
Real-time Scheduling in Datacentre Clusters

FABIAN FRANKEL & SEPEHR TAYARI
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

FA
B

IA
N

 FR
A

N
K

EL &
 SEPEH

R
 TA

YA
R

I
R

eal-tim
e Scheduling in D

atacentre C
lusters

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-829
http://www.eit.lth.se

Real-time Scheduling in Datacentre Clusters

Fabian Frankel
fa7320fr-s@student.lu.se

fa.frankel@gmail.com
Sepehr Tayari

elt15sta@student.lu.se
sepehrtayari@gmail.com

Department of Electrical and Information Technology
Lund University

Supervisor: Per Skarin, William Tärneberg

Examiner: Maria Kihl

June 23, 2021

© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Industry 4.0 can be described as the next generation-factories that is characterised
by putting a high demand for automation and flexible production lines. The pro-
posed way to achieve this goal is through a large number of Industrial IoT devices
(IIoT) in the factory, some having high availability- and low-latency requirements.
This demands for a software that can monitor and manage the applications used
by these devices. The current industry standard for managing clusters of applica-
tions is called Kubernetes. However, using Kubernetes in this environment means
that it needs to meet the low latency demands of Industry 4.0. The purpose of this
thesis was to investigate the possibility of achieving this support in Kubernetes.
To investigate if this was possible, a Kubernetes cluster was deployed to Ericssons
private cloud Xerces. On this cluster services was deployed that executed arbitrary
tasks with the invocation of an HTTP-request. The difference in how fast these
tasks executed was used as a metric to see the delay some request were experienc-
ing due to non optimal scheduling on Kubernetes. Through investigations of how
the underlying kernels schedules jobs on it’s CPU proposed solutions to reduce
the execution time was made. These solutions were then tested on the cluster and
compared with the first measurements. The results of these measurements showed
a reduction in execution time for the deployed services with the introduction of the
preemptive scheduling policy SCHED_FIFO in Linux, which uses the first in first out
algorithm. This improvement in execution time was at the cost of a degradation
of the response time of the cluster. These findings points towards the conclusion
that applying a real time scheduling policy to processes on a Kubernetes cluster is
not cost free. However, a suggested path for how to further optimise a Kubernetes
cluster in regards to response time has been proposed.

i

ii

Popular Science Summary

In the near future, robots and humans might work hand in hand. At
least, that is the intention of the future Industry 4.0 deployments where
the industries will make use of real-time data generated by the great
number of integrated sensors in the production lines. But in order for
this sci-fi scenario to become a reality, all processes within the industry
must work seamlessly and with high determinism.

For a seamless deployment of Industry 4.0, a software that monitors and controls
the deployments running in the cloud must exist. Today, the industry standard
for monitoring cloud deployments is Kubernetes. To determine its deterministic
behaviour and suitability in a Industry 4.0 environment, this paper has studied
the reliability of a cluster controlled by Kubernetes running in a virtualised envi-
ronment. Using the Linux scheduling policy SCHED_FIFO and adding this priority
using the deployment in Kubernetes resulted in a more deterministic cloud sys-
tem where each executed task executed faster and with higher determinism when
prioritised. Although, the prioritisation affected the response time of clusters neg-
atively when the load was increased. This has been addressed, and a possible
solution to this drawback has been presented in the final work.

The possibilities in Kubernetes are endless and thanks to its easy accessibility,
users can simply make prioritisation to the processes which demands reliable ex-
ecution by simply entering the relevant node and making few modifications. By
prioritising crucial processes such as networking- and real-time sensitive processes
in a Industry 4.0 system, the deterministic behaviour of the cloud could be in-
creased quite easily even in a virtualised environment.

As Kubernetes grows and becomes a prevalent part of the cloud architecture, it is
crucial to prove that Kubernetes also suits Industry 4.0 deployment to push the
research area in the correct direction. Due to Kubernetes being a growing open-
source project, missing out on Kubernetes mean that Industry 4.0 cannot make use
of the latest technologies and available knowledge relating to cloud deployments.

iii

iv

Acknowledgements

We would like to express our gratitude to everyone who helped us throughout our
thesis work. First off we would like to thank everyone at Ericsson for providing
us with knowledge and the necessary resources to conduct this thesis. We would
also like to thank our two supervisors, Per Skarin and William Tärneberg, who
has been a big help with discussing ideas and solutions to the problems that came
about. Lastly we would like to thank our friends and family for being a great
mental support throughout this thesis.

v

vi

Table of Contents

1 Introduction 1
1.1 Problem definition . 2
1.2 Previous work . 2
1.3 Limitations . 3

2 Background 5
2.1 Traditional Deployments . 5
2.2 Machine Virtualised Deployments 6
2.3 Containerised Deployments . 6
2.4 Cloud Computing Today . 8
2.5 Real-time need in Clouds . 10
2.6 Future of Cloud Computing . 10

3 Theory 13
3.1 Kubernetes . 13
3.2 Fission [1] . 16
3.3 Linux . 18

4 Default Kubernetes Cluster 23
4.1 Proposed Solution . 23
4.2 Methodology . 26

5 Modified Kubernetes Cluster 31
5.1 Proposed solution . 31
5.2 Methodology . 34

6 Results 41
6.1 Baseline Results . 41
6.2 Experiment 1 - Preemptive Scheduling with Nonpreemptive Kernel . 45
6.3 Experiment 2 - Preemptive Scheduling with Nonpreemptive Kernel

using cgroups . 50
6.4 Experiment 3 - Preemptive Scheduling with Preemptive Kernel . . . 54
6.5 Comparison . 59
6.6 Single Node Experiment . 60

vii

7 Discussion 65

8 Conclusion 75

References 77

viii

List of Figures

2.1 A representation of machine virtualisation with a hypervisor of type-II
[2] . 7

2.2 A representation of a containerised app deployment [2] 8

3.1 A graph of a Kubernetes cluster with three worker nodes [2] 13
3.2 Representation of how the concepts trigger, function, and environ-

ment, relate [1] . 17
3.3 A flowchart representation of how a new function is created with ex-

ecutor type new-deploy. [1] . 18

5.1 View of processes on pod before prioritisation. 35
5.2 View of processes on pod after real-time prioritisation. 36
5.3 Parent/children hierarchy for two deployed Kubernetes pods. 38

6.1 Response (upper diagram) and execution (lower diagram) time for the
stress test conducted on the baseline experiment configuration. Blue
points represent measured data with presented variance (s2), mean
(µ), and 95th percentile in each diagram. Red solid lines represent
moving average with window size 10 for response time, and 50 for
execution time. Failures for a sample is represented by a value of zero. 42

6.2 Response (upper diagram) and execution (lower diagram) time for
baseline experiment. Blue points represent measured data with pre-
sented variance (s2), mean (µ), and 95th percentile in each diagram.
Red solid lines represent moving average with window size 10 for re-
sponse time, and 50 for execution time. 44

6.3 Response (upper diagram) and execution (lower diagram) time for
experiment 1. Blue points represent measured data with presented
variance (s2), mean (µ), and 95th percentile in each diagram. Red
solid lines represent moving average with window size 10 for response
time, and 50 for execution time. 46

6.4 Cumulative distribution for experiment 1 with preemptive (SCHED_FIFO)
and nonpreemptive (SCHED_OTHER) scheduling on a nonpreemp-
tive kernel. 46

ix

6.5 Boxplot representing the distribution of execution time and response
time for experiment 1 and baseline with the load function 2000ms
on a nonpreemptive kernel. The whiskers upper and lower boundaries
represent the 95th and 5th percentile respectively and the upper and
lower boundary for the box represents the 75th and 25th-percentile
respectively. The median is represented with a line in the "box" in the
"box". 47

6.6 Boxplot representing the distribution of execution time and response
time for experiment 1 and baseline with the load function 1000ms
on a nonpreemptive kernel. The whiskers upper and lower boundaries
represent the 95th and 5th percentile respectively and the upper and
lower boundary for the box represents the 75th and 25th-percentile
respectively. The median is represented with a line in the "box". . . 48

6.7 Boxplot representation of response and execution time for various load
periods in experiment 1. The whiskers upper and lower boundaries
represent the 95th and 5th percentile respectively and the upper and
lower boundary for the box represents the 75th and 25th-percentile
respectively. The median is represented with a line in the "box". . . 49

6.8 Response (upper diagram) and execution (lower diagram) time for ex-
periment 2 with cgroups. Blue points represent measured data with
presented variance (s2), mean (µ), and 95th percentile in each dia-
gram. Red solid lines represent moving average with window size 10
for response time, and 50 for execution time. 51

6.9 Cumulative distribution of preemptive (SCHED_FIFO) and nonpre-
emptive (SCHED_OTHER) scheduling on a nonpreemptive kernel us-
ing cgroups. 51

6.10 Boxplot representing the distribution of execution time and response
time for experiment 2 and baseline with the load function 2000ms on
a nonpreemptive kernel using cgroup. The whiskers upper and lower
boundaries represent the 95th and 5th percentile respectively and the
upper and lower boundary for the box represents the 75th and 25th-
percentile respectively. The median is represented with a line in the
"box". 52

6.11 Boxplot representation of response and execution time for various load
periods in experiment 2. The whiskers upper and lower boundaries
represent the 95th and 5th percentile respectively and the upper and
lower boundary for the box represents the 75th and 25th-percentile
respectively. The median is represented with a line in the "box". . . 53

6.12 Response (upper diagram) and execution (lower diagram) time for
experiment 3. Blue points represent measured data with presented
variance (s2), mean (µ), and 95th percentile in each diagram. Red
solid lines represent moving average with window size 10 for response
time, and 50 for execution time. 55

6.13 Cumulative distribution of preemptive (SCHED_FIFO) and nonpre-
emptive (SCHED_OTHER) scheduling on a preemptive kernel. . . . 56

x

6.14 Boxplot representing the distribution of execution time and response
time for two schedulers ran with the load function 2000ms on a pre-
emptive kernel. The whiskers upper and lower boundaries represent the
95th and 5th-percentile respectively and the upper and lower boundary
for the box represents the 75th and 25th-percentile respectively. The
median is represented with a line in the "box". 57

6.15 Boxplot representation of response and execution time for various load
periods in experiment 3. The whiskers upper and lower boundaries
represent the 95th and 5th percentile respectively and the upper and
lower boundary for the box represents the 75th and 25th-percentile
respectively. The median is represented with a line in the "box". . . 58

6.16 Comparison of cumulative distribution of baseline configurations on
different kernels and for load periods 2000 ms. 59

6.17 Comparison of cumulative distribution preemptive scheduling (SCHED_FIFO)
of different kernels for load periods 2000 ms. 60

6.18 Comparison of cumulative distribution preemptive scheduling (SCHED_FIFO)
of different kernels for load periods 500 ms. 60

6.19 Comparison of boxplot for all experiments using SCHED_FIFO and
load period 2000. 61

6.20 Boxplot representing the distribution of execution time and response
time for two schedulers ran with the load function 2000ms on a non-
preemptive kernel on bare metal with only one node. The whiskers
upper and lower boundaries represent the 95th and 5th-percentile re-
spectively and the upper and lower boundary for the box represents
the 75th and 25th-percentile respectively. The median is represented
with a line in the "box". 63

6.21 Boxplot representing the distribution of execution time and response
time for two schedulers ran with the load function 2000ms on a non-
preemptive kernel with only one node. The whiskers upper and lower
boundaries represent the 95th and 5th-percentile respectively and the
upper and lower boundary for the box represents the 75th and 25th-
percentile respectively. The median is represented with a line in the
"box". 64

7.1 List of pods in the Kubernetes cluster. 69

xi

xii

List of Tables

4.1 Definitions of constraint parameters for Fission functions 28
4.2 Input parameters for baseline test 30

5.1 Kernel and scheduling configurations for the various tests 33
5.2 Configuration values for hierarchy in figure 5.3. 37

6.1 Measured average CPU usage, and Steal in percentage during the
baseline measurements for the different load periods and theoretically
calculated CPU usage from load functions (CPU Load). 42

6.2 Table over the variance (σ2), standard deviation, mean (µ), 95th and
5th percentile (Pi%) in execution time (tE) and response time (tR)
for every load period . 43

6.3 Table with the variance (σ2), standard deviation (σ), mean (µ), 95th

and 5th percentile (Pi%) in execution time (tE) and response time
(tR) for every load period . 45

6.4 Table over the variance (σ2), standard deviation, mean, 95th and 5th

percentile (Pi%) in execution time (tE) and response time (tR) for
every load period . 50

6.5 Table over the variance (σ2), standard deviation, mean, 95th and 5th-
percentile (Pi%) in execution time (tE) and response time (tR) for
every load period . 54

6.6 Table over the variance (σ2), standard deviation, mean, 95th and 5th-
percentile (Pi%) in execution time (tE) and response time (tR) for
every load period executed on a single node cluster in a bare metal
environment . 62

6.7 Table over the variance (σ2), standard deviation, mean, 95th and 5th-
percentile (Pi%) in execution time (tE) and response time (tR) for
every load period executed on a single node cluster on the private
cloud Xerces . 62

xiii

xiv

Chapter 1
Introduction

Cloud computing has become the main source of chosen infrastructure for deliv-
ering IT-resources due to its ability to meet on demand scalability while simulta-
neously offering a high quality of service. This trend shows no signs of stopping
and today most people use the cloud on a daily basis through storage, sharing
documents, or playing online games to name a few. However, in order to meet the
demands of increasingly more latency sensitive applications the cloud infrastruc-
ture needs to adapt.

In the next generation of industrial factories, the smart factories of Industry 4.0,
there is a big push for automation and flexibility in order to stay competitive in the
market. The solution to achieve this is through industrial internet of things IIoT.
This demands for a software to manage the applications running on the IIoT
devices. However, managing software clusters in an Industry 4.0 context poses
significant demand on runtime automation, timeliness, low latency, and high relia-
bility due to the real-time systems present. These properties need to be addressed
in a cost-efficient manner for the development of Industry 4.0.

Software clusters are today implemented by deploying processes on virtual ma-
chines (VMs), and by using containerised operational system (OS) level virtual-
isation, where the latter solution provides better results in term of isolation and
interference for real-time tasks [3, 4]. When using container-based virtualisation,
the Linux kernel has various tools, such as real-time schedulers, to handle men-
tioned tasks which gives containerised virtualisation an edge compared to full
virtualisation. [3]

Today the cloud native services provided by current cloud providers are not al-
ways suitable for low-latency real-time applications [5]. However, it is proposed
that appropriate changes can be made to the system to make it viable for real-time
applications. To orchestrate real-time scheduling for containerised virtualisation,
a modified cloud native approach could be used which takes use of existing real-
time schedulers. Currently, Kubernetes, which is a widely used open source tool

1

2 Introduction

for cloud orchestration has become the industry standard for cloud native deploy-
ments. Solving the real-time support for Kubernetes would imply a large benefit
for future deployments.

Achieving a more deterministic system with lower variation time for incoming
tasks to a cloud native cluster could point towards the conclusion that Kubernetes
could be a viable contrainer software orchestration tool for an Industry 4.0 context.
This would also mean that the constantly expanding array of tools to support
Kubernetes could be available in this context as well [2].

1.1 Problem definition

Kubernetes is the current standard for cloud native containerised orchestration and
provides benefits such as load balancing, automated roll-outs and rollbacks, and
security benefits [2] which will be of high importance in an Industry 4.0 context.

The goal of the research is to through our findings from investigating the Linux
scheduling policies and cloud native deployments, investigate Kubernetes service’s
viability for the deployment of real-time sensitive applications. With the help
of the Linux kernel’s prioritisation of tasks, we hope to reduce the variation of
execution time for jobs deployed to the cluster while analyzing how the response
time is affected.

The above mentioned goal can be summarised into three points:

• deduct the possibility of achieving real-time support for specified jobs in a
Kubernetes cluster,

• reduce both execution time and variance in execution time for the specified
prioritised jobs,

• evaluate the optimisation methods effect on the response time for prioritised
jobs

• evaluate the possibility and present a method for deploying a Kubernetes
cluster with support for real-time prioritisation.

1.2 Previous work

[6] discusses two main scheduling approaches. The first is multi-step scheduling
which is the approach of scheduling each pod (a container with an abstraction
layer on top) independently from one another. The second is Single-step schedul-
ing which considers a set of pods to schedule. The second technique increases the

Introduction 3

scheduling complexity while also resulting in a more optimised schedule. In a re-
cent study [7] a custom scheduler as a hybrid of the aforementioned approaches is
presented as a scheduler for real-time applications. This research presented a result
that significantly decreased the execution time for tasks, as the number of tasks
increased. This research has led to a significant increase in efficiency in a Kuber-
netes cluster, and we hope that our own research, introducing a well-established
and proven scheduler, like the scheduler in the Linux kernel, will amplify this
result.

A study [3] from 2019 proposes a way to guarantee temporal scheduling on co
located containers. This is done by an extension of the SCHED_DEADLINE
scheduling policy. This resulted in a scheduling policy that can be used on a
LXC with multiple virtual CPUs. In addition to this the study, [4] presents
how to successfully deploy virtual network functions as containers on a private
cloud. To achieve this, the Linux kernel v4.16.0-rc1 with a patch extending
SCHED_DEADLINE is used. Similarly, this research intends to use the Linux
kernel’s scheduler to improve the execution time for containerised applications.

In [8], progress-based container scheduling in a Kubernetes cluster is investigated.
This aided in implementing the ProCon scheme. The Pro Con scheme schedules
the incoming tasks based on, not only the current resources available, but also on
the predicted future resources of a node. These findings resulted in a Kubernetes
cluster with 23.0% better performance compared to a cluster with the default
scheduler. This research can be useful in understanding how we can modify the
Kubernetes scheduler for the integration with the Linux scheduler’s properties.

1.3 Limitations

This thesis is limited to the scope of investigating the execution time of processes
on a Kubernetes cluster.Although the execution time for processes on a cluster is
an important aspect for a platform to be considered viable for the deployment of
real-time applications. It is not all that is required.

What the end consumer is experiencing is in fact the response time. There has
been researched done in this field, improving the latency of networking which will
ultimately result in a reduced response time. In [9] network function virtualisa-
tion gives promising results in reducing response time latency in a cloud datacenter
context. Another topic that this thesis does not address is the live migration of
applications in a kubernetes cluster. The act of live migrating application refers
to the relocation of applications while not disconnecting the client. The reason
one would do this is in a loadbalancing context were one would want to offload a
server. Another reason is when the hosts needs maintenance. The advancements
in this field will therefore mean a lower downtime for applications in the men-
tioned scenarios, a very important topic in the real-time computing on a cloud
infrastructure.

4 Introduction

Chapter 2
Background

To understand what cloud currently means, we will be giving a brief history of
how cloud services have evolved into what it is known as today. We will only then
introduce further details around specific available cloud technologies.

Today, the cloud has somewhat turned into a buzzword as if it were something
completely new. Some areas, such as cloud native, are relatively new. But the
concept of cloud has been around for longer than most people think. In the
1970s, IBM released an OS named VM that would revolutionise the cloud by
introducing virtual machines and the hypervisor. These technologies allowed users
to work flexibly and made it possible for them to run their code on different OS’.
Virtualisation lays the foundation for what the cloud looks like today, and now 50
years later, machine-level virtualisation is still heavily used in the cloud. [10]

2.1 Traditional Deployments

At the dawn of internet applications and websites, an organisation or person who
wanted to deploy an application or web service had to deploy it on a physical server.
This deployment method (often referred to as bare metal deployment or hardware
deployment) required the developer to be very aware of the application’s traffic,
since the only option for alleviating load from one server was to start a new server
that could handle some of the traffic. Today this process can be done dynamically,
but there are still limits on how fast it can be done. [11] Another issue with
bare metal deployments was that there were no way of constraining the resources
used by one application. This issue led to the developers often underutilising the
resources available by only designating servers for one application.

5

6 Background

2.2 Machine Virtualised Deployments

A VM is a virtual environment running on top of existing hardware that emulates
a computer’s functionality with a specific set of hardware and operation system
configurations. VMs are frequently used in order to allow a system to run multiple
operating systems by utilising virtualisation. Without virtualisation, one would
require to run multiple physical units to run different configurations, such as dif-
ferent OS’. VMs fulfill the need for different users to run multiple isolated virtual
computers with unique OS and hardware configurations for specific applications
in a cloud environment. [12]

In order to deploy cloud infrastructure using machine level virtualisation, a hy-
pervisor is used. The hypervisors job is to allocate the physical computer’s (
commonly referred to as the host) resources to each of the running VMs (com-
monly regarded as the guests). Each guest is an isolated instance with a guest
OS and resources such as CPU, memory, and storage allocated by the host from
a shared pool that can be reallocated between existing and new VMs. [13]

There are two types of hypervisors, type-I and type-II. Type-I is running directly
on the hardware, and type-II runs on top of the operating system on the host.
Type-I offers better performance since it communicates directly with the hardware.
Type-I hypervisors needs hardware-specific configurations, making it less flexible,
were in type-II, the OS covers this [14]. A figure representing an app deployment
using hardware virtualisation with hypervisor of type-II can be found in figure 2.1.
A usable metric when operating in a virtual environment is the steal metric. Steal
metric is defined by IBM as the percentage of time that a virtual CPU is ready to
run and waits for a real CPU.

The machine virtualised deployment method allows the user to isolate applications
by running the applications on separate VMs. Compared to the traditional deploy-
ments where one could only achieve isolation by starting a new server instance,
this method allows for higher hardware utilisation and increased scalability. [12]

2.3 Containerised Deployments

Containers is a standard unit of software that solves the problem of reliably run-
ning an application with the same dependencies and configurations when moved
between different computing instances. Containers solves this problem by bundling
up the runtime environment, the application and its dependencies along with other
binaries and all of the needed configurations to run the application. This allows
the developer to not worry about the underlying environment when moving an
application from one computer to another. In other words, containers ensure that
applications tested and verified on one computer can be deployed on another by
utilising container images. In recent years, container orchestration has been widely

Background 7

Figure 2.1: A representation of machine virtualisation with a hyper-
visor of type-II [2]

adopted as the industry standard in cloud native deployments. Rather than using
machine level virtualisation as with VMs, container-based virtualisation is done
on the operation system level. With this approach, the containers do not need a
OS for every application, instead the container runtime is installed on the host
and it is through that all containers on a computing instance share the host OS.
As a result, the guests hardware architecture and kernel is the same as the hosts.
This makes containers easier to deploy compared to machine level virtualisation
due to the absence of the hypervisor and guest OS.[15] Due to their lightweight
nature, containers are very suitable for fast and reliable scaling in a cloud native
environment [16].

In order to run containers on the host, a container runtime is needed which is a
software responsible for managing when and how the containers are allowed to use
the host resources. A few popular container runtimes include docker, containerd,
and lxd. A representation of the architecture for a containerised app deployment
is presented in figure 2.2. [2]

To ensure fast scaling and high availability for deployed containers, a system for
managing them is needed. If a container crashes it needs to be redeployed, and
if an application is experiencing high traffic a copy of the container should be
deployed to ease the load. The software to offer this service is called a container
orchestration software and Kubernetes is the current industry standard. [2]

8 Background

Figure 2.2: A representation of a containerised app deployment [2]

2.4 Cloud Computing Today

Cloud was in september 2011 defined by the National Institute of Standards and
Technology as:

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction. [17]

Cloud computing is today the most flexible option for delivering IT solutions.
It has the architecture for ensuring high security, high flexibility, and its dynamic
nature allows for greater resource allocation when compared to designated servers.
[18]

The difference of the traditional deployments and cloud architectures used today
are commonly explained with the allegory of Pets vs. Cattle [19]. With traditional
cloud architecture, servers were treated as pets. If the server malfunctions or
failed for some reason, the developers urgently needed to fix the problem. Usually,
the servers were designed to not be down, and any downtime would affect the
running system heavily. Cattle on the other hand are disposable. These servers are
designed to tolerate failures using automated tools such as Kubernetes and consists
of many computers in a cluster, or using the allegory, a herd. During failure,
the cluster should have automated rollbacks and not require human support, by
utilising full automation. Therefore, developers do not need to be concerned with
if a server malfunctions or for other reasons becomes unresponsive. Today, this is
what the cloud infrastructure looks like using a cloud-native approach. [20]

Background 9

In 2007 Amazon was the first to offer a cloud computing service to the public. [21]
Since then, many have followed to offer similar cloud computing services. However
how a company can offer these services differ immensely and has therefore been
grouped into different service models. A few of these service models will be given
a brief introduction.

2.4.1 Software as a Service

Software as a Service (SaaS) is the service that offers the end-user an opportunity
to use application or software that operates on the cloud. The consumer has no
control nor perception of either the running application or the cloud infrastructure.
SaaS is solely providing a user with an interface to the application running on the
cloud. Since where and how the application runs are arbitrary to the end-user,
this benefits the provider since they can share the running application between
clients and increase resource utilisation. Providers can also direct the user to a
new instance of the running application, meaning they can repair and upgrade
applications with zero downtime for the clients. [22] [23]

2.4.2 Platform as a Service

Platform as a Service (PaaS) provides a platform for developers to run, test and
deploy their applications. In contrast to SaaS which is directed more towards end
users, PaaS is rather directed towards the developers. The providers offer the
operating system, servers, systems for managing databases, software development
tools, and analytic tools. This model is beneficial for small to medium-sized organ-
isations to ensure they can speed up time to market without spending resources
building their own infrastructure for the deployment process. [23]

2.4.3 Infrastructure as a Service

In [17] Infrastructure as a Service (IaaS) is described as the service where “The
capability provided to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the consumer can deploy and
run arbitrary software, which can include operating systems and applications”.
This type of service gives the consumer freedom in implementing their software
system. For example, a consumer can deploy their own choice of the platform
providing service software to their infrastructure. Another benefit of this service
model is it often becomes the cheaper alternative in the long run compared to
PaaS. Although, the increased freedom of using IaaS also increases the complexity
and could result in a higher barrier of entry for the consumer. [23]

10 Background

2.4.4 Function as a Service

Functions as a Service (FaaS) or serverless computing offers a small container run-
time where the consumer can execute code. In 2014 Amazon offered this type
of service as AWS Lambda; since then, many providers, Google, Microsoft and
IBM, to name a few, has offered solutions following the same service model. [24]
This service model puts an abstraction on most of the infrastructure configuration
and management, while the responsibility for allocating resources and scaling the
functions when needed lies with the provider. With this model the consumers
are only concerned with paying for the resources they use. [25] Because of its
lightweight nature that enables event-driven resource allocation, FaaS has gained
big popularity in the development of microservices since it offers a cost-efficient
solution.[26] The name serverless can be misleading. The code is running on a
server but the server is abstracted away from the developer, and the developer
needs no concern with the underlying infrastructure. Hence it is regarded as
serverless from the developers point of view. [24]

2.5 Real-time need in Clouds

In fields utilising smart-manufacturing such as industry 4.0, where high availability,
high reliability, and high utilisation are demanded, current cloud services are not
always an optimal solution. Industry 4.0 require ultra-low latency in magnitudes
of milliseconds which cannot be guaranteed by today’s cloud services. Neither
can real-time execution be guaranteed due to the the lack of reliable determi-
nation between processes in the cloud. To accomplish a successful Industry 4.0
rollout, different systems in a cloud environment must work seamlessly and with
deterministic outcomes. [27]

2.6 Future of Cloud Computing

It is estimated that more than 50 billion devices will be connected to the internet
by 2025, partly due to the growing trend of Internet of Things (IoT) devices [28].
These devices mainly use the cloud for storage. However, some newly developed
Industrial IoT (IIoT) systems require subsecond responses, which needs to be
addressed.

A promising field that tackles the previously mentioned issue is researched in-
creasingly called fog computing or edge computing. The idea is to bring cloud
computing to the edge of the network. In the case of IIoT, this is achieved with
a datacentre in the proximity of the industry. Through this proximity of the
computations, it allows for lower latencies for the applications. [29]

Background 11

In [30] a platform for orchestrating resources for an ultra-low latency edge cloud
was built. The platform proved feasibility for deploying and orchestrating real-time
sensitive applications. Although these specialised solutions exist, there is hope that
ultra-low latency requirements will still be viable with the future standard cloud
orchestration software.

12 Background

Chapter 3
Theory

3.1 Kubernetes

Kubernetes is an open-source platform for orchestrating containers that was re-
leased in 2015 by Google to offer a more straightforward solution for managing
containerised workloads deployed to a cloud. Since then Kubernetes has grown
immensely in popularity and is today becoming the standard tool used for cloud
deployments [31]. Today many cloud providers offer either IaaS or PaaS with Ku-
bernetes to their customers in order to ease the deployment and management of
their applications [32].

Kubernetes allows the user automatic monitoring over the containers, and rede-
ployment while also aiding in the initial deployment of containers [2]. In addition
to this, the increased popularity of an open-source platform brings a whole array
of continuously developed tools aiding Kubernetes. Therefore, a system that is
not compatible with Kubernetes in the world of cloud is many times missing out
on valuable tools used for cloud native development.

Figure 3.1: A graph of a Kubernetes cluster with three worker nodes
[2]

13

14 Theory

3.1.1 Concepts

This section intends to give a brief understanding of the Kubernetes architecture.
These concepts together forms a Kubernetes cluster and the core components will
be discussed in in more details.

Cluster

A cluster is defined as a group of instances (physical machines, virtual machines,
or containers) connected to the same network that work together to achieve a
common goal, in our case provide computing capabilities. [32]

Pod

The pod is the smallest unit in a Kubernetes cluster. It is an abstraction of one
or more containers and is seen as a unit of work in Kubernetes. All containers
in a pod always run on the same node. All containers in a pod share the same
networking and storage resources, and an application running on a pod views the
pod as its host. Pods are considered to be ephemeral which means they can be torn
down and built up with ease since their specification is stored as a deployment.
[32]

Worker Node

A worker node is a computing instance in the Kubernetes cluster. The worker
nodes main task is to compute pods deployed on the Kubernetes cluster. To
achieve this every worker node contains the following three processes: kubelet,
kube-proxy, and a container runtime.

Kubelet is an agent running on each node whose job is to monitor and ensure
whatever is running on the node corresponds to the instructions given by the
master node. Kubelet is also responsible for monitoring the status and health of
running pods.

Kube-proxy is the process responsible for the networking rules of the nodes. it’s
job is to allow for communication with the pods running on the node from within
or outside the cluster.

Container runtime is the last of the three components on the node and it is re-
sponsible for communicating with the hosts underlying kernel to run the container-
ised processes on each worker node. To the end user one can view the container
runtime as responsible for running a container. In Kubernetes this component is

Theory 15

responsible for running the containers that are located in the Kubernetes resource
called pods. Kubernetes is compatible with the container runtimes Docker, con-
tainerd, and CRI-O, but also any container runtime with Kubernetes container
runtime interface implemented. [2]

Master Node

The master node, sometimes called control plane, is the part of the cluster that
monitors and manages the whole cluster. The master node can run on a single
instance but also be distributed over several instances to ensure high availability
when implementing larger clusters. The components in the master node include
the kube-API server, kube-scheduler, etcd, and kube-controller manager.

Kube-API server is the process responsible for exposing the Kubernetes API
used to control the cluster. With the API a user may for example deploy a new
pod, or kill an existing one.

Kube-scheduler handles the scheduling of pods on the cluster. Once a pod
has been deployed the kube-scheduler finds a suitable node for the pod to run
on. When scheduling, the kube-scheduler takes into account constraints such as
resource requirements, imposed pod specific constraints, and deadlines.

Etcd is a highly available key-value store for Kubernetes to store its data. Kuber-
netes uses the etcd to store the data and configurations of the cluster this includes
the desired state of the cluster and the actual state of the cluster. Since, Kuber-
netes is distributed between multiple computing instances or nodes, the etcd needs
to be a distributed and available on all nodes.

Kube-controller consists of five controllers combined into a single binary. The
job of these five controllers includes noticing when nodes go down, watches for
one-off tasks, and creates pods for these tasks to run on. It also manages the API
access tokens for new name-spaces. [2]

Deployment

When creating a pod you are in fact only creating the blueprint for the pod,
declared in a deployment, and the rest is handled by Kubernetes. Once the de-
ployment is created the desired state is updated and kube-controller works to
achieve this state in the cluster. It is because of this the pods can be considered
ephemeral. Once a pod malfunction therefore is removed, the current state of the
cluster no longer matches the desired state of the cluster and the kube-controller
works to create the necessary resources for the desired state to be fulfilled again.
[2]

16 Theory

3.1.2 Service

[2] In Kubernetes pods are seen as ephemeral. This means that a pod can be
teared down and restarted without losing any of its function. When a pod is
created it is given an ip-address in the cluster network. So imagine one pod called
frontend being communicates and is dependent on another pod called backend.
If the backend pod is torn down and afterwards restarted the frontend pod will
have no reference to the backend pod anymore since its ip-address has changed.
This is the problem the Kubernetes resource service solves. The service is bound
to a deployment and could therefore have reference to a set of pods running an
application. When a pod is restarted the same reference will hold.

How you would like to expose a set of pods for communication in a service can
differ. Kubernetes allows the developers to choose from a few different service types
dependent on their needs. We will discuss three of these service types briefly.

The first and default service type in Kubernetes is cluster-ip. This type exposes
the set of pods only to an cluster internal ip meaning it will only be reachable
from within the cluster.

The second service type is NodePort. NodePort exposes the set of pods to a static
port on the nodes of the cluster. This means that the service can be reached
externally at <NODE_IP>:<NODE_PORT>. Nodeport proxies the specified port to
the the pods referenced by the service.

The third option is type LoadBalancer. The type LoadBalancer exposes the ser-
vice externally using the cloud providers loadbalancer. This service then creates
services of type cluster-ip and NodePort to which the LoadBalancer directs traffic.
How the LoadBalancer directs traffic is decided by the cloud provider.

3.2 Fission [1]

Fission is an open source FaaS framework developed to be deployed to Kubernetes.
Since it is a framework for Kubernetes many of Kubernetes concepts are used in
Fission. It consists of three core concepts: functions, triggers, and environments.

Functions are a smaller piece of code (usually a single function or method) that
the consumer wishes to execute in response to a certain event.

Environments are the language specific parts of Fission and is where the code
is being executed. The environment contains enough software to run and compile
the deployed functions code segment. The environment also has a HTTP server
which allows a function to be triggered by the invocation of a HTTP request.
Environments are created from a container image designed to be compatible with
Fission.

Theory 17

Triggers are what binds an event to a certain function. It allows consumers to to
connect an HTTP request to a certain URL to invoke a specific function. A figure
representing the relationship between the function, environment, and triggers can
be seen in figure 3.2

Figure 3.2: Representation of how the concepts trigger, function,
and environment, relate [1]

A few of the core components that enables the three mentioned concepts will be
discussed further. These core components are the executor, new-deploy, function
pod, router, function service, function pod, and the function HPA.

Executor is the component in Fission that is responsible for starting new pod
functions. At the moment there exists two executor types, namely pool manager
and new-deploy. Pool manager is a great solution for when the consumer would
like to minimize cold-start time and new-deploy is best used when a function can
be exposed to heavy load since it allows for horizontal scaling.

When a function is created and needs to be executed new-deploy creates three
resources. The first is the function service. This resource is a Kubernetes native
resource that routes incoming traffic to a set of function pods, it therefore acts as
a load-balancer for our function pods. The second resource created is the function
deployment. It is this resource that makes Kubernetes create the function-pods
specified by the function deployment. The third resource created is the function
Horizontal Pod Autoscaler (HPA). It is this resource that allows for the horizontal
scaling of pods when needed. Limitations of how much and how little the horizontal
scaling can stretch can be set when creating a function.

The Fission router is a service that can be exposed to the outside of the cluster
and it is this service that receives the HTTP requests specifying what function to
be triggered.

A figure representation of the flow for the initial request to a function with new-
deploy executor type can be seen in figure 3.3. The steps seen in this figure are as
follows:

1. The router requests function service address for a function

18 Theory

2. Executor receives information regarding the functions resources from Ku-
bernetes.

3. The executor invokes new-deploy to create the three resources necessary for
the function using new-deploy executor type.

4. New-deploy creates the three resources

5. The service address of a function is returned to the router

6. The router redirects its traffic to the received address

7. The function service load balances and redirects traffic to a suitable function
pod that executes the code.

After this sequence the function pod serves the request originating from the router
service.

Figure 3.3: A flowchart representation of how a new function is
created with executor type new-deploy. [1]

3.3 Linux

The Linux project started as a personal project by Linus Torvalds in 1991 to create
a free operational system kernel. What first stared as a small project has today
became by far the most popular operation system for servers deployment. This
section intends to give some background on the Linux kernel and a few of the
available scheduling policies available for Linux.

Theory 19

3.3.1 Linux Kernel [33]

The Linux kernel is the core of the OS and works as the interface between a com-
puters hardware and its processes. More specifically, the kernel is responsible for
managing memory management, process management, device drivers, and system
calls and security [34]. In most cases the user has no need to modify or even
understand the kernel since it works in the background.

Kernel mode is defined as the mode when an application requests services from
the operating system via a system call. This means that an application is in kernel
mode when the operating system is in control of the CPU. How the kernel handles
this critical sections can be divided into two general groups. The non-preemptive
kernel and preemptive kernel. The non preemptive means that the an application
in kernel mode will run until it blocks, yields voluntarily, or exits kernel mode.
The preemptive kernel allows processes to be preempted while running in kernel
mode. This gives the preemptive kernel the opportunity to schedule higher priority
processes even more frequently than compared to a non-preemptive kernel. This is
applied to ensure even higher deterministic properties to processes with real time
priorities.

3.3.2 Scheduling policies in Linux [35]

SCHED_FIFO: First in first out scheduling, is a preemptive real-time scheduler using
the first in first out algorithm. It uses a static prioritisation between 1-99 where 1
is the lowest. As it is a real-time scheduler, it will always preempt non real-time
threads. For SCHED_FIFO the following rules apply:

1. A running SCHED_FIFO thread that has been preempted by a process with
higher priority will stay at the head of the list for its priority and resume
when all threads with higher priority are blocked again.

2. When a blocked SCHED_FIFO thread becomes runnable, it will be inserted
at the end of the list for its priority.

SCHED_RR: Round robin scheduling, is the same as SCHED_FIFO with the extended
functionality that the thread is allowed to only run for a specified time. If a
thread scheduled with round robin has been running for longer than or equal to
the specified time it will be put at the end of the list for its priority. If the thread
is preempted by a thread with higher priority it may only complete its remaining
round robin time when allowed to run again.

SCHED_OTHER: Other is the default scheduler in Linux and is a non real-time policy
with a static priority of 0. The thread to run is chosen from the static priority
0 list based on a dynamic priority that is determined only inside this list. The
dynamic priority is based on the nice value (specified further down) and is increased

20 Theory

for predetermined CPU period the thread is ready to run, but denied to run
by the scheduler. This ensures fair progress among all SCHED_OTHER threads.
SCHED_OTHER

Nice values: The nice value in Linux is a priority value to non real-time threads
that influences the CPU scheduler to favor or disfavor a process. The values can
be set between -19 to 20, where -19 is the highest priority. Negative priorities may
only be set by the root user.

In order to set real-time priorities in Linux, the chrt command is used. This
commands takes three arguments,

$ chrt <scheduling_policy> --pid <priority> <pid>

where the first one, scheduling_policy is the scheduler to be used, --fifo for
SCHED_FIFO, --rr for SCHED_RR. The second parameter is the priority, a value
between 1-99, and third is the process ID (pid) of a running process. To reset
a processes scheduling back to its default scheduling policy SCHED_OTHER, the
scheduling parameter should be set to --o and the priority value has to be set to
0.

3.3.3 Limits on Real-time Resources

Since the real-time policies SCHED_RR and SCHED_FIFO will be prioritised before
all SCHED_OTHER processes; a way to ensure that runaway real-time processes do
not starve all other processes is needed. This can be done in two ways.

The first is to set a global limit on the resources that real-time processes can
use. This is done in the path proc/sys/kernel/ to the files sched_rt_period_us
and sched_rt_runtime_us. The value set in sched_rt_period_us is equivalent
to 100% of the CPU in milliseconds. The second file, sched_rt_runtime_us,
is changed to a value corresponding to the allowed time real-time process can
utilise the CPU and must be lower than than that in sched_rt_period_us. The
percentage of time a real time process on one core is allowed to run corresponds
to sched_rt_period_us divided by sched_rt_period_us. From this follows that
setting sched_rt_period_us to 1s and sched_rt_runtime_us to 0.5s on a four
core cpu corresponds to giving the real time process access to 2 CPU for 1 second
and also 4 cpus for 0.5 seconds, for a period of 1 second. [36]

Another way to limit real-time processes access to resources is to use real-time
group scheduling using cgroups. This is enabled by the flag CONFIG_RT_GROUP_SCHED
while configuring the kernel. This flag enables the user to restrict the resources
in the same way as previously mentioned but allowing this to be done on a
given cgroup. A cgroup is a way for linux to group processes in order to limit

Theory 21

their access to resources such as CPU-time or memory. With the use of the
CONFIG_RT_GROUP_SCHED flag, the user can access the cgroup files cpu.rt_period_us
and cpu.rt_runtime_us. These two files exist in a cgroup folder using a par-
ent/children hierarchy where the total runtime of the children may not exceed the
parents runtime. This implementation can be usefull when you want to restrict the
resources consumed by a process but still giving the process the highest priority.
[36]

22 Theory

Chapter 4
Default Kubernetes Cluster

This chapter presents the proposed solution for a baseline Kubernetes cluster with
the purpose to measure execution and response time variance.The baseline cluster
is used to evaluate improvements in the next chapter where various improved
configurations are applied to the cluster.

4.1 Proposed Solution

4.1.1 Cloud infrastructure

Through cooperation with Ericsson there was access available to Ericssons private
cloud Xerces. There are two main reasons specific to the purpose of this paper
to opt for the alternative of Ericssons private cloud. The first being, Ericssons
internal cloud is managed by the IaaS OpenStack which provides a high degree of
freedom when configuring the architecture of the cloud’s resources. This includes
how the internal network is structured and also resource decisions concerning the
CPU, memory and storage capacities of the nodes of the cluster. OpenStack is
also widely accepted in the cloud community and this both, gives us access to a
lot of community knowledge, and also enables the work of this thesis to be of more
value the community. Using Xerces will also enable Ericsson to continue the work
conducted in this master thesis more effectively.

Another aspect of using Ericssons private cloud Xerces is that the cloud shares
the computing resources between multiple Virtual Machines. This statement is
true for public cloud options as well. The way the infrastructure is designed is
that a consumer requesting a computing instance is allocated a virtual machine.
The virtual machine is then running on a hypervisor together with other virtual
machines. This means that unless the consumer has control or can monitor what
computing instances are running on the host machine, there is no way of ensuring

23

24 Default Kubernetes Cluster

that no other instances are responsible for loading the hosts CPU. [12]

Instead of deploying Kubernetes on virtual machines, it can be deployed directly
on bare metal machines. This option ensures high reliability for an investigation
regarding how a kernel is prioritising its processes because of the absence of the
hypervisor. This gives full control over what processes are computed on the CPU.
However, it is a niché setup since in most cases regarding cloud computing the
virtualisation is what makes it flexible and easy to scale, as described in section
2.2.

4.1.2 Loading the Cluster

A solution could be to deploy the measured processes with a HTTP server running
in a container. This solution requires a load balancer to be configured since it
intends to run on multiple pods. With the FaaS tool Fission the same setup
was achieved while letting Fission handle the load balancing. A more detailed
description of the architecture of the FaaS function Fission can be found in section
3.2. In essence this is a tool that allows for faster deployment of HTTP-servers
that can run arbitrary code. Another great benefit of Fission is that it allows
for the management of the deployed functions through the Fission command line
interface (CLI).

With Fission the cluster can be loaded in a controlled manner by using predefined
functions. For a system with a constant frequency of incoming functions, the CPU
usage from the functions can be calculated using equation 4.1 where tload is the
execution time for the load function, nCPU number of CPUs on the node, and
Pload the period between each load call.

CPUusage =
tload

nCPU ∗ Pload
(4.1)

4.1.3 Measurements

Measuring the results of the cluster requires a setup with the possibility to mea-
sure various computation times. With the Industry 4.0 use case, it is relevant to
measure the total time of an HTTP request and the total time for process execu-
tion deployed on a container. The measurement can be conducted by measuring
multiple processes generated by FaaS functions. One process being the primary
function that will be measured, while the other acts as a load function that will
occupy computer resources. During the experiment presented in this chapter no
process prioritisation will be made since the purpose of the experiment is to create
a performance baseline of a cluster using native Kubernetes.

One method to measure the performance of a cluster consisting of a load function

Default Kubernetes Cluster 25

disturbing the ping function is to alter the call frequency of the load and measure
performance by running the ping function, acting like a probe to take measure-
ments and measure the Key Performance Indicators (KPIs) presented later in this
chapter. In addition to this, resource constraints are made when creating functions
using Fission, allowing for reduced uncertainty regarding the correlation between
the variables in the test and the results by isolating parameters, which will be
further explained in section 4.2.2.

Testing KPIs

With the mentioned test scenario, the following KPIs will be evaluated and used
to understand the behaviour of the cluster after configuration with the aim to
improve execution time variance.

• Response time is defined as the measured time starting from when the
HTTP request for the FaaS function is sent from the client, to when the
HTTP request’s result is returned from the server back to the client.

• Execution time is defined as the measured time starting from the FaaS
functions process is started at the server and ending when the process is
finished.

• Variance is defined in equation 4.2 and is the variance in the data and
will mainly be used to evaluate the execution time, where µ is the expected
value for the data set, defined in equation 4.3, and xi is a data point in the
data set. For both equations, n is the length of the data set.

• 95th-percentile is defined as the maximum value in 95% of the sorted data
set and is used to measure reliability in the cluster.

σ2 =

∑n
i=1(xi − µ)2

n
(4.2)

µ =

∑n
i=1 xi
n

(4.3)

26 Default Kubernetes Cluster

4.2 Methodology

4.2.1 Architecture

Cloud environment

Xerces is managed through the cloud platform software OpenStack. This allowed
for the resources on the cloud to be created through OpenStacks graphical interface
where the Kubernetes cluster was designed and deployed. The cluster consisted
of three computing instances on one private network. The configuration for these
instances were as follows:

• 4 Virtual CPUs 2.6 GHz

• 8GB RAM

• 40GB Disk

• running OS Ubuntu 18.04

One of the VMs were to act as a controller for the cluster meaning it would be
used to control the other nodes of the cluster through command line tools to
monitor the Kubernetes status. One node acted as a worker node responsible for
the computation of jobs deployed to the cluster and the last node deployed as the
master node.

Deployment of Kubernetes

The deployment of Kubernetes to the computing instances was done with the
deployment tool Kubespray. Kubespray is based on Ansible script and requires
one to set up an SSH connection between the controller VM and the node VMs
on the cluster. After the SSH connection was set up and the IP-addresses of the
nodes were specified, Kubespray deploys a production ready Kubernetes cluster
by running an Ansible script. The version of Kubespray used was v.2.15.0 and
deployed Kubernetes v.1.20 with Docker v.19.3.15 as its container runtime.

4.2.2 Testing

Setting up the FaaS functions

To evaluate the performance of the cluster, two FaaS functions were deployed in
order to simulate different tasks on the cluster. The first deployed function acted

Default Kubernetes Cluster 27

as a load on the cluster. The second function was used as a monitored function
whose performance was evaluated, and later on improved by being scheduled using
real-time schedulers in the next chapter. The two functions will be referred to as
the load function and the ping function. With this setup the load functions request
frequency will be varied in order to adjust for different total loads on the cluster.
This function will consist of a longer execution time in range of seconds. The ping
function will maintain a constant request frequency as it is only used evaluate its
execution time when varying the load function. Therefore the ping function will
have a much smaller execution time in order to act as a probe with a small impact
on the cluster and will be in the range of milliseconds.

Fission was used to install the FaaS functions in the cluster. This requires Ku-
bernetes CLI and Helm to be installed on the cluster and used NodePort as the
routing service to direct incoming data traffic. On the controller VM, the following
commands were executed:

$ export FISSION_NAMESPACE="Fission"
$ kubectl create namespace $FISSION_NAMESPACE
$ helm install --namespace $FISSION_NAMESPACE \

--name-template Fission \
--set serviceType=NodePort,routerServiceType=\

NodePort,logger.enableSecurityContext=true,prometheus.enabled=false \
https://github.com/Fission/Fission/releases/download/1.12.0/Fission-all-1.12.0.tgz

Installing and deploying a Fission function requires three steps. First is installing
the correct environment using a Fission image for the software language used. In
this case, NodeJS, which is a JavaScript runtime environment. The second step is
to create the Fission function from an already created code file. The third step is
to route the function to a URL.

The creation of the Fission functions was done in the test-script by running the
following commands:

$ fission env create --name node-debian --image fission/node-env-debian

This command creates an environment using an existing image which are accessed
through Fissions docker-hub repository available online.

$ fission fn create --name load-func \
--env node-debian \
--code load_func.js \
--executortype newdeploy \
--minscale 5 \

28 Default Kubernetes Cluster

––executortype=’poolmgr’ Executor type for execution; one
of ’poolmgr’, ’newdeploy’

––minscale=1 Minimum number of pods (Uses
resource inputs to configure HPA)

––targetcpu=80 Target average CPU usage
percentage across pods for scaling

Table 4.1: Definitions of constraint parameters for Fission functions

--targetcpu 0.5

$ fission fn create --name ping \
--env node-debian \
--code load_func.js \
--executortype newdeploy \
--minscale 2 \
--targetcpu 0.5

The create command creates the functions which are used for the test with the
parameters described in table 4.1.

$ fission route create --function ping --url /ping

The two functions consists of a simple while loop wrapped with a timer which are
returned and measured. The load function uses a while loop iterating 5∗108 times
which were constructed to have a runtime of around 1.5s, the ping function loops
105 times which corresponds to around 3ms, the size of the while loops were done
empirically to match the desired execution times. The execution time is timed
using the clock process.hrtimer(). This particular clock is preferred since it
minimises clock drift and has a high resolution in nanoseconds.

4.2.3 Script

The test is automated using a script implemented in Python version 3.8. It uses
the asyncio and request_async packages to allow for asynchronous testing with
the following flow:

1. Load and ping functions are instantiated

(a) Fission function with same name is deleted if it exists
(b) Fission functions are created

Default Kubernetes Cluster 29

(c) Old function HTTP routes with same name are deleted if existing

(d) HTTP routes are created

(e) HTTP URL-triggers are created

2. Starting load function thread and running load loop

3. Starting ping function thread and running ping functions asynchronously

4. Gathering ping function execution time and response time

5. Saving the data output as a json object

6. Repeating for all specified test parameters n times

Each test takes the parameters wait_time_ms, later referred to as the Load Period,
which is the period of how frequencly the HTTP request is sent to trigger the
load function, nbr_of_runs which is the number of runs for each test, and the
parameter wait_time_ping_ms which is the time the test waits between each ping
function. This results in the total runtime of the test as wait_time_ping_ms ∗
nbr_of_runs since the test is constructed to stop when all ping functions have
been executed. For all tests wait_time_ping_ms is constant and set to 2000ms.
This is chosen since the ping functions should not load the cluster but only measure
it. Therefore it is not called too frequently and also has a low execution time.

The asynchronous test is needed in order to run the load and ping functions in par-
allel to simulate a realistic concurrent environment as it would run in an Industry
4.0 scenario.

The baseline is produced using the input parameters presented in table 4.2 where
each test were run 1 time.

The values found in table 4.2 was proposed to stress to system to a sufficient
degree while still not overloading the cluster by estimating the CPU usage with
equation 4.1. This was later confirmed by running actual CPU measurement using
the command

$ sar 1 500

This command measures the CPU usage every second for 500 iterations. After
completion it gives an average of all the measured samples. The two metrics
measured with this command was the percentage of steal (the time a virtual CPU
is ready to run but waits for the resources of a real CPU) and percentage the CPU
was idle.

30 Default Kubernetes Cluster

wait_time_ms(ms) nbr_of_runs
No Load 2000
2000 2000
1000 2000
500 2000
400 2000

Table 4.2: Input parameters for baseline test

Chapter 5
Modified Kubernetes Cluster

In this chapter, various modifications to the default Kubernetes cluster from previ-
ous chapter are presented and then applied to conduct three different experiments
with the purpose to find different configurations which possibly reduced variance
in execution time and response time. This is then followed by the method of how
the three experiments are implemented.

5.1 Proposed solution

By taking advantage of the real-time properties in the Linux kernel, real-time
scheduling policies can prioritise specific processes to reduce the execution time
variance. To accomplish this, modifications must be done to the kernel of VMs
to support real-time scheduling. If using container level virtualisation, the con-
tainers running on top of the VMs can take advantage of said scheduling policies
because containers share the kernel with the underlying machine; as a result, giv-
ing the cluster and its pod’s real-time support. What is interesting with these
tests is to evaluate the overall performance, both in regards of execution time and
response time since it is not clear how real-time support would affect the overall
performance.

This chapter discusses various approaches to reduce the variation in execution time
for a Kubernetes cluster when compared to the default Kubernetes configuration.

5.1.1 Reducing variance

In its default state, Kubernetes has no support for deploying clusters with real-
time support since the real-time support comes from the underlying kernel. By
taking advantage of the real-time properties of the Linux kernel, Kubernetes can

31

32 Modified Kubernetes Cluster

be run with none, some, or fully support for real-time. The support for real-time
can generally be grouped in two categories: preemptive scheduling and preemptive
kernels which are discussed in 3.3.1 and will be used to give support for real-time
applications in the cluster. By using real-time preemption, the clusters configura-
tion can be altered and potentially reducing the execution and response time.

To reduce the variance in execution time for certain wanted processes, different
experimental setups were deployed in order to evaluate the effects on execution
time. The configurations used in the experiments evaluates performance on the
following cluster modifications:

• non-preemptive kernel with preemptive real-time scheduling,

• preemptive kernel with preemptive real-time scheduling.

Using these two approaches, one possible modification to the cluster compared
to the baseline is to take advantage of real-time scheduling policies in Linux. In
the baseline, the processes are all scheduled using SCHED_OTHER which is a non-
preemptive scheduling policy. By prioritising real-time processes and pods using
a real-time scheduler such as SCHED_FIFO, better performance is expected.

Another setup is a cluster with preemptive scheduling but with a modified nonpre-
emptive kernel using cgroups by enabling the flag CONFIG_RT_GROUP_SCHED. This
setup allows for the kernel to reserve CPU runtime for the prioritised real-time
processes and allowing them to run undisturbed for the period specified in the
process’ cgroup file cpu.rt_runtime_us. If the CPU-period is not occupied by
preemptive scheduled processes the resources are made available for nonpreemptive
processes.

In order to allow for full preemption, the kernel must be patched with a real-time
patch which is deployed in the final test setup. Using a preemptive kernel together
with a preemptive scheduling policy allows the processes with prioritisation to
execute with high reliability by preempting non-prioritised processes even when a
process is in kernel mode.

The experiments’ configurations are summarised in table 5.1 where each experi-
ment also will be executed using the SCHED_OTHER scheduler which corresponds
to the baseline configuration. Each test are compared to the baseline on the new
kernel setup in order to allow for fair comparison of the modifications. Due to the
fact that different VMs on the clusters may perform differently it is important to
reduce the uncertainty from this variable by not comparing the setups between
clusters.

In addition to kernel modifications and scheduling policies, support must be given
to the containers on the cluster. In order to schedule processes in the container
using the real-time scheduling policies the containers must enable the capability
SYS_NICE. For a stand-alone docker container the SYS_NICE capability can be set
with the following command:

Modified Kubernetes Cluster 33

Experiment 1 2 3
Kernel type Nonpreemptive Nonpreemptive cgroup Preemptive
Scheduler SCHED_FIFO SCHED_FIFO SCHED_FIFO

Table 5.1: Kernel and scheduling configurations for the various tests

$ docker run -it --cap-add=sys_nice \
fission/node-env-debian \
/bin/bash

This will create a running docker container using a Fission image with the ability
to set real-time scheduling prioritisation. Although, it is not a suitable approach
since it creates a stand alone container that cannot be used with Kubernetes.

In the experiment the containers should be created by Kubernetes where parame-
ters such as capability can be configured in the deployment file. This is a potential
entry point to enabling the SYS_NICE parameter, but also other parameters as well.
Another alternative is to add parameters and capabilities to the docker.service
file that starts all containers on a given node. This method will allow all pods to
be configured with real-time scheduling. Since this is not the case in this experi-
ment, the first method will be used to only grant selected pods the possibility to
be scheduled with SCHED_FIFO. This is done by editing the depoylment file of the
selected pod by running

$ kubectl edit deployment \
--namespace fission-function \
<deployment-name>

and adding the SYS_NICE capability in the following way in the deployment file:

spec:
container:

securityContext:
capabilities:

add:
- SYS_NICE

5.1.2 Measurements and Testing

To ensure fair results when comparing the modified cluster to the default cluster
setup, some aspects must be taken into account. The first aspect being that all

34 Modified Kubernetes Cluster

VMs on Xerces may not always perform identically. The total load on Xerces can
vary day to day since it is a shared cloud with multiple users. It is an issue that
the hosts resources are shared between multiple VMs. The second aspect is that
there is no way to ensure that two VM’s running at the same time of the day are
granted the same resources on their host machine. To solve these problems, one
solution can be to run both clusters simultaneously to eliminate the load problem.
In addition to this, running both configurations on the same cluster (and removing
the real-time parameters for one test instance) while alternating between the two
may eliminate the uncertainty of resource allocation.

5.2 Methodology

The cluster of the modified Kubernetes setup are identical to the default setup
in terms of the VM specifications, resources, Fission functions, and number of
nodes. Changes are made to the test script for the modified experiments where
the Fission functions are not deployed and redeployed by the script. Instead
the functions are instantiated manually once before conducting the tests. This
must be done since creating new functions creates new pods and containers which
inevitably removes the configurations made to existing pods. Without doing this,
the prioritisation of pods would be removed with each new created pod. This
section describes the added configurations present in the modified setups built on
the default configuration for each one of the three experiments’ cloud architecture.

For all tests the change to the test scripts and manual instantiation of Fission
functions are made. The SYS_NICE capability is enabled using the Kubernetes
deployment file for all tests as well.

5.2.1 Experiment 1 - Nonpreemptive Kernel

The setup of this experiment is conducted as for the default configuration using
Ubuntu 18.04 as the guest OS with the Linux kernel version 4.16.18. This in-
stallation is handled by OpenStack during cluster setup and uses a non-modified,
nonpreemptive kernel.

The preemptive scheduling policy SCHED_FIFO is used in order to prioritise the
pods responsible of executing the Fission ping function. Prioritisation of processes
requires manual modifications to the pods where the process is running and utilises
the Linux kernels scheduling policies. To accomplish this, the pod names are
identified using the kubernetes CTL kubectl. This command shows that two
pods are created for the ping function where the function is executed which we
wish to prioritise. The two pods are created in order to have a backup if one
were to crash and are identical, and are configured using the Fission parameter
--minscale. In order to give the pods prioritisation they need to be entered using

Modified Kubernetes Cluster 35

Figure 5.1: View of processes on pod before prioritisation.

the following command:

$ kubectl exec --stdin \
--tty \
--namespace fission-function <pod-name> \
-- /bin/bash

Running top inside the pod shows a list of running processes and their pid as
demonstrated in figure 5.1. The process node with pid 23 is responsible of execut-
ing the code from Fission and is prioritised using the chrt [37] command which
manipulates real-time attributes of a process.

The pid of the process that will be prioritised is passed together with the desired
scheduling policy and prioritisation value, which will be put to the maximum value
99 in order to give it real-time prioritisation.

$ chrt --fifo --pid 99 23

This is done for both pods that are prioritised and the test script can be executed.
After prioritisation the priority can be confirmed in the top view as showed in
figure 5.2. Notice the priority of node is changed from 20 to rt.

With these changes applied to the cluster the test script can be executed using the
same test parameters and number of runs as presented in subchapter 4.2.3. In order
to measure the improvement of the newly introduced scheduler, a test was run as
a comparison were all pods received the scheduling policy SCHED_OTHER directly
after the conducted experiment. This test will be refered to as the baseline for
this experiment.

5.2.2 Experiment 2 - Preemptive Scheduling with Nonpreemptive Kernel
using cgroups

The second experimental setup used Ubuntu 18.04 with an altered Linux ker-
nel version 4.16.18 where the possibility to set real-time resource limitations to

36 Modified Kubernetes Cluster

Figure 5.2: View of processes on pod after real-time prioritisation.

cpu.rt_runtime_usin cgroups has been made possible to allow for controlled real-
time process scheduling. This is done by enabling the flag CONFIG_RT_GROUP_SCHED
by installing a new kernel as follows:

• downloading and unzipping the Linux kernel files (v4.16.18) on the machine
and change directory to the kernel folder,

• installing the following build dependencies using sudo apt install

$ build-essential
$ kernel-package
$ fakeroot
$ libncurses5-dev
$ libssl-dev
$ ccache
$ bison
$ flex

and,

• opening the kernel configuration interface by running $make menuconfig
and enabling the following settings:

– Group scheduling for SCHED_RR/FIFO located at General setup ->
Control Group Support -> CPU controller

– enable access to .config at General setup Kernel .config support,

• compiling and installing the kernel with the following commands:

$ make -j20
$ sudo make modules_install -j20
$ sudo make install -j20

The installation of the new kernel is finished after the machine is rebooted.

Modified Kubernetes Cluster 37

Hierarchy level 1 2 3
cpu.rt_runtime_us 950000 475000 158333

Table 5.2: Configuration values for hierarchy in figure 5.3.

Deploying Pods

Due to the lack of real-time support in Kubernets, parts of the modified setup must
be done manually. The creation of Fission functions are conducted as previously,
but the test is not conducted until after all modifications are finished in order to
manipulate the pods. The test script is also altered to neither remove nor create
new functions as previously mentioned.

Cgroups

Whenever Kubernetes creates a pod, the pod is given a cgroup folder on the
machine it is deployed. Here, its resources’ limitations can be controlled, which is
needed to allow for real-time priority of the pod’s containers. In this experimental
setup, the Fission function hello is given prioritisation by altering the cgroup
files cpu.rt_runtime_us.

For each deployment of a Fission function, three containers are created and during
the installation of the function in section 4.2.2, the deployment was scaled with
a factor of 2, giving us two pods with three containers each. For other use cases
Kubernetes and Fission may add more pods and/or containers which must be
taken in account in case altering the experiment. This experiment focuses only on
giving priority to the deployed Fission ping function, but other pods could also be
prioritised.

The total CPU runtime reserved by the real-time processes needs to divide the to-
tal resource between containers pods for equal prioritisation (prioritisation could
also be divided unequally using this method). Linux cgroups uses a child/parent
hierarchy where the sum of the children’s runtime may not exceed their par-
ent’s. In order to avoid CPU starvation, the top parent cpu.rt_runtime_us
is set to 950000µs which is slightly lower than the maximum value of the file
cpu.rt_period_us, which is 1000000µs. This corresponds to real-time processes
being able to occupy 95% of the CPU time. The total cpu.rt_runtime_us re-
source is shared between its children resulting in the distribution presented in table
5.2 with the parent/children hierarchy seen in figure 5.3

38 Modified Kubernetes Cluster

Figure 5.3: Parent/children hierarchy for two deployed Kubernetes
pods.

Prioritisation of Processes

As with the previous experiment setup, this setup requires manual prioritisation
of the running pods. This is done in the same way with entering the pods using
kubectl and running

$ kubectl exec --stdin \
--tty \
--namespace fission-function <pod-name> \
-- /bin/bash

followed by prioritising the node process by running

$ chrt --fifo --pid 99 23

The difference between this experiment and the previous is that when using cgroups
it is only possible to give prioritisation to processes with cpu.rt_runtime_us > 0
and the prioritised processes may not execute longer than what is specified in the
cpu.rt_runtime_us file for every period set in cpu.rt_period_us.

5.2.3 Experiment 3 - Preemptive Kernel

The installation of a preemptive kernel requires a kernel to be patched with a
real-time extension.

This experiment uses the kernel version 4.16.18 together with the same version
patch. Both packages are downloaded and kernel packages are unzipped. The
kernel is then patched by running

Modified Kubernetes Cluster 39

$ gzip -cd ../patch-4.9.115-rt93.patch.gz | patch -p1 --verbose

followed by the installation of necessary packages and opening the configuration
GUI by running

$ sudo apt-get install libncurses-dev libssl-dev
$ make menuconfig

In the configuration GUI the following parameters are altered in order to acquire
a fully preemptive kernel:

• Check Fully Preemptive Kernel (RT) found in settings Processor type
and features –> Preemption Model

• Uncheck Check for stack overflows found in Kernel hacking –>Memory
Debugging

Finally the kernel is compiled by running

$ make -j20
$ sudo make modules_install -j20
$ sudo make install -j20

This installs a fully preemptive kernel and in order to take advantage of preemptive
scheduling SCHED_FIFO is used as in previous experiments. Just as before, the
desired pod should first be entered and the node process prioritised using the
chrt command. After this, the test script may be executed.

5.2.4 Experiment 4 - Bare metal experiment on a single node Cluster

In order to investigate what of the previously observed results was due to running
on a virtual machine environment we conducted a test on a bare metal environ-
ment. Another benefit of conducting this test on bare metal was to reduce the
effects on the response time due to networking.

A Kubernetes was deployed locally on a hardware setup on bare metal that con-
sisted of the following specifications:

• 8 CPU cores

• Intel i5-8350U CPU 1.70GHz

• 16 GB RAM

40 Modified Kubernetes Cluster

• Ubuntu 18.04

• nonpreemptive kernel

The Kubernetes cluster consisted of one master node running on the hardware
setup. The cluster was controlled via the same machine due to convenience. The
experiment mentioned in section was then conducted on the new local environment
with two additional minor adjustments. Since the computing instance had more
cores and at different speeds when compared to the previous virtual deployment,
the load function which were used to stress the system had to be adjusted. This
was done empirically by measuring the CPU-usage while loading the cluster and
using the following command:

$ sar 1 500

The number of iterations in the while loop for the load function were then increased
in order to correlate to the same load as for the cloud experiments, in the other
experiments the CPU usage were 87% for the 500ms test as seen in table 6.1. The
bare metal machine gained a CPU-usage of approximately 87% for the same load
as previous tests when the number of iterations in the while loop were set to 109

loops.

The second difference from that described in section was that in this test we
increased the execution time for the measured function, the ping function. This
was done to increase the duration for which the function could be interrupted and
therefore give a clearer result of the impact of applying SCHED_FIFO. The ping
function was increased to loop for 5× 107 iterations and resulted in an execution
time of around 150ms.

For comparison a single node cluster was also created on Xerces. The load period
was here also adjusted to achieve a 85% CPU-usage when requesting the load
function every 500ms. This resulted in a load function which iterated through the
while loop 4× 108 iterations.

The developed script described in subchapter 4.2.3 was then ran on both envi-
ronments with SCHED_OTHER and with the same load periods (2000ms, 1000ms,
500ms, and no load) and collected 400 samples of the ping function. The test
was then repeated after applying the scheduling policy SCHED_FIFO to the ping
function processes.

Chapter 6
Results

6.1 Baseline Results

The baseline test were run on the cluster with the default configuration described
in section 4.2. Four tests were conducted, each with the period between each
request to the load function being 2000ms, 1000ms, 500ms, and one with no load
function to vary the total load of the CPU from close to 0% up to around 100%.
The ping was requested every 2000ms for every test. Since the ping functions job
was only to measure the state of the cluster it was designed to have a small impact
on the system.

In order to validate that the various load periods put the system under sufficient
stress and conformed with the calculated estimates of the CPU usage found in
section X. A measurement of the CPU usage described further in section X, was
conducted during the four tests on the baseline cluster. In table 6.1 the measure-
ments of the actual CPU usage for different load periods are presented together
with the theoretically estimated CPU load (only taking in account the CPU usage
contribution from the load functions) value calculated using equation 4.1 where
tload is 1.5s, nCPU is 4 cores, and Pload corresponds to load period in the table.

The measurement for the lowest load period 400ms was only conducted to see the
breaking point for how high we could load our cluster. The scatter plot of this
measurement can be found in figure 6.1. Note that the points at value zero indicate
that the request somehow failed and an HTTP 200 response were not returned.

41

42 Results

Figure 6.1: Response (upper diagram) and execution (lower dia-
gram) time for the stress test conducted on the baseline exper-
iment configuration. Blue points represent measured data with
presented variance (s2), mean (µ), and 95th percentile in each
diagram. Red solid lines represent moving average with window
size 10 for response time, and 50 for execution time. Failures
for a sample is represented by a value of zero.

Measured Average CPU metrics
Load period (ms) CPU Usage % CPU Load (calc) % Steal %
No load 21.34 - 0.26
2000 39.94 18.75 0.22
1000 57.22 37.5 0.15
500 87.14 75 0.08
400 99.52 93 0.03

Table 6.1: Measured average CPU usage, and Steal in percentage
during the baseline measurements for the different load peri-
ods and theoretically calculated CPU usage from load functions
(CPU Load).

Results 43

The response time and execution time of the 2000ms test conducted on the baseline
cluster is presented in figure 6.2 and the KPIs of all test are presented in table 6.2.

Baseline
Load period (ms) None 2000 1000 500
tE σ2 1.41 5.84 5.68 4.58
tE σ 1.19 2.42 2.38 2.14
tE µ (ms) 6.53 5.58 4.48 3.86
tE P95% (ms) 8.18 9.17 7.86 7.29
tE P5% (ms) 6.01 2.77 2.73 2.73
tR σ2 328000 11700 19500 14000
tR σ 573 108.0 140 118
tR µ (ms) 110 79.5 74 87.7
tR P95% (ms) 152 134.0 118 216
tR P5% (ms) 50.7 42.8 38.5 39.3

Table 6.2: Table over the variance (σ2), standard deviation, mean
(µ), 95th and 5th percentile (Pi%) in execution time (tE) and
response time (tR) for every load period

44 Results

Figure 6.2: Response (upper diagram) and execution (lower di-
agram) time for baseline experiment. Blue points represent
measured data with presented variance (s2), mean (µ), and
95th percentile in each diagram. Red solid lines represent mov-
ing average with window size 10 for response time, and 50 for
execution time.

Results 45

6.2 Experiment 1 - Preemptive Scheduling with Nonpreemp-
tive Kernel

Experiment 1, as described in section 5.2.4 with the preemptive scheduler SCHED_FIFO
and a nonpreemptive kernel were run with the wait time between the load function
set to 2000ms, 1000ms, 500ms, and one test with no load function. In figure 6.3
the response and execution time for the test with wait time 2000ms is presented.

In table 6.3 the KPIs of the four test are shown with values from both the test
using a real-time scheduler SCHED_FIFO, and with SCHED_OTHER as a baseline.
The baseline configuration were run on the same cluster immediately after the
test using the real-time scheduler.

Nonpreemptive Kernel
SCHED_FIFO / SCHED_OTHER

Load period (ms) None 2000 1000 500
tE σ2 0.514/1.41 2.65/5.84 2.28/5.68 1.1/4.58
tE σ 0.717/1.19 1.63/2.42 1.51/2.38 1.05/2.14
tE µ (ms) 6.17/6.53 4.21/5.58 3.89/4.48 3.26/3.86
tE P95% (ms) 6.53/8.18 6.35/9.17 6.31/7.86 6.17/7.29
tE P5% (ms) 5.99/6.01 2.74/2.77 2.73/2.73 2.73/2.73
tR σ2×104 962/32,8 19.6/1.17 14.1/1.95 125/1,4
tR σ 3100/573 442/108.0 376/140 1120/118
tR µ (ms) 386/110 93.5/79.5 96.4/74 262/ 87.7
tR P95% (ms) 208/152 96.1/134.0 137/118 612/216
tR P5% (ms) 48.5/50.7 2.74/42.8 37.9/38.5 38.7/39.3

Table 6.3: Table with the variance (σ2), standard deviation (σ),
mean (µ), 95th and 5th percentile (Pi%) in execution time (tE)
and response time (tR) for every load period

In figure 6.4 the cumulative distribution function (CDF) of the experiment and
baseline with load period 2000ms are presented.

46 Results

Figure 6.3: Response (upper diagram) and execution (lower dia-
gram) time for experiment 1. Blue points represent measured
data with presented variance (s2), mean (µ), and 95th per-
centile in each diagram. Red solid lines represent moving aver-
age with window size 10 for response time, and 50 for execution
time.

Figure 6.4: Cumulative distribution for experiment 1 with preemp-
tive (SCHED_FIFO) and nonpreemptive (SCHED_OTHER)
scheduling on a nonpreemptive kernel.

Results 47

In figure 6.5 and 6.6 boxplot representation of the results from the experiment
using SCHED_FIFO compared to SCHED_OTHER are shown for load period 2000ms
and 1000ms respectively. In figure 6.7 boxplot of all load periods are presented
using scheduler SCHED_FIFO.

Figure 6.5: Boxplot representing the distribution of execution time
and response time for experiment 1 and baseline with the load
function 2000ms on a nonpreemptive kernel. The whiskers up-
per and lower boundaries represent the 95th and 5th percentile
respectively and the upper and lower boundary for the box rep-
resents the 75th and 25th-percentile respectively. The median
is represented with a line in the "box" in the "box".

48 Results

Figure 6.6: Boxplot representing the distribution of execution time
and response time for experiment 1 and baseline with the load
function 1000ms on a nonpreemptive kernel. The whiskers up-
per and lower boundaries represent the 95th and 5th percentile
respectively and the upper and lower boundary for the box rep-
resents the 75th and 25th-percentile respectively. The median
is represented with a line in the "box".

Results 49

Figure 6.7: Boxplot representation of response and execution time
for various load periods in experiment 1. The whiskers up-
per and lower boundaries represent the 95th and 5th percentile
respectively and the upper and lower boundary for the box rep-
resents the 75th and 25th-percentile respectively. The median
is represented with a line in the "box".

50 Results

6.3 Experiment 2 - Preemptive Scheduling with Nonpreemp-
tive Kernel using cgroups

The second experiment, as described in 5.2.2 with a preemptive scheduler using
SCHED_FIFO and a nonpreemptive kernel with the CONFIG_RT_GROUP_SCHED en-
abled to give support for real-time cgroup configurations were run with the wait
time between the load function set to 2000ms, 1000ms, 500ms, and one test with
no load function. In figure 6.8 the response and execution time for the test with
wait time 2000ms is presented.

In table 6.4 the KPIs of the four test are shown for both the real-time scheduler
SCHED_FIFOand the baseline with SCHED_OTHER which ran on the cluster directly
after on the same kernel to eliminate uncertainty from kernel modifications.

Nonpreemptive Kernel with Cgroup limitations
SCHED_FIFO / SCHED_OTHER

wait_time (ms) None 2000 1000 500
tE σ2 1.36/1.88 1.47/4.75 1.76/5.35 1.03/4.81
tE σ 1.17/1.37 1.21/2.18 1.33/2.31 1.02/2.19
tE µ (ms) 5.96/6.25 3.47/4.62 3.55/4.44 3.21/3.85
tE P95% (ms) 6.67/7.77 6.19/7.75 6.26/8.02 6.09/7.24
tE P5% (ms) 3.04/2.96 2.74/2.74 2.73/2.74 2.73/2.73
tR σ2×104 3.7/2.48 0.436/0.742 21.9/9.64 6.43/3.67
tR σ 192/157 66/86.1 148/310 254/192
tR µ (ms) 71.8/85 57.1/67.8 71.3/86.5 107/99.7
tR P95% (ms) 85.3/188 85.5/115 145/124 307/235
tR P5% (ms) 41.6/42.6 31.6/38.6 31.6/38.7 35.3/38.8

Table 6.4: Table over the variance (σ2), standard deviation, mean,
95th and 5th percentile (Pi%) in execution time (tE) and re-
sponse time (tR) for every load period

In figure 6.9 the CDF of the experiment and baseline with load period 2000ms is
presented.

Results 51

Figure 6.8: Response (upper diagram) and execution (lower dia-
gram) time for experiment 2 with cgroups. Blue points rep-
resent measured data with presented variance (s2), mean (µ),
and 95th percentile in each diagram. Red solid lines represent
moving average with window size 10 for response time, and 50
for execution time.

Figure 6.9: Cumulative distribution of preemptive (SCHED_FIFO)
and nonpreemptive (SCHED_OTHER) scheduling on a nonpre-
emptive kernel using cgroups.

52 Results

In figure 6.10 boxplot representation of scheduler SCHED_FIFO compared to SCHED_OTHER
is shown for load period 2000ms, and in figure 6.11 a boxplot of the experiment
with the SCHED_FIFO scheduler is presented for every load period.

Figure 6.10: Boxplot representing the distribution of execution time
and response time for experiment 2 and baseline with the load
function 2000ms on a nonpreemptive kernel using cgroup. The
whiskers upper and lower boundaries represent the 95th and 5th

percentile respectively and the upper and lower boundary for the
box represents the 75th and 25th-percentile respectively. The
median is represented with a line in the "box".

Results 53

Figure 6.11: Boxplot representation of response and execution time
for various load periods in experiment 2. The whiskers up-
per and lower boundaries represent the 95th and 5th percentile
respectively and the upper and lower boundary for the box rep-
resents the 75th and 25th-percentile respectively. The median
is represented with a line in the "box".

54 Results

6.4 Experiment 3 - Preemptive Scheduling with Preemptive
Kernel

The third experiment, as described in 5.2.3 with the preemptive scheduling policy
SCHED_FIFO and a preemptive kernel the tests were run with the wait time be-
tween the load function set to 2000ms, 1000ms, 500ms, and one test with no load
function. In figure 6.12 the response and execution time for the test with wait
time 2000ms is presented.

In table 6.5 the KPIs of the four test are shown as well as the baseline values ran
on the cluster directly after.

Preemptive Kernel
SCHED_FIFO / SCHED_OTHER

wait_time (ms) None 2000 1000 500
tE σ2 1.49/3.72 3.09/6.72 1.58/4.23 0.524/3.79
tE σ 1.22/1.93 1.76/2.59 1.26/2.06 0.724/1.95
tE µ (ms) 6.18/6.5 5.08/5.21 3.52/4 3.06/3.74
tE P95% (ms) 7.42/9.56 7.3/9.53 6.38/7.63 4.02/7.17
tE P5% (ms) 2.94/2.93 2.77/2.77 2.74/2.72 3.06/2.72
tR σ2×104 0.912/0.7 0.381/0.375 1.37/0.401 3.74/8.74
tR σ 95.5/83.7 61.7/61.2 117/63.3 193/296
tR µ (ms) 105/102 99.3/89.1 92.5/82.7 130/158
tR P95% (ms) 198/192 192/157 182/159 362/452
tR P5% (ms) 60/61.2 52.6/49.8 47/48.1 51.6/51

Table 6.5: Table over the variance (σ2), standard deviation, mean,
95th and 5th-percentile (Pi%) in execution time (tE) and re-
sponse time (tR) for every load period

Results 55

Figure 6.12: Response (upper diagram) and execution (lower dia-
gram) time for experiment 3. Blue points represent measured
data with presented variance (s2), mean (µ), and 95th per-
centile in each diagram. Red solid lines represent moving aver-
age with window size 10 for response time, and 50 for execution
time.

In figure 6.13 the CDF of the experiment and baseline with wait time 2000ms are
presented.

56 Results

Figure 6.13: Cumulative distribution of preemptive (SCHED_FIFO)
and nonpreemptive (SCHED_OTHER) scheduling on a pre-
emptive kernel.

In figure 6.14 a modified box plot for the experiment and baseline with wait time
2000ms is represented. The lower whisker on the boxplot represents the 5th per-
centile and the upper the 95th. The rectangle starts at the 25th percentile and
ends at the 75th. The 50th percentile is represented by a line in the rectangle.

Results 57

Figure 6.14: Boxplot representing the distribution of execution time
and response time for two schedulers ran with the load func-
tion 2000ms on a preemptive kernel. The whiskers upper and
lower boundaries represent the 95th and 5th-percentile respec-
tively and the upper and lower boundary for the box represents
the 75th and 25th-percentile respectively. The median is repre-
sented with a line in the "box".

In figure 6.14 and 6.15, a modified box plot for the experiment and baseline with
wait time 2000ms and the experiment with every load period is represented re-
spectively. The lower whisker on the boxplot represents the 5th and the upper the
5th-percentile. The rectangle starts at the 25th percentile and ends at the 75th.
The 50th percentile is represented by a line in the rectangle.

58 Results

Figure 6.15: Boxplot representation of response and execution time
for various load periods in experiment 3. The whiskers up-
per and lower boundaries represent the 95th and 5th percentile
respectively and the upper and lower boundary for the box rep-
resents the 75th and 25th-percentile respectively. The median
is represented with a line in the "box".

Results 59

6.5 Comparison

In figure 6.16 a comparison of the cumulative distribution function for the measure-
ments conducted with SCHED_OTHER and the load period 2000ms on the different
kernel and kernel modifications is presented to evaluate potential performance
differences on various kernels.

In figure 6.17 a comparison of the cumulative distribution function for the measure-
ments conducted with SCHED_FIFO and the load period 2000ms on the different
kernel and kernel modifications is presented, and in figure 6.18 the same for load
period 500ms is presented. Since the behaviours in figure 6.16 is very similar re-
garding the upper percentiles we can ensure that the comparison in figure 6.17 is
fair when considering the upper percentiles. In addition the distribution for the
different experiments are presented in figure 6.19

Figure 6.16: Comparison of cumulative distribution of baseline con-
figurations on different kernels and for load periods 2000 ms.

60 Results

Figure 6.17: Comparison of cumulative distribution preemptive
scheduling (SCHED_FIFO) of different kernels for load peri-
ods 2000 ms.

Figure 6.18: Comparison of cumulative distribution preemptive
scheduling (SCHED_FIFO) of different kernels for load peri-
ods 500 ms.

6.6 Single Node Experiment

Additional tests were run in order to investigate the performance of execution and
response time on a cluster only consisting of one node, a master node. One of the

Results 61

Figure 6.19: Comparison of boxplot for all experiments using
SCHED_FIFO and load period 2000.

test were run on a single node bare metal configuration, and the other were run
on a single node cloud on the private cloud Xerces. This was done to investigate
the performance on bare metal with a comparable cloud test.

The hardware setup on bare metal consisted of the following specifications:

• 8 CPU cores

• Intel i5-8350U CPU 1.70GHz

• 16 GB RAM

• Ubuntu 18.04

• nonpreemptive kernel

The test output for the KPI’s for the bare metal configuration are presented in
table 6.6 and a boxplot presenting the response and execution time for load periods
2000ms, 1000ms, 500ms, and no load period are presented in figure 6.20. The test
for the cluster with only one node are presented with KPI’s in table 6.7 with the
corresponding boxplot in figure 6.21.

These tests are not identical to the previous tests. The main difference here is that
the execution time was increased to about 150ms and that the load function which

62 Results

were loading the clusters were increased to correspond to about 80% load when
running with a load period of 500ms. This was done due to different hardware
present on the bare metal machine.

Single Node Bare Metal
SCHED_FIFO / SCHED_OTHER

wait_time (ms) None 2000 1000 500
tE σ2 12.5/13.2 16.8/59.5 22.3/30.4 21.9/52.7
tE σ 3.54/3.64 4.10/7.71 4.72/5.52 4.68/7.26
tE µ (ms) 122/124 142/146 162/166 163/169
tE P95% (ms) 129/131 147/161 189/174 168/203
tE P5% (ms) 119/120 138/140 158/161 160/176
tR σ2 31.6/22.4 30.3/89.8 103/110 94.6/316
tR σ 5.63/4.73 5.50/9.47 10.2/10.5 9.72/17.8
tR µ (ms) 134/135 154/159 179/184 181/188
tR P95% (ms) 142/143 160/176 189/196 193/203
tR P5% (ms) 129/130 150/151 172/176 173/176

Table 6.6: Table over the variance (σ2), standard deviation, mean,
95th and 5th-percentile (Pi%) in execution time (tE) and re-
sponse time (tR) for every load period executed on a single
node cluster in a bare metal environment

Single Node on Xerces
SCHED_FIFO / SCHED_OTHER

wait_time (ms) None 2000 1000 500
tE σ2 1390/2020 2020/2980 2110/2590 1010/1370
tE σ 37.3/44.9 45.0/54.6 46/50.9 31.8/37.1
tE µ (ms) 246/268 194/200 183/191 161/179
tE P95% (ms) 311/341 267/308 268/297 229/255
tE P5% (ms) 193/198 141/143 140/141 140/143
tR σ2 2480/3150 3590/9020 11600/6220 6000/4830
tR σ 49.8/56.1 59.9/95 108/78.9 77.5/69.5
tR µ (ms) 300/325 241/251 242/238 225/238
tR P95% (ms) 366/402 323/378 357/356 326/341
tR P5% (ms) 245/252 166/171 166/168 170/178

Table 6.7: Table over the variance (σ2), standard deviation, mean,
95th and 5th-percentile (Pi%) in execution time (tE) and re-
sponse time (tR) for every load period executed on a single
node cluster on the private cloud Xerces

Results 63

Figure 6.20: Boxplot representing the distribution of execution time
and response time for two schedulers ran with the load function
2000ms on a nonpreemptive kernel on bare metal with only one
node. The whiskers upper and lower boundaries represent the
95th and 5th-percentile respectively and the upper and lower
boundary for the box represents the 75th and 25th-percentile
respectively. The median is represented with a line in the "box".

64 Results

Figure 6.21: Boxplot representing the distribution of execution time
and response time for two schedulers ran with the load function
2000ms on a nonpreemptive kernel with only one node. The
whiskers upper and lower boundaries represent the 95th and
5th-percentile respectively and the upper and lower boundary
for the box represents the 75th and 25th-percentile respectively.
The median is represented with a line in the "box".

Chapter 7
Discussion

The experiments that were conducted were designed in a way to gradually increase
the load of the cluster from no load up until close to 100% load which can be seen in
table 6.1 where the real CPU usage is shown together with the predicted calculated
value. The difference between the real value and calculated value is to be expected
since the calculated value only takes in account an estimated execution time of
1.5s for the load function. This would in reality experience some variance that
would load the CPU further. In addition to this, the machine uses other processes
than the running function as well such as pods responsible for networking and
communicating with Kubernetes which adds additional overhead.

The last run, with a load period of 400ms took use of almost all of the CPU, which
were in line with the calculated estimation of a CPU usage contribution of 93%
from the load functions. It could be predicted that this configuration would have
full CPU utilisation due to overhead from other present processes. This prediction
were correct when consulting figure 6.1 where it can be seen the system is not
able to finish all of its incoming tasks with some response and execution times
equal to zero. Zero values are values corresponding to an error message. Due to
this, all future experiments only show results for experiments with no load, and
load periods, 2000ms, 1000ms, and 500ms where the cluster is able to handle all
incoming tasks.

Default Baseline

While analysing the results in table 6.2 it was seen that the baseline measurements
resulted in the 95th percentile measuring to 8.18ms, 9.17ms, 7.86ms, 7.29ms for
the no load and 2000ms, 1000ms, and 500ms load period respectively, this for a
group of 2000 samples. Comparing this to the 5th percentile gives us a difference of
2.17ms, 6.4ms, 5.13ms and 4.56ms. This difference can be seen as the unwanted
delay in execution time intended to mitigate. It is interesting to note that no

65

66 Discussion

observations of a reduction in execution time due to an increased load period could
be seen but rather the opposite, a decrease in execution time due to the increased
load. The fact that a lower load period corresponds to an actual increase in load
on the CPU was also verified through measurements on the CPU load on the
underlying node shown in table 6.1. One reasoning why no observations of an
increase in execution time is that the incoming processes are also scheduled under
the policy SCHED_OTHER. When consulting the Linux manual [35] it is stated that a
SCHED_OTHER process do not have the authority to preempt another SCHED_OTHER
process during its allocated time slice. This would then mean that once a process
has started to execute it is allowed to finish during its given time slice. It is
important to note that this cannot be verified with the baseline experiment alone.
Although, this could be a potential explanation for why the execution time does
not increase for higher loads, it cannot explain the decrease in execution time for
the higher load.

A possible explanation for this behaviour could be that SCHED_OTHER uses the
completely fair scheduling (CFS) algorithm. This algorithm was developed by the
Linux community for normal tasks on a desktop computer and is therefore geared
towards a higher user experience. This means that the scheduling policy prioritises
interactive tasks. The way the scheduler decides which tasks are interactive is
dependent on the time a task is sleeping since it is therefore likely to wait for an
input. [11] [38] This could, in our case, result in that the load function is treated as
an interactive task by the processor, which would then give higher priority to the
load function for tests with a higher interval between the load function requests.
A higher priority for the load, would mean a relatively lower priority for the ping
function. However, this cannot be an explanation for why the test with no load
performs worse than for the highest load period (500ms). A potential explanation
for this behaviour occurs was examined by a test producing the findings presented
in table 6.1. In this table it can be seen that the CPU steal percentage decreases
as the load on the CPU increases. This means that the virtual CPU is waiting on
average for a shorter duration to be scheduled on the actual host’s CPU for higher
loads. This could result in a higher execution time for lower virtual CPU loads.
This statement would preferably be confirmed by running a similar test on a bare
metal environment.

When analysing the response time in table 6.2 and in figure 6.7, an increased
response time for when the load is increased (load period, i.e. period between
incoming loads happen more frequently) can be seen. This was expected and can
be explained by the fact that processes are idle while waiting for resources on
the CPU. Another aspect that is important to mention is that the response is
dependent on a large set of processes and is therefore not as easily argued for. In
section 3.2 it is describer how Fission handles an incoming HTTP request. All
these processes are affecting the response time and in addition to this there are
networking effects from the private cloud Xerces present. With this said it is an
important metric to take into account when using an alternative scheduling policy.

The variance in the execution time in the baseline experiment is likely due to

Discussion 67

Linux processes with higher priority than the priority of the ping function inter-
rupting this function. In order to investigate this the upcoming three experiments
that utilise the real-time scheduler SCHED_FIFO are conducted. It would then be
expected that the execution time variance would be lower when compared to the
baseline since the ping function would always have priority over processes with a
prioritised nice value, and have equal priority to other real-time processes in the
kernel scheduled with SCHED_FIFO or SCHED_RR.

Experiment 1

The first conducted experiment to optimise performance, experiment 1, with the
scheduling policy SCHED_FIFO on a nonpreemptive kernel’s response time and ex-
ecution time can be seen in figure 6.3 for the test with load period 2000ms. It can
be seen that the execution time is pretty much stable around 2.8ms and 6.2ms.
These two separate levels may be a result from the hypervisor allocating the re-
sources between various VMs on our and other clusters on the cloud network and
may be dependent on the total load and scheduling policy on the hypervisor in
the cluster [39]. This is suspected since the behaviour were not consistent during
the development of the experiments and occurred from time to time and could not
be replicated in a controlled manner. Sometimes this behaviour were not present.
One way to verify if this behavior is from running multiple VMs on the cluster, is
to deploy our cluster on bare metal. In that case, the behavior can be expected
to disappear. Another approach could be to run an isolated cloud with only one
VM to guarantee no other VMs are disturbing. This will further be discussed in
subsection Bare metal.

Due to these distinct levels, the variance (σ2, or s2 in the figure) cannot be used to
evaluate the performance of the experiment by itself since the distribution between
the lower and upper levels could vary from day to day because of the total load
on the cloud Xerces which affects variance and mean.

Together with the variance, the 95th-percentile value is therefore also used to
evaluate if the experiment behaves better than the baseline on the same kernel by
verifying that 95% of the time, the measured values are not too far from the mean
execution time. The outliers are mostly located far away from the mean.

In the experiment, the execution time is indeed lower than the baseline and not
much higher than the previously mentioned stable level at 6.2ms as seen in figure
6.3 where the 95th is 6.35ms. In table 6.3 it can be seen that the execution
time showed an improvement (a reduction) for all presented KPIs in the table.
Additionally, for a more graphic verification of the improved performance the CDF
in figure 6.4 and distribution using boxplot in figure 6.5 for the experiment with
load period 2000ms can be examined. In the CDF diagram, it can be seen that
SCHED_FIFO always lies left to SCHED_OTHER (the baseline on the same kernel),
which implies a lower value for all percentiles. It should be noted that the middle
part of the slope, where the derivative is reduces and again increased is due to

68 Discussion

the two distinct levels of execution time. The boxplot gives a visual verification
that the 95th-percentile is indeed lower for SCHED_FIFO and that the 25th and 75th

are slightly lower for the experiment. A high reduction in the median can also be
seen, but this is not necessarily due to the scheduler since it can be the effect of
multiple clusters on Xerces.

These results show that the variance, percentiles, median, and mean for execution
time in experiment 1 are improved. This can be expected since the pods responsible
of executing the FaaS functions are prioritised.

In contrary, the measured KPI’s in table 6.3 for the response time shows a degra-
dation (an increase) with the implementation of the real-time scheduler for all
values except the 95th percentile for the test with load period (wait_time in the
table) 2000ms. This particular measurement is the one showed in the plot in fig-
ure 6.3 and boxplot in figure 6.5. The boxplot shows an overall reduction for this
measurement, but for the other measurements in the last mentioned table, the
values are all increased. This could indicate that this particular measurement is
only a one time occurrence due to unknown parameters. In figure 6.6 the boxplot
of SCHED_FIFO compared to SCHED_OTHER for the configuration with a load period
of 1000ms is shown, where a increase in response time can be seen.

One possible explanation for the increased response time is that by prioritising the
Fission function pods, we are inevitably down prioritising other pods in the cluster
which influences the over all performance negatively. Prioritisation of other pods
than the function pods could influence the response time (but also the execution
time) and could be a potential alternation of the experiment to achieve better
results. With this in mind, these results are unwanted since the response time
is not improved, but are reasonable since the prioritisation of the function pods
affects performance of other pods.

In order to improve the results, an optimal set of pods to be prioritised should be
found. To do so, more time would be needed for development due to the number of
pods present in the cluster, which can be seen in 7.1 where more than 30 pods are
present. But with the goal to optimise for response time, a potential candidate for
prioritisation could be the router pod which is responsible of forwarding HTTP-
requests to the function pods [1]. This argument would be true for experiment 2
and 3 as well.

Experiment 2

The second experiment used a nonpreemptive kernel with real-time group schedul-
ing by configuring limitations in cgroup.

The results shows an improvement in execution time when using SCHED_FIFO over
SCHED_OTHER as seen in figure 6.11 showing the boxplots, and in table 6.4 where all
KPI’s shows a reduction for tests with no load and load periods 2000ms, 1000ms,

Discussion 69

Figure 7.1: List of pods in the Kubernetes cluster.

and 500ms in execution time. This can also be seen in the CDF for test with
load period 2000ms in figure 6.9 where the CDF outperforms the baseline with a
much faster arrival to 1 indicating a lower maximum value and lower value for all
percentiles. When comparing the CDF of experiment 2 to the others in figure 6.17,
it can be seen to outperform the others since it lies most left in the graph, but
the maximum value for experiment 2 and experiment 1 (nonpreemptive cgroup vs
nonpreemptive) are equal since they intersect at probability 1. This could imply
that experiment 2 is as good as experiment 1, which would be expected since
cgroup only works as a limitation [40]. The reason why the data points towards
a solid improvement when comparing experiment 2 and 1 in tables 6.4 and 6.3
respectively, and in the CDF, could be that this has to do with the influence of
the hypervisor [39] on the cluster as mentioned before for experiment 1, since the
distribution between the upper and lower stable level of execution time is weighted
towards the lower, as seen in figure 6.8. To confirm that this has to do with the
hypervisor and not with the implementation of cgroup, the test must be ran on
a cluster with controller resource allocation, such as in bare metal or with no
other VMs disturbing our cluster which is not possible with our current cloud
architecture. As previously mentioned, this will be discussed in subsection Bare
metal.

On the other hand, the limitation of cgroup could actually be advantageous since
it limits the FaaS function pods and grants more resources to the rest of the
pods. Since we cannot be sure if prioritising the FaaS function pods are the most
optimal solution without testing other pods to prioritise, the improvements in

70 Discussion

this experiment could point towards cgroup limitations allowing for better perfor-
mance without the need to know which exact pods should be prioritised for best
performance. This could be true for both execution time and response time.

In table 6.4, it can be seen that the response time in this experiment shows
an improvement for no load and load period 2000ms, and a disimprovement for
1000ms and 500ms when comparing the 95th-percentile results. The variance is
worse for all tests except for load period 2000ms. Regarding the response time
it could be argued that variance is not a very good measurement since the re-
sponse time can suffer from extremely high outlier which lies much higher than
the 95th-percentile, this would mean the variance can increase without the increase
of the 95th-percentile and a high variance and low 95th points towards worse re-
sults regarding the higher percentiles. For use cases which accepts reliability 95%
of the time the 95th-percentile would be a good indicator of a stable cluster but
in most commercial use cases much higher uptimes needs to be guaranteed. For
example, Amazon Web Services guarantees its customers a 99.99% uptime and
partly refunds down to 95%. Below 95% the entire month is refunded [41]. The
95th-percentile should therefore not be used if comparing to commerical clouds,
but can be used as a indicator in our cluster since performance is not optimal.

Experiment 3

Another proposed way of achieving a lower execution time for the cluster was
to introduce a fully preemptive kernel together with the preemptive scheduler
SCHED_FIFO.

As presented in the CDF in figure 6.13 an improvement when running SCHED_FIFO
on the preemptive kernel compared to processes using SCHED_OTHER when compar-
ing 80th-99th percentile can be seen. However, when comparing the preemptive
kernel with a nonpreemptive kernel in figure 6.17 a worsening of the execution
time for the preemptive kernel using SCHED_FIFO can be observed. This result
contradicts previous research which shows the opposite. In related research [42]
execution time delay with CPU bound background workloads was measured and
the preemptive kernel outperformed the nonpreemptive kernel. It is important to
note that the experiment in research [42] was conducted on a bare metal environ-
ment were our environment consists of virtual machines. In [43] it is mentioned
that additional configurations to the lower levels, i.e the host of the virtual ma-
chines needs to be configured in order to achieve the same degree of reduces latency
as in a bare metal environment. This is something that is abstracted away from us
in our current cloud and therefore cannot be achieved with our current infrastruc-
ture. What is needed to confirm this problem is a similar experiment conducted
on a bare metal environment to confirm this issue. It is important to note that
when comparing to the previously mentioned ways for improving the latency, this
method requires the user to install a new kernel on their virtual machine. This is
not something that always is possible for public cloud providers.

Discussion 71

An interesting finding from the table 6.5 and boxplot in figure 6.15 is that the
execution time is drastically improved for higher loads as seen for when the load
periods are 1000ms and 500ms. Intuitively, a higher load on the cluster should
correspond to a higher execution time while this shows the opposite. For no load
and load period 2000ms, less than 50% of the CPU is occupied, whereas for 1000ms
and 500ms uses 57% and 87% of the CPU as seen in table 6.1 (these values are
from the baseline experiment but can be used as an estimated CPU usage in this
experiment). This could imply that the preemptive kernel has greater performance
when the load is higher. As the load is increased, the steal is decreased and in
figure 6.18 it can be seen that the preemptive kernel in experiment three perform
better than the other experiments. One possible explanation to this is that when
the preemptive kernel experiences steal, it cannot utilise full preemption. But as
the steal decreases, the preemptive kernel may preempt more often resulting in a
performance that is closer to bare metal performance, where the preemptive kernel
is said to performe better than other kernels [42].

Bare metal

When running a cluster on VMs, the cluster will experience some overhead from
interference between different VMs due to the hypervisor [39]. Instead of using
a hypervisor, it is possible to run the cluster on bare metal instead of on VMs.
By doing this, better performance can be expected but it will limit the clouds
flexibility in a real use case since new VMs can no longer be created on the go.
Instead, new hardware must be installed which is both costly and time consuming.

A cluster setup with bare metal was done to examine the execution and response
time when using real-time scheduling. Unfortunately, it was not possible to run
the cluster with multiple nodes with a master/worker hierarchy due to limited
resources. In the table 6.6 the bare metal results are presented with all the given
KPI’s which also can be seen in the boxplot in figure 6.20. This setup was compared
to a cloud solution with the same architecture with only one node. The results
from this test can be found in table 6.7 with the boxplot representation in figure
6.21.

These results show a few interesting findings that has earlier been discussed. When
comparing the two boxplots, it can be seen that the bare metal deployment suffers
from an increase in execution time when experiencing a higher load, while the cloud
deployment on Xerces shows the opposite (as for all previous experiments deployed
on Xerces). This behavior were suspected to be due to the steal metric present
for VMs, where the VMs were waiting to be scheduled on the hosts resources by
the hypervisor. On bare metal, this behavior is not present which leads us to
believe that the steal metric is the best candidate to describe why an increased
load correlates with a decrease in execution time on VMs.

On the bare metal setup, it could be expected that when scheduled with SCHED_OTHER,
the execution time is increased when presented with a greater load since all

72 Discussion

SCHED_OTHER processes share the same resources and the measured function may
not execute before prioritised nice processes present in the Linux kernel. Al-
though, in the case with processes scheduled with SCHED_FIFO, it would be ex-
pected to not experience an increase in execution time when experiencing a higher
load since the executed and prioritised ping function should always be allowed
to preempt the load function. It could be argued that since all processes share
the same resources, a higher load would still affect the execution time to some
degree since more processes will be active. Some of these may also be scheduling
with real-time schedulers. But since our tests do not utilise 100% CPU usage (the
highest load 500ms utilises approximately 80%) it is not clear why the execution
time experiences such a high increase since resources are still available, and that
other real-time scheduled processes should not preempt the ping function.

When using the real-time scheduler SCHED_FIFO on bare metal, the execution time
is lower than when using SCHED_OTHER, more importantly, the variance is 6%, 72%,
27%, and 58% lower for the tests with no load, load period , 2000ms, 1000ms, and
500ms when taking the ratio of the variance of the two schedulers in table 6.6.
This shows that SCHED_FIFO is indeed better.

Another interesting finding is the decrease in response time when scheduling
with SCHED_FIFO compared to SCHED_OTHER for both the bare metal and Xerces
test. In previous experiments, SCHED_FIFO has generally performed worse than
SCHED_OTHER in terms of response time. Especially for the test with 500ms. It
was previously discussed that the experiments that uses SCHED_FIFO possibly ex-
periences an increase in response time due to the prioritisation of Fission function
pods, which would inevitably down prioritise the other pods in Kubernetes and
Fission. Some of these pods are responsible of the networking between nodes in
the cluster and pods there within. These pods By running these tests on only
one node, this networking is no longer needed. Through analysing the presented
results, it can most likely be concluded that the increased response time on ex-
periment 1, 2, and 3 are due to networking pods being interrupted. This also
mean that it is likely possible to further reduce the response time in the previous
experiments that consist of more than one node by prioritising the pods resposible
of network between various Kubernetes instances.

Comparisons

The three conducted experiments all show a general reduction in execution time,
but analyzing the CDF in figure 6.17 it can be seen that experiment 2 (using
cgroup) performs best followed by experiment 1 and then experiment 3. If looking
at the response time in the boxplot comparison in figure 6.19 once again experiment
2 has the best performance, followed by experiment 1 and then experiment 3.

When comparing the different methods of implementation to each other, one must
take into account the usability of said methods.

Discussion 73

For experiment 1, the implementation is straight forward and easy. If implement-
ing it, the user only needs to be concerned with prioritising the containers that
are running and need no further configurations of the kernel. This method allows
for real-time configurations without doing changes to the existing environment if
already using a nonpreemptive kernel, which mostly is the case.

For experiment 2, quite some effort must be done. First of all, the kernel must be
modified to enable the flag CONFIG_RT_GROUP_SCHED which may not be suitable
in all deployment use cases where developers should not be modifying or changing
the kernel. Secondly, the user must modify the cgroup in order to allow for
prioritisation of processes to be set. This can in worst case affect the behavior of the
cluster to become unstable if not configured properly, especially if the user modified
the cpu.rt_period_us since the implementation of modifying this parameter is
not yet finished [40]. Also, this requires the user sudo access which is not the case
for the other experiments. After this is done, the containers must also be entered
and modified.

For experiment 3, it is not as time consuming and complicated to set up as for
experiment 2, but more complicated than experiment 1 since the kernel must be
patched with a real-time patch. This might not be suitable for all use cases since
running in a preemptive kernel might

The three experiments all require the user to set prioritisation in the containers
manually. One problem with this approach is that if the pod is terminated (which is
the case in most use cases) the pods and its prioritisation are reset. A way to work
around this problem is to set the command for prioritisation in the deployment
file of the pods that will be prioritised and would be a great improvement of the
current test setups. This would allow for security benefits as the deployment file
of the pods could be configured by admin only to only grant prioritisation for
specific pods. To accomplish this, the pod must be given SYS_NICE capability as
described in the method section, and then passed the command that priorities the
pod’s process. Since not the pid of the process can differ, the pgrep command is
used which returns a pid of a process name. This is done by adding the following
to the deployment yaml file:

spec:
container:

securityContext:
capabilities:

add:
- SYS_NICE

lifecycle:
postStart:

exec:
command: ["/bin/sh",

"-c",
"chrt --fifo --pid $(pgrep node"]

74 Discussion

Another solution could also be to add this directly to the container image. This
solution were not tested and verified in our experiment but can be a possible
way to get a real-time ready container image. First the image must be given the
SYS_NICE capability in the Dockerfile during initialisation, and then the following
should be added in the Dockerfile to run the prioritisation:

CMD ["/bin/bash", "-c", "chrt --fifo --pid 99 $(pgrep node)"]

Although, this would not work on experiment 2 since the cgroup would need to
be reconfigured each time a pod is terminated. To allow for this to work, more
development regarding support for Kubernetes with real-time group scheduling
must be conducted. Approaches to succeed with this implementation can be to
run a script that configures the cgroup outside of Kubernetes, or to manage to
integrate custom docker commands when running containers with Kubernetes.
With dockers, it is possible to configure the cgroup file by running:

$ docker run -it \
--cpu-rt-runtime=950000 \
--ulimit rtprio=99 \
--cap-add=sys_nice \
debian:jessie

Although, a solution for where this could be added was not found.

Chapter 8
Conclusion

The goal of this research was divided into four points:

• reduce both execution time and variance in execution time for the specified
prioritised jobs,

• deduct the possibility of achieving real-time support for specified jobs in a
Kubernetes cluster,

• evaluate the optimisation methods effect on the response time for prioritised
jobs,

• evaluate the possibility and present a method for deploying a Kubernetes
cluster with support for real-time prioritisation.

Starting with the first point, to reduce both execution time and variance in exe-
cution time for our prioritized jobs. We saw that experiment 1 (running on the
non-preemptive kernel), experiment 2 (running on the non preemptive kernel with
cgroup limitations) and experiment 3 (running on the preemptive kernel) all saw
a clear improvement for the execution time and variance when comparing to the
baseline measurements. Since a real-time system needs to be deterministic with
respect to a given tolerance, the upper percentiles for the execution time directly
indicates whether a system is viable for a deployment model or not. For our
measurements we saw that the introduction of SCHED_FIFO had a big impact in
lowering this metric. Hence the first goal of this thesis has been achieved.

The second goal, to deducting the possibility of achieving real-time support for
specified jobs in a Kubernetes cluster. Despite the fact that we have achieved
a lower execution time, we have not established an environment that supports
real-time deployments in VMs, this since the response time is still beyond values
that will be acceptable in a real-time system. However, we have proved that the
execution of processes will not be a limiting factor for achieving real-time support
in a Kubernetes cluster. Through our findings from the bare metal experiment,

75

76 Conclusion

we suspect that the increase in response time in VMs is directly correlating to the
inevitably down prioritisation of networking pods in the cluster. We suggest the
method of prioritising a different set of pods, which includes various networking
pods, to reduce the response time and its variance in order to decrease response
time in a cluster running on multiple VMs.

The third goal was to evaluate the optimisation methods effect on the response
time for prioritised jobs. Our results show a slight degradation in response time
for the tests that ran in a virtual machine environment. However when increasing
the weight of the tasks for the measured services we saw an improvement for
the response time. These results points towards the conclusion that applying a
real-time scheduler to prioritised tasks might interfere and cause a degradation in
performance for other crucial services. This could still be a viable option depending
on the weight of the prioritised tasks deployed to the cluster.

Lastly a method for automating the deployment of application with support for
real-time prioritisation has been proposed. Through specifications in the deploy-
ment file in a Kubernetes cluster, capabilities allowing for the container to prioritise
processes has been presented for both the non-preemptive kernel and preemptive
kernel using SCHED_FIFO. This can in combination with container configurations
allows a user to automate the support for real-time scheduling policies. However,
for the cgroup rt-limitation no sensible way to automate the process has been
achieved integrated in Kubernetes.

References

[1] “fission documentation v1.12.0,” visited 2021-05-24. [Online]. Available:
https://docs.fission.io/docs/

[2] “Kubernetes documentation,” visited 2021-02-24. [Online]. Available: https:
//kubernetes.io/docs

[3] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time scheduling
in the linux kernel,” ACM SIGBED Review, vol. 16, no. 3, pp. 33–38, 2019.

[4] T. Cucinotta, L. Abeni, M. Marinoni, A. Balsini, and C. Vitucci, “Virtual
network functions as real-time containers in private clouds,” in 2018 IEEE
11th International Conference on Cloud Computing (CLOUD). IEEE, 2018,
pp. 916–919.

[5] I. Pelle, J. Czentye, J. Dóka, and B. Sonkoly, “Towards latency sensitive
cloud native applications: A performance study on aws,” in 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD). IEEE, 2019, pp.
272–280.

[6] A. I. Bucur and D. H. Epema, “Local versus global schedulers with proces-
sor co-allocation in multicluster systems,” in Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, 2002, pp. 184–204.

[7] M. C. Ogbuachi, C. Gore, A. Reale, P. Suskovics, and B. Kovács, “Context-
aware k8s scheduler for real time distributed 5g edge computing applications,”
in 2019 International Conference on Software, Telecommunications and Com-
puter Networks (SoftCOM). IEEE, 2019, pp. 1–6.

[8] Y. Fu, S. Zhang, J. Terrero, Y. Mao, G. Liu, S. Li, and D. Tao, “Progress-based
container scheduling for short-lived applications in a kubernetes cluster,” in
2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019,
pp. 278–287.

[9] D. Cho, J. Taheri, A. Y. Zomaya, and P. Bouvry, “Real-time virtual network
function (vnf) migration toward low network latency in cloud environments,”

77

78 References

in 2017 IEEE 10th International Conference on Cloud Computing (CLOUD),
2017, pp. 798–801.

[10] IBM, “Cloud computing history,” Jan 2017, visited 2021-04-20. [Online].
Available: https://www.ibm.com/cloud/blog/cloud-computing-history

[11] C. S. Pabla, “Completely fair scheduler,” Aug 2009, visited 2021-03-25.
[Online]. Available: https://www.linuxjournal.com/node/10267

[12] “What is a virtual machine (vm)?” visited 2021-03-22.
[Online]. Available: https://www.redhat.com/en/topics/virtualization/
what-is-a-virtual-machine

[13] “What is a hypervisor?” visited 2021-03-15. [Online]. Available:
https://www.redhat.com/en/topics/virtualization/what-is-a-hypervisor

[14] B. Bermejo and C. Juiz, “Virtual machine consolidation: a systematic review
of its overhead influencing factors,” The Journal of Supercomputing, vol. 76,
no. 1, pp. 324–361, 2020.

[15] “What is a container?” visited 2021-03-25. [Online]. Available: https:
//www.docker.com/resources/what-container

[16] K. Kumar and M. Kurhekar, “Economically efficient virtualization over cloud
using docker containers,” in 2016 IEEE international conference on cloud
computing in emerging markets (CCEM). IEEE, 2016, pp. 95–100.

[17] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud comput-
ing,” 2011.

[18] T. Diaby and B. B. Rad, “Cloud computing: a review of the concepts and
deployment models,” International Journal of Information Technology and
Computer Science, vol. 9, no. 6, pp. 50–58, 2017.

[19] “The history of pets vs cattle and how to use the analogy properly,”
visited 2021-05-24. [Online]. Available: http://cloudscaling.com/blog/
cloud-computing/the-history-of-pets-vs-cattle/

[20] S. Tilkov, “The modern cloud-based platform,” IEEE Software, vol. 32, no. 2,
pp. 116–116, 2015.

[21] B. Sosinsky, Cloud computing bible. John Wiley & Sons, 2010, vol. 762, pp.
1–22.

[22] M. J. Sadeeq and S. R. M. Zeebaree, “Semantic Search Engine Optimisation
(SSEO) for Dynamic Websites: A Review,” International Journal of
Science and Business, vol. 5, no. 3, pp. 148–158, 2021. [Online]. Available:
https://ideas.repec.org/a/aif/journl/v5y2021i3p148-158.html

[23] N. R. Tadapaneni, “Different types of cloud service models,” 2017.

[24] H. Lee, K. Satyam, and G. Fox, “Evaluation of production serverless com-
puting environments,” in 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD). IEEE, 2018, pp. 442–450.

References 79

[25] R. A. P. Rajan, “A review on serverless architectures-function as a service
(faas) in cloud computing,” TELKOMNIKA, vol. 18, no. 1, pp. 530–537,
2020.

[26] S. K. Mohanty, G. Premsankar, M. Di Francesco et al., “An evaluation of open
source serverless computing frameworks.” in CloudCom, 2018, pp. 115–120.

[27] “What is the real-time cloud and how do we get there?” visited
2021-03-25. [Online]. Available: https://www.ericsson.com/en/blog/2020/
11/what-is-real-time-cloud

[28] J. Pan and J. McElhannon, “Future edge cloud and edge computing for in-
ternet of things applications,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 439–449, 2018.

[29] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan, B. Varghese,
E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. S. Netto, A. N. Toosi,
M. A. Rodriguez, I. M. Llorente, S. D. C. D. Vimercati, P. Samarati,
D. Milojicic, C. Varela, R. Bahsoon, M. D. D. Assuncao, O. Rana,
W. Zhou, H. Jin, W. Gentzsch, A. Y. Zomaya, and H. Shen, “A manifesto
for future generation cloud computing: Research directions for the next
decade,” ACM Comput. Surv., vol. 51, no. 5, Nov. 2018. [Online]. Available:
https://doi.org/10.1145/3241737

[30] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-edge:
Orchestration of real-time vision applications on heterogeneous edge clouds,”
in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications,
2019, pp. 1270–1278.

[31] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[32] G. Sayfan, Mastering Kubernetes: large scale container deployment and man-
agement. Packt, 2017.

[33] The Linux Kernel Archives, visited 2021-05-24. [Online]. Available:
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt

[34] RedHat, visited 2021-03-28. [Online]. Available: https://www.redhat.com/
en/topics/linux/what-is-the-linux-kernel

[35] “Linux manual page,” Mar 2021, visited 2021-03-21. [Online]. Available:
https://man7.org/linux/man-pages/man7/sched.7.html

[36] The kernel development community, “Real-time group scheduling,” visited
2021-03-22. [Online]. Available: https://www.kernel.org/doc/html/latest/
scheduler/sched-rt-group.html

[37] Linux manual, visited 2021-03-28. [Online]. Available: https://man7.org/
linux/man-pages/man1/chrt.1.html

[38] P. Pawar, S. Dhotre, and S. Patil, “Cfs for addressing cpu resources in multi-
core processors with aa tree,” International Journal of Computer Science and
Information Technologies, vol. 5, no. 1, pp. 913–917, 2014.

80 References

[39] Z. Yang, H. Fang, Y. Wu, C. Li, B. Zhao, and H. H. Huang, “Understanding
the effects of hypervisor i/o scheduling for virtual machine performance in-
terference,” in 4th IEEE International Conference on Cloud Computing Tech-
nology and Science Proceedings, 2012, pp. 34–41.

[40] “Real time group scheduling,” visited 2021-03-28. [Online]. Available:
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt

[41] Amazon Web Services, visited 2021-04-15. [Online]. Available: https:
//aws.amazon.com/compute/sla/

[42] F. Brandenburg, “A comparison of scheduling latency in linux, preempt rt,
and litmusrt,” OSPERT 2013, p. 20, 2013.

[43] J. Danisevskis, M. Peter, and J. Nordholz, “Minimizing event-handling laten-
cies in secure virtual machines,” arXiv preprint arXiv:1806.01147, 2018.

Real-time Scheduling in Datacentre Clusters

FABIAN FRANKEL & SEPEHR TAYARI
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

FA
B

IA
N

 FR
A

N
K

EL &
 SEPEH

R
 TA

YA
R

I
R

eal-tim
e Scheduling in D

atacentre C
lusters

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-829
http://www.eit.lth.se

