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Abstract

Convolutional Neural Networks (CNNs) have become a widely used deep learning
algorithm in recent years on applications such as image recognition, face classi-
fication and object detection. CNN is a computation-intensive application that
requires large memory bandwidth and high power. This becomes a challenge for
System on Chips (SoCs) as they have power budget constraints and limited mem-
ory capacity.

This thesis uses the concept of Near Data Processing (NDP) to efficiently execute
CNN on power and memory bandwidth bound devices. The basic idea behind
NDP is to keep computation tedious applications very close to memory for re-
ducing data movements. Since high data transfers increase memory footprint and
power dissipation.

Execution flow and memory reads occurring in CNN inference were carefully in-
spected. An NDP unit is designed based on the analysis to reduce data migrations
by methodically reusing data reads. The developed NDP unit is then stowed near
to memories of open-source microcontroller Pulpissimo.

The base scenario of running CNN inference on a bare Pulpissimo is analyzed
with a target scenario of running CNN using NDP unit. The study focuses on
power, area, and performance. Furthermore, NDP unit is hardware optimized by
quantizing neural network parameters to save computations and data reads.

Reducing precision helped in decreasing bandwidth and memory space by a factor
of 4 as neural network parameters of 32-bit were transformed to 8-bits by quan-
tization technique called Truncation. However, a negligible loss in classification
accuracy of 0.6% was encountered.

For one inference, NDP unit was able to execute at a speed of 33x compared to
running a scalar program of CNN in Pulpissimo. Energy consumed by Pulpissimo
with NDP unit is only 1.1% of the total energy of a base scenario. Moreover, the
NDP unit covered just 0.8% of the total area of Pulpissimo.
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Popular Science Summary

Consumer Electronics has encountered radical advancements in usability and intel-
ligence over a couple of decades. They have transformed how people live, work and
make decisions. This is primarily due to technological advancement that occurred
in the semiconductor industry. The improvements in fabrication techniques and
processes helped to pave way for designing more complex Integrated Circuits(ICs)
that are smaller and faster.

The blooming semiconductor industry has supported researchers to execute com-
puter programs that involve complex algorithms. This created distinct advance-
ments in the field of Machine Learning (ML). ML provides intelligence and user-
friendliness like reminding some daily tasks, recommending products that match
the taste of consumers and voice assistance. As complexity of algorithms increases,
the demand for larger memory bandwidth and space raises. This surge drives the
need for a better solution to execute ML algorithms effectively.

Reducing memory utilization helps in lowering power expenditure as fewer data
reads and writes occur. This reduction in power offers a great benefit for power-
constrained devices running these algorithms. In addition, trimming memory space
can help in scaling down the SoCs area, which will result in bringing down the
manufacturing cost.

Considering these perspectives, the thesis focuses on creating an NDP unit that
can effectively run CNN inference by utilizing minimal memory bandwidth and
space. The designed NDP unit is triggered by the processor when it needs to
classify an image. The study on the designed NDP unit is done by comparing it
with the execution of CNN inference in a low-power microcontroller.

ii



Acronyms

CNN Convolutional Neural Networks
NN Neural Networks
NDP Near Data Processing
IC Integrated Circuit
ML Machine Learning
SoC System On Chip
AI Artificial Intelligence
MNIST Modified National Institute of Standards and Technology
PULP Parallel Ultra Low Power
EEES Energy-efficient Embedded Systems
IIS Integrated Systems Laboratory
MCU Micro-Controller Unit
HAL Hardware Abstract Layer
FNN FeedForward Neural Networks
RNN Recurrent Neural Networks
JTAG Joint Test Action Group
μDMA Micro Direct Memory Access
FLL Frequency Lock Loops
ROM Read Only Memory
MAC Multiplier and Accumulator
NMC Near Memory Computing
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Chapter 1
Introduction

Machine Learning (ML) is a branch of Artificial Intelligence that can classify or
predict a result by learning from data. Deep Learning a subset of ML, attempts to
mimic the way a human brain processes and analyses information. This capability
has enabled software applications to make use of Deep Learning extensively over
the years.

System on Chips(SoCs) is the backbone to run ML applications on electronic de-
vices like smartwatches, mobile phones, and tablets. They consume considerable
amount of power to provide processing and memory needs.

As electronic devices function with limited battery capacity and require a recharge
at a periodic intervals of time, it becomes necessary to skillfully utilize the power.
The demand for higher data processing to handle ML workloads is increasing over
time. It opens up new challenges in Integrated Circuits(ICs) design to optimize
the power efficiency of SoCs for improving performance per watt.

1.1 Background

Over a few decades, computing performance had a steep increase obeying Moore’s
law [1] and following Dennard Scaling [2]. However, the bandwidth and latency of
memory technologies have not been able to match computing performance growth.
The demand for higher bandwidth and lower latency has led to the concept called
memory wall [3], making memories a bottleneck in high data-movement appli-
cations. One of the approaches to tackle memory wall is Near Data Processing
(NDP). NDP is a subset of Near Memory Computing (NMC) [4]. NDP has been
in existence since the 1990s [5] but was not popular due to the limitation of IC
fabrication technologies. The concept behind NDP is to place computation tedious
applications very close to memory to reduce data movements. After all, high data
movements are primary contributors to power consumption and memory band-
width usage. The impact of NDP in increasing performance and energy efficiency
has been proven effective in Deep Learning [6, 7, 8]. It is also noticed that when
an NDP unit is used for convolution [9] it achieved speedup in computation and
reduction in power consumption.
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2 Introduction

One of the widely used Deep Learning networks that uses convolution as a base
algorithm is Convolutional Neural Networks (CNN). CNN was first introduced
by Yann LeCun in the 1980s [10] and is one of the most thriving Deep Learning
algorithms so far. It performs convolution operations to extract essential features
from input data. The elements can be edges, texture, shape, or any information
relevant to CNN. CNN has high data transfers between the processing unit and
memory. Its memory access patterns are haphazard, giving additional data move-
ments.

The NDP unit designed for CNN is trained specifically to classify numerical digits
in an image. The dataset used for this purpose is the Modified National Insti-
tute of Standards and Technology (MNIST) dataset. The dataset contains 60,000
training images and 10,000 test images of digits with each image of size 28x28.

Open source microcontroller architecture called Pulpissimo is used to integrate
the NDP Unit and to evaluate its performance. It is developed by a group named
Parallel Ultra Low Power (PULP) platform. The PULP platform is a joint effort
between Integrated Systems Laboratory (IIS) of ETH Zürich and Energy-efficient
Embedded Systems (EEES) group of University of Bologna.

1.2 Thesis Goal

This thesis intends to design an Application Specific Integrated Circuit (ASIC)
architecture for an NDP unit integrated into the memory sub-system of an MCU
platform. It should make efficient use of data, to perform CNN Inference.
To successfully achieve this target, the thesis is divided into five significant tasks
as follows.

1. Developing a CNN Model
The first objective in this thesis is to train a CNN model that classifies
handwritten images of numerical digits using MNIST dataset. The size and
number of layers to be used are examined, activation unit after each layer
is also investigated. Furthermore, appropriate size of neural network model
that is reasonable to implement and run inference in hardware is selected.

2. Designing a hardware optimized model
Running CNN model in floating point number representation consumes more
power and area. Even though there is high precision in computed results, it
comes at a cost of having a bigger memory footprint and the need for larger
memory sizes. Hence, the model is reproduced and transformed to fixed
point number representation in MATLAB using pre-trained weights, inputs,
and biases. All network parameters are quantized by reducing their word
length. The hardware model is perfected until a sensible loss in classification
accuracy is achieved.

3. Developing a NDP unit
Data movements occurring in the network were inspected, demands for



Introduction 3

memory reads were probed. Using this information, an NDP unit cover-
ing minimal area is to be designed. The NDP unit should also have better
throughput and low latency.

4. Integrating NDP unit with Pulpissimo memories
Developed NDP unit is placed closely beside Pulpissimo memories. APB bus
is configured to trigger the hardware whenever necessary by the processor.
In addition, Hardware Abstract Layer (HAL) is created to execute it from
the C code efficiently.

5. Comparing NDP Unit with CNN execution on Pulpissimo
NDP unit integrated with Pulpissimo is compared with CNN executed on
bare Pulpissimo. The comparison involves power, area, and computation
speed.

1.3 Thesis Outline

Chapter 1: Introduction. This chapter presents the challenges this thesis tack-
les and the purpose of using near data processing for ML applications.

Chapter 2: Theoretical Background. Includes all technical information and
concepts related to the thesis.

Chapter 3: NDP Design and Implementation. Describes architecture of
designed NDP unit, and modifications made to interleaved memories of Pulpis-
simo.

Chapter 4: NDP Unit Interface with Pulpissimo. Explains methodol-
ogy followed to link NDP unit with Pulpissimo and to make it accessible through
C code.

Chapter 5: Results and Analysis. A study on performance, power and area
utilization of the system performing CNN inference is conducted with and without
the designed NDP.

Chapter 6: Conclusion and Future work. A short description about the
work done and the results obtained is stated with future work of this thesis.



Chapter 2
Theoretical Background

This chapter first introduces technical concepts related to Artificial Neural Net-
work, followed by concepts of Convolutional Neural Networks and Pulpissimo.
These knowledge are necessary to follow further discussions in the thesis. It will
also aid to understand the need for a distinctive approach to tackle neural network
complexities.

2.1 Artificial Neural Network

The human brain can analyze, discover patterns and perform logical operations
within fractions of time. This inspired Warren McCulloch and Walter Pitts, in
1943. They proposed a mathematical model that can imitate the operation of
human brain. The model was coined as Artificial Neural Network (ANN). It is
now commonly referred as Neural Network (NN).

Artificial Neurons are primary building blocks of Neural Network, they try to
mimic the biological behavior of neurons. The human brain has around 100 bil-
lion biological neurons. Similarly, several artificial neurons as in Figure 2.1 get
arranged together and work collectively in a Neural Network.

Output

Hidden

Input

Figure 2.1: An Artificial Neural Network
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Theoretical Background 5

Artificial Neurons are grouped in form of different layer types namely Input Layer,
Hidden Layer, Output Layer. A NN can have many numbers of Hidden Layers.
The mathematical formula of an artificial neuron is presented in Equation 2.1,
where φ(x) is the activation function, w are weights, x are input element and b is
bias. Each neuron has k + 1 input signals, one output signal, and can be repre-
sented diagrammatically as in Figure 2.2.

y = φ

(
n=k∑
n=1

wnxn

)
+ bn (2.1)

Activation
Function

Weighted
Sum

Inputs

 Bias
 - Inputs     

 - Weights     

Figure 2.2: Artificial Neuron

Weights and Biases are learnable parameters of Neural Network. The value of
weight describes how much impact input will have on the output. The bias value
helps neuron to alter its action and make sure the neuron is active even when all
weights of a neuron are zero. The result of weighted sum of an artificial neuron
is passed through an activation function. Activation functions help to concise the
output to a specific range. Apart from this, the activation function provides non-
linearity to help neural networks work with a higher degree of polynomials.

Sigmoid

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

Figure 2.3: Sigmoid Function



6 Theoretical Background

ReLU

-6 -4 -2 0 2 4 6
0

1

2

3

4

5

6

Figure 2.4: Rectified Linear Unit (ReLU)

Hyperbolic tangent
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Figure 2.5: Hyperbolic Tangent (tanh)



Theoretical Background 7

The type of activation function to be used varies based on application and com-
plexity of neural network. Some of widely used activation functions are presented
in Figures 2.3, 2.4, 2.5.

2.2 Types of Artificial NN

The idea of NN sparked curiosity among widespread of researchers over the years
and had resulted in more powerful and better algorithms for mimicking the brain.
Among different neural networks, the following types are regularly employed.

1. FeedForward Neural Networks (FNN)
FNN as in Figure 2.6 is simplest, and was earliest developed NN. It com-
prises of one Input and one Output Layer and with none or many Hidden
Layers. Each neuron of a layer is connected to every neurons in next layer.
The information moves from input to output through Hidden Layers in a
forwarding direction, no results of artificial neurons are fed back into the
network. Probabilistic Neural Network, Time Delay Neural Network, Auto
encoder, or Convolutional Neural Networks are few examples of FNN.

Figure 2.6: A FeedForward Network

2. Recurrent Neural Networks (RNN)
RNN as in Figure 2.7 has data travelling in circles from one layer to another
so that the state of model is influenced by previously predicted results. They
have finite internal memory to store previous outputs for processing diverse
lengths of input sequence as a consequence they are stateful neural networks.
These networks are widely used in Natural Language Processing (NLP) for
speech recognition and language modeling.

2.3 NN Development Cycle

Just like the human brain, NN strives to learn from its input data. But it takes
many iterations for the model to understand patterns of given input. During the
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Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Figure 2.7: A Recurrent Neural Network

development process, three sorts of data set are required. They are training, val-
idation and test set data. 60% of total dataset is allocated for training set. It is
used by the network to learn during Training Phase. The remaining 40% of data
is split equally for validation and test set. To validate the performance of network
after each iteration, validation dataset is used and network accuracy is analyzed.
The fine-tuning of learnable parameters ends once network provides a good clas-
sification or prediction accuracy with validation dataset. The test dataset is used
to evaluate the efficiency of network.

Figure 2.8: Cost Function value after each iteration [12]

The NN development can be subdivided into two stages. They are Training Phase
and Inference Phase. During each iteration, parameters of NN are fine-tuned till
it reaches an optimal minimum. This stage of preparation is termed as Training
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Phase. Cost Functions and Optimizers help to calibrate weights and bias values
in this phase.

Cost Function is a measure to know the quality of neural network model. It
provides insight on how well the model is delivering and ways the model can be
improved. It is simply a measure of difference or distance between predicted value
and actual value. The value of cost function should reduce in subsequent iteration
during training phase to denote that the model is learning to the given inputs.
This is done with the help of optimizers.

Optimizers should reach bare minimum to give smallest value of cost function er-
ror. An illustration of cost function value at each iteration is shown in Figure 2.8.

Once Training Phase is successful, Neural Network model would have obtained
ability to classify or predict any of input data. During Inference Phase, the trained
model is put under test for input it was trained.

2.4 Convolutional Neural Networks

CNN is a Feed Forward Network built up using the following layers:

• Convolutional Layer

• Maxpooling Layer

• Dense Layer

2.4.1 Convolutional Layer

Convolutional layer performs mathematical operation convolution. The input data
is convolved by using small matrices called kernels. Kernels are used to extract
specific features of image. The features can be any relevant data to CNN like
edges, shape, textures. Unlike image processing algorithms, values of kernel are
fine-tuned during training phase of CNN. The working of this layer is present as an
image in Figure 2.9 and mathematical formula that denotes convolution is present
in Equation 2.2.

C =

q∑
i=1

⎡
⎣ q∑
j=1

AijBij

⎤
⎦ (2.2)

where: Aij = The value of the pixel corresponding to image index i,j
Bij = coefficient of convolutional kernel at index i,j
C = convoluted result
q = width of kernel
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*

Figure 2.9: 2D Convolution

2.4.2 Maxpooling

Figure 2.10: 2 X 2 Maxpooling with stride 2

Maxpooling [11] is usually placed after convolution layer. This is done to scale
down spatial size of feature map. Down sampling helps in reducing dimensionality
thereby lessening computation needs in forthcoming layers. It further helps in
de-noising as weak noisy values are eliminated.

In Maxpooling, a window of specific size is moved over feature map and its max-
imum value in that window is picked. This process helps in choosing strongest
features from the result of convolution. Maxpooling concept can be represented
as Figure 2.10 where Ci,j is the feature map and Di,j are Maxpool result.



Theoretical Background 11

2.4.3 Flattening

Flattening is a method of converting multidimensional result into a single column
vector as in Figure 2.11. This process of transformation makes maxpooling result
compatible for a dense layer.

Figure 2.11: Flattening of Maxpool Results

2.4.4 Dense Layer

Dense Result

Bias Value

Activation Function

Figure 2.12: Dense Layer Data Flow

One or more layers of artificial neurons are connected to make CNN learn high-
level features. The weights of this layer are matrix multiplied with flattened data
that is sent as input as in Figure 2.13. Matrix multiplied result is then added
with bias and result is passed through an activation function as in Figure 2.12 .
Normally, the final layer’s activation function is softmax. It helps in determining
probability of the class of image the input belongs to.
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Figure 2.13: Fully Connect Layer Multiplication

2.5 Pulpissimo

The microcontroller Pulpissimo is an open-source edge processing device that aims
to bring high computation capacity on-chip. It has an 32-bit single-core architec-
ture that can do parallel processing. This thesis uses Pulpissimo configured with
RI5CY core. RI5CY is a 4 stage pipelined 32-bit RISC-V processor.

Pulpissimo contains an inbuilt Hardware Processing Engine (HWPE). HWPE can
be used to perform convolution and matrix multiplications efficiently. They exten-
sively use multi-bank memory called Interleaved Banks to speed up the compu-
tation by leveraging bandwidth. However, HWPE communicates with memories
through Logarithmic Interconnects, and as a result it can be stalled if the bus is
busy in satisfying data requests of either core or μDMA.

The overall architecture of Pulpissimo can be found in Figure 2.14.

Variety of peripherals is supported by Pulpissimo. It has a Camera Interface, one
SPI, I2S, two I2C and one JTAG debug unit. The load to handle multiple periph-
erals by the core is avoided by using μDMA. The μDMA works autonomously by
responding to requests and requirements of peripheral devices attached to micro-
controller. This helps the core work on other tasks parallelly and handle events
produced only by μDMA.

The Joint Test Action Group(JTAG) plays a massive role in dumping data and
instructions into private banks. It also helps in configuring boot address and other
registers in peripherals that are required to operate Pulpissimo.
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Logarithmic Interconnect

Boot
ROMData Memory Instruction

MemoryL2 Bank

DEBUG

APB

DMA

RISC-V 

HWCE DEBUG

CLK TIMER EVENT SoC
CTRL

GPIO

I2S

SPI M

CAM IF

I2C

UARTUART

SDIO

Private Banks

PA
D

 
C

O
N

TR
O

L

Interleaved Banks

APB

HWCE

INTC

Figure 2.14: Pulpissimo Architecture
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Pulpissimo has two Frequency Lock Loops (FLL). The core and memory uses one
of the FLL. The peripherals uses the other FLL. The subsystems running at dif-
ferent clock frequencies are synchronized using clock domain crossing.

2.5.1 Soc Memory Map

8kB ROM

FLL

GPIO

UDMA

SoC Control

Advanced Timer

SoC Event Generator

Event / Interrupt Unit

Timer

HWPE

Stdout
Debug Unit

512kB RAM

Boot ROM

Peripherals

L2 Memory

Figure 2.15: Pulpissimo Memory Map

Pulpissimo’s memory map as in Figure 2.15 ranges from address space 0x1A00
0000 to 0x1C0 80000. The range of address from 0x1A10 0000 to 0x1A11 0000
is allocated for peripherals, and the configuration of HWPE falls inside this reser-
vation. The read and write to interleaved memories can be done using the address
series from 0x1C00 0000 to 0x1C08 0000.



Chapter 3
NDP Design and Implementation

The procedure followed to build a CNN model in software and design of NDP
unit to perform CNN inference is explained in this chapter. Additionally, this
chapter covers details of quantization undertaken to reduce 32-bit floating point
CNN model to 8-bit fixed point model.

3.1 CNN Software Model

The software model of CNN is first designed with python using machine learning
framework Keras. Keras offers ability to train CNN model by applying backprop-
agation using cost function and optimizers.

The software model designed to perform classification of numeric digits can have
many hidden layers, including two or more convolutional layers. Transforming the
same model into hardware as an NDP unit is not viable. This is primarily because
going for multiple convolutional layers increases data movements as data access
pattern in memory for convolution is not streamlined, and data read is not appro-
priately utilized. Furthermore, large dimensions of fully connected layers raises
the number of network parameters. This results in more computation and require
bigger memories.

To find optimal model suitable for NDP. The software CNN model was iteratively
designed and analyzed by tweaking following parameters.

• Number of convolutional layers

• Dimension of convolutional kernels

• Number of convolutional kernels

• Length of the stride in convolution

• Number of maxpooling layers

• Size of the stride in maxpooling

• Number of fully connected layers

15



16 NDP Design and Implementation

• Size of fully connected layers

• Type of optimizer and cost function

• Number of iterations

• Type of activation function

The final model that gave a good classification accuracy of 98.06% offering good
workability to implement it as NDP unit is shown in figure 3.1. This model con-
tains one convolution with three kernels and a maxpooling layer with two fully
connected layers. The final result of fully connected layers is carried through soft-
max activation function to determined the classified digit.

INPUT CONVOLUTION MAXPOOLING DENSE 1 DENSE 2

Figure 3.1: Model Convolutional Neural Network implemented in
NDP

3.2 Fixed Point Implementation

The primary aim of an NDP unit is to give better power and area efficiency.Therefore,
it becomes necessary to implement strategies further to uphold these purposes.
One such approach is fixed-point implementation.

The developed CNN model in software performs inference in 32-bit floating-point
integer format. The hardware required to do floating-point number computation
and their power utilization is very high.The number of loads and stores also in-
creases if 32-bit word length is maintained.

To tackle overload of floating-point integer format. The CNN model inference was
reconstructed in MATLAB by using weights and biases of software CNN model.
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The reconstruction is necessary to transform network parameters to a fixed point
format.

Fixed point format can help reduce area, data reads and power as fractional part
of integer is fixed. The word length can also be pinched with a negligible loss
in network accuracy. Reducing word length can significantly help decrease mem-
ory space as more integers can be narrowed inside a single address space of memory.

The Model regenerated in MATLAB was tweaked and classification accuracy was
examined to pick right fixed point CNN model. It was noted that higher the
number of bits in an integer, better was the model accuracy. But considering
memory space used in mind, 8-bit fixed point was preferred as it provided only
0.6% loss in accuracy.

3.3 Interleaved Memories

Each interleaved memories in Pulpissimo are 128KB in size. It is possible to
have one single large 128KB memory for each of them. However, to get a larger
bandwidth for NDP unit, each 128KB of memory is substituted with multiple
smaller memories using a memory wrapper. The wrapper helps to imitate the
functionality of larger memory without any increase in read or write latency.

3.3.1 Memory Wrapper

In this thesis, each 128KB interleaved memory is built using four sub banks of
32KB memories as in Figure 3.2. The wrapper consists of a combinational logic
for Chip Enable (CEN) pin. This logic helps to enable one of the sub banks at a
time. A multiplexer is applied to choose read data port of enabled memory bank.
The hardware design of wrapper can be seen in Figure 3.3.

mem0_bank0

mem0_bank1

mem0_bank2

mem0_bank3

mem1_bank0

mem1_bank1

mem1_bank2

mem1_bank3

mem2_bank0

mem2_bank1

mem2_bank2

mem2_bank3

mem3_bank0

mem3_bank1

mem3_bank2

mem3_bank3

Interleaved Mem 0 Interleaved Mem 1 Interleaved Mem 2 Interleaved Mem 3

Figure 3.2: Interleaved Memory’s Sub Banks
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3.3.2 Data Allocation

First layer of CNN that performs convolution requires an input image. The input
image with 8-bit of word length and in dimension of 1x784 is stored in first two
interleaved memories. Each row of input image is stored alternatively in these
two memories, as in Figure 3.4. This arrangement increases bandwidth when
performing convolution as two rows of input image data can be accessed in one
clock cycle.

Sub Bank 0

Bank 2

Sub Bank 1

Bank 3

CEN Enabler

A[13]
A[14]

Read_Data

CEN
A[13]
A[14]

bank 0 rdata

bank 1 rdata

bank 2 rdata

bank 3 rdata

Bank 0

Bank 1

Figure 3.3: Interleaved Memory Wrapper

Parameters required in fully connected layers are stored in each of interleaved
memory sub banks as in Figure 3.5. The rectangular boxes inside interleaved
memories are sub banks and dotted rectangular boxes are spaces the neural net-
work parameters occupy.
Dense layer parameters placed in banks 1,2,3 of each interleaved memory have a
specific format as in Figure 3.6. This format helps to reduce the logic overhead
required for bias addition. Bias values get stored in accumulator initially, and then
the multiplier values are added with accumulated result.
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mem0_bank0

Inp Img row 1

Inp Img row 3

Inp Img row 5

..............

..............

mem1_bank0

Inp Img row 2

Inp Img row 4

Inp Img row 6

..............

..............

Figure 3.4: Input Image Arrangement
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Weights
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Half_Input Image

Weights

Weights

Weights

Weights

Weights

Weights

Maxpl Results

Weights

Weights
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Interleaved Mem 0 Interleaved Mem 1 Interleaved Mem 2 Interleaved Mem 3

Figure 3.5: Weights and Biases Arrangement

bias value

One Column of Weight

Bank

bias value

.....
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Figure 3.6: Bias and Weights Ordering
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3.4 NDP Unit Block Diagram

NDP Linker

CNN
Controller Convolution and

Maxpooler

Dense Controller

Dense Input
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NDP Mem
Ctrl

Start
CNN
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Init Input
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mem1 rdata
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Shift Input
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Filter
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R
ead D

ense Input

Interleaved
Memory
interface

Figure 3.7: NDP Unit Block Diagram

NDP block diagram shown in Figure 3.7 contains NDP Linker as front facing mod-
ule. The linker covers complications involved in aligning NDP unit with memories.

Main controlling module, called CNN Controller, is responsible for handling sig-
nals required to start convolution with maxpooling and dense top module. The
controller focuses more on input buffer present inside convolution with maxpooling
module. The input buffer should be shifted, or new input data must be inserted
for every four consecutive shifts. Shifting helps convolution to happen in form of
a sliding window technique. Adding new data or shifting the buffer is influenced
by Filter Controller module.

The CNN Controller triggers Filter Controller once input buffer is set for con-
volution. The Filter Controller begins convolution with each of three kernels
it has. This approach assists in data reusability and positively affects power and
performance.

Every time a maxpooling result is produced, Dense Input Controller module
is activated. This module stores the 8-bit result in a 32-bit shift register. Once
four shifts are completed, the data is written into fourth interleaved memory. This
module also plays a significant role in reading, writing max pooling data and first
dense layer outputs.

During dense layer execution, CNN Controller triggers Dense Controller mod-
ule and waits until the dense layer is performed. The Dense Controller starts
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Dense Input Controller frequently to read dense input and then instructs NDP
slave modules to begin computation. The design and placement of NDP slave
modules are explained in section 3.4.2.

3.4.1 Convolution with Maxpooling Module
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Convolution

Maxpl Result

Convolution with Maxpooling Module

Figure 3.8: Convolution with Maxpooling Module Block Diagram

This module as in Figure 3.8 performs convolution along with maxpooling opera-
tions with a total of 18 MAC units. Each MAC unit has a 8-bit multiplier and a
18-bit adder. There is an Input Buffer module with four buffers, each of size 64
bits. During start of convolution, four memory reads are performed to fill the four
buffers. After this, Filter Controller is initiated to conduct convolution with
kernels. The NDP unit has two convoluters that perform convolution in parallel
using their 9 MAC units. This increases throughput and makes Maxpooler module
easier to pick maximum result. Since Maxpooler module needs four convolution
results to pick maximum value, each Convoluter module performs convolution
twice with different inputs.

Diagrammatic representation of convolution happening parallelly inside NDP unit’s
convoluters is explained in Figure 3.9.

3.4.2 Dense Layer Module

The designed neural network model consists of two layers of dense with sizes of
508x72 and 72x10. Since dense layer calculation is computation-intensive, the
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Figure 3.9: Convolution with Maxpooling Module Block Diagram
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NDP Unit has its slaves. The slaves are attached to all three banks present in an
interleaved memory as in Figure 3.10. In total, 12 MAC units are used for dense
layer as three slaves are present in each of four interleaved memory.

CEN
Enabler

Bank 0

Bank 1

Bank 2

Bank 3

NDP SLAVE

rdata

rdata

rdata

rdata

CEN
A[13]
A[14]

Slave
Output

Slave
Output

Slave
Output

CEN[0]

CEN[1]

CEN[2]

CEN[3]

Slave Enabled
Dense Input

NDP SLAVE

NDP SLAVE

Figure 3.10: NDP slaves placement inside interleaved memory

The use of NDP slaves helps to exploit memory bandwidth as each of them have
dedicated memory that can be read. Each slave unit as in Figure 3.11 has its con-
troller. The controller is responsible for configuring default value to adder, count-
ing computation, triggering MAC Controller and Activation Function. The
MAC Controller feeds mac unit with 8-bit of value in each cycle. The mac unit
consists of one 8-bit multiplier and an 18-bit adder. The adder accumulates mul-
tiplier output until the end of computation, and its result is used by Activation
Function when slave controller initiates it.

Since first value read from memory is a bias value. It is sent directly to adder and
is configured as default value. After this, contents read from memory are values
of weights that are multiplied with input given by NDP master. The NDP master
gives input based on dense layer. For first dense layer, maxpooling results are
provided. Second dense layer gets first dense layer output as input.
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Figure 3.11: NDP Slave



Chapter 4
NDP Unit Interface with Pulpissimo

This chapter explains positioning of NDP unit around interleaved memories. The
changes made in peripheral bus and extension made in SoC memory map to make
NDP interact with processor is also discussed here.

4.1 NDP Unit Placement
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Mem 2
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Figure 4.1: Placement of NDP Unit

The concept of NDP is to have computation unit very close to memory. This is re-
alized by placing developed hardware unit nearby interleaved banks of Pulpissimo.
Multiplexers are included to access interleaved memories by NDP unit when it is
instantiated. This helps to maintain existing functionality of Pulpissimo and for
NDP unit to use memories when necessary. The data is written into interleaved
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memories by executing a C programming language code in Pulpissimo.

The modified memory subsystem of Pulpissimo is shown in Figure 4.1. The
start_ndp signal given by peripheral bus switches multiplexers for NDP unit to
control interleaved memories.

4.2 Loading Pattern of CNN Parameters

Interleaved Mem 0 Interleaved Mem 1

Interleaved Mem 2 Interleaved Mem 3

Bank 0

Bank 1

Bank 2

Bank 3

Bank 0

Bank 0 Bank 0

Bank 1

Bank 1Bank 1 Bank 1

Bank 2

Bank 2 Bank 2

Bank 3

Bank 3 Bank 3

Figure 4.2: Address Distribution Across Interleaved Memories

The data written from C code in form of an array gets distributed across interleaved
memories in a round-robin fashion. The first element in array gets written at
address 0x1C01 0000, the second element at 0x1C01 0004, third and fourth at
0x1C01 0008 , 0x1C01 000C. The fifth element of array gets written into first
interleaved memory at address 0x1C01 0010. This rule is followed for all elements
in array. With the use of a pointer from C Language, data was written to each of
banks in interleaved memories.
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4.3 SoC Memory Map Extension

Pulpissimo SoC Memory Map defines allocation of address range for subsystems.The
SoC control address space in memory map is expanded to accompany NDP asso-
ciated details as in Figure 4.3. This is done to configure and trigger NDP unit
whenever necessary. Moreover, NDP unit can give its status of computation and
the digit it has classified by writing back into allocated registers.

UDMA

SoC Control

Advanced Timer

......
......

Existing SoC Ctrl Registers

Start NDP

NDP Status

NDP Image Address

Classified Digit

Figure 4.3: Soc Control Extension



Chapter 5
Results and Analysis

A detailed breakdown of analysis conducted on target scenario and base scenario
is discussed here. The target scenario is Pulpissimo integrated with NDP unit and
base scenario is just the bare Pulpissimo.The study focuses on performance, area,
and power consumption. Synthesis was performed with 28nm FD-SOI transistor
technology that has its corner as typical with 25-degree temperature and low volt-
age threshold.

To make a fair judgment, performance analysis was done individually for each
scenario. The C programming code that performs CNN was used for base scenario
and NDP unit to carry out CNN inference in target scenario. Inbuilt performance
counters were incorporated in both scenarios to measure total cycles taken to
execute one inference for a given input image.

5.1 Convolution with Maxpooling Layer

5.1.1 Performance and Power

The performance of target scenario computing convolution and maxpooling was
matched with base scenario. It was noted that the NDP unit completed its execu-
tion 27x times faster by taking only 3816 clock cycles, whereas the base scenario
took 105133 clock cycles as in Figure 5.1. This leap in performance is mainly due
to data reusability the NDP unit employed to reduce the number of reads. The
convolution and maxpooling are conducted on all three kernels for one read of the
input image, whereas in base scenario the Pulpissimo reads input image every time
for each of the three kernels.

Total power consumed by base scenario to run convolution and maxpooling C
code from Figure 5.2 is almost similar to target scenario, as the difference is only
0.8mW. However, it can be noted that the dynamic power consumption of target
scenario is higher by 1mW due to the high switching activity that occurs inside
the NDP unit.

28
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Figure 5.1: Convolution with Maxpooling Performance
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Figure 5.2: Convolution with Maxpooling Power Consumption
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5.2 Dense Layer

5.2.1 Performance and Power
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Figure 5.3: Dense Layer Performance

Pulpissimo Pulpissimo + NDP

Execution Type

0

5

10

15

20

25

30

35

Po
w

er
 C

on
su

m
ed

 (m
W

)

Dynamic
Static

24.61

32.5

Figure 5.4: Dense Layer Power Consumption

NDP unit in target scenario completed dense layer operation at a speed of 37x
compared to base scenario. This increase in performance can be viewed graphi-
cally using Figure 5.3. In base scenario, Pulpissimo took many clock cycles due to
the memory bandwidth limitation, but NDP unit tackled this issue by utilizing its
slave units. The salve units are attached to each of the sub banks in an interleaved



Results and Analysis 31

memory. Thus, they can independently read memory and compute for dense layer.

The target scenario takes 32.5mW of power for dense layer computation, 7.9mW
more than base scenario. This is primarily due to the high switching activity
of NDP unit slaves. The dynamic and static power consumption of both the
scenario’s can be seen in Figure 5.4.

5.3 Full CNN Inference

5.3.1 Performance and Power
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Figure 5.5: CNN Inference Performance

The number of clock cycles taken by NDP unit in target scenario for a full CNN
inference is 7840. Whereas, the clock cycles taken by base scenario to do the same
task is 258779. Hence a 33x increase in performance is achieved. The reason for
such a large improvement is explained in section 5.1.1 and 5.2.1 as a full inference
is summation of the convolution with maxpooling and dense layer.

From Figure 5.6, It can be observed that the target scenario takes 4.6mW of
additional power to give this high performance.
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Figure 5.6: CNN Inference Power Consumption

5.4 Pulpissimo and NDP Area

Pulpissimo covers an area of 3.081mm2 out of which the NDP unit occupies an
area of 0.8%. From Figure 5.7, it can be noted that the ram module containing
memories of Pulpissimo is the highest area possessing module.
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Chapter 6
Conclusion

The concept of Near Data Processing has been investigated and implemented in
this thesis. A Convolutional Neural Network model that can classify MNIST im-
ages was chosen and realized as an NDP unit. It was merged into multi-bank
memories of a microcontroller platform. The multi-bank memories were built us-
ing multiple smaller memories to increase memory bandwidth for NDP unit. The
APB peripheral bus were extended to make the RISC-V processor interact with
NDP unit.

The Pulpissimo covers an area of 3.081mm2 out of which the NDP unit occupies
only 0.8% of total area. The NDP unit gave 33x more performance when compared
with running C code in bare Pulpissimo. In terms of energy, the Pulpissimo with
NDP unit achieved 28x increase in efficiency.

The NDP unit is designed to be power efficient besides high performance. Power
consumption is decreased by transforming neural network model to a fixed-point
number representation format. In addition, reducing word length from 32-bit to
8-bit substantially helped to save memory space by a factor of four. The data
movements that occurred in CNN model were investigated to make NDP unit
have fewer data transfers. Data reusability was a primary factor for high perfor-
mance and low power consumption for the NDP unit.

In the future, accuracy of fixed point CNN model should be improved to be greater
than 98.5% to further reduce misclassifications. In addition, reducing size of multi-
bank memories can help in lowering power consumption. The NDP unit can be
designed much more generic to be flexible with number of convolutional and dense
layers.
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