.148 52.093 53.372 54.652 55.932
3548 1 57.212 58.492 59.772 61.052 62.332
4048 1 65.147 66.427 67.707 68.986 70.267
4096 1 65.915 67.195 68.475 69.755 71.034

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

T
im

e
(m

il
li

se
co

nd
s)

IPG

50 Bytes

250 Bytes

450 Bytes

650 Bytes

850 Bytes

1248 Bytes

1448 Bytes

1648 Bytes

1848 Bytes

2048 Bytes

2200 Bytes

2548 Bytes

3048 Bytes

3548 Bytes

4048 Bytes

4096 Bytes

Figure 5.5: Effect of IPG on Performance

Results 51

5.5 Performance for Different Number of Packets
The above mentioned performance results were measured by fixing the number of
packets, that is, 10,000 ethernet packets were sent in all the tests. The performance
for sending different number of packets was also measured by creating the ethernet
packets in the range from 100 to 10,000 by EPG module. The packet size was fixed
to 1050 bytes in all the cases.

Table 5.7: Performance for Different Number of Packets

No. of Packets S2MM Time (ms) MM2S Time (ms)
100 0.223 0.501
200 0.499 0.960
300 0.893 1.466
400 1.232 1.923
500 1.559 2.423
600 1.895 2.896
700 2.220 3.390
800 2.548 3.863
900 2.890 4.329
1000 3.211 4.818
3000 9.828 14.400
5000 16.446 23.996
10000 33.022 48.220

Table 5.7 presents the performance measurements for writing and reading different
number of packets. As the number of packets are increased from 100 packets to
10,000 packets, it takes 0.0223 ms and 33.022 ms time to write packets, respec-
tively. Similarly, for reading, it takes 0.501 ms to read 100 packets and 48.220
ms to read 10000 packets. The resulting plot for the S2MM path is presented
in Figure 5.6 which shows the linear behaviour which is expected if the Ethernet
DMA is functioning properly. The trend for reading different number of packets
has been plotted in Figure 5.7. Similar to S2MM, the linear curve indicates that
Ethernet DMA is behaving as it should.

Table 5.8 presents the data rates for S2MM and MM2S paths for different number
of packets. The resulting plot for S2MM path, i.e. writing packets is shown in the
Figure 5.8. The plot shows that there is an inverse relation to the data rate as the
number of packets increase. This means that when small number of packets are
sent, they are processed faster. When more packets are sent, they take more time
to process, resulting in lower data rates. The trend of data rates for MM2S, i.e.
reading different number of packets is shown in the Figure 5.9. Similar to data
rate for writing, the data rate for reading also decreases as the number of packets
is increased as we are processing more packets and they take more time.

52 Results

0

5

10

15

20

25

30

35

0 2000 4000 6000 8000 10000 12000

T
im

e
(m

il
li

se
co

nd
s)

Number of Packets

Figure 5.6: S2MM Performance for Different Number of Packets

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000

T
im

e
(m

il
li

se
co

nd
s)

Number of Packets

Figure 5.7: MM2S Performance for Different Number of Packets

Results 53

Table 5.8: Data Rates for Different Number of Packets

No. of Packets S2MM Data Rate (Mbps) MM2S Data Rate (Mbps)
100 0.3766 0.168
200 8.41 × 10−2 0.04375
300 3.13 × 10−2 1.909 × 10−2

400 1.70 × 10−2 1.092 × 10−2

500 1.07 × 10−2 6.933 × 10−3

600 7.38 × 10−3 4.834 × 10−3

700 5.40 × 10−3 3.539 × 10−3

800 4.12 × 10−3 2.718 × 10−3

900 3.23 × 10−3 2.156 × 10−3

1000 2.61 × 10−3 1.743 × 10−3

3000 2.85 × 10−4 1.944 × 10−4

5000 1.021 × 10−4 7.000 × 10−5

10000 2.54 × 10−5 1.742 × 10−5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2000 4000 6000 8000 10000 12000

D
at

a
R

at
e

(M
bp

s)

Number of Packets

Figure 5.8: Data Rate for Writing Ethernet Packets

54 Results

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 2000 4000 6000 8000 10000 12000

D
at

a
R

at
e

(M
bp

s)

Number of Packets

Figure 5.9: Data Rate for Reading Ethernet Packets

Chapter6
Improvements & Future Work

The performance of Ethernet DMA datapath was measured and the results are
presented in the previous chapter. The results presented clearly show that the
Ethernet DMA is giving the optimal performance with the current configuration of
the design IPs. A number of different factors were analyzed to optimize the design
more to get improved performed. An analysis of solutions and some potential
improvements are given in the following sections.

6.1 Analysis
The performance results presented in Chapter 5 were analyzed. After analyzing
the measurements obtained, we could observe that there is a room for some im-
provements to the current design. The design of the Ethernet DMA uses SGDMA
IP, which is a third-party IP where making improvements is difficult because we
need to redesign the IP for it. In the current state, it is a black box, so there is
not much we could do to modify the internals of the IP.

The second potential improvement that we could analyze in the design can be
outside the SGDMA IP where some modifications in the design can be made to
optimize it. The Ethernet DMA uses some interconnects between IPs which affect
the performance of the datapath too. These interconnects have been designed
and configured to suit for the specific data input modes and configurations. We
can try to work on them to achieve optimization in performance of the design by
implementing some modifications as discussed in the next section.

The FIFO used in the design was also analyzed to check if its size is a bottle-
neck to the performance. An option to increase the FIFO size can be omitted
because there is already a lot of buffering in the path due to interconnects. Hence,
additional buffers would not help in optimizing the design. It is concluded that
increasing the FIFO size would not help in improving the performance, which is
governed by the the ability of the receiver DMA.

55

56 Improvements & Future Work

6.2 Optimization
After the analysis of different design modules and its datapath, we come to a
conclusion that there is a room for the optimization in the design to enhance its
performance. Based on different aspects considered, it was decided that some
changes to interconnects can be implemented to improve the performance.

DMA

FIFO Packet
Drop

FIFO

Bridge

Bridge

Bridge

Bridge

Bridge

Bridge

RX

TX

Ethernet DMA

Ethernet
Packet

GeneratorInterconnect

Interconnect

CPU CCU

DDR
Controller

DDR

HPS DMA
(1K Boundary)

Figure 6.1: Design of Ethernet DMA Datapath

Interconnect: The system design presented in Figure 6.1 shows Ethernet DMA
and its internal modules. SGDMA cores are connected to the bridges through
interconnects. The SGDMA IP used from the third party company follows their
own memory-mapped protocol for all the master interfaces towards the DDR. Since
the end protocol at the input of the HPS is AXI, protocol conversion from third
party protocol to AXI is also handled by the third party company’s interconnect.
The limitation of this interconnect is that it will not automatically take care of
the 4K boundary crossing limitation that is part of the AXI protocol. For the AXI
protocol, burst can not cross 4KB boundary, i.e. 4KB address boundary should not
cross in AXI burst transaction. For example, if we have an address 0x0 and burst
size of 4200 bytes, it should be split into two parts; 4096 bytes and the second part
containing remaining bytes. Third party company’s protocol does not have this
limitation and interconnect does not take this boundary condition automatically.
It needs to be made sure that 4K boundary condition should not be violated. For
that purpose, in the IP settings are changed to comply to this boundary condition.
To get around this problem, the SGDMA IP settings are chosen in such a way to
always initiate a burst transfer at the 1k boundary crossing. For a given DMA
transfer request, the IP will initiate single burst size transfers until it reaches the
1k boundary crossing and then initiate a burst transfer of size > 1, if possible, for
the rest of the data transfer. If the interconnect does not have this 4KB boundary
limitation, then we would have the best possible performance.

The second thing we can investigate is the 1k boundary setting of the IP. If the
characteristics of the traffic are known, it should be possible to optimize this set-
ting even further to reduce the number of single burst size transactions that are
originated, so that they can be bundled into a single burst transfer.

Improvements & Future Work 57

DMA

FIFO Packet
Drop

FIFO

Bridge

Bridge

Bridge

Bridge

Bridge

Bridge

RX

TX

Ethernet DMA

Ethernet
Packet

Generator
Interconnect

with 4K
Boundary

Interconnect

CPU CCU

DDR
Controller

DDR

HPS DMA
(Optimized Boundary)

Figure 6.2: Proposed Improvement to Design

Therefore, the design can be optimized as shown in Figure 6.2 by changing con-
figuration for the DMA IP and interconnects. The DMA module highlighted in
green color is configured with optimized boundary and the interconnect too can
be configured as highlighted in green. These proposed solutions can improve the
performance of Ethernet DMA’s datapath.

58 Improvements & Future Work

Chapter7
Conclusion

The main objective of this thesis project was to measure and analyze the perfor-
mance of Ethernet DMA controller datapath. The performance was measured and
it was found that the Ethernet DMA was functioning to its optimal level, but still
there was a room for some improvement. Based on the results obtained and the
design analysis, some improvements were proposed to optimize the performance
even more.

In the beginning, an ethernet packet generator was integrated to the design to
generate ethernet packets. The packets generated were sent to measure the per-
formance of streaming to memory-mapped path. Ethernet packets were dropped
as the design was working with the inter-packet gap value 1, with which it is not
possible to measure the Ethernet DMA datapath performance properly. So, the
first task was to identify the best IPG values at which different packet sizes could
be transferred without any packet loss.

Performance measurement using software timestamps would not produce reli-
able values, so the measurements were taken directly from hardware by taking a
pin out from the design. The oscilloscope was used to measure the timings.

From the results obtained, we could see that there is a linear relationship be-
tween the ethernet packets and the timing performance, thus, there is less room
for improvements. From the oscilloscope graphs, it can observed that the Ethernet
DMA is waiting for some time and it is not processing packets continuously due
to the packing of data. Interconnects have been used which can not handle burst
of data coming through Ethernet DMA as they have been designed to process a
certain number of bytes. This is an area where there is a room for optimizing the
Ethernet DMA for better performance.

One more observation is that the packet sizes we used vary from 50 byte to
4096 bytes (4 KB), but in real scenario, the packets are only in the size ranging
from 2048 (2 KB) to 4096 bytes (4 KB). Therefore, the design can be optimized
based on the statistics of the incoming packet sizes.

59

60 Conclusion

Bibliography

[1] “Understanding 5G: Perspectives on future technological advance-
ments in mobile, Whitepaper”. In: GSMA Intelligence (2014).

[2] A. Gupta and R. K. Jha. “A Survey of 5G Network: Architecture and
Emerging Technologies”. In: IEEE Access 3 (2015), pp. 1206–1232.
doi: 10.1109/ACCESS.2015.2461602.

[3] C.E. Spurgeon. Ethernet: The Definitive Guide: The Definitive Guide.
O’Reilly Media, 2000. isbn: 9780596552824. url: https://books.
google.se/books?id=MRChaUQr0Q0C.

[4] A. F. Harvey. “DMA Fundamentals on Various PC Platforms”. In:
1994.

[5] A. Aljumah and M. Ahmed. “Design of High Speed Data Transfer Di-
rect Memory Access Controller for System on Chip Based Embedded
Products”. In: Journal of Applied Sciences 15 (2015), pp. 576–581.

[6] Guoliang Ma and Hu He. “Design and implementation of an advanced
DMA controller on AMBA-based SoC”. In: 2009 IEEE 8th Inter-
national Conference on ASIC. 2009, pp. 419–422. doi: 10 . 1109 /
ASICON.2009.5351258.

[7] Yingxiao Zhao et al. “Research on FPGA timing optimization meth-
ods with large on-chip memory resource utilization in PCIe DMA”.
In: 2016 CIE International Conference on Radar (RADAR). 2016,
pp. 1–4. doi: 10.1109/RADAR.2016.8059429.

[8] L. Rota et al. “A new DMA PCIe architecture for Gigabyte data
transmission”. In: 2014 19th IEEE-NPSS Real Time Conference. 2014,
pp. 1–2. doi: 10.1109/RTC.2014.7097561.

61

62 BIBLIOGRAPHY

[9] Kamlendra Chandra et al. “Design of PCIe-DMA bridge interface
for High Speed Ethernet Applications”. In: 2019 Second Interna-
tional Conference on Advanced Computational and Communication
Paradigms (ICACCP). 2019, pp. 1–5. doi: 10.1109/ICACCP.2019.
8882929.

[10] Andrew Bean, Nachiket Kapre, and Peter Cheung. “G-DMA: im-
proving memory access performance for hardware accelerated sparse
graph computation”. In: 2015 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig). 2015, pp. 1–6. doi:
10.1109/ReConFig.2015.7393317.

[11] Y. Li and T.U. Press. Computer Principles and Design in Verilog
HDL. Wiley, 2015. isbn: 9781118841099. url: https : / / books .
google.se/books?id=wroyCgAAQBAJ.

[12] Configurable, Multi-channel, WISHBONE-compliant DMA Controller.
url: https://www.latticesemi.com/view_document?document_
id=24824.

[13] AXI DMA v7.1 LogiCORE IP Product Guide. url: https://www.
xilinx.com/support/documentation/ip_documentation/axi_
dma/v7_1/pg021_axi_dma.pdf.

[14] Scatter-Gather DMA Controller Core. url: https://www.intel.co.
jp/content/dam/altera-www/global/ja_JP/pdfs/literature/
hb/nios2/qts_qii55003.pdf.

[15] Jorg Sommer et al. “Ethernet – A Survey on its Fields of Appli-
cation”. In: IEEE Communications Surveys Tutorials 12.2 (2010),
pp. 263–284. doi: 10.1109/SURV.2010.021110.00086.

Ethernet DMA Datapath Performance
Optimization for 5G Radios

SARANYA BALATHANDAPANI & SUNIL NANJIANI
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

SA
R

A
N

YA
 B

A
LA

TH
A

N
D

A
PA

N
I &

 SU
N

IL N
A

N
JIA

N
I

Ethernet D
M

A
 D

atapath Perform
ance O

ptim
ization for 5G

 R
adios

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-833
http://www.eit.lth.se

