
Implementing two Multi-party Threshold Private
Set Intersection Protocols based on Homomorphic

Encryption

ANTON JEPPSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

A
N

TO
N

 JEPPSSO
N

Im
plem

enting tw
o M

ulti-party Th
reshold Private Set Intersection Protocols based on H

om
om

orphic Encryption
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-805
http://www.eit.lth.se

Implementing two Multi-party Threshold Private
Set Intersection Protocols based on Homomorphic

Encryption

Anton Jeppsson
anton@ontanj.se

Department of Electrical and Information Technology
Lund University

Supervisor: Elena Pagnin, Alexander Nilsson

Examiner: Thomas Johansson

February 12, 2021

c© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Private set intersection is a technique for finding the intersection of (two) parties’
sets without disclosing anything else, and it finds it use in e.g. contact discovery,
finding friends who are already on a social platform. Multi-party threshold pri-
vate set intersection is an extension of this which allows multiple parties and only
reveals the intersection if the intersection is larger than a given threshold. Badri-
narayanan, Miao and Rindal [BMR20] proposed three protocols for performing
multi-party threshold private set intersection. Their proposals rely on homomor-
phic encryption and are the first solution to realize multi-party threshold private
set intersection with communication complexity linear in threshold size, and thus
sublinear in set size.

In the this thesis, we investigate how to implement two of the three protocols
in [BMR20] and their actual efficiency in practice. Our implementation is in
the Go programming language and it is independent of the encryption schemes.
Although our implementation is meant to run on a single computer, it is possible
to extend it to multiple computers in an easy way. In order to implement the
protocols in [BMR20], we present an algorithm for homomorphically finding the
minimal polynomial of linearly recurrent sequences in this setting. This is to the
best of our knowledge the first development of such an algorithm. In addition we
also implemented, and made publicly available, a Go library for performing basic
matrix operations with elements being of any type, particularly useful for working
with matrices homomorphically.

i

ii

Popular Science Summary

As bigger and bigger parts of our society get digital, the need for safe storage
constantly increases. One way to protect sensitive information is by using encryp-
tion. Encryption transforms your data into a seemingly random number, so that
only the keeper of a secret key can retrieve the original data, and an eventual
hacker cannot. One special kind of encryption is called homomorphic encryption.
Homomorphic encryption protects the data as above, but in addition to that it
also preserves certain arithmetic properties. For example an additive homomor-
phic encryption scheme allows to you to add two ciphertexts, and upon decryption
of the sum you will receive the sum of the original plaintexts. This property is
not always desirable, but in some cases it is highly useful. One scenario is if you
upload your health data to the cloud, you might not want to disclose this data
as it is sensitive, thus you wish to encrypt it. By using homomorphic encryption
though, it’s possible for a third-party service to make calculations on your data,
e.g. likeliness of certain medical conditions and give you notes on this that only
you (and not the third-party service provider) can see.

In this thesis we investigate another scenario, named multi-party threshold
private set intersection. This is a technique that allows multiple parties, all car-
rying a set of some sort, to learn whether their intersection (elements present
in every set) is large enough and in that case learn which elements are in this
set, but not revealing elements that are not. Badrinanrayanan, Miao and Rindal
[BMR20] proposed recently three ways to achieve this. Their solution make use
of an aforementioned additive homomorphic encryption scheme and a fully ho-
momorphic encryption scheme (that is a scheme that allows both addition and
multiplication of ciphertexts). In our thesis we implement two of these protocols
in the Go programming language, and we investigate how such an implementation
can be constructed in an efficient way. We construct it in a way that makes it
independent of the encryption scheme (i.e. you can plug in any implementation of
an additive homomorphic encryption scheme for the additive part and the same
for the fully homomorphic part).

As a motivating example, we look at a use-case where several parties are
interested in starting a support group, discussing issues they have, e.g. alcoholism.
These issues might however be sensitive, so the parties only want to reveal their
intersection after answering a questionnaire, and discuss those issues at meetings.
The threshold here could be set so that they have at least three issues in common.

iii

iv

Table of Contents

1 Introduction 1
1.1 What is homomorphic encryption? 1
1.2 Applications of homomorphic encryption 3
1.3 A special case: Private set intersection 4
1.4 Contributions . 4

2 Preliminaries 7
2.1 Notation . 7
2.2 The work of Badrinarayanan, Miao and Rindal 7
2.3 Library review: Additive homomorphic libraries 10
2.4 Library review: Fully homomorphic libraries 10
2.5 The Go programming language . 13
2.6 Cryptosystems . 14

3 Implementation 17
3.1 Cryptosystem interfaces . 17
3.2 Setting . 19
3.3 Generic Matrix . 21
3.4 Computing the Hankel matrix . 23
3.5 Matrix multiplication . 24
3.6 Singularity testing . 28
3.7 Minimal polynomial of linearly recurrent sequence 28
3.8 Additive secret sharing . 29
3.9 Multiplication . 29
3.10 Zero testing . 30
3.11 Polynomial division . 30
3.12 Finding intersection . 31
3.13 Lattigo . 36
3.14 Finding inverses . 38
3.15 FHE cardinality testing . 38

4 Experimental results 41
4.1 Setup . 41
4.2 Running time . 42

v

4.3 Communication complexity . 42
4.4 Varying set size . 43
4.5 Varying number of parties . 44

5 Conclusion 45

6 Acknowledgements 47

vi

List of Figures

2.1 Visualization of the star topology. All communication goes through P1. 8
2.2 Venn diagrams of the differences of the protocols in [BMR20]. Every

circle contains the elements of a party. In the middle of each diagram
we have the intersection. Colored is the element we "count" in each
protocol. This count needs to be ≤ T for the cardinality test to pass.
The left-hand sketch shows FTPSI-diff and the right-hand sketch shows
FTPSI-int. Note that the colored area of FTPSI-int are of the same size
for all parties since all sets are of equal size. 8

3.1 Flow chart of the building blocks that make up the protocols. 18
3.2 Functionality of ComputePlainHankelMatrix 25
3.3 Functionality of CentralHankelMatrix and OuterHankelMatrix . 26
3.4 Matrix multiplication protocol, implemented

in CentralMatrixMultiplicationWorker and
OuterMatrixMultiplicationWorker 27

3.5 Functionality of PolynomialDivisionWorker. 32
3.6 Functionality of CentralIntersectionPolyWorker and

OuterIntersectionPolyWorker. 33
3.7 Function for rational polynomial interpolation 35

4.1 Left section contains the imagined questionnaire result. The right
section contains those answered encoded according to description, this
section is the input to the main application. 42

4.2 Running times for various values of T 42
4.3 Communication cost for various values of T 43
4.4 Running times for various values of T and m. 43
4.5 Running times for various values of T and n. 44

vii

viii

List of Tables

2.1 Considered additive homomorphic encryption implementations 11
2.2 Considered fully homomorphic encryption implementations 12

ix

x

Chapter 1
Introduction

While our society gets more and more based around digital solutions, the need
for safe storage of data increases. Standard cryptosystems keep the data safe,
but they do not allow for processing of data, unless decrypted. Homomorphic
encryption addresses this need as it allows computation on encrypted data and
thus eliminates the exposure of data during the computational step. This, how-
ever, makes homomorphic encryption malleable by design, and thus is not useful
for every application. Nonetheless, there are several applications that can be
realized efficiently only thanks to homomorphic encryption. Some applications
are advertising, medical applications and data mining [Arm+15]. One recent use
case is given by [BMR20], where the authors use homomorphic encryption to de-
sign Multi-party Threshold Private Set Intersection protocols. This thesis extends
[BMR20] by providing a working implementation of two of the three proposed
protocols in the Go programming language.

1.1 What is homomorphic encryption?

Homomorphic cryptosystems are cryptosystems with homomorphic properties,
which means that we are able to perform operations on the data while it is en-
crypted. This differs from usual cryptosystems where data has to be decrypted in
order to be manipulated, thus potentially exposing it. The term homomorphism
comes from ancient Greek, meaning of the same shape [Aca+18]. In abstract alge-
bra it is used to describe a map that preserves the algebraic structure between the
domain and the range of an algebraic set. The same is true for homomorphism in
cryptology were we have this homomorphism between the plaintext space and the
ciphertext space.

Several types of homomorphic cryptosystems exist, with partially homomor-
phic being the first discovered. Partially in this case means homomorphic with
respect to one property, most commonly addition or multiplication. These cryp-
tosystems are often referred to as additive homomorphic (AHE) or multiplicative
homomorphic [Pai99] [Elg85].

Levelled homomorphic cryptosystems are more expressive than partially ho-
momorphic cryptosystems in that they allow for both addition and multiplication,
however the number of multiplications one can perform on a ciphertext is limited
by a level L, set by the scheme.

1

2 Introduction

Somewhat homomorphic cryptosystems are not well-defined and used incon-
sistently in the literature. Typically a somewhat homomorphic encryption scheme
allows any number of addition and a few numbers of multiplications. In other
words, the value of L may vary according to what kind of computation is per-
formed.

The last type in this hierarchy are fully homomorphic encryption (FHE). Fully
homomorphic encryption allows for an arbitrary number of additions and multipli-
cations, and according to theory, this is enough to construct any other operation.

Another property of homomorphic cryptosystems, or rather cryptosystems in
general is multi-party schemes. In a multi-party homomorphic cryptosystem there
is a predetermined number of parties n. Any one party can encrypt and perform
operations, but it takes the joint effort of all n parties to decrypt. In threshold
homorphic cryptosystems there is an additional number t, and the difference from
multi-party is that it only takes t parties out of the total n to decrypt.

A homomorphic cryptosystem can be formalized as one containing the follow-
ing four functions [Arm+15].

• KeyGen(1λ, α): Given a security parameter λ and an auxiliary input α,
outputs three keys (pk, sk, evk) where pk is the encryption key, sk is the
decryption key and evk is the evaluation key. pk and evk can be made
public.

• Encrypt(pk,m): Encrypts the plaintext messagem using the encryption key
pk, and outputs a ciphertext c.

• Evaluate(evk, C, c1, . . . , cn): Evaluates (possibly a mix of) ciphertexts and
evaluations ci on circuit C using the evaluation key evk. It outputs an
evaluation output c.

• Decrypt(sk, c): Decrypts a ciphertext or an evaluation c using the decryp-
tion key sk and outputs a plaintext m.

1.1.1 History of homomorphic encryption

The first homomorphic cryptosystem was the well-known RSA cryptosystem pre-
sented 1978 [RSA78]. However the concept of homomorphic encryption was de-
scribed short thereafter [RD78]. This is a homomorphism over the group (Z, ·),
i.e. multiplication of integers.

Goldwasser and Micali described the first additive homomorphic cryptosystem,
being homomorphic over the group (Z2, +) [GM84]. Benaloh continued their work
and presented an additive homomorphic cryptosystem over Z [Ben94]. Katz and
Yung also extended the work of Goldwasser and Micali and described a threshold
additive homomorphic cryptosystem [KY02] which later was further improved by
Desmedt and Kurosawa [DK07]. Meanwhile several other additive homomorphic
cryptosystems were described with Paillier’s [Pai99] being the most well-known
and versatile for implementations. This was expanded into a threshold additive
cryptosystem both by Fouque, Poupard and Stern [FPS01] and by Damgård and
Jurik [DJN03] using a trick presented by Shoup [Sho00].

Introduction 3

The first fully homomorphic encryption scheme was described by Gentry
[Gen09] in 2009 and used ideal lattices, a mathematical structure new to cryp-
tography. Gentry showed how to transform a somewhat homomorphic scheme
into a fully homomorphic one by squashing and boostrapping. The squashing
step simplifies the encryption function as much as possible and the bootstrapping
reencrypts the ciphertext homomorphically. This brings the noise in the cipher-
text (which grows upon evaluation), back to a fixed size. After this breakthrough
van Dijk et al. [Dij+09] described a second fully homomorphic encryption scheme
based on some of Gentry’s ideas, but without using ideal lattices and thus reducing
the complexity of the scheme. Over time several different schemes have emerged
and the problems over ideal lattices are left in favor of Learning with errors and
Ring learning with errors, although still following the road map of Gentry. One
such scheme is the scale-invariant scheme proposed by Brakerski [Bra12]. This
scheme was improved by Junfeng Fan and Frederik Vercauteren, resulting in the
BFV scheme [FV12].

In 2017 Cheon et al. proposed a new interesting encryption technique with
approximate calculations [Che+17]. As some applications, e.g. machine learning,
have inherent approximations and small errors, this scheme integrates that in itself.

1.2 Applications of homomorphic encryption

The most wide-spread motivation for homomorphic encryption stems from modern
day cloud services. It it common today to store your data in the cloud at a cloud
service provider, but this raises privacy concerns if the could service provider can
not be trusted. By using homomorphic encryption, the data can be uploaded to
an untrusted service provider and safely be operated on.

A similar example is provided by Armknecht et al. [Arm+15]: If one company
A has sensitive data, e.g. a stock portfolio, and another company B has secret
algorithms that make predictions about the stock prices, it is possible for A to
encrypt its data and let B perform operations on it homomorphically, that way no
extra information is disclosed.

In [NLV11] Naehrig et al. sketch a scenario where individuals continuously
send their health data in encrypted form to a service provider. This way the
individual is the owner of the data and has full control over it. By using homo-
morphic encryption the service provider can continuously send health feedback to
the individual or give predictions on likelihood of certain medical states.

Bösch et al. [Bös+14] propose a tool for forensic image recognition. Law
enforcement might have a database containing hash values to detect illegal images
on disks and data streams. To detect and mitigate the spreading of such images it
is beneficial to spread the database to internet service providers or companies to
monitor the traffic. However this database is strictly confidential to prevent people
from, e.g., scanning their illegal images with this database and changing the images
so they aren’t detected. What Bösch et al. describe is a tool called SOFIR which
allows law enforcement to receive statistics on matches in the database, while both
the database and the traffic is kept private.

4 Introduction

1.3 A special case: Private set intersection

One area where homomorphic encryption techniques are useful is for private set
intersection protocols [BMR20]. Private set intersection explores the case where
mutually distrustful parties wish to find the intersection of their respective sets,
but don’t want to disclose anything else. This finds its use in a range of applica-
tions from botnet detection [Nag+10] to advertising [Ion+17] and private contact
discovery [Mar14].

A special case of private set intersection is threshold private set intersection,
where the intersection is disclosed only if the size of the intersection exceeds a
certain threshold T . This could be the case for a privacy-preserving ride sharing
where the parties only want to reveal their path if the common path is long enough.

Badrinarayanan, Miao and Rindal suggested [BMR20] three protocols to per-
form multi-party (i.e., more than two participants) threshold private set intersec-
tion, using threshold homomorphic encryption. This is a very recent work, and
according to [BMR20] they are the first to propose a "regular" multi-party pri-
vate set intersection protocol where the communication complexity depends on
the threshold value rather than the set size. We found this work cutting edge,
yet realized it was missing an implementation. To this end we asked ourselves
the questions: 1) How can this protocols be implemented? 2) Which libraries do
we need to implement it? 3) How efficient will it be? These questions find their
answers in chapters 3, 2.3 and 4

This thesis implements two of the protocols proposed by Badrinarayanan, Miao
and Rindal by building on existing homomorphic encryption libraries.

1.3.1 A motivating example

The use case we build around is a mechanism for support group creation. A group
of 4-5 people answer a questionnaire about sensitive issues that they wish to talk
about. The questionnaire might contain approximately 10 common issues, such
as Do you suffer from alcoholism?. If there are at least e.g. three questions that
everybody in the group answers yes to, a group can be created.

1.4 Contributions

We provide implementations of the protocols FTPSI-diff using AHE, and a slightly
modified version of FTPSI-int using FHE, as described by [BMR20], in the Go pro-
gramming language [Jepb]. The discussions in the paper can be used as guidance
for implementations in other languages. The implementation is modular when it
comes to cryptosystem; as long as the homomorphic properties are satisfied, any
cryptosystem implementation can be run with our implementations. To realize
FTPSI-diff using AHE we describe a way of finding the minimal polynomial of a lin-
early recurrent sequence with multi-party additive homomorphic encryption, this
step was omitted in [BMR20], but we follow the blueprint outlined there. For the
FTPSI-int we provide an alternative algorithm to realize the same functionality as
in [BMR20]. The main reason for this change is that the FHE library we build

Introduction 5

on lacks the crucial bootstrapping step but instead provides "collective bootstrap-
ping". Finally, we also provide a mathematical library in Go for matrix operations
with elements of any type [Jepa].

6 Introduction

Chapter 2
Preliminaries

2.1 Notation

In this work we use n parties, each party has an encryption key and a set Si.
Since the setting is multi-party homomorphic, all are needed in order to decrypt
a plaintext. Badrinarayanan, Miao and Rindal assumes that every party has the
same number of elements in their set |Si|, denoted m. Furthermore, they work
in the star topology, visualized in Figure 2.1, which means that one party is the
central party which is communicating with all other parties. No communication
takes place between the other parties, everything goes through the central party.
In this thesis the central party will be denoted P1 and some functions will be
prefixed with Central or Outer to clarify which party are to use it.

The threshold size which needs to be passed to reveal the intersection is de-
noted T .

Brackets are used to distinguish the ciphertext JaK from the plaintext a.
The elements are denoted a, Si = {a1,i, . . . , am,i}.

2.2 The work of Badrinarayanan, Miao and Rindal

In [BMR20] Badrinarayanan, Miao and Rindal describe three protocols for per-
forming multi-party threshold private set intersection using homomorphic encryp-
tion. These are FTPSI-diff using AHE, FTPSI-diff using FHE and FTPSI-int (using
FHE). The difference in functionality between FTPSI-diff and FTPSI-int lies in the
interpretation of T . For FTPSI-int we check whether the intersection I =

⋂n
i=1 Si is

sufficiently large |I| ≥ m− T . For FTPSI-diff on the other hand we check if the set
difference is sufficiently small |(

⋃n
i=1 Si) \ I| ≤ T . Refer to 2.2 for a visualization.

All protocols are split into two parts, the first being cardinality testing, which
determines whether or not the threshold property is satisfied. If it’s not, the pro-
tocol is terminated with empty output, but if it is, the second part of the protocol
is run which returns the intersection. This functionality for finding the intersec-
tion is shared between all protocols. It only requires an additive homomorphic
property and can thus be performed by both AHE and FHE.

Badrinarayanan, Mian and Rindal work in the semi-honest setting where par-
ties are expected to learn as much as possible from the data they receive, but they
will never deviate from the protocol to gather extra information.

7

8 Preliminaries

Figure 2.1: Visualization of the star topology. All communication
goes through P1.

Figure 2.2: Venn diagrams of the differences of the protocols in
[BMR20]. Every circle contains the elements of a party. In the
middle of each diagram we have the intersection. Colored is the
element we "count" in each protocol. This count needs to be
≤ T for the cardinality test to pass. The left-hand sketch shows
FTPSI-diff and the right-hand sketch shows FTPSI-int. Note that
the colored area of FTPSI-int are of the same size for all parties
since all sets are of equal size.

Preliminaries 9

Let us start by looking at FTPSI-diff using AHE (described in Figure 9 in
[BMR20]).

Each party Pi encodes their set elements aj as exponents in a polynomial,
pi(x) =

∑m
j=1 x

aj,i . Now if P1 multiplies p1 by the number of outer parties and
subtract the sum of all outer parties polynomials, i.e. p(x) = (n − 1)p1(x) −∑n
i=2 pi(x), we see that all monomials with exponents in the intersection cancel

out. To determine whether the number of polynomials in p is ≤ T we apply
the polynomial sparsity test of Grigorescu et al. [GJR10]. To to this we take a
uniformly random u and construct a Hankel matrix H, shown below. A Hankel
matrix is a matrix where the elements equals within each diagonal. The matrix H
is singular if the the number of polynomials in p is ≤ T . So we are left to perform
a singularity test for H.

H =


p(u0) p(u1) · · · p(uT)
p(u1) p(u2) · · · p(uT+1)

...
...

. . .
...

p(uT) p(uT+1) · · · p(u2T)

 (2.1)

The path Badrinarayanan et al. take to perform a singularity test relies on the
theory of [Kil+07]. By finding the linearly recurrent sequence a = {uTHiv}i∈N
for random vectors u and v. Using this linearly recurrent sequence a the problem
of singularity testing is reduced to finding the minimal polynomial of a. Badri-
narayanan et al. provide a protocol for collective matrix multiplication of en-
crypted matrices, described in figure 7 of [BMR20]. For finding the minimal poly-
nomial the authors state that there exists such a functionality with the desired
communication bounds. A solution to this problem is provided by this thesis in
section 3.7.

Finding whether H is singular or not concludes the first part of FTPSI-diff
using AHE and we reach the second part, where we find the intersection. This
part is conceptually very simple, but its technical description is complicated by
the fact that the parties polynomials need to be properly masked for security.
For simplicity, this description leaves out masking polynomials and masking roots,
refer to figure 10 of [BMR20] for further information.

To find the intersection, the elements aj are reencoded as roots of a polynomial,
pi(x) =

∏m
j=1(x− aj,i). Each party receives the sum of all pi, V (x) =

∑n
i=1 pi(x),

or rather 3T + 3 sample values of V . As V is properly masked this is safely passed
unencrypted. Now, for the rational polynomial qi(x) = V (x)

pi(x)
, elements in the

intersection will be cancelled out from the numerator and the denominator, so by
performing rational polynomial interpolation of q, the elements belonging to Pi
but not in the intersection, are the roots remaining in the denominator of q. And
this solves our problem.

For the FTPSI-int the idea is similar to the second part of FTPSI-diff above. The
elements are encoded as roots pi(x) =

∏m
j=1(x − aj,i) and 2T + 3 sample values

of this polynomial is passed encrypted to P1 together with an encryption of pi(z)
with z being randomly determined by P1. P1 now homomorphically performs a
rational polynomial interpolation of Jp∗(x)K = J

∑n
i=2 pi
p1

K using the 2T + 3 points.

10 Preliminaries

If enough roots are cancelled out (i.e. the intersection is big enough), the degree of
this rational polynomial will drop so that it can be correctly recreated with only
2T + 3 evaluation. After interpolation we check whether p∗(z) =

∑n
i=2 pi(z)

p1(z)
, if we

have equality, p∗ was correctly restored, and thus the cardinality test passed and
we can move on to determine the intersection.

The second part of FTPSI-int is identical to the second part of FTPSI-diff.

2.3 Library review: Additive homomorphic libraries

One of the most fundamental parts of programming is the re-use of code. There
exists multiple repositories publicly available that implement the homomorphic
cryptosystems needed in this project. First, let us look at the additive homomor-
phic cryptosystems.

The most common issue with existing implementations is missing licenses.
Although most of them signal that they are meant to be used, the lack of license
makes them effectively not open source, and thus unfit for using. For the licenses
present, they were of various kinds but all were permissive for our use. Another
problem was libraries not stating which protocol they were based on. This makes
it hard to verify whether the protocol actually is correct, and it would make it
particularly hard to fix an eventual error.

Table 2.1 shows the threshold additive homomorphic schemes that were found.
They are sorted roughly by how fit they are for the task, with Paillier Threshold
Encryption Scheme Implementation being the one that was finally chosen.

The reviewed libraries can broadly be split into three categories, those based
on Paillier [Pai99], Elgamal [Elg85] and BGN [BGN05]. Paillier schemes are the
most numerous, as these include the schemes of Damgård-Jurik [DJN03], Fouque
[FPS01] and Nishide [NS11]. BGN is labelled as Somewhat homomorphic as it
allows one multiplication. If no other implementations suited our purpose this
might had been useful, but primarily we wanted to favour purely additive cryp-
tosystems. Elgamal is mainly a multiplicative homomorphic cryptosystem, but by
raising the plaintext m to a fixed value before encryption transforms it to an ad-
ditive cryptosystem. However, to retrieve m after decryption for this transformed
cryptosystem we would have to solve an equation of the form c = km in Zn, which
might be difficult depending on e.g. n.

Implementations for threshold fully homomorphic encryption exists in Go and
C++, making them favourable for the first part also. This deems Paillier Threshold
Encryption Scheme Implementation the most suitable choice. It will be called
tcpaillier for the rest of the thesis, as this is the package path.

2.4 Library review: Fully homomorphic libraries

Listed in Figure 2.2 are the most prominent existing libraries implementing fully
homomorphic encryption. As can be seen, most of them are written in C++. Only
two of them announce support for threshold fully homomorphic encryption, that
is Lattigo and PALISADE.

Preliminaries 11
P
ro
je
ct

na
m
e

La
ng

ua
ge

Im
pl
em

en
ts

N
ot
es

P
ai
lli
er

T
hr
es
ho

ld
E
nc
ry
pt
io
n
Sc
he
m
e
Im

pl
em

en
ta
-

ti
on

G
o

[D
JN

03
]

[L
ab

]

D
am

ga
rd
-J
ur
ik

P
yt
ho

n
[D

JN
03

]
[C

ry
b]

So
m
ew

ha
t

ho
m
om

or
ph

ic
en
cr
yp

ti
on

ov
er

el
lip

ti
c

cu
rv
e
us
in
g
B
G
N

al
go

ri
th
m

P
yt
ho

n
[B
G
N
05

]

C
ry
pt
og

ra
ph

y
Ja
va

[B
G
N
05

],
[P
ai
99

],
[B
en

94
]

[M
al
]

T
hr
es
ho

ld
cr
yp

to
gr
ap

hy
lib

ra
ry

P
yt
ho

n
[E
lg
85

]
[P
et
]

P
ai
lli
er

T
hr
es
ho

ld
E
nc
ry
pt
io
n
T
oo

lb
ox

Ja
va

[D
J0

1]
[K

G
]

D
is
tr
ib
ut
ed

P
ai
lli
er

C
ry
pt
os
ys
te
m

P
yt
ho

n
N
ot

st
at
ed

[A
pp

],
ba

se
d
on

[K
G
]

Lu
a
M
ul
ti

P
ar
ty

Lu
a
/
C

N
ot

st
at
ed

[D
yn

]
D
am

gå
rd
-J
ur
ik

C
ry
pt
os
ys
te
m

C
+
+

[D
JN

03
]

N
ot

lic
en

se
d
[ji
a]

pa
ill
ie
r

G
o

[P
ai
99
]

N
ot

lic
en

se
d
[S
er
b]

th
re
sh
-p
ai
lli
er
-w

o-
td

Ja
va

[N
S1

1]
N
ot

lic
en

se
d
[C

hr
]

T
hr
es
ho

ld
-P
ai
lli
er
-w

it
h-
ZK

P
C
+
+

[F
P
S0

1]
N
ot

lic
en

se
d
[z
iy
a]

T
hr
es
ho

ld
-P
ai
lli
er
-w

it
ho

ut
-T
ru
st
-D

ea
le
r

C
+
+

[N
S1

1]
N
ot

lic
en

se
d
[z
iy
b]

T
hr
es
ho

ld
-P
ai
lli
er
-w

it
ho

ut
-T
ru
st
-D

ea
le
r-
w
it
h-
T
C
P
-

IP
P
yt
ho

n
N
ot

st
at
ed

N
ot

lic
en

se
d
[z
iy
c]

B
G
N

C
+
+

[B
G
N
05

]
N
ot

lic
en

se
d
[P
oo

]
B
G
N

G
o

[B
G
N
05

]
N
ot

lic
en

se
d
[S
er
a]

T
ab

le
2.

1:
C
on

si
de
re
d
ad
di
tiv

e
ho

m
om

or
ph

ic
en
cr
yp
tio

n
im

pl
em

en
ta
tio

ns

12 Preliminaries

P
roject

nam
e

Language
Im

plem
ents

N
otes

Lattigo
G
o

[C
he+

17],[F
V
12]

T
hreshold

for
B
F
V
,C

K
K
S
[D

at]
PA

LISA
D
E

C
+
+

[B
G
V
11],

[F
V
12],

[C
he+

17],
[D

M
14],

[C
hi+

16]
T
hreshold

for
B
G
V
,

B
F
V
,

C
K
K
S

[PA
L]

H
E
lib

C
+
+

[B
G
V
11],[C

he+
17]

[hom
]

M
icrosoft

SE
A
L

C
+
+

/
C
#

[C
he+

17],[F
V
12]

[20]
H
E
A
A
N

C
+
+

[C
he+

17]
[Seo]

F
H
E
W

C
+
+

[D
M
14]

[D
uc]

T
F
H
E

C
+
+

[C
hi+

16]
[tfh]

F
V
-N

F
Llib

C
+
+

[F
V
12]

[C
rya]

N
uF

H
E

P
ython

[C
hi+

16]
[N

uC
]

C
oncrete

R
ust

[C
hi+

16]
[Zam

]

T
able

2.2:
C
onsidered

fully
hom

om
orphic

encryption
im

plem
entations

Preliminaries 13

The choice was made to use Lattigo as the Go library tcpaillier was preferred
for AHE and Lattigo is more light-weight. However, upon working with the library,
the discovery was made that the crucial bootstrapping step was not implemented
yet, this was later confirmed by the authors. Instead, they provide a "collective
bootstrapping". Thus in practice a single party can only perform few multiplica-
tions on its own, thereafter, to continue calculations, all parties need to participate
in this collective bootstrapping. Due to this, we developed an alternative scheme
for FTPSI-int, which makes use of the collective bootstrapping instead. From the
documentation of PALISADE it is unclear whether they implement the actual
bootstrapping for the BGV or BFV schemes or if they take a similar approach as
Lattigo.

The CKKS scheme [Che+17] provided by both Lattigo and PALISADE is not
applicable to this work as it uses approximate numbers.

2.5 The Go programming language

Go was designed in 2007 at Google by Robert Griesemer, Rob Pike and Ken
Thompson. In 2009, version 1.0 was released, and it was made open-source. The
idea to create Go arose from problems seen at Google at the time. Back then, com-
puters had seen extensive improvement over the years, but the languages in use,
e.g. C++ and Java, had not seen so much improvement. As stated on golang.org,
at the time one had to choose either efficient compilation, efficient execution, or
ease of programming. Griesemer, Pike and Thompson wanted to create a modern,
fast and easy-to-use language by looking at where current programming was and
where it was going [Go].

Go is syntactically similar to C, but with memory safety, garbage collection,
concurrency and structural typing. As opposed to nominal typing, which is used
in e.g. Java and C++, in structural typing an element is compatible with another
if all features of the first element also exists for the second. This is evident in
how Go handles polymorphism, with interface. An interface can be described
as a set of methods acting on a struct (a struct in Go is a collection of data,
like in C). Go is not an object-oriented language, so methods do not belong to
an object, instead some methods are declared with a so called receiver argument.
In order for a struct A to implement an interface B, all functions stated in B
must be implemented for A (with A being the receiver argument). Below is a simple
example where A implements B and thus A can be used everywhere B is stated.

type A struct {
num int

}

type B interface {
Foo(int) int

}

func (a A) Foo(b int) int {
return a.num + b

14 Preliminaries

}

func Bar(b B) int {
return b.Foo(2)

}

var a A
Bar(a) // this is valid

In Go lists are known as slices, they are much like ArrayLists in Java. A slice
(with zero-elements) can be initialized using make, e.g. make([]int, 3), or by
initializing values directly, []int{1,2,3}. The declared type of a slice is empty
square brackets followed by the data type stored in the slice, e.g. []int. Accessing
elements in the slice is done similar to Python, i.e. stating an index or a range
inside brackets, a_slice[1:]

Go’s approach on errors is treating them as values. Go allows multiple return
arguments from functions, and an error element are frequently passed as one of
them. Although originally omitted, a panic/recover-mechanism (similar to try-
catch) was eventually added, it’s used for truly exceptional unrecoverable errors.

Go allows named returns, that is, the return arguments can be stated in
the function header and their current values will be returned when return is
called. The return arguments are stated after the function arguments. In
func Foo(a int) (b int, err error), b and err are return arguments. This
feature is particularly useful in Go since eventual errors can create a lot of potential
return points. The following snippet is thus a common sight in Go.

val , err := Foo()
if err != nil {

return
}

2.6 Cryptosystems

This section gives a brief description of the additive homomorphic cryptosystem
used, and its ancestors, as a taste. The description of the fully homomorphic
cryptosystem, BFV, is out of scope for this thesis. Refer to [FV12] and [Mou+20]
for a description.

2.6.1 Paillier cryptosystem

Paillier cryptosystem was presented in [Pai99]. It consists of three algorithms:
KeyGen, Encrypt and Decrypt. Evaluation is trivial.

KeyGen: Choose two large prime numbers p and q, and set n = pq. Choose
g such that

gcd(
gλ(n) − 1 mod n2

n
, n) = 1.

Preliminaries 15

The public key is (n, g) and the private key is (p, q). λ(n) refers to Carmichael’s
function, λ(n) = lcm(p− 1)(q − 1).

Encrypt: Use plaintextm < n. Select random r < n. Ciphertext is c = gm·rn
mod n2.

Decrypt: m = L(cλ(n) mod n2)
L(gλ(n) mod n2)

mod n, where L(x) = x−1
n .

It it easy to see that the system exhibits the following homomorphisms on Zn.

Decrypt(Encrypt(m1) ·Encrypt(m2) mod n2) =m1 +m2 mod n

Decrypt(Encrypt(m)k mod n2) =km mod n

2.6.2 Damgård-Jurik cryptosystem

Damgård-Jurik cryptosystem [DJN03] is a generalization of Paillier. It introduces
the parameter s, extending the plaintext space to Zns , where s is a natural number
smaller than p and q. For Paillier we have s = 1 [DJN03]. In our case we also use
s = 1, since we want the plaintext space to be as similar as possible to a field, and
we don’t have any other requirements for the size of the plaintext space.

KeyGen: Set n = pq for p, q prime. Choose g such that g = (1 + n)jx
mod ns+1 for j relatively prime to n and x. It is possible to always choose g = n+1
without reducing security of the system [DJN03]. Choose d such that d = 0
mod λ(n). For Paillier d = λ(n) was used. The public key is (n, g) and private
key is d.

Encrypt: Use plaintext m < ns. Select random r < n. Ciphertext is c =
gm · rns mod ns+1.

Decrypt: We note that

cd = (gmrn
s

)d = ((1 + n)jmxmrn
s

)d

= (1 + n)jmd mod ns(xmrn
s

)d mod λ

= (1 + n)jmd mod ns

[DJN03] provides an algorithm to determine jmd mod ns from (1+n)jmd mod ns .
After applying that algorithm it is possible to determinem = jmd·(jd)−1 mod ns.

2.6.3 Damgård-Jurik threshold cryptosystem

To create the threshold variant of the scheme, we adopt a technique proposed by
Shoup [Sho00]. Shoup describes how to collectively and effectively raise an input
number to a secret exponent modulo an RSA modulo n. Damgård et al. transform
this to their case which allows to raise the input c to the secret exponent d modulo
ns+1. By using g = n + 1 and d = 1 mod ns and d = 0 mod λ we will receive
cd = (1 +n)m mod ns so that the rest of the decryption can be performed without
knowledge of d.

KeyGen: Choose four primes p, p′, q and q′ such that p = 2p′ + 1 and
q = 2q′ + 1, and set n = pq and n′ = p′q′. Choose s as before, s = 1 in our
case. Choose d = 0 mod n′ and d = 1 mod ns. We set the threshold w as
2w − 1 = l, where l is the number of key’s generated. Now by picking random

16 Preliminaries

ai (for 0 < i < w) from {0, ..., ns · n′ − 1} and setting a0 = d, we can create the
polynomial f(X) =

∑w−1
i=0 aiX

i mod nsn′. The secret key of party i (1 ≤ i ≤ l)
is si = f(i) and the public key is (n, s).

Encrypt: Pick a random r ∈ Z∗n, the ciphertext is c = (n+1)mrn
s

mod ns+1.
Decrypt: A party contributes ci = c2l!si . For a subset S of w such partial

decryptions we can calculate c′ =
∏
i∈S c

2λS0,i
i where λS0,i = l!

∏
i∈Si

−i
i−i′ ∈ Z. This

brings c′ to the form c′ = (1+n)4l!
2m mod ns+1. Here we use the same algorithm

from [DJN03] as used in section 2.6.2 and then multiply by (4l!2)−1 mod ns to
restore m.

Chapter 3
Implementation

In this chapter we will present all the different parts of the implementations we
provide. In Figure 3.1 we see a visualization of the building block’s part in the
protocols. The implementation is available at [Jepb].

3.1 Cryptosystem interfaces

We aim to provide an implementation of the protocols that are indepen-
dent of cryptosystem. To facilitate this two interfaces AHE_Cryptosystem and
FHE_Cryptosystem were designed. They are defined as follows.

type AHE_Cryptosystem interface {
// addition of two elements
Add(Ciphertext , Ciphertext)

(sum Ciphertext , err error)

// scaling of an element by scalar factor
Scale(cipher Ciphertext , factor *big.Int)

(product Ciphertext , err error)

// encrypt a plaintext message
Encrypt (*big.Int) (Ciphertext , error)

// combine partial decryptions to plaintext
CombinePartials ([] Partial_decryption)

(*big.Int , error)

// encrypted matrix evaluation
EvaluationSpace () gm.Space

// size of plaintext space
N() *big.Int

}

type FHE_Cryptosystem interface {
AHE_Cryptosystem

17

18 Implementation

Figure 3.1: Flow chart of the building blocks that make up the
protocols.

Implementation 19

// multiplication of two elements
Multiply(Ciphertext , Ciphertext) (Ciphertext , error)

}

type Secret_key interface {
PartialDecrypt(Ciphertext)

(Partial_decryption , error)
}

type Partial_decryption interface {}

type Ciphertext interface {}

A plaintext message is typed as *big.Int. This is in fact true for tcpaillier, but
for Lattigo plaintexts are typed as uint64 (or rather []uint64) but transforming
uint64 to *big.Int is injective and this is expected to be true for all crypto
libraries’ plaintext types.

For ciphertexts the interface Ciphertext was created. This interface is an
empty interface and thus any type implements it and so a ciphertext can be of any
type. The same is true for Partial_decryption, which is the decryption state
between one party doing its partial decryption and parties combining all their
partial decryptions into the plaintext.

We can see that FHE_Cryptosystem simply extends AHE_Cryptosystem by
adding a Multiply function. A distinction is made between scaling and multipli-
cation. For an AHE cryptosystem multiplication between encrypted values are not
allowed, but multiplication between one ciphertext and one plaintext is allowed,
this is what is denoted as scaling.

The function EvaluationSpace refers to evaluation space in Generic Matrix-
library, see section 3.3.

AHE_Cryptosystem is implemented by DJ_encryption to use tcpaillier. This
is straightforward and need no further description. However, implementing
BFV_encryption to use Lattigo in the FHE setting raised som problems and is
discussed further in section 3.13.

These structs will be described later.

3.2 Setting

The interfaces AHE_setting and FHE_setting describe the setting. We needed to
distinguish them as they contain the cryptosystem which is of various types (FHE
or AHE). Apart from this they also contain the number of parties, the threshold
value and communication facilities.

type AHE_setting interface {
// threshold value
Threshold () int

// number of parties

20 Implementation

Parties () int

// ahe cryptosystem
AHE_cryptosystem () AHE_Cryptosystem

// used by central party to send a value to all
Distribute(interface {})

// used by outer parties to send to central party
Send(interface {})

// used by central party to send
// a message to given party
SendTo(int , interface {})

// for central to await messages from all
// and get them (ordered) in a slice
ReceiveAll () [] interface {}

// receive a message from central party
Receive () interface {}

// true if this party is central
IsCentral () bool

}

type FHE_setting interface {
AHE_setting

// fhe cryptosystem
FHE_cryptosystem () FHE_Cryptosystem

}

For this work we run each party as separate threads on a single machine. For
real scenarios however, one probably want to use separate machines. This con-
struction takes and generic approach to communication and can easily be changed
to another way of communicating.

The interfaces are implemented by the two structs AHESetting and
FHESetting.

type AHESetting struct {
cs AHE_Cryptosystem
n int // number of participants
T int // threshold
channels []chan interface {}
channel chan interface {}

}

Implementation 21

type FHESetting struct {
AHESetting
cs FHE_Cryptosystem

}

3.3 Generic Matrix

In order to perform cardinality testing for AHE, we need support for matrix op-
erations. There exists a widely used third-party mathematical library for the Go
programming language, namely Gonum. Specifically, it includes a sub-package in-
cluding matrix structures and linear algebra operations [Gon]. This sub-package,
however, support 64 bit float elements only, which is unfit for the encrypted data
we will use. To overcome this issue a Generic Matrix library was implemented as
a part of this project. This library is available at [Jepa].

The aim of this package is to enable basic matrix operations, both in the
plaintext space and in the ciphertext space, and to do it in a modular way for use
in different scenarios. To allow this, an interface Space was constructed. It looks
the following way

type Space interface {

// addition of two elements in the space
Add(interface {}, interface {})

(sum interface {}, err error)

// subtraction of two elements in the space
Subtract(interface {}, interface {})

(diff interface {}, err error)

// multiplication of two elements in the space
Multiply(interface {}, interface {})

(product interface {}, err error)

// scaling of an element by scalar factor
Scale(spaced interface{}, factor interface {})

(product interface {}, err error)

// return true if this space (matrix) consists
// of scalar factors i.e. if Scale are
// to be used in matrix multiplication
Scalarspace () bool

}

Every matrix stores a struct implementing this interface, to allow evaluation
of the operations in the current space. In this way it’s easy to extend the library
with other evaluation spaces. To support the desired functionality of TPSI two

22 Implementation

types implementing this interface was constructed, Bigint and DJ_public_key to
perform evaluations in the plaintext space and ciphertext space respectively.

The matrix struct is implemented as following, containing a []interface{}
with all the elements, two integers Rows and Cols, storing the number of rows and
the number of columns and the cryptosystem at hand.

type Matrix struct {
values [] interface {}
Rows , Cols int
Space Space

}

The row and column numbering is zero-based (evident in Set and At), which is
common in programming and gives a slightly easier formula for getting and setting.

The following operations was implemented.

• NewMatrix(rows, cols int, data []interface{}, space Space)
(m Matrix, err error) - constructor

• (m Matrix) At(row, col int) (interface{}, error) - get value at
given position

• (m Matrix) Set(row, col int, value interface{}) error - set value
at given position

• (a Matrix) Multiply(b Matrix) (c Matrix, err error) - matrix mul-
tiplication

• (a Matrix) MultiplyScalar(scalar interface{}) (Matrix, error) -
scalar multiplication when scalar and a share the same space

• (a Matrix) Scale(factor interface{}) (Matrix, error) - scalar mul-
tiplication to be used if factor is in a scalar space while a is not

• (a Matrix) Add(b Matrix) (c Matrix, err error) - matrix addition

• (a Matrix) Subtract(b Matrix) (c Matrix, err error) - matrix sub-
traction

• (a Matrix) Concatenate(b Matrix) (Matrix, error) - horizontal con-
catenation

• (a Matrix) CropHorizontally(k int) - horizontal crop

• (a Matrix) Apply(f func(interface{}) (interface{}, error))
(b Matrix, err error) - apply a function to all matrix elements

Below is the addition function shown. We can see how the functions calls the
user-defined a.Space.Add to perform addition on each element.

// matrix addition
func (a Matrix) Add(b Matrix) (c Matrix , err error) {

if a.Rows != b.Rows || a.Cols != b.Cols {
err = fmt.Errorf("dimension␣mismatch")
return

Implementation 23

}
c_vals := make ([] interface {}, len(a.values))
for i := range c_vals {

c_vals[i], err = a.Space.Add(a.values[i],
b.values[i])

if err != nil {return a, err}
}
return NewMatrix(a.Rows , a.Cols , c_vals , a.Space)

}

The elements are stored in row-major order, meaning that the formula for
fetching element (r,c) is Cols*r + c. The reason for choosing this approach
is that it is the most intuitive, as it is the way we read. The only place where
this matters for implementation is in the creation of matrices (NewMatrix), and
in Concatenate and CropHorizontally, where we merge and split matrices hor-
izontally. In the latter case column-major order would have been given a faster
implementation as then we could have just concatenated / split the value slices but
constructing the matrix as a sequence of rows is more intuitive and user friendly.

Extra care was needed for differentiating various kinds of scalar multiplication.
As the elements are interface{} it is not possible to distinguish between multi-
plication by plaintext scalar or ciphertext scalar. For that reason two functions
exist, Scale and MultiplyScalar. In fact the latter won’t be used in this project
since it is not allowed with AHE, but the functionality is needed for the library to
be useful in other cases.

The same applies to matrix multiplication, where we have even more scenarios;
we might use matrices from the same or different spaces, and we might do the
multiplication from left or right. To handle this we have the function Scalarspace
in the interface Space. It returns true if matrix multiplication with this matrix
should be performed with Scale and false if it should be performed with Multiply.

3.4 Computing the Hankel matrix

The first step of FCTest-diff is to create a Hankel Matrix. This is done by each
party setting a polynomial pi(x) =

∑m
j=1 x

aj , where aj is the jth item in the
party’s set, and evaluating it at u0, u1 ... u2T for u sampled by P1. This is done
unencrypted and is thus easily achieved. We use the slice u1_list which stores
the values of uaj for each j throughout the execution and the slice u_list, which
stores (uk)aj = ukaj for each j and the current iteration k. We use a for-loop
that iterates over all diagonals, except the first, and thus runs 2T times. We know
that H will be zero at the first entry since all parties have the same number of
elements, so we start our iteration at the second diagonal, with i = 1. For each
iteration we sum the elements of u_list and insert them on the corresponding
diagonal. If we are to do another iteration, we do an element-wise multiplication
of the elements in the slices u_list and u1_list to get the new state of u_list.

24 Implementation

The Hankel matrix looks as follows

H =


p(u0) p(u1) · · · p(uT)
p(u1) p(u2) · · · p(uT+1)

...
...

. . .
...

p(uT) p(uT+1) · · · p(u2T)

 (3.1)

The position of the diagonal is decided by noting that if i <= T the starting
column (startCol) is 0 and the final column is i+1, or else, if i > T the starting
column is i-T and the final column is T+1. The starting row will always be
i-startCol and now we can iterate through decreasing row and increasing column
until we reach the final column.

The matrix is then encrypted item-wise and passed to P1. The polynomial
of P1 looks slightly different: p1(x) =

∑m
j=1(n − 1)xaj . This can be simplified as

p1(x) = (n−1)
∑m
j=1 x

aj , or, (computationally) equivalent, calculating the matrix
as for Pi and multiplying by (n−1) lastly. P1 sums the outer parties’ matrices and
subtracts with its own, this will cause all shared monomials to disappear, since P1

uses the factor n− 1.
P1 initiates the calculations by sampling u uniformly random from the plain-

text space and passing it to all parties. The parties send back their encrypted ma-
trices, which each is subtracted from P1’s matrix. This will cause p = p1−

∑
i>1 pi

to cancel out all roots that are elements of all parties. Now we can perform a sin-
gularity test to determine whether p has low enough degree.

Finding the Hankel matrix is implemented in CentralHankelMatrix and
OuterHankelMatrix and described in Figures 3.2 and 3.3.

3.5 Matrix multiplication

In order to perform the singularity testing we will need a protocol for performing
matrix multiplication of encrypted matrices in the TAHE setting. Such a protocol
is provided in [BMR20].

The protocol ΠMMult inputs two encrypted matrices JAK and JBK and outputs
their product JA · BK. The implementation consists of four functions, each one
representing one of the four steps of the protocol as described in [BMR20]. The
protocol is described in Figure 3.4. Mathematically it works as follows.

Each party uniformly samples two matrices RAi and RBi with elements from the
plaintext space, those are sent encrypted to P1. P1 sums RA =

∑n
i=1R

A
i , MA =

A+RA and MB = B+
∑n
i=1R

B
i . Each party calculates cti = JRARBi −MARBi −

RAi M
BK = JRAKRBi −JMAKRBi −RAi JMBK which is possible since unencrypted RAi

and RBi are stored locally. Parties collectively decrypt MA and MB too calculate
JMA ·MBK which allows for the final calculation of

JA ·BK = JMA ·MBK +

n∑
i=1

cti

The functionality is implemented in the func-
tions CentralMatrixMultiplicationWorker and
OuterMatrixMultiplicationWorker.

Implementation 25

Input slice items containing all elements; random u.
Output the party’s Hankel matrix H.

1. Initiate a new matrix H with size T × T and set to 0 at H[0,0].

2. Initiate u_list and u1_list same length as items, containing the val-
ues: uai mod q for each element ai in items and plaintext field size
q.

3. For i := 1, 2, ...

(a) If i <= T ; then set startCol = 0 and stopCol = i + 1.

(b) Else set startCol = i - T and stopCol = T + 1.

(c) Sum the values of u_list into el.

(d) Starting at row i-startCol and column startCol, traverse H di-
agonally up-right and set the elements on this diagonal to el,
until stopCol is reached.

(e) If i >= 2T ; return H

(f) Else item-wise multiply u_list and u1_list and store to u_list.

Figure 3.2: Functionality of ComputePlainHankelMatrix

26 Implementation

Input slice items containing all elements.
Output Hankel matrix H for singularity testing.

1. P1 samples a value u uniformly random from the plaintext field and
sends to all parties.

2. Outer parties call ComputeHankelMatrix, which

(a) calls ComputePlainHankelMatrix to receive H

(b) returns encryption of H

3. P1 calls CPComputeHankelMatrix, which

(a) calls ComputePlainHankelMatrix to receive H

(b) set H to product of H times the number of outer parties

(c) returns encryption of H

4. All parties send H to P1.

5. P1 subtracts all outer parties’ H from its own.

6. This difference is distributed to all parties and returned from the
function.

Figure 3.3: Functionality of CentralHankelMatrix and
OuterHankelMatrix

Implementation 27

Input matrix a of size k × s; matrix b of size s× l.
Output matrix product AB.

1. All parties call SampleRMatrices, which

(a) uniformly samples two matrices RA and RB with elements from the
plaintext space, and with the same size as a and b, respectively.

(b) returns them both encrypted (RAi_crypt, RBi_crypt) and unen-
crypted (RAi_clear, RBi_clear).

2. All parties send RAi_crypt and RBi_crypt to P1.

3. P1 collects incoming matrices in two slices RAs_crypt and RBs_crypt
and call GetMulMatrices, which

(a) sums RAs_crypt into a matrix RA and sum RBs_crypt into RB,

(b) adds RA and A into MA, and adds RB and B into MB,

(c) returns RA, MA and MB.

4. P1 sends RA, MA and MB matrices to all parties.

5. All parties call GetCti with RA, MA, MB, its RAi_clear and its RBi_clear.
GetCti

(a) calculates cti according to cti = JRARB
i −MARB

i −RA
i M

BK =
JRAKRB

i − JMAKRB
i −RA

i JMBK

(b) returns cti together with partial decryptions of MA (MA_part) and
MB (MB_part).

6. All parties send cti, MA_part and MB_part to P1.

7. Central party collects incoming matrices in slices and calls
CombineMatrixMultiplication, which

(a) decrypts MA and MB

(b) multiplies MA and MB and encrypts them back into AB

(c) returns the sum of AB and all parties cti.

8. P1 distributes the output of CombineMatrixMultiplication to all par-
ties.

Figure 3.4: Matrix multiplication protocol, implemented
in CentralMatrixMultiplicationWorker and
OuterMatrixMultiplicationWorker

28 Implementation

3.6 Singularity testing

The problem of singularity testing can be reduced to computing the minimal poly-
nomial of the linear recurrent sequence (uTHiv) = (hi), with u, v being random
vectors [BMR20]. The length of this sequence needs to be twice the dimension of
H, i.e. 2(T + 1).

The communication efficiency of finding the sequence elements is optimized by
only computing H2i for i ≥ 1 as H2i = H2i−1

Ḣ2i−1

. E.g. if we need a sequence
up to i = 5 it will suffice to compute 2 < log2 5 matrix multiplications in this
step. The function NbrMMultInstances is provided to find how many times this
algorithm needs to run.

// calculates how many instances of MMult is needed to
// get all H, according to: n = ceil(log(matrix size))
// H^2^n being the highest order needed
func NbrMMultInstances(m BigMatrix) int {

return int(math.Ceil(math.Log2(float64(m.cols))))
}

Once we have all Hi we need, a second sequence of ΠMMult is initiated as such.

JHvK = JHK · JvK
JH3v|H2vK = JH2K · JHv|vK

JH7v|H6v|H5v|H4vK = JH4K · JH3v|H2v|Hv|vK

X|Y denotes the horizontal concatenation of matrices X and Y . By incrementally
concatenating the resulting matrices from ΠMMult and finally multiplying this
matrix from left by uT , we get the sequence as a row matrix. The function HSeq
lets the central party sample u, multiply it by the matrix and additionally crop it
to the desired length. This gives us the linearly recurrent sequence. Cropping and
concatenating is provided in Generic Matrix library.

The following section describes how to find the minimal polynomial from the
linearly recurrent sequence. After finding the minimal polynomial we perform a
zero test to see whether the constant term of the polynomial is zero or not. If it
is zero, that means the matrix H is singular thus the cardinality test passed.

3.7 Minimal polynomial of linearly recurrent sequence

[BMR20] doesn’t provide a protocol for finding the minimal polynomial of a linearly
recurrent sequence. The following protocol is a contribution of this thesis. We will
use the Extended Euclidean Algorithm to create the protocol. First we define the
minimal polynomial for a linearly recurrent sequence.

A infinite sequence a = (ai)i∈N is linear recurrent if there exists f0, . . . , fn
with fn 6= 0 such that

∑n
j=0 fjai+j = 0 for all i ∈ N . The polynomial

f =
∑n
j=0 fjx

j of degree n is called a characteristic polynomial of a. There
exists a unique monic polynomial m of least degree that divides all characteris-
tic polynomials of a. This polynomial m is the minimal polynomial of a linearly
recurrent sequence a. For a more formal definition, refer to [Kil+07].

Implementation 29

The Extended Euclidean Algorithm extends the Euclidean Algorithm such that
in addition to finding the greatest common divisor of polynomials a and b it also
provides the polynomials u and v of Bézout’s identity such that au+bv = gcd(a, b).
By applying this algorithm to a = x2T+2 and b =

∑2T+1
i=0 hix

2T+1−i we get a
sequence of polynomials such that ri(x) = aui + bvi. When deg(ri) < T + 1, the
minimal polynomial m of b is equal to vi, such that aui + bm = ri [Kil+07].

The functionality of finding the minimal polynomial is implemented in
MinPolyWorker. It iteratively calls PolynomialDivisionWorker and nextT.
PolynomialDivisionWorker performs the division between polynomials a and b
and returns the quotient and the remainder, while nextT finds the next polynomial
vi described above, using vi−1, vi−2 and the quotient. MinPolyWorker is initiated
by setting the polynomial a = x2T+2 as mentioned above, and v0 = 0, v1 = 1
according to Extended Euclidean Algorithm. When the degree of the remainder
is less or equal to vi, the iteration is terminated.

The functionality of PolynomialDivisionWorker is described in section 3.11
and Figure 3.5. This functionality requires the availability of multiplication and
testing for zero, which in turn require additive secret sharing. Multiplication using
additive homomorphic cryptosystem in the multi-party setting and additive secret
sharing are described in [CDN01]. Zero testing is a trivial functionality arising
from the availability of multiplication. Those protocols are described below.

3.8 Additive secret sharing

Cramer et al. describe in [CDN01] how to construct arbitrary MPC protocols from
Additive Threshold Homomorphic cryptosystems, which is what we use to solve the
problem of minimal polynomial. For such an MPC we will need a way to perform
multiplication, which in turn will need a subprotocol for Additive Secret Sharing
(denoted ASS by [CDN01]). Secret sharing is a technique for sharing a secret
unencrypted among parties. In additive secret sharing specifically, the secret is
shared in such a way that the sum of all shares is the secret. ASS is implemented in
CentralASSWorker and OuterASSWorker, the aim is to additively share encrypted
a in plaintext among all parties. Every party samples a random value d_plain and
encrypts it into d_enc. d_enc is sent to P1 who distributes a slice all_d containing
all d_enc back to each party. Each party then homomorphically sums all_d and
adds it to a which therefore is safe to jointly decrypt, we call this decrypted value
e. Every outer party keeps the additive inverse of its d_plain as their share while
P1 keeps e subtracted by its d_plain as its share. It’s easy to see that the sum of
all parties shares is a.

3.9 Multiplication

Multiplication of two encrypted values a and b is implemented in
CentralMultWorker and OuterMultWorker. First ASS is run to secret share a
among all parties. Once a is shared each party can multiply it’s own share a_share
with b, since a_share is unencrypted. Now the product of a and b is additively

30 Implementation

secret shared among all parties, and by distributing these shares the product is
received by homomorphical summation.

3.10 Zero testing

The functionality of testing whether a value a is zero or not is implemented in
CentralZeroTestWorker and OuterZeroTestWorker. Each party sample a mask
from the field, encrypts it and sends it to P1. P1 collects all masks in a slice
and distribute to all parties. All parties sum the masks and multiply by a. This
product is decrypted and if it is different from zero, we know a != 0, or else
a != 0 with negligible probability, provided the field is big enough.

3.11 Polynomial division

As we are unable to perform division or find inverses, we separate the
polynomial coefficients into numerator and denominator. The input to
PolynomialDivisionWorker is two row-matrices a and b, containing the numer-
ators of the polynomials, and two Ciphertexts containing the denominator for
each polynomial as this will always be the same for our use of polynomial division.
Using zero tests, we find the degree of a as la and the degree of b as lb. We
find the maximum size of the quotient polynomial as ql := 1+la-lb and initiate
the quotient polynomial (q_num, q_den) by setting q_num to a zero polynomial of
length ql and q_den to an all-ones polynomial of the same length.

Now, for the main part of the algorithm we iterate over i through all coeffi-
cients of a. Initially i := la and then it decreases for each loop.

We start the loop by checking that the current coefficient of a is not equal to 0.
For the first iteration we know this to be true, but it might not be the case in later
iterations. In case it is equal to 0, we call continue to go to the next iteration. We
assign pos := i-lb to be the position of the quotient polynomial this iteration
evaluates. At this position we insert the division of current coefficient of a and
the highest order coefficient of b, this is done by multiplying the numerator of
a by the denominator of b and inserting it to q_num and vice versa for q_den,
according to section 3.9. Next, we create a polynomial p as a row-matrix p_den
and a Ciphertext p_den. This is the polynomial that will bring us the remainder
polynomial for the current iteration. We initiate it as the product of the polynomial
b and the current value of q. However we skip the highest degree coefficient as
we know that it will cancel out with the highest degree coefficient of a. After
multiplication we want to normalize it to have the same denominator as a in order
to perform a subtraction. This is achieved by multiplying a with the denominator
of p, we call this polynomial r, and multiplying p with the denominator of a. Both
polynomials now share the same denominator r_den. We let the central party
P1 subtract p from r by item-wise subtracting the corresponding numerators and
then P1 distributes this to all the parties. The received r is assigned to a_num and
a_den and we jump to a new iteration of the loop.

The loop terminates when i < lb as then the divisor b has a higher degree
than the dividend a.

Implementation 31

After termination of the loop we strip a of eventual leading zeroes and then
return q_num, q_den, a_num and a_den.

This functionality is described in Figure 3.5.

3.12 Finding intersection

If the cardinality test passed successfully, that means we can move on to finding
the intersection, this is done by IntersectionWorker.

Each party encodes its elements as roots of a polynomial pi(x) using
PolyFromRoots. PolyFromRoots simply takes the first element a0 and cre-
ates a linear polynomial from it p(x) = x − a0, for the following elements
we again create linear polynomials that are multiplied in to p. The multi-
plication is performed by MultPoly and multiplies by multiplying the coeffi-
cients. CentralIntersectionPolyWorker and OuterIntersectionPolyWorker
are called with pi(x). Their task is to find the desired polynomial V (x), defined
as

V (x) =

n∑
i=1

(
p′i(x) ·

(
R1(x) + . . .+Ri−1(x) + R̃i(x) +Ri+1(x) + . . .+Rn(x)

))
Here p′i(x) is pi(x) with an extra randomizing root. Ri and R̃i are masking

polynomials of degree T + 1. Each party samples one polynomial R to distribute
and mask all other parties p′, and one polynomial R̃ to mask its own p′.

The first thing happening in CentralIntersectionPolyWorker and
OuterIntersectionPolyWorker is that the extra root is added to p using
RootMask. Next EvalIntPolys is called, which samples the polynomials R and R̃
and evaluates them and p′ at 3T + 4 points.

Since we encounter problems if these evaluation points are roots to a poly-
nomial we must ensure that they do not coincide with the elements, since the
elements are in fact roots. To achieve this, the decision was made to evaluate at
points 2i+ 1 for i = 0, 1, . . . and encode the elements as 2e for an element e.

EvalIntPolys returns three row matrices: R_values_enc with encrypted eval-
uations of R, R_tilde_values with unencrypted evaluations of R̃ and p_values
with unencrypted evaluations of p′. R_values_enc are sent to P1 which for
every party i sums R_values_enc of all parties except i. This row matrix,
called party_values, is sent to i. Next, all parties call MaskRootPoly which
encrypts R_tilde_values, sums it with party_values and item-wise multiplies
by p_values. This row matrix v is sent to P1 and by summation P1 gets V which
is distributed to all parties and jointly decrypted.

3.12.1 Rational polynomial interpolation

In Interpolation we input two row matrices vs and ps containing 3T +4 evalua-
tions of V (x) and p′(x), they are immediately used to calculate 3T + 4 evaluations
of q(x) = V (x)

p′(x) and not used apart from that. 3T + 4 is the maximum number

32 Implementation

Input row matrices a and b expressing numerator coefficients; ciphertext
values a_den and b_den expressing a denominator.

Output three row matrices: numerator of the quotient, denominator of
the quotient, numerator of the remainder; one ciphertext: denominator of

the remainder.

1. Set la to index of highest degree non-zero coefficient of a and lb to
index of highest degree non-zero coefficient of b.

2. Set ql = 1 + la - lb and a_num = a.

3. P1 encrypts an all zero row matrix q_num of length ql and an all ones
row matrix q_den of length ql. q_num and q_den are distributed to all
parties.

4. For i := la, la-1, ..., lb

(a) If the coefficient of a_num at i equals 0, then continue.

(b) Set pos = i-lb. This is the position in the quotient polynomial
q we are currently at.

(c) Find the numerator num at pos of q_num by multiplying
a_num[i] * b_den and the denominator den at pos of q_den by
multiplying b[lb] * a_den.

(d) Multiply b * num into a new row matrix p_num and b_den * den
into p_den.

(e) Give a and p the same denominator by

i. multiplying a_num and p_den into an new row matrix r_num

ii. updating p_num by multiplying by a_den

iii. multiplying a_den and p_den into r_den.

(f) p and r now share the same denominator and are eligable for
subtraction which is performed by P1 using a function divSub
and distributed to all parties.

(g) a_num is set to this difference and a_den is set to r_den.

5. Remove intial zero coefficients from a_num and return q_num, q_den,
a_num and a_den.

Figure 3.5: Functionality of PolynomialDivisionWorker.

Implementation 33

Input a row matrix RootPoly with all elements encoded into roots.
Output row matrix of samples of V and p′ to perform interpolation

1. Each party calls RootMask which adds a random root to root_poly.

2. Each party calls EvalIntPolys which

(a) samples two random polynomials R and R̃,

(b) computes R(x), R̃(x) and p(x) for x = 2i+1, i = 0, 1, . . . , 3T+4

(c) returns evaluations of JR(x)K, R̃(x) and p(x) in row matrices
R_values_enc, R_tilde_values and p_values

3. Each party sends R_values_enc to P1.

4. P1 does the following: For each party Pi

(a) sums all R_values_enc except Pi’s into the row matrix
party_values

(b) sends party_values to Pi

5. Each party calls MaskRootPoly which calculates that party’s contribu-
tion to V (x) by

(a) element-wise adding R_tilde_values and party_values

(b) element-wise multiplying the sum with p_values into v

v is passed to P1.

6. P1 updates v by summing all parties v and distributes it.

7. Each party partially decrypts v using PartialDecryptMatrix and sends
to P1.

8. P1 decrypts v and distributes to all parties.

9. v and p_values are returned.

Figure 3.6: Functionality of CentralIntersectionPolyWorker
and OuterIntersectionPolyWorker.

34 Implementation

of evaluations needed to interpolate V (x)
p′(x) and output p′(x). There are 3T + 5

coefficients to interpolate

v2T+2x
2T+2 + . . .+ v0

dT+1xT+1 + . . .+ d0
= q(x) (3.2)

which require 3T + 5 evaluations to be uniquely determined. In our case, we
loose one constraint as we are only interested in the roots, which allows for any
scaling of the polynomials, that means we can set the highest non-zero coefficient
of p′ to 1 for p′ to be monic. We rename all unknown coefficients c such that
vi = ci and di = ci+2T+3. eq is a row matrix that expresses the full equation for
each evaluation of q(x). It is received by multiplying both sides of equation 3.2
by the denominator and subtracting the right hand side. The ith element of eq
corresponds to ei in the equation. The mathematical formulation of eq is shown
below (renaming v and d).

0 =v0 + . . .+ v2T+2x
2T+2 − d0q(x)− . . .− dT+1q(x)xT+1 (3.3)

=c0 + . . .+ c2T+2x
2T+2 − c2T+3q(x)− . . .− c3T+4q(x)xT+1 (3.4)

=c0e0 + . . .+ c2T+2e2T+2 + c2T+3e2T+3 + . . .+ c2T+3e3T+4 (3.5)

This equation is used once for each evaluation of q(x), or until we are able to
determine p′(x).
We also use a matrix of relations, relations. The ith row of relations expresses
how ci is related to the succeeding coefficients, such that ci = ri,jcj + ri,j+1cj+1 +
. . . + ri,3T+4c3T+4. When all relations are determined, we can set the last non-
zero coefficient ck = 1 and going from bottom up in relations we will be able
to uniquely determine all coefficients, one per row. The matrix relations is as
follows.

relations =


0 r0,1 r0,2 . . . r0,3T+3 r0,3T+4

0 0 r1,2 . . . r1,3T+3 r1,3T+4

...
. . .

...
0 0 0 . . . 0 r3T+3,3T+4


To build this matrix we iterate through all c, starting from c0. For each ci, we

start by expressing the equation eq. Then by fetching the jth row of relations
for j < i starting with j = 0 we can multiply it by ej and add to the equation,
causing the cancellation of cj . Eventually we will get an equation where ci is the
first unknown coefficient. Now we can solve for this coefficient and add the relation
to relations.

While iterating through all c in this way, we will eventually reach one of two
cases. If we are precisely at the threshold T , the loop will terminate after doing the
last evaluation of q. In this case we set c3T+4 = pT+1 = 1 and traverse relations
from bottom up. If, on the other hand, the number of elements not shared by all is
below T , the substituted equation will eventually read 0 = 0ci+0ci+1+. . .+0c3T+4.
In this case we know that ci is unrelated to all succeeding coefficients. Thus we
set ci = 1, cj = 0 for all j > i and determine all preceding elements, starting from
the (i− 1)th row of relations.

Implementation 35

Input vs, samples of V ; ps, samples of p′.
Output denumerator of V (x)

p′(x)

1. By item-wise multiplication of vs and inverse of ps we get evaluations
of q(x) in q.

2. For each element at index coeff_pos of q

(a) The row matrix eq is instantiated so that the sum of all elements
is 0 according to equation 3.3.

(b) For each row (index prev_coeff) of relations with
prev_coeff < coeff_pos

i. multiply the row relations[prev_coeff] by eq[coeff_pos]
into crel

ii. update eq by adding crel to it
iii. set eq[prev_coeff] to 0

(c) If eq[coeff_pos] == 0, terminate the loop.

(d) Create a new row matrix rel_row and set to 0 for all indices less
than coeff_pos + 1

(e) For all remaining indices rem_coeff in rel_row

i. set rem = 0 - eq[rem_coeff]

ii. set rel_row[rem_coeff] to product of rem and inverse of
eq[coeff_pos]

(f) Insert rel_row at relations[coeff_pos].

3. Create a slice interpolated_coeffs and set
interpolated_coeffs[coeff_pos] = 0.

4. For each line in relations with index solving_coeff < coeff_pos.

(a) item-wise multiply this line with interpolated_coeffs

(b) sum the all values into interpolated_coeffs[solving_coeff]

5. Create a matrix containing the elements from interpolated_coeffs
starting from index 2T + 3 up to coeff_pos. This is the interpolated
denumerator excluding higher order zeroes.

Figure 3.7: Function for rational polynomial interpolation

36 Implementation

3.13 Lattigo

For the protocols that uses FHE, we will use the BFV scheme implemented in
Lattigo. The original BFV scheme contains a bootstrapping function that needs
to be called after some multiplications for the inherent error not to affect the
encrypted message. Lattigo, however, does not provide this function, instead they
provide a collective bootstrapping function which refreshes the ciphertext alike the
proper bootstrapping, but for this part all parties need to participate. This forces
us to diverge from the protocol of [BMR20]. In [BMR20], the authors assume
a cryptosystem where one party (P1) can do arbitrary calculations which is not
the case for our cryptosystem. We bypass this problem in the following way:
Whenever the protocol tells P1 to do something, all parties follow along and do
the same calculations. In this way all parties are at the same state when the
ciphertext needs to be refreshed.

This however doesn’t fully solve the problem as the probabilistic structure of
the scheme gives varying ciphertext output for the same input to the multiplication
function. To avoid this, whenever a multiplication is performed it is performed
by P1 only and then distributed to all parties. This means that no party can
perform any multiplication on its own, but that is not needed for this approach.
This way of constraining the FHE scheme brings the functionality down to what
was previously achieved by the AHE, where we too could do multiplication in
collaboration. So in theory, it is possible to use AHE also for this part, if using
our alternate protocol.

To know when it is time to refresh the ciphertext, a simple counter was em-
bedded in the ciphertext.

type BFV_ciphertext struct {
msg *bfv.Ciphertext
mult_counter int

}

This counter is incremented for each multiplication and when a certain
value is reached the ciphertext is refreshed. The threshold for this was set to
mult_limit := 6 which works for the current use-case. This limit and its incre-
mentation is a point of improvement, but that is out of scope for this thesis.

The BFV implementation implements the interface FHE_Cryptosystem de-
scribed in section 3.1. To enable the communication as described above commu-
nication facilities was needed to be embedded in the cryptosystem. Below is the
struct BFV_encryption which is the one implementing FHE_Cryptosystem. The
multiplication function is also shown.

type BFV_encryption struct {
params *bfv.Parameters
crs *ring.Poly
crp []* ring.Poly
pk *bfv.PublicKey
rlk *bfv.EvaluationKey
tpk *bfv.PublicKey
tsk *bfv.SecretKey

Implementation 37

sk *bfv.SecretKey
channels []chan interface {}
channel chan interface {}

}

func (pk BFV_encryption) Multiply(a, b Ciphertext)
(product Ciphertext , err error) {

mult_limit := 6
ac := a.(BFV_ciphertext)
bc := b.(BFV_ciphertext)

if ac.mult_counter >= mult_limit {
if pk.channels != nil {

ac = CentralRefresh(ac, pk)
} else {

ac = OuterRefresh(ac, pk)
}

}
if bc.mult_counter >= mult_limit {

if pk.channels != nil {
bc = CentralRefresh(bc, pk)

} else {
bc = OuterRefresh(bc, pk)

}
}

var prod *bfv.Ciphertext
if pk.channels != nil {

evaluator := bfv.NewEvaluator(pk.params)
prod = evaluator.MulNew(ac.msg , bc.msg)
evaluator.Relinearize(prod , pk.rlk , prod)
for _, ch := range pk.channels {

ch <- prod
}

} else {
prod = (<-pk.channel).(* bfv.Ciphertext)

}
return BFV_ciphertext{msg: prod ,

mult_counter: mulMax(ac, bc) + 1}, nil
}

As seen, BFV_encryption contains channel and channels to enable com-
munication. Unfortunately is also contains the secret key, as it is needed inside
CentralRefresh and OuterRefresh. This blurrs the distinction between public
and private, but that’s however only a conceptual difference and not a practical
one.

Above is also shown the implementation of Multiply with the multiplication
counter and the refresh functions acting.

38 Implementation

Another subtlety with this scheme is that after doing the partial decryption of
a ciphertext, the original ciphertext is needed to combine into the plaintext. To
solve this, the ciphertext was embedded in the partial decryption.

type BFV_partial struct {
part dbfv.PCKSShare
ciphertext BFV_ciphertext

}

3.14 Finding inverses

For implementing FTPSI-int we need to be able to calculate the multiplicative
inverse of a ciphertext. This is done using an interactive mini protocol among par-
ties, implemented in CentralInverseWorker and OuterInverseWorker. Actually,
those functions are convenience functions for CentralInverseWorkerWithFactor
and OuterInverseWorkerWithFactor. The latter functions takes an extra
factor *big.Int as an argument and returns the product of factor and the
inverse. Since the FHE scheme we are using is limited to performing a few homo-
morphic multiplications before needing the collective bootstrapping we can instead
use this technique when we have a plaintext factor to do plaintext multiplication
and thus skip one homomorphic multiplication. Even if we had the proper boot-
strapping function available, it is in most schemes very heavy and is preferable to
avoid anyhow.

In CentralInverseWorkerWithFactor and OuterInverseWorkerWithFactor
each party samples a mask value from the plaintext space and sends it to P1

who distributes all masks to all parties. Now all masks are multiplied to a (the
ciphertext to invert) and it is safe to decrypt it. In the decrypted state we find
the inverse and multiplies by our factor. By encrypting and again multiplying
by all masks, we receive our desired inverse.

3.15 FHE cardinality testing

For this part each party, again, encodes their elements as roots in a polynomial
p′(x) using PolyFromRoots, and add an extra random root as a mask. The goal
is to see if the rational polynomial

q(x) =
p′2(x) + . . .+ p′n(x)

p′1(x)

can be correctly interpolated using 2T + 3 evaluation points. If so, that implies
that each p′(x) only has at most T roots left after division (i.e. not shared by all)
and thus the cardinality test passes. In plain_evals 2T+3 evaluations of q(x) for
x = 2i+ 1, i = 0, 1, . . . is stored, evals stores the same values encrypted. This is
except for P1 who first finds the multiplicative inverse before encrypting. P1 also
uniformly samples a value z from the plaintext field. This z works as the predicate
to verify whether the interpolation is correctly determined. Each party evaluates
and encrypts p′i(z) in z_eval, except P1 who encrypts the inverse of p′1(z) into

Implementation 39

z_eval. The slices evals and z_eval is sent to P1, who collects all evals into the
slices of slices all_evals and all z_evals into the slice z_evals. They are then
distributed back to all parties.

All parties homomorphically calculate the expected evaluation of q(z) and store
it in z_exp by summing z_evals of the outer parties and multiplying z_eval of P1

as it is already inverted. p′1(z) is stored at the last index of the slice, z_evals[n-1].
The same is done for each evaluation point in all_evals. All evaluations

of q(x) are stored in a slice evals_sum. This slice is passed to the func-
tion FHEInterpolation to perform the interpolation. The methodology for
FHEInterpolation is the same as for Interpolation in section 3.12.1, except
of course now it is done homomorphically. Refer to section 3.12.1 for a descrip-
tion. Interpolation returns only the polynomial of the denominator while in
this case we need both the numerator and the denominator, so all coefficients are
returned in one slice, the first T + 2 are the coefficients of the numerator, and the
rest are the coefficients of the denominator (this might be shorter as highest order
zero coefficients are removed in FHEInterpolation).

The function FHEEvaluate evaluates a polynomial homomorphically, given
the polynomial as a slice and the evaluation point. All parties evaluate both
the numerator and the denominator at z, and the results are stored in num_eval
and den_eval. By finding the inverse of den_eval, multiplying by num_eval
and subtracting from the z_exp we get the predicate pred. If pred is 0, we
know that the polynomial q was correctly interpolated and the cardinality test has
thus passed, otherwise the cardinality test failed. To see whether or not it is 0,
CentralZeroTestWorker and OuterZeroTestWorker are called.

40 Implementation

Chapter 4
Experimental results

4.1 Setup

For our experimental setup, we took as an use-case the creation of support groups.
Each person answers a questionnaire with potential issues, such as Do you suffer
from alcoholism?. If all parties share enough such issues, the support group can
be created. To run the protocols implemented in this thesis, all parties must have
sets of the same size m. So we have m yes- and no-questions. Each answer needs
to be encoded into some element of the parties set. The yes-answers need of course
be encoded into the same value for all, however for no-answers we need to make
sure that they are encoded into at least two different values so that they are not in
the intersection and thus disclosed. If we would encode all no-answers equally, no-
answers would possibly appear in the intersection and the cardinality test would
pass although the amount of shared issues are to small. To optimize FTPSI-diff it
is efficient to have as few elements as possible in the set difference, and thus we
encode no-answers into only two different values. One easy way to do this is the
following: For question i, encode yes as i · 3, encode no as i · 3 + 1 if you are P1,
encode no as i · 3 + 2 if you are an outer party.

To run the protocols a simple main program was written, which in addition to
running the protocols, encodes the values into even numbers, to avoid conflicting
with the sampled values, as mentioned in section 3.12. The main program accepts
as input a protocol int or diff, a cryptosystem bfv (FHE) or dj (AHE), a
threshold value T , and a file containing all the elements, comma-separated, with
one line per party. The basic test case was the elements in Figure 4.1, simulating
the questionnaire result described above. The right section shows the contents of
the input file. In this case we have n = 5 (5 parties) and m = 6 (6 questions).
The tests were performed at a Intel R© CoreTM i7-6500U Processor with 2 cores
and a base frequency of 2.50 GHz. We used the libraries Lattigo for FTPSI-int and
tcpaillier for FTPSI-diff as provided by our implementation. The implementation,
together with the main application and the input file, is available at [Jepb].

All tests run with T = 2 for FTPSI-int and T = 6 for FTPSI-diff as the smallest
value of T . This is because that is the smallest value of T where the cardinality
test passes, and thus the complete protocol is run.

41

42 Experimental results

Party 1: yes, yes, yes, yes, no, no | 0,3,6,9,13,16
Party 2: yes, yes, yes, yes, no, no | 0,3,6,9,14,17
Party 3: yes, yes, yes, yes, no, yes | 0,3,6,9,14,15
Party 4: yes, yes, yes, yes, yes, no | 0,3,6,9,12,17
Party 5: yes, yes, yes, yes, yes, yes | 0,3,6,9,12,15

Figure 4.1: Left section contains the imagined questionnaire result.
The right section contains those answered encoded according
to description, this section is the input to the main application.

4.2 Running time

Figures 4.2a and 4.2b show the running times for this setup with various values
of T . As seen, the running time is somewhat acceptable, especially for small T
and especially for the AHE scheme (used in FTPSI-diff). We see that the running
time is not linear, and the times quickly increase for higher T . We can make the
conclusion that these algorithms are mostly useful for small T only.

(a) Running time for FTPSI-int for various val-
ues of T .

(b) Running time for FTPSI-diff for various val-
ues of T .

Figure 4.2: Running times for various values of T .

4.3 Communication complexity

In a real scenario, this application would probably run on remote machines, and
thus the communication might add considerable time to the execution. Figures
4.3a and 4.3b show the communication cost for the above example. We can see
that for the FTPSI-diff the cost is considerable and might make the protocol useless
for moderate size scenario like the one we consider. On the other hand, FTPSI-int
requires much less interaction. This is in line with the claims of [BMR20], where
the authors provided the AHE solution as a computionally more efficent alter-

Experimental results 43

native, but at the expense of more communication. Also by looking at Figure
4.3a it seems like we have communication complexity linear in T , which was what
[BMR20] achieved, and it seems to be true even in our modified protocol.

(a) Communication cost for FTPSI-int. (b) Communication cost for FTPSI-diff.

Figure 4.3: Communication cost for various values of T .

4.4 Varying set size

In Figures 4.4a and 4.4b we show our basic test case together with a run with
extended set. We simply added 5 elements to the intersection. As seen, an in-
creased set does not affect the running time. This is not surprising as the number
of sampled values we work with throughout the protocols are only depending on
T . Greater set size only gives some overhead in the start of the protocols, when
the elements are encoded into polynomials, and the sampled values received.

(a) Running time for FTPSI-int for various val-
ues of T and m.

(b) Running time for FTPSI-diff for various val-
ues of T and m.

Figure 4.4: Running times for various values of T and m.

44 Experimental results

4.5 Varying number of parties

The functionalities implemented in this thesis are highly parallel, and if they are
to run on multiple machines, we can expect concurrency speed up. These tests
were all run on a dual-core computer. Figures 4.5a and 4.5b show execution times
for three values of n, namely n = 3, 5, 10. In these tests we kept the sizes of the
intersection fixed, but added and removed parties. As we can see, we can indeed
expect faster execution if we were to use multiple computers, so that each party
had their own dedicated processor to run on.

(a) Running time for FTPSI-int for various val-
ues of T and n.

(b) Running time for FTPSI-diff for various val-
ues of T and n.

Figure 4.5: Running times for various values of T and n.

Chapter 5
Conclusion

We have showed how to implement two of the three protocols described by Badri-
narayanan, Miao and Rindal in [BMR20], FTPSI-diff using AHE and FTPSI-int.
We have also showed how to implement an alternate version of FTPSI-int for the
scenario when collective bootstrapping is available instead of ordinary bootstrap-
ping. We have provided an implementation of this alternate version of FTPSI-int
and FTPSI-diff using AHE in the Go programming language. Our implementation
was structured in a way that allows the use of any implemented cryptosystem
that satisfies the homomorphic properties. We have run the protocols and our
experimental results show that the execution time might be satisfactory for some
scenarios.

We have described how to homomorphically find the minimal polynomial of
a linearly recurrent sequence, which was needed to implement FTPSI-diff but not
provided by [BMR20].

Lastly, we have provided a library Generic Matrix in the Go programming
language that enables basic matrix operations on matrices with elements of any
type.

45

46 Conclusion

Chapter 6
Acknowledgements

I would like to thank my supervisors for their help during this work. Thank
you Elena Pagnin for being a great support throughout the full process with your
theoretical knowledge, which gained me a lot of understanding for the topic. Thank
you Alexander Nilsson for discussing the code with me. Also thank you to Advenica
which offered me equipment and a place to work, although the circumstances
wanted otherwise.

47

48 Acknowledgements

Bibliography

[20] Microsoft SEAL (release 3.6). https : / / github . com /
Microsoft / SEAL. Microsoft Research, Redmond, WA. Nov.
2020.

[Aca+18] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro
Conti. “A Survey on Homomorphic Encryption Schemes: The-
ory and Implementation”. In: ACM Comput. Surv. 51.4 (July
2018). issn: 0360-0300. doi: 10.1145/3214303. url: https:
//doi.org/10.1145/3214303.

[App] The Netherlands Organisation for Applied Scien-
tific Research. Distributed Paillier Cryptosystem. Ver-
sion d28041fd576a29febdebf62c1d7f138224a22db4. url: https:
//github.com/TNO/Distributed-Paillier-Cryptosystem.

[Arm+15] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian
Gjøsteen, Angela Jäschke, Christian A. Reuter, and Martin
Strand. A Guide to Fully Homomorphic Encryption. Cryptol-
ogy ePrint Archive, Report 2015/1192. https://eprint.iacr.
org/2015/1192. 2015.

[Ben94] Josh Benaloh. “Dense Probabilistic Encryption”. In: Selected
Areas of Cryptography. May 1994. url: https : / / www .
microsoft . com / en - us / research / publication / dense -
probabilistic-encryption/.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-
DNF Formulas on Ciphertexts”. In: Theory of Cryptography.
Ed. by Joe Kilian. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005, pp. 325–341. isbn: 978-3-540-30576-7.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
Fully Homomorphic Encryption without Bootstrapping. Cryp-
tology ePrint Archive, Report 2011/277. https :// eprint.
iacr.org/2011/277. 2011.

49

50 BIBLIOGRAPHY

[BMR20] Saikrishna Badrinarayanan, Peihan Miao, and Peter Rindal.
Multi-Party Threshold Private Set Intersection with Sublinear
Communication. Cryptology ePrint Archive, Report 2020/600.
https://eprint.iacr.org/2020/600. 2020.

[Bös+14] C. Bösch, A. Peter, P. Hartel, and W. Jonker. “SOFIR: Securely
outsourced Forensic image recognition”. In: 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2014, pp. 2694–2698. doi: 10.1109/ICASSP.2014.
6854089.

[Bra12] Zvika Brakerski. Fully Homomorphic Encryption without Mod-
ulus Switching from Classical GapSVP. Cryptology ePrint
Archive, Report 2012/078. https://eprint.iacr.org/2012/
078. 2012.

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper B. Nielsen. “Multi-
party Computation from Threshold Homomorphic Encryption”.
In: Advances in Cryptology — EUROCRYPT 2001. Ed. by Bir-
git Pfitzmann. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 280–300. isbn: 978-3-540-44987-4.

[Che+17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo
Song. “Homomorphic Encryption for Arithmetic of Approxi-
mate Numbers”. In: Advances in Cryptology – ASIACRYPT
2017. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Cham:
Springer International Publishing, 2017, pp. 409–437. isbn: 978-
3-319-70694-8.

[Chi+16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Ma-
lika Izabachène. “Faster Fully Homomorphic Encryption: Boot-
strapping in Less Than 0.1 Seconds”. In: Advances in Cryptology
– ASIACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi
Takagi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 3–33. isbn: 978-3-662-53887-6.

[Chr] ChristianMct. thresh-paillier-wo-td. Ver-
sion 86be64fcbe584b16a3a09f38fa620ca0f2bfca68. url: https:
//github.com/ChristianMct/thresh-paillier-wo-td.

[Crya] CryptoExperts. FV-NFLlib. Ver-
sion 4474b00196e9eec15b312e834bad9bc560b32059. url: https:
//github.com/CryptoExperts/FV-NFLlib.

[Cryb] Cryptovote. Damgard-Jurik. Ver-
sion 5471ec2eb098381dd4dc37fac6b041a010290960. url: https:
//github.com/cryptovoting/damgard-jurik.

BIBLIOGRAPHY 51

[Dat] Laboratory for Data Security. Lattigo. Ver-
sion bb095f1d82cd5c532171b138cd0ad83ecd785103. url: https:
//github.com/ldsec/lattigo.

[Dij+09] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan. Fully Homomorphic Encryption over the In-
tegers. Cryptology ePrint Archive, Report 2009/616. https:
//eprint.iacr.org/2009/616. 2009.

[DJ01] Ivan Damgård and Mads Jurik. “A Generalisation, a Simplifi-
cation and Some Applications of Paillier’s Probabilistic Public-
Key System”. In: Public Key Cryptography. Ed. by Kwangjo
Kim. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 119–136. isbn: 978-3-540-44586-9.

[DJN03] Ivan Damgård, Mads Jurik, and Jesper Nielsen. “A general-
ization of Paillier’s public-key system with applications to elec-
tronic voting”. In: International Journal of Information Security
9 (Apr. 2003), pp. 371–385. doi: 10.1007/s10207-010-0119-9.

[DK07] Yvo Desmedt and Kaoru Kurosawa. “A Generalization and a
Variant of Two Threshold Cryptosystems Based on Factor-
ing”. In: Information Security. Ed. by Juan A. Garay, Arjen
K. Lenstra, Masahiro Mambo, and René Peralta. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2007, pp. 351–361. isbn:
978-3-540-75496-1.

[DM14] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping Ho-
momorphic Encryption in less than a second. Cryptology ePrint
Archive, Report 2014/816. https://eprint.iacr.org/2014/
816. 2014.

[Duc] Léo Ducas. FHEW. Version f53cd4b9887218aded14f96abb5f54daf284a79f.
url: https://github.com/lducas/FHEW.

[Dyn] Dyne.org. Lua Multi Party. Ver-
sion 43b089a9f8b2b688855532e0970266fc564efde2. url: https:
//github.com/dyne/lua-multiparty.

[Elg85] Taher Elgamal. “A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms”. In: Advances in Cryp-
tology. Ed. by George Robert Blakley and David Chaum. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1985, pp. 10–18. isbn:
978-3-540-39568-3.

52 BIBLIOGRAPHY

[FPS01] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern.
“Sharing Decryption in the Context of Voting or Lotteries”.
In: Financial Cryptography. Ed. by Yair Frankel. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2001, pp. 90–104. isbn:
978-3-540-45472-4.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical
Fully Homomorphic Encryption. Cryptology ePrint Archive,
Report 2012/144. https://eprint.iacr.org/2012/144. 2012.

[Gen09] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lat-
tices”. In: Proceedings of the Forty-First Annual ACM Sympo-
sium on Theory of Computing. STOC ’09. Bethesda, MD, USA:
Association for Computing Machinery, 2009, pp. 169–178. isbn:
9781605585062. doi: 10.1145/1536414.1536440. url: https:
//doi.org/10.1145/1536414.1536440.

[GJR10] Elena Grigorescu, Kyomin Jung, and Ronitt Rubinfeld. “A local
decision test for sparse polynomials”. In: Information Process-
ing Letters 110.20 (2010), pp. 898–901. issn: 0020-0190. doi:
https : / / doi . org / 10 . 1016 / j . ipl . 2010 . 07 . 012. url:
http://www.sciencedirect.com/science/article/pii/
S0020019010002243.

[GM84] Shafi Goldwasser and Silvio Micali. “Probabilistic encryp-
tion”. In: Journal of Computer and System Sciences 28.2
(1984), pp. 270–299. issn: 0022-0000. doi: https : / / doi .
org / 10 . 1016 / 0022 - 0000(84) 90070 - 9. url: http :
/ / www . sciencedirect . com / science / article / pii /
0022000084900709.

[Go] Go. Frequently Asked Questions (FAQ). url: https://golang.
org/doc/faq (visited on 01/11/2021).

[Gon] Gonum. Gonum matrix GoDoc. url: https://pkg.go.dev/
gonum.org/v1/gonum/mat (visited on 01/11/2021).

[hom] homenc. HElib. Version 060d36d4f0b125002ddb51ff9594c930382b3232.
url: https://github.com/homenc/HElib.

[Ion+17] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shob-
hit Saxena, Karn Seth, David Shanahan, and Moti Yung. Pri-
vate Intersection-Sum Protocol with Applications to Attributing
Aggregate Ad Conversions. Cryptology ePrint Archive, Report
2017/738. https://eprint.iacr.org/2017/738. 2017.

BIBLIOGRAPHY 53

[Jepa] Anton Jeppsson. Generic Matrix. Ver-
sion 12bed0b60f47db5c8099e8bd65b5cdbb3cd7caf9. url:
https://github.com/ontanj/generic-matrix.

[Jepb] Anton Jeppsson. Threshold Private Set Intersection. Ver-
sion 1af08d8ccab5feb59fabf66f0486c634e6085f59. url: https:
//github.com/ontanj/tpsi.

[jia] jianyu-m. Damgård–Jurik Cryptosystem. Ver-
sion 0d0ab2aacfebd4791ca61af5c1633c64dd181dc4. url: https:
//github.com/jianyu-m/damgard_jurik.

[KG] Murat Kantarcioglu and James Garrity. Paillier Threshold En-
cryption Toolbox. url: http : / / www . cs . utdallas . edu /
dspl / cgi - bin / pailliertoolbox / index . php (visited on
01/11/2021).

[Kil+07] Eike Kiltz, Payman Mohassel, Enav Weinreb, and Matthew
Franklin. “Secure Linear Algebra Using Linearly Recurrent Se-
quences”. In: Theory of Cryptography. Ed. by Salil P. Vadhan.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 291–
310. isbn: 978-3-540-70936-7.

[KY02] Jonathan Katz and Moti Yung. “Threshold Cryptosystems
Based on Factoring”. In: Advances in Cryptology — ASI-
ACRYPT 2002. Ed. by Yuliang Zheng. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 192–205. isbn: 978-3-540-
36178-7.

[Lab] NIC Chile Research Labs. Paillier Thresh-
old Encryption Scheme Implementation. Ver-
sion 57365a998b291779975673dd0676d2f8a8717740. url: https:
//github.com/niclabs/tcpaillier.

[Mal] Nasim Maleki. Cryptography. Ver-
sion f890d6933a8fe7b7742266ef51e36f5513f93df4. url: https:
//github.com/nasimmaleki/Cryptography.

[Mar14] Moxie Marlinspike. The Difficulty Of Private Contact Dis-
covery. 2014. url: https : / / signal . org / blog / contact -
discovery/ (visited on 01/11/2021).

[Mou+20] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe
Bossuat, and Jean-Pierre Hubaux. Multiparty Homomor-
phic Encryption from Ring-Learning-With-Errors. Cryptology
ePrint Archive, Report 2020/304. https://eprint.iacr.org/
2020/304. 2020.

54 BIBLIOGRAPHY

[Nag+10] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew
Caesar, and Nikita Borisov. “BotGrep: Finding P2P Bots
with Structured Graph Analysis”. In: Proceedings of the
19th USENIX Conference on Security. USENIX Security’10.
Washington, DC: USENIX Association, 2010, p. 7. isbn:
8887666655554.

[NLV11] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan.
“Can Homomorphic Encryption Be Practical?” In: Proceedings
of the 3rd ACM Workshop on Cloud Computing Security Work-
shop. CCSW ’11. Chicago, Illinois, USA: Association for Com-
puting Machinery, 2011, pp. 113–124. isbn: 9781450310048.
doi: 10.1145/2046660.2046682. url: https://doi.org/
10.1145/2046660.2046682.

[NS11] Takashi Nishide and Kouichi Sakurai. “Distributed Paillier
Cryptosystem without Trusted Dealer”. In: Information Se-
curity Applications. Ed. by Yongwha Chung and Moti Yung.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 44–
60. isbn: 978-3-642-17955-6.

[NuC] NuCypher. A GPU implementation of fully
homomorphic encryption on torus. Ver-
sion 638e12e931fe39c0a5cd5ee5d271d40084e29b31. url: https:
//github.com/nucypher/nufhe.

[Pai99] Pascal Paillier. “Public-Key Cryptosystems Based on Compos-
ite Degree Residuosity Classes”. In: Advances in Cryptology —
EUROCRYPT ’99. Ed. by Jacques Stern. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 223–238. isbn: 978-3-540-
48910-8.

[PAL] PALISADE. PALISADE Release. Ver-
sion 7eec669e1faa4aca0434021b7bdd5fd43695c075. url: https:
//gitlab.com/palisade/palisade-release.

[Pet] Tom Petersen. Threshold cryptography library. Ver-
sion 4505fac4873acb42414f6eefbb720b2ecc562dd3. url: https:
//github.com/tompetersen/threshold-crypto.

[Poo] Anna Poon. BGN. Version 79878ce25e815cc8355679f7307e5346a3a89f4e.
url: https://github.com/anna138/BGN.

[RD78] Ronald L. Rivest and M. Dertouzos. “ON DATA BANKS AND
PRIVACY HOMOMORPHISMS”. In: 1978.

BIBLIOGRAPHY 55

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems”. In:
Commun. ACM 21.2 (Feb. 1978), pp. 120–126. issn: 0001-0782.
doi: 10.1145/359340.359342. url: https://doi.org/10.
1145/359340.359342.

[Seo] Cryptography LAB in Seoul National University. HEAAN. Ver-
sion 131d275b2ed071a263fce4d367d418bb23b9bf53. url: https:
//github.com/snucrypto/HEAAN.

[Sera] Sacha Servan-Schreiber. BGN. Ver-
sion 0206925573bd96c94be04da000baa54f2dd8416c. url: https:
//github.com/sachaservan/bgn.

[Serb] Sacha Servan-Schreiber. paillier. Ver-
sion 30237183ba29b1b833f964976a1591af397a529b. url: https:
//github.com/sachaservan/paillier.

[Sho00] Victor Shoup. “Practical Threshold Signatures”. In: Advances
in Cryptology — EUROCRYPT 2000. Ed. by Bart Preneel.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 207–
220. isbn: 978-3-540-45539-4.

[tfh] tfhe. THFE. Version a085efe91314f994285fcb06ab8bdae3d55e4505.
url: https://github.com/tfhe/tfhe.

[Zam] Zama. Concrete Operates oN Ciphertexts Rapidly by Extend-
ing TfhE. Version fff309ec8df99ed5a02e754fbc382da89691c918.
url: https://github.com/zama-ai/concrete.

[ziya] ziyao002. Threshold-Paillier-with-ZKP. Ver-
sion dd66e22b2c88c82412fe957d83cc970f83a675cd. url: https:
//github.com/ziyao002/Threshold-Paillier-with-ZKP.

[ziyb] ziyao002. Threshold-Paillier-without-Trust-Dealer. Ver-
sion 16d12e2363da8a53fa0158744f1477ed7e8c01e3. url:
https : / / github . com / ziyao002 / Threshold - Paillier -
without-Trust-Dealer.

[ziyc] ziyao002. Threshold-Paillier-without-Trust-Dealer-with-TCP-
IP. Version ebc2d03ac43fe19795fa950a82729c43719d1d00. url:
https : / / github . com / ziyao002 / Threshold - Paillier -
without-Trust-Dealer-with-TCP-IP.

Implementing two Multi-party Threshold Private
Set Intersection Protocols based on Homomorphic

Encryption

ANTON JEPPSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

A
N

TO
N

 JEPPSSO
N

Im
plem

enting tw
o M

ulti-party Th
reshold Private Set Intersection Protocols based on H

om
om

orphic Encryption
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-805
http://www.eit.lth.se

