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Abstract

Owing to the intensive computation involved in the Discrete Cosine Transform during image com-
pression, the design of the efficient hardware architectures for fast computation of the transform
has become imperative, especially for real-time applications. Although fast computation techniques
have been able to minimise the hardware computation complexity to a certain limit, they could
further extend the research to figure out the interesting approaches which can be implemented on
applications where power, speed and area are crucial factors to determine the performance of the
system.

This thesis work is an attempt towards implementing a novel approach to provide image com-
pression with low area and power requirement . Various reduced computational compression algo-
rithms were proposed by exploiting hardware efficient image compression algorithms. Furthermore,
to understand and compare their performances, the concepts of spatial redundancy and approxi-
mate computing in images are exploited. The work designs a number of hardware efficient image
compression algorithms.

In this thesis work, the models try to group the pixel data by taking the image’s feature space
similarity and spatial coherence characteristics into consideration. These models have been tested
successfully on a wide range of images, including black and white images and coloured images. The
proposed architectures in this paper bring forth equal or higher image performance with higher
compression ratio with less hardware requirement. These architectures are also compared among
each other to provide an understanding on design-space exploration.
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Popular Science Summary

Despite the advances in semiconductor technologies and the development of energy-efficient design
techniques, the overall energy consumption of computer systems is still growing at an alarming rate
in order to process an ever-increasing amount of information. It is essential to dramatically improve
the energy efficiency for these emerging workloads to keep up with the growth of information.

Approximate computing [1][2] or inexact computing trades off computation quality with the
effort expended. As rising performance demands confronting with plateauing resource budgets, ap-
proximate computing has become not merely attractive, but even imperative. It is one of the ways
which is gaining popularity for applications where accuracy is not very important. By compro-
mising on accuracy, engineers can achieve better power/energy, performance or area efficiency for
such applications. Researchers have applied inexact computing techniques at an algorithmic level
as well as at a circuit-level to improve the power, performance and area numbers. Many authors
have also described imprecise adders for low-power approximate computing applications including
image processing [3].

Image compression is a process of reducing the size of the representation of the graphics file in
binary format without affecting the quality of the image to an objectionable level. This reduction
helps to store more images for the same amount of storage device. It also decreases the transmission
time for the images to be sent over the various technologies like internet [4]. The discrete cosine
transform (DCT) which is the most widely used technique for image compression was initially de-
fined in [4]. The DCT can be used to convert the signal (spatial information) into numeric data
("frequency" or "spectral" information) so that the image’s information exists in a quantitative
form that can be manipulated for compression.
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Chapter 1
Introduction

The performance of various computing systems, from sensors, to smartphones, other mobile devices
to servers, supercomputers, to cloud computing data centers, has been increasing dramatically in
the past several decades in line with the advances in the IC design according to the famous Moore’s
Law. However, as Moore’s Law is approaching its limit [5], the conventional techniques are unable
to further improve the computing performance of systems with limited power budget, i.e., the power
consumption restricts the performance of computing systems. It becomes challenging to continue
improving the system performance by conventional CMOS technologies.

Due to the error-resilient and fault-tolerant ability of the human brain, visual and auditory
systems, certain level of processing errors will not affect the quality of human perception and recog-
nition of the processed data [6][7]. Examples of such instances have been reported in artificial
intelligence, machine learning, data mining, multimedia signal processing [7][8][9][10] etc. In these
applications, the data includes noisy or redundant information, and therefore it makes little sense
to compute the precise result based on erroneous data or perform redundant computation.

It is clear that rising performance demands will soon outpace the growth in resource budget and
hence, over-provisioning of resources alone will not solve the conundrum that awaits the computing
industry in the near future. A promising solution for this dilemma is approximate computing and
storage, which is based on the intuitive observation that while performing exact computation or
maintaining peak-level service demand require high amount of resources, allowing selective approx-
imation or occasional violation of the specification can provide disproportionate gains in efficiency.

Digital image compression has been the focus of a large amount of research in the recent years.
As a result, image compression methods grow as new algorithms or variations of the already ex-
isting ones are introduced. In order to utilize the digital images effectively, specific techniques are
needed to reduce the number of bits required for their presentation. It has led to an instant growth
in the area of Digital Image Processing. Image compression is not only concentrated on reducing
size but also concentrated on doing it without losing quality and information of the image. An
image is essentially a 2-D signal processed by the human visual system. The signals representing
images are usually in analog form. However, for processing, storage and transmission by computer
applications, they are converted from analog to digital form.

1



2 Introduction

1.1 Thesis Structure

Recent implementations have been focused on area and power to a considerable extent. There are
a few of them which seem to achieve low area with low power. The goal of the thesis is to develop
few algorithms for image compression hardware accelerator with high throughput and high image
quality using less hardware resources at an acceptable average memory compression rate. The en-
tire work of the thesis has been organized into six different categories.

• Introduction: To provide the reader with brief discussions on the overview of the thesis.
The chapter is mainly to discuss about the ideas, previous work, motivation and purpose of
the work accompanied.

• Background: The aim of the chapter is to explain the theoretical concepts related to the
topics of the thesis. Along with this, discussions on different metrics are taken into consider-
ation to analyse the image quality.

• Case Studies: Various experiments are performed in this chapter including the character-
istics of approximate computing, image segmentation and spatial redundancy. Proposal of
different image compression algorithms and their respective image performances in terms
of memory, computational complexity, hardware consumption and image quality has been
presented.

• Results: The chapter is to expand all the developed models with their respective results.
The characteristics of implementations is studied thoroughly to help the reader to understand
various scenarios. The outcome of the results have been presented in the form of tables.

• Analysis: The reader is presented with more detailed interpretation of the outcomes of the
proposed algorithms. Graphical representations of various results were studied and compared
among each other. Discussions on the advantages and disadvantages have been taken into
consideration in this chapter.

• Conclusions: Summary of the entire work performed in the thesis has been discussed in
this chapter along with the future prospects of the proposed architecture.

In order to achieve such efficient hardware, output results of such algorithms were made in
terms of various metrics and several comparisons were summarized to clearly describe the design
space exploration.

The neighbouring pixels in an image show a tendency of being highly correlated to each other.
Such theories along with coding redundancy between nearby pixels, blocks, images are exploited
in-depth. Ideas where approximate computing techniques can be applied on images to develop
different model have been discussed. Various advanced hardware efficient Discrete Cosine Transform
(DCT) approaches used in modern days have been explored and their behaviour have been studied
meticulously. DCT features were studied to investigate similarity between each neighbouring pixels
and also for an entire image information. These have helped in designing a hardware-efficient
DCT. Analysis on several sets of images have been performed to further develop image compression
algorithms.



Chapter 2
Background

Reduced precision computation for approximate computing is a technique that represents variables
and data structures in a program with fewer bits (compared to conventional integer and floating-
point numbers). This allows utilization of less expensive and more energy-efficient hardware to
perform the reduced precision computation using Arithmetic Logic Units (ALUs). The area and
power of ALUs roughly scale quadratically with bit width and therefore, using reduced precision
hardware enables packing significantly more ALUs within the same area or power envelope. These
benefits are especially noticeable in accelerator architectures, such as GPUs and coarse-grained
reconfigurable architectures, where a significant fraction of the area is occupied by these ALUs.

2.1 Data Analysis

Data Analysis is a process of collecting, transforming, cleaning and modelling data to discover the
required information. The results so obtained are communicated, suggesting conclusions and sup-
porting the decision-making. Data visualization is at times used to portray the data for the ease of
discovering the useful patterns in the data.

2.2 Image Compression

Image compression addresses the problem of reducing the amount of information required to rep-
resent a digital image. It is a process intended to yield a compact representation of an image,
thereby reducing the image storage transmission requirements. Every image will have redundant
data. The duplication of pixel data in an image provide redundant information. Mainly it is the
repeating pixels across the image or pattern, which is repeated more frequently in the image.The
image compression occurs by taking benefit of redundant information in the image. Reduction of
redundancy helps to minimise storage space of an image. Image compression is achieved when one
or more of these redundancies are reduced or eliminated. In image compression, three basic data
categories are identified and exploited. Compression has been achieved by involving one or more of
the three basic data redundancies.

3



4 Background

2.2.1 Spatial Redundancy

There is high spatial coherency between pixels in an image space, which means it is highly probable
that between two pixels having identical or similar colours we will find another pixel having the same
(or similar) colour. The characteristic of the image is exploited in image compression techniques [11].
Although spatial coherence is not a constraint explicitly built-in, each cluster in the feature space
is expected to group pixels on the grounds of their homogeneous properties which will come from a
coherent region in the image. The neighbouring pixels of an image are not statistically independent
due to the correlation between them. This type of redundancy is called Spatial redundancy or
sometimes also called inter-pixel redundancy. This redundancy can be explored in several ways,
one of which is by predicting a pixel value based on the values of its neighbouring pixels. If the
original image pixels can be reconstructed from the transformed data set, the mapping is said to
be reversible [12].

2.2.2 Coding Redundancy

Coding redundancy consists of using variable-length codewords selected to match the statistics of
the source, in this case, the image itself or a processed version of its pixel values. This type of
coding is always reversible and usually implemented using Lookup Tables (LUTs). Examples of
image coding schemes that explore coding redundancy are the Huffman codes and the arithmetic
coding technique.

2.2.3 Lossless Compression

This technique compresses the image data by encoding all the information from the original image,
allowing the data to be completely reconstructed from the compressed file resulting in it to be
identical to the original image. Lossless [13] image compression are image formats such as Portable
Network Graphics (PNG) and (Graphics Interchange Format) GIFs. To produce shorter output
data from the original data, most lossless compression programs first generates a statistical model
for the input data, and secondly use the model to map input data to bit sequences. Some of
the most common lossless compression algorithms are Entropy encoding, Huffman coding, Lempel-
Ziv compression, Lempel–Ziv–Welch, Zstandard, Prediction by partial matching and Run-length
encoding.

2.2.4 Lossy Compression

These types of compression techniques are mainly used in images. The compressed image is similar
to the original uncompressed image but unlike lossless compression, some information concerning
the image is lost. This introduces vulnerability to the performance of the reconstructed images,
demanding the quality of the image for lossy compression to be analysed. The most common
examples of lossy compression are Moving Picture Experts Group (MPEG) & Joint Photographic
Experts Group (JPEG). The lossy compression technique provides a much higher compression ratio
than lossless compression. The major performance schemes during a lossy compression techniques
include:

• compression ratio

• signal to noise ratio
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• operation time of encoding-decoding.

2.3 Discrete Cosine Transform

Discrete cosine transform (DCT) has been widely used to convert a dynamic signal into frequency
components to reduce digital image storage size, expedite data transmission and remove redundant
information. DCT is closely related to discrete Fourier transform with the advantage of concentrat-
ing the energy of the transformed signal in low-frequency range where human eyes are less sensitive
in image processing [14]. The joint ISO committee adopted DCT to JPEG international standard
of 8 x 8 block size to reduce the blocking effect in image compression. A basic JPEG image en-
coding is composed of three procedures: image transform, quantization, and encoding. DCT can
map original data into the frequency domain by cosine waveform and conversely IDCT transfers
frequency domain data into the spatial domain.

Numerous coding methods based on DCT have been presented for digital image processing;
however, the associated memory size, bandwidth, and safety issues are of significant concern to
real-time applications. Sun and Yang [15] proposed an image compression method based on a
Laplace transparent composite model to achieve high coding efficiency. Jridi et al. [16] presented
image compression hardware to reduce computational complexity. Others have proposed to optimize
image computation by DSP. Kumbhare and Gokhale [17] developed a low complexity architecture
for computing an algebraic integer-based 8-point DCT in digital image processing. Jridi et al. [18]
designed a low complexity DCT engine in digital video and image processing. Sub-band decompo-
sition algorithms based on DCT have also been used in transmitting image data of low resolution
to the rebuilt image of better quality [19][20][21], but they are required high complexity and thus
time-consuming computation. Stassen’s matrix multiplication algorithm was proposed to reduce
complex matrix multiplication in DCT [22]. Khan et al. [23] increased the coordination between
the pixel size and subword size to maximize resource utilization for multimedia applications, but
the work required heavy computation.

2.4 Image Quality Metrics

Image quality analysis is the science of analysing and comparing the characteristics of an image
concerning the original image of predetermined/preset standards. The analysis can be performed
subjectively as well as objectively. In subjective analysis, the measures of image quality are eval-
uated by human beings. The main disadvantage of this method is that it is highly inconvenient,
sluggish and inaccurate, whereas objective methods use computerized algorithms to compute image
quality. This is the reason for the development of objective image quality (IQA) which predicts
the quality of the image automatically. Therefore, objective analysis plays an important role in
determining image quality. There are so many image quality techniques largely used to evaluate
and assess the quality of images such as Mean Square Error (MSE), Universal Image Quality Index
(UIQI), Peak Signal to Noise Ratio (PSNR), Structured Similarity Index Method (SSIM), Human
Vision System (HVS), Feature Similarity Index Method (FSIM), Multi-Scale SSIM (MS-SSIM) etc.
In this project work, four different metrics namely MSE, PSNR, SSIM and MS-SSIM methods have
been considered to analyse the behaviour of the image. MS-SSIM and SSIM are two most closely
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modeled human observations [24]. MSE and PSNR are the most common methods used in the
image processing research field.

2.4.1 Mean Square Error

Mean Square Error (MSE) is the most common estimator of image quality measurement metrics.
It is compared with the input image against a pristine reference image with no distortion metric
and the values closer to zero are the better. The variance of the estimator and its bias are both
incorporated with mean squared error. The MSE is the variance of the estimator in the case of
an unbiased estimator. It has the same units of measurement as the square of the quantity being
calculated like variance. The MSE measures the average of the square of the errors. The error is
the difference between the estimator and the estimated outcome.

2.4.2 Peak Signal to Noise Ratio

Peak Signal to Noise Ratio (PSNR) is used to calculate the ratio between the maximum possible
signal power and the power of the distorting noise which affects the quality of its representation.
This ratio between two images is computed in decibel form. The PSNR is usually calculated as
the logarithm term of the decibel scale because the signals have a very wide dynamic range. This
dynamic range varies between the largest and the smallest possible values which are changeable
by their quality. The PSNR is the most commonly used quality assessment technique to measure
the quality of reconstruction of lossy image compression codecs. The signal is considered as the
original data and the noise is the error yielded by the compression or distortion. The PSNR is the
approximate estimation of human perception of reconstruction quality compared to the compression
codecs. In image and video compression quality degradation, the PSNR value varies from 30 to 50
dB for 8-bit data representation and from 60 to 80 dB for 16-bit data. In wireless transmission, the
accepted range of quality loss is approximately 20 - 25 dB [25].

2.4.3 Structured Similarity Index Method

Structured Similarity Index Method (SSIM) is a perception-based model. In this method, image
degradation is considered as the change of perception in structural information. It also collaborates
with some other important perception-based facts such as luminance masking, contrast masking,
etc. The term structural information emphasizes the strongly inter-dependant pixels or spatially
closed pixels. These strongly inter-dependant pixels refer to some more important information
about the visual objects in the image domain. Luminance masking is a term where the distortion
part of an image is less visible in the edges of an image. On the other hand, contrast masking is a
term where distortions are also less visible in the texture of an image.

2.4.4 Multi Scale Structured Similarity Index Method

The active SSIM algorithm is a single scale method. The method which is more flexible than the
other single scale methods is the multi-scale structural similarity measure. This multi-scale method
image details with different resolutions can be included. Lowpass filtering and downsampling are
the two main operations used in this multi-scale structure similarity method. The original and
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the distorted or noisy images are iteratively low-pass filtered and then downsampling will be done
on that by a factor of 2. For this multi-scale operation, the original image is taken as scale 1.
The highest scale is for example scale M so a total of M-1iterations are taken place. In the SSIM
method, three comparisons have been done i.e., contrast comparison, luminance comparison and
structure comparison, similar to that multi-scale structure similarity also have three comparisons.
Luminance comparison is performed on scale M. Other two comparisons are performed on the in-
termediate scale and after all these the final quality measurement metrics is the combination of
these three comparisons, so one can say that this is a more convenient image quality metric than
the other single scale methods.



8 Background



Chapter 3
Case Studies

Higher correlation between the neighbouring pixels provides higher compression ratio and therefore
lower memory bandwidth. Behavioral analysis of the image using data analysis and visualization
is performed to understand image pixels characteristics under various circumstances. These anal-
ysis were performed by obtaining different orientations of the input image. Mathematical models
were developed and interesting results were obtained to exploit further the image correlation within
neighbouring pixels.

Figure 3.1: Efficient computation image compression technique

Even though a huge amount of data information in an image corresponds to higher quality
pictures, it has been seen that there is a distinction between having data information and having
knowledge. Although the huge amount of image data is processed, in general there are some image
information which could be discarded to attain satisfactory results. This discard helps remove few
redundant data and thereby decrease the hardware computation and memory consumption. Figure
3.1 shows the idea of achieving an efficient hardware image compression technique achieved with
data manipulation and redundant removal of image information. The block ’Input Block Manipula-
tion’ defines the handling of image data before the sending it to the compression stage to increase
the compression efficiency.

3.1 Image Characteristic

This section is to discuss the types of image information which could be used to exploit image com-
pression. These image characteristics are primarily obtained from the statistical models derived

9
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using image data analysis. To explore the segmentation of the image blocks, behavioural-model of
different block sizes were tested under a collection of image samples. Thus, reinforcing the usability
of the proposed technique and the image response on different scenarios of input image block sizes.

3.1.1 Orientation

It has been observed in the data analysis that when an image is folded, oriented and projected in a
specific format, the efficiency of the compression in terms of spatial redundancy and essential pixel
information increases dramatically. The oriented pixel block is projected in several ways and the
optimum compression is obtained based on the image sub-block performance.

Figure 3.2: Partitioning image pixels blocks as per correlation with neighbouring
pixels

These image sub-blocks are classified into three different categories. The first type corresponds
to information most essential for the reconstruction of the image. They also provide a high cor-
relation with their neighbouring pixels and hence exhibit a high compression ratio of around 2.5
and above on normal DCT compression. The second category is although necessary for the recon-
struction of the image but doesn’t contribute much to a higher coherency rate and therefore has a
lower compression ratio of around 1.2 to 2.5 on normal DCT compression. Lastly, the third cate-
gory provides the least compression rate and image information are mostly redundant to provide
satisfactory image reconstruction. Figure 3.2 shows the high-level overview of the classification of
the image as per input blocks.

3.1.2 Types of Compression

Although the division of an image block into sub-blocks was obtained, these sub-blocks are needed
to be particularly handled to achieve optimised image compression. The methods experimented to
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process all three types of image sub-blocks are discussed as follows.

Figure 3.3: Operations on different sub-blocks

Type-1

Type-1 compression is mostly processed on the part where the highest correlation among neigh-
bouring pixels is found. In general, it provides the best results where an average compression rate
of around 2.5 and above is achieved, but the compression can be used on any part of the image
block. The image sub-block used for Type-1 compression is operated with the number of encoders
tracking different traversing logic. The highest compressed output data among the encoders is
selected. The final data of the sub-block is a combination of encoded compressed data and a flag
depicting the traversing technique used for the particular sub-block. Figure 3.3 shows the block
diagram of Type-1 using Traverse and Selector Logic and later.

Type-2

It is seen that a part inside the image pixel block could also be processed directly with any DCT
image compression technique. It must be noticed that the image sub-block size is smaller than the
original image block which reduces the computation and the hardware resources required. This
type of compression is named Type-2 compression. Figure 3.3 shows the implementation of Type-2
sub-block where image compression algorithm is applied and then encoded after quantization. In
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general, these image sub-blocks are image parts where an average compression rate of a normal
compression ratio ranges from 1.2 to 2.5.

Type-3

This type of compression is processed on part of the image sub-block with the highest dissimilarities
among neighbouring pixels and does not provide more than a 1.2 compression ratio on a normal
DCT compression. Here the pixel block discards most of the data information and reduces the
necessary intensive computation. Approximate computing is applied here to introduce similarity
among neighbouring pixels and achieve a high compression ratio with minimum hardware compu-
tation and resources. Another way to handle such data is by using static approximation which
requires zero computation and is processed with pre-fixed values during decoding. Figure 3.3 shows
the implementation of Type-3 compression where approximation or presumption of data is applied
and encoded in the next stage.

3.2 Lossless Compression

The fundamental approach to achieve lossless compression is to process the entire stimuli of the
image pixel block with a Type-1 compression. In other words, the pixel block is operated with
several encoders on respective traversing logic and then compared with each compressed output to
find the optimum result. The output is a combination of a flag and the compressed data. The flag
depicts the traversing logic taken. Further memory layout optimisation is performed to achieve a
higher compression rate. During the decode phase, the flag data is fetched at first to determine
the traversal logic of the compressed data. The decoded data is placed as per the traversal logic to
regain the lossless image.

3.3 Lossy Compression

The proposed techniques on lossy compression with acceptable image quality are discussed here.

3.3.1 Hardware efficient DCT

This technique uses Yang-DCT model [26] as a Type-2 DCT Compression. The architecture oper-
ates on 30 multipliers and 106 adders to compute an 8x8 input block size. Figure 3.4 shows the
block diagram representation of the architecture. In the Figure, the image block is sub-divided into
three categories, namely ENCODERS (Type-1), DCT (Type-2) and Static Approximation (Type-
3). The compressed data is obtained from both types of encoders as shown in the figure. The static
approximation data is applied here with pre-fixed values and are approximated in the decoder stage.
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Figure 3.4: Lossy image compression using reduced hardware for DCT computation

3.3.2 Quantized Encoding Compression

The algorithm uses Type-1 and Type-3 compression. The sub-block comprising of the lowest com-
pression ratio is statically approximated (Type-3 compression) with pre-fixed values. The rest of
the pixel blocks are Type-1 compressed.

Figure 3.5: Lossy image compression using reduced hardware for encoding com-
putation

Figure 3.5 shows the block level diagram of Static Approximate Compression. The Pixel Block
is divided into two parts and handled separately with ’ENCODERS’ and ’Static Approximation’.

3.3.3 Approximate Computing Compression

The algorithm is similar to the previous compression technique with the Type-3 compression im-
plemented under an approximate computing technique. Approximate computing is used to achieve
higher accuracy by introducing similarity among neighbouring pixels and thereby creating higher
correlation. This increases the compression ratio by a large margin. The approach uses minimal
hardware resources to compress the sub-block. The rest part of the image block is compressed with
Type-1 compression.
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Figure 3.6: Encoder compression technique with approximate computing

Figure 3.6 shows the block diagram of Approximate Computing Compression. Pixel Block is
split into two parts, where one part is sent to the ENCODERS (Type-1) while the other part is
approximately computed and then encoded to increase the compression.

Figure 3.7: Decoder compression technique with approximate computing

Figure 3.7 shows the decoding logic. Compressed data are split and fetched to two different de-
coders. The compressed data from the Type-3 sub-block are decoded and approximated back to get
a similar image replica of the sub-block. Both sub-blocks are merged to obtain back the image block.



Chapter 4
Results

The results of the proposed models are discussed in this chapter. Many different aspects such
as image quality metrics, memory consumption, hardware requirement, compression ratio, etc are
considered to draw the curve of comparison between each of the architectures.

Although the architectures were verified on different sets of dissimilar and similar images during
the case study, the result analysis are based on common set of images which are thoroughly referred
in Digital Image Processing research papers. A set of 15 different test-images are used as an input to
the model. It has reassured an unbiased comparison from the previous image compression research
papers.

4.1 Block Size Experiment

In this experiment, the Hardware Efficient DCT compression model is tested with different sizes of
pixel blocks. It is primarily performed to find the most efficient image block size for the compression
model. Different weights of quantization tables were used during the experiment. The DCT input
is a 2n by 2n array of integers, where n is an integer. Thus the input stimuli of the model are tested
with pixel block sizes of 4x4, 8x8, 16x16, etc,. The experiment is performed solely to understand
the characteristics of the Hardware Efficient DCT model with respect to the compression ratio on
different input block sizes. From Table 4.1, it is seen the best image information are stored using
the image block size of 8x8. Block size of 8x8 is able to maintain higher compression ratio with
satisfactory image quality in comparison to block size of 4x4 and 16x16. A detailed information of
the comparison is performed(see Appendices A.1, A.2 and A.3).

Table 4.1: Average Block Size Image Characteristics

Block Size PSNR MSE MS-SSIM SSIM Memory(bits) Comp Ratio

4x4 36.4 13.8 0.993 0.944 123 1.04
8x8 34.5 23.3 0.994 0.9548 351 1.64
16x16 30.6 78.4 0.934 0.814 1659 1.28
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4.2 Computation Logic Utilization

In this section, the Hardware Efficient DCT image compression model is compared with the Ref-
erence DCT model in terms of their computational hardware utilisation. Yang DCT [26] model
is used as the Type 2 compression to develop the Hardware Efficient DCT model. The hardware
resources required to computation element in terms of adders and multipliers are split into NAND
and AND gates and calculated for both reference Yang DCT and Hardware Efficient DCT (inte-
grated with Yang DCT ). The numbers of gates required to compute the entire input block of size
8x8 in 1 clock cycle are compared against each other (see Appendices A.5 and A.4).

The results are obtained for a wide range of fixed point twiddle factor precision (TFP). It is
observed that for 4-fixed point TFP model, the images start to show visual artefacts. Thus the
logic gate calculations are considered from 5 bits to maximum of 8 bits twiddle factor precision.

4.3 Regular DCT Image Compression

In order to understand the pros and cons of all the other proposed models, these are compared to
a reference model. This section is to discuss the behaviour of a regular DCT image compression
model, acting as a reference to the other models. The primary motive of any compression technique
is to keep lower data bandwidth. Due to this DCT compressions are mostly constrained with a finite
twiddle factor precision. Here the twiddle factor precision is varied from a range of 5 to 8. Each
of the different twiddle factor precision models are analysed separately. The image characteristics
are studied under different quantization tables. Quantization tables are varied to provide a wide
ranges of compression rate.

A threshold value of 0.990 MS-SSIM is kept as a benchmark of satisfactory image quality. The
SSIM threshold value is kept as 0.960. As per industry standard, PSNR threshold value is kept
as 28. It has been observed from the experiments that image artefacts starts to occur under these
threshold value. It must be noted that same benchmarks value for the image metrics are kept for
all other proposed models. An average of the hardware configurations considering 5 twiddle factor
precision with various quantization tables is shown in Table 4.2. Here all the image results are able
to maintain the threshold value with a compression ratio of 2.23. The image characteristics of these
configuration are discussed thoroughly(Appendices A.6, A.7, A.8, A.9).

Table 4.2: Regular DCT

Image PSNR MSE MS-SSIM SSIM Memory(bits) Comp Ratio

Set 1 29.8 72.5 0.993 0.960 230 2.23
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4.4 Hardware Efficient DCT

The image quality behaviour of Hardware Efficient DCT model is discussed in this section. The
quantization tables are varied to provide a wide ranges of compression rate. An average of all the
configuration for 5 twiddle factor precision along with various quantization tables is shown in Table
4.3. It is seen that the model is able to maintain similar MS-SSIM characteristics with a compression
ratio 1.8. PSNR of 33 is achieved which is well above the benchmark value. It is seen that there
is a small decrease in compression ratio in comparison to Regular DCT Compression. The model
outperformed PSNR image quality result and maintained similar MS-SSIM result as compared to
the Regular DCT compression. Various other configuration with combination of different twiddle
factor and quantization table are shown (see Appendices A.10, A.11, A.12, A.13).

Table 4.3: Hardware Efficient DCT

Image PSNR MSE MS-SSIM SSIM Memory(bits) Comp Ratio

Set 1 33 31.5 0.993 0.95 293 1.8

4.5 Lossless Compression

The image characteristics of Lossless Compression is discussed in this section. Two different im-
age sets are used here to further understand the reliability of the model. ’Set 1 ’ comprises of the
images used in ’Regular DCT Image Compression’ and ’Hardware Efficient DCT ’ models. ’Set 2 ’
comprises of 30 high resolution images. It is seen that a lossless image output is obtained with an
average compression rate of 1.33. The results are discussed and compared graphically in the next
chapter.

Table 4.4: Lossless Encoding Compression

Images PSNR MSE MS-SSIM SSIM Memory(bits) Comp Ratio

Set 1 ∞ 0.00 1.0 1.0 389 1.32
Set 2 ∞ 0.00 1.0 1.0 382 1.34

4.6 Quantized Encoding Compression

This section is to discuss the image characteristics of statically approximated image compression
technique. Based on the degree of compression, three different hardware configuration for the same
model are proposed. Similar to the ’Lossless Compression two different sets of images are used in
this model. An average of all three models are shown in Table 4.5. It is seen that all of the image
metrics are well above their respective threshold value and provide an outstanding image quality
with a compression ratio of around 2. The three different compression levels of Quantized Encoding
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Compression models are shown(see Appendices A.15, A.16 and A.17). The results are discussed
and compared graphically in the next chapter.

Table 4.5: Average Quantized Encoding Compression

Images PSNR MSE MS-SSIM SSIM Memory(bits) Comp Ratio

Set 1 43.9 7 0.998 0.985 270 1.9
Set 2 43.3 6.9 0.996 0.983 257 2

4.7 Approximated Computing Compression

The manipulated image pixel information with low spatial redundancy is approximately computed.
Simple hardware using lower numbers of adders were used to approximate and compress image
data. Similar to Quantized Encoding Compression three different models based on the compression
levels are developed. An average of all of these compression models are shown in Table 4.6. It is
seen that Approximated Computing Compression model performs better in comparison to Regular
DCT model. Both MS-SSIM and SSIM is well above the threshold value with compression ratio of
around 2. It shows better PSNR performance in comparison to Quantized Encoding Compression.
Detailed information of the image characteristics for these models are shown(Appendices A.18,
A.19 and A.20). The results are discussed and compared graphically in the next chapter.

Table 4.6: Average Approximate Computing Compression

Images PSNR MSE MS-SSIM SSIM Memory(bits) Comp Ratio

Set 1 46.8 3 0.996 0.982 280 1.9
Set 2 46 3 0.996 0.982 267 1.98

4.8 Approximate Quantized Compression

Approximate Quantized Compression is a combination of both Quantized Encoding Compression
and Approximate Computing Compression. Two different hardware configuration based on com-
pression levels are discussed here. An average of all of these compression models are shown in
Table 4.7. It is seen that the average compression ratio is higher with a little deterioration in image
performance when compared to Approximated Computing Compression and Quantized Encoding
Compression. Detailed information on the image characteristics are discussed(Appendices A.21
and A.22. The results are discussed and compared graphically in the next chapter.
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Table 4.7: Average Approximate Quantized Compression

Images PSNR MSE MS-SSIM SSIM Memory(bits) Comp Ratio

Set 1 43 5.4 0.995 0.975 248 2.1
Set 2 42.4 5.5 0.994 0.974 234 2.2

4.9 Power Simulation and Area Synthesis

The power and area consumption of the synthesized hardware accelerator is calculated. The simu-
lations are performed only for the hardware-accelerated Lossless Compression and Quantized En-
coding Compression-2 on a clock frequency of 1000MHz. The simulated values of the Lossless
Compression encoder and decoder with different power groups are shown in Table 4.8 and 4.10.
The area and the power are measured in micrometer2(μm2) and nanoWatt(nW ) respectively. The
power and area distribution of Lossless Compression model are shown (Appendices 4.9 and 4.11).
It is seen that the sequential and the logical types consume a larger part of the total power. In the
Table, the Internal Power is the Static Power consumption of the accelerator. The Leakage Power
represents both dynamic and static IR drop.

Table 4.8: Power & Area consumption on Lossless Compression Encoder

Type Instances Area(μm2) Leakage Power(nW ) Internal Power(nW )

Sequential 6553 3.3 ×103 2.2 ×105 195.7 ×105

Inverter 3152 0.2 ×103 0.2 ×105 2.6 ×105

Buffer 355 0.3 ×102 0.3 ×104 0.9 ×105

Clock Network 120 0.3 ×101 0.2 ×104 1.4 ×105

Logic 22537 2.0 ×103 1.0 ×105 31.1 ×105

Total 32717 5.530 ×103 3.44 ×105 231.7 ×105

Table 4.9: Power & Area distribution on Lossless Compression Encoder

Type Area(%) Leakage Power(%) Internal Power(%)

Sequential 59.2 64.4 84.5
Inverter 3.3 4.9 1.1
Buffer 0.5 0.8 0.4
Clock Network 0.5 0.5 0.6
Logic 36.5 29.3 13.4

Total 100.0 100.0 100.0
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Table 4.10: Power & Area consumption for Lossless Compression Decoder

Type Instances Area(μm2) Leakage Power(nW ) Internal Power(nW )

Sequential 3216 1.4 ×103 0.9 ×105 79.7 ×105

Inverter 2388 0.2 ×103 0.3 ×105 3.9 ×105

Buffer 824 0.1 ×103 0.1 ×105 2.1 ×105

Clock Network 21 0.4 ×101 0.3 ×103 0.3 ×105

Logic 17500 1.8 ×103 1.2 ×105 31.4 ×105

Total 23949 3.56 ×103 2.44 ×105 117.27 ×105

Table 4.11: Power & Area distribution on Lossless Compression Decoder

Type Area(%) Leakage Power(%) Internal Power(%)

Sequential 40.2 37.5 68.0
Inverter 6.4 11.3 3.3
Buffer 2.0 3.2 1.8
Clock Network 0.1 0.1 0.2
Logic 51.3 47.9 26.7

Total 100.0 100.0 100.0

The power and area consumption (see Appendices A.23, A.25) and the percentage distribution
(Appendices A.24 and A.26) for the hardware accelerators of Quantized Encoding Compression-2
encoder and decoder are shown. The tables show similar nature to the Lossless Compression model
with sequential and logic type consuming most part of the total power.



Chapter 5
Analysis

In this chapter, the design-space exploration of all the architectures is discussed and compared
among each other. This provides a profound understanding of the architecture with regards to its
usability. Characteristics such as memory consumption, compression ratios, image quality metrics,
and effect on the weights of quantization tables have been thoroughly analysed here. Comparisons
of different image metrics of all the proposed and reference architectures are studied as well.
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5.1 Image Input Block Behaviour

This experiment is to find the most efficient block size to perform Hardware Efficient DCT. The
DCT image compression behaviour is studied on various image input block sizes for the proposed
Hardware Efficient DCT architecture. Three different block sizes are experimented with here a
similar set of images. The results for 3 different block sizes namely, 4x4, 8x8, 16x16 were obtained
in the previous chapter. A graphical comparison is made based on their respective MS-SSIM metric
to further analyse the model in terms of different compression ratios.

Figure 5.1: Hardware Efficient DCT performance on different image block sizes

Figure 5.1 shows that the best image quality results as per MS-SSIM versus compression ratio
are achieved on 8x8 block size. MS-SSIM values for both input block sizes of 4x4 and 16x16 start
to decrease even before the compression ratio reaches 1. 8x8 block size thus is considered during
the further study.
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5.2 Peak Signal to Noise Ratio Performance

Figure 5.2: PSNR vs Compression Ratio

The state of the art models along with the Reference DCT model are analysed and compared in
terms of their respective PSNR performance. Figure 5.2 shows that Approximate Quantized Com-
pression (AQC), Approximate Computing Compression (ACC) and Quantized Encoding Compres-
sion (QEC) outperform Reference DCT and Hardware Efficient DCT models of 5 Twiddle Factor
Precision(TFP). The Reference DCT maintains a PSNR of around 28 on the compression ratios
ranging from 2 to 4.4. It is seen for images with a PSNR value below 27 mostly shows visual
artefacts. A minimum PSNR value of 27 is kept as a benchmark to determine a satisfactory image
output.

In applications with a compression rate of around 2.2 is required, Reference DCT of 5-TFP can
be replaced with Hardware Efficient DCT of 5-TFP, as it provides higher PSNR image quality with a
high compression ratio as compared to a Reference DCT. A lossless compression with a compression
ratio of around 1.4 is seen as well. Here in Figure, the lossless compression is represented with a
PSNR value of 100.
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5.3 Structured Similarity Index Method Performance

Figure 5.3: SSIM vs Compression Ratio

Similar to PSNR performance, all the discussed models in the previous chapter are analysed and
compared here in terms of their respective Structured Similarity Index Method Performance (SSIM)
performance. It is seen in Figure 5.3, Approximate Encoding Compression (AEC) provides the high-
est SSIM performance in comparison to all other models. A minimum SSIM value of 0.96 is kept to
determine a satisfactory image output. Below this value, most of the images start to show visual
artefacts. Approximate Quantized Compression (AQC) and Approximate Computing Compression
(ACC) show higher image quality than Reference DCT with 5-TFP. Although Reference DCT pro-
vides similar MS-SSIM results as compared to Hardware Efficient DCT, in Hardware Efficient DCT
of 5-TFP there is around 14 per cent reduction in compression ratio in comparison to Reference
DCT of 5-TFP.
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5.4 Multi Scale Structured Similarity Index Performance

Figure 5.4: MS-SSIM vs Compression Ratio

In this section, all the discussed image compression models are analysed and compared in terms of
their respective Multi-Scale Structured Similarity Index Performance (MS-SSIM) performance. In
Figure 5.4, it is seen that Quantized Encoding Compression shows the best MS-SSIM performance
among all other investigated models. A minimum MS-SSIM value of 0.99 is kept to determine a
satisfactory image output. Below this most of the images start to show visual artefacts. Approxi-
mated Quantized Compression and Approximate Encoding Compression have better image quality
in comparison to Reference DCT of 5-TFP with a compression rate of 2 and below. Similar to SSIM
image performance, with comparable image quality, in Hardware Efficient DCT of 5-TFP there is
around 14 per cent reduction in compression ratio in comparison to Reference DCT of 5-TFP.
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5.5 Model Comparison

5.5.1 Metric Comparison

An overall comparison of all the implemented models is discussed in this section. The idea is to
compare each architecture with an equal or similar compression ratio. For a better understanding
of the models, the results of the model with a compression ratio close to 2 are considered here.
Table 5.1 can be used as a reference for design space exploration and could be therefore used to
prune out the undesired performance requirement.

Table 5.1: Overall Comparison of all Proposed and Reference Model

Model CR MSSSIM SSIM PSNR MSE

Regular DCT - 5TFP 2.1 0.994 0.970 29.8 71.9
Regular DCT - 6TFP 1.9 0.992 0.946 29.6 73.2
Regular DCT - 7TFP 2.1 0.996 0.972 38.2 10.0
Regular DCT - 8TFP 2.0 0.996 0.964 37.6 11.7

Hardware Efficient DCT - 5TFP. 2.0 0.990 0.901 31.6 32.0
Hardware Efficient DCT - 6TFP. 1.8 0.992 0.944 32.8 34.0
Hardware Efficient DCT - 7TFP. 1.7 0.995 0.963 35.3 19.2
Hardware Efficient DCT - 8TFP. 1.6 0.997 0.982 34.9 20.8

Lossless 1.3 1 1 ∞ 0
Quantized Encoding Compression - 1 1.6 0.9998 0.998 52.2 0.5
Quantized Encoding Compression - 2 1.9 0.999 0.991 43.7 3.3
Quantized Encoding Compression - 3 2.4 0.995 0.946 35.7 17.5

Approximate Computing Compression - 1 1.5 0.9995 0.998 53.7 0.3
Approximate Computing Compression - 2 1.9 0.998 0.989 46.5 1.7
Approximate Computing Compression - 3 2.2 0.991 0.960 40.3 7.0

Approximate Quantized Compression - 1 2.3 0.991 0.961 8.7 8.7
Approximate Quantized Compression - 2 1.9 0.998 0.990 46.0 2.1
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5.5.2 Area Comparison

Hardware area utilisation in micrometer2(μm2) for the proposed implementation are discussed in
Table 5.2.

Table 5.2: Total Area Requirement

Model Total Area(μm2)

Lossless Compression 13.4 ×103

Quantized Encoding Compression - 1 12.8 ×103

Quantized Encoding Compression - 2 12.2 ×103

Quantized Encoding Compression - 3 11.6 ×103

Approximate Computing Compression - 1 13.2 ×103

Approximate Computing Compression - 2 12.6 ×103

Approximate Quantized Compression - 1 13.1 ×103

Approximate Quantized Compression - 2 13.4 ×103

5.5.3 Hardware Reduction

To understand the area utilisation of the Hardware Efficient DCT model in comparison to the Ref-
erence DCT, the percentage reduction between the two models on similar Twiddle Factor Precision
is shown in Table 5.3. The area utilisation is calculated based on the computational resources
required by both the hardware accelerator in terms of NAND and AND logic gates.

Table 5.3: Total NAND-AND Gate Reduction

Twiddle Factor Precision Total Reduction (%)

8 bits 38.6
7 bits 38.5
6 bits 38.4
5 bits 38.3
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Chapter 6
Conclusions

In this master’s thesis project, different attempts to abate the intensive hardware computation
required on an image compression technique were discussed. State-of-the-art hardware efficient
designs were developed to eradicate the expenses of heavy computations required to compress an
image in a normal image compression technique. Image data analysis was performed to understand
various image characteristics on all proposed and reference compression models. Verification and
validation of image behaviours were carried out under different sets of images.

All state-of-the-art algorithms were verified and compared among each other in terms of their
hardware computational logic, image quality, synthesized area. The relation between image quality
to the memory bandwidth was graphically analysed to compare the benefits of each of the proposed
models. All the discussions on different models were thoroughly studied and compared to provide
the design solutions that could be used to best meet the desired design requirements.

6.1 Future Work

In the Hardware Efficient DCT accelerator, the weights of the quantization table were given ran-
domly. Optimized quantization tables befitting the proposed and reference architecture were not
focused. Quantization tables were rather developed to encourage similar behaviour in both cases.
An optimized quantization table could thus be studied to further improve the compression rate.

Comparing the results of Approximate Quantized Compression and Quantized Encoding Com-
pression models, it was seen that the dynamic approximation of Type 3 image data increased the
image quality in terms of PSNR as compared to Quantized Encoding Compression although the
quality in terms of MS-SSIM and SSIM image metrics deteriorates. Studies related to the behaviour
of such image metrics could be performed to enhance the performance of image quality using ap-
proximate computing.
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AppendixA
Data Tables

Table A.1: Image Characteristics for Input Block Size 4x4

Quantization Table Q04x4 Q14x4 Q24x4 Q34x4

PSNR 42.6 39.9 38.1 36.4
MS-SSIM 0.998 0.995 0.994 0.993
SSIM 0.984 0.964 0.958 0.944
Avg. Mem 185.8 144.6 138.1 123.2
MSE 4.5 8.4 10.1 13.8
Compression Ratio 0.69 0.89 0.93 1.04

Table A.2: Image Characteristics for Input Block Size 8x8

Quantization Table Q08x8 Q18x8 Q28x8 Q38x8 Q38x8

PSNR 35.9 34.5 34.5 34.6 34.5
MS-SSIM 0.995 0.994 0.994 0.994 0.994
SSIM 0.962 0.949 0.948 0.948 0.946
Avg. Mem 711.8 411.8 379.0 332.8 279.4
MSE 16.60 23.3 23.2 23.2 23.4
Compression Ratio 0.72 1.24 1.35 1.54 1.84
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Table A.3: Image Characteristics for Input Block Size 16x16

Quantization Table Q016x16 Q116x16 Q216x16 Q316x16 Q416x16

PSNR 42.7 37.7 28.3 28.3 28.0
MS-SSIM 0.999 0.995 0.932 0.93 0.88
SSIM 0.9909 0.9503 0.7958 0.79 0.72
Avg. Mem 2912.1 2208.3 1574.9 1516.4 1335.3
MSE 3.498 9.96 95.84 96.1 111.6
Compression Ratio 0.703 0.927 1.3 1.35 1.53

Table A.4: Number of AND Gates for Computational Logic

TFP Reference Proposed

8 bits 18048 10364
7 bits 15792 9072
6 bits 13536 7776
5 bits 11280 6480

Table A.5: Number of NAND Gates for Computational Logic

TFP Reference Proposed

8 bits 212256 131040
7 bits 189936 117360
6 bits 167616 103680
5 bits 145296 90090
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Table A.6: Regular DCT with 5-TFP

Quantization Table Q7 Q8 Q9 Q10 Q11 Q12 Q13

PSNR 29.8 29.7 29.6 29.6 29.6 29.5 29.4
MSE 71.9 72.9 73.5 73.7 73.7 74.9 75.2
MS-SSIM 0.9937 0.9923 0.9861 0.9859 0.9742 0.9594 0.9454
SSIM 0.970 0.949 0.914 0.912 0.8844 0.8386 0.8132
Memory(bits) 248 211 162 160.7 139 122.66 117.2
Comp Ratio 2.06 2.43 3.16 3.18 3.68 4.17 4.36

Table A.7: Regular DCT with 6-TFP

Quantization Table Q7 Q8 Q9 Q10 Q11 Q12 Q13

PSNR 29.8 29.8 29.7 29.6 29.6 29.6 29.5
MSE 71.45 72.3 73.1 73.2 73.0 73.7 73.8
MS-SSIM 0.9959 0.9951 0.992 0.9918 0.9873 0.9803 0.9741
SSIM 0.9876 0.975 0.949 0.945 0.933 0.898 0.884
Memory(bits) 427 367.5 280 275 238.4 192.5 180
Comp Ratio 1.2 1.393 1.83 1.88 2.147 2.66 2.84

Table A.8: Regular DCT with 7-TFP

Quantization Table Q7 Q8 Q9 Q10 Q11 Q12 Q13

PSNR 41.6 40.9 39.3 38.6 38.2 36.1 35.4
MSE 4.7 5.4 7.9 9.1 10.0 16.5 19.2
MS-SSIM 0.9994 0.999 0.9978 0.9975 0.9958 0.9922 0.989
SSIM 0.996 0.9917 0.9774 0.972 0.967 0.9413 0.932
Memory(bits) 424.86 374 292.378 285 249 199.37 187.3
Comp Ratio 1.20 1.37 1.75 1.80 2.05 2.568 2.73
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Table A.9: Regular DCT with 8-TFP

Quantization Table Q7 Q8 Q9 Q10 Q11 Q12 Q13

PSNR 41.8 41.7 40.9 40.4 40.3 38.4 37.6
MSE 4.4 4.6 5.3 5.9 6.2 9.4 11.7
MS-SSIM 0.999 0.999 0.999 0.999 0.998 0.996 0.996
SSIM 0.998 0.997 0.991 0.988 0.987 0.970 0.964
Memory(bits) 483 450 376 366.7 332 267 251
Comp Ratio 1.06 1.137 1.36 1.40 1.54 1.92 2.04

Table A.10: Hardware Efficient DCT with 5-TFP

Quantization Table Q0 Q1 Q2 Q3 Q4 Q5 Q6

PSNR 33.4 33.5 33.3 33.2 33.1 32.5 31.6
MSE 29.6 28.5 30.8 30.9 32.2 36.2 32.0
MS-SSIM 0.9971 0.9959 0.9948 0.9944 0.9937 0.9904 0.9847
SSIM 0.982 0.972 0.959 0.957 0.949 0.928 0.901
Memory(bits) 328 317 313.136 302.7 288.71 263 240.5
Comp Ratio 1.56 1.62 1.64 1.70 1.77 1.95 2.13

Table A.11: Hardware Efficient DCT with 6-TFP

Quantization Table Q0 Q1 Q2 Q3 Q4 Q5 Q6

PSNR 33.4 33.5 33.4 33.4 33.3 33.1 32.8
MSE 29.6 29.2 29.8 29.8 30.1 31.6 34.0
MS-SSIM 0.9966 0.9962 0.9955 0.9955 0.995 0.9938 0.9917
SSIM 0.979 0.977 0.970 0.970 0.966 0.956 0.944
Memory(bits) 328.3 327.3 326.4 322.9 314.6 292 277
Comp Ratio 1.56 1.56 1.57 1.59 1.63 1.75 1.85
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Table A.12: Hardware Efficient DCT with 7-TFP

Quantization Table Q0 Q1 Q2 Q3 Q4 Q5 Q6

PSNR 33.7 34.1 34.7 34.8 34.9 35.2 35.3
MSE 27.859 25.41 22.03 21.47 20.9 19.74 19.21
MSSSIM 0.9968 0.9961 0.9959 0.9958 0.9958 0.9956 0.9953
SSIM 0.979 0.972 0.966 0.965 0.964 0.963 0.963
Memory(bits) 328.4 328.2 328.2 327.9 327.0 318.9 307
Comp Ratio 1.56 1.56 1.56 1.56 1.56 1.61 1.68

Table A.13: Hardware Efficient DCT with 8-TFP

Quantization Table Q0 Q1 Q2 Q3 Q4 Q5 Q6

PSNR 33.4 33.6 34.0 34.1 34.2 34.6 34.
MSE 29.48 28.45 25.548 25.438 24.7 22.333 20.80
MS-SSIM 0.997 0.9967 0.9961 0.9961 0.996 0.9957 0.9955
SSIM 0.9815 0.979 0.9717 0.9715 0.9697 0.9658 0.9643
Memory(bits) 328.39 328.389 328.382 328.33 328.24 327.6 325.34
Comp Ratio 1.56 1.56 1.56 1.56 1.56 1.56 1.56

Table A.14: Lossless Encoding Compression

Images PSNR MSE MS-SSIM SSIM Memory Comp Ratio

Set 1 ∞ 0.00 1.0 1.0 389 1.32
Set 2 ∞ 0.00 1.0 1.0 382 1.34

Table A.15: Quantized Encoding Compression - 1

Images PSNR MSE MS-SSIM SSIM Memory Comp Ratio

Set 1 52.199 0.489 0.9998 0.9983 328 1.56
Set 2 51.27 0.493 0.9996 0.9975 319.67 1.60
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Table A.16: Quantized Encoding Compression - 2

Images PSNR MSE MS-SSIM SSIM Memory Comp Ratio

Set 1 43.66 3.27 0.9988 0.9914 266 1.925
Set 2 42.87 3.41 0.9981 0.9888 257 1.99

Table A.17: Quantized Encoding Compression - 3

Images PSNR MSE MS-SSIM SSIM Memory Comp Ratio

Set 1 35.7 17.49 0.9946 0.9642 216 2.37
Set 2 35.86 17.03 0.9914 0.9614 196 2.61

Table A.18: Approximate Computing Compression - 1

Images PSNR MSE MS-SSIM SSIM Memory Comp Ratio

Set 1 53.66 0.344 0.9995 0.9977 333 1.537
Set 2 52.7 0.35 0.9994 0.9976 325 1.58

Table A.19: Approximate Computing Compression - 2

Images PSNR MSE MS-SSIM SSIM Memory Comp Ratio

Set 1 46.47 1.71 0.9976 0.9891 276 1.86
Set 2 45.67 1.75 0.9973 0.9885 267 1.92

Table A.20: Approximate Computing Compression - 3

Images PSNR MSE MS-SSIM SSIM Memory Comp Ratio

Set 1 40.3 7.047 0.9909 0.9601 231 2.22
Set 2 39.822 6.94 0.9903 0.9600 211 2.43
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Table A.21: Approximate Quantized Compression - 1

Images PSNR MSE MS-SSIM SSIM Memory Comp Ratio

Set 1 40.11 8.72 0.9912 0.9606 226 2.26
Set 2 39.57 8.83 0.9904 0.9598 206 2.48

Table A.22: Approximate Quantized Compression - 2

Images PSNR MSE MS-SSIM SSIM Memory Comp Ratio

Set 1 46.01 2.08 0.9979 0.9897 271 1.89
Set 2 45.21 2.13 0.9976 0.9884 262 1.95

Table A.23: Power & Area consumption on Approximate Computing Compression
- 2 Encoder

Type Instances Area(μm2) Leakage Power(nW ) Internal Power(nW )

Sequential 5803 2.93 ×103 1.99 ×105 174.08 ×105

Inverter 2831 0.17 ×103 0.16 ×105 2.42 ×105

Buffer 236 0.02 ×103 0.02 ×105 0.75 ×105

Clock Network 96 0.02 ×102 0.02 ×105 1.15 ×105

Logic 19854 1.83 ×103 0.93 ×105 28.87 ×105

Total 28820 4.97 ×103 3.12 ×105 207.27 ×105

Table A.24: Power & Area distribution on Approximate Computing Compression
- 2 Encoder

Type Area(%) Leakage Power(%) Internal Power(%)

Sequential 58.9 64.0 84.0
Inverter 3.4 5.1 1.2
Buffer 0.4 0.7 0.4
Clock Network 0.4 0.5 0.6
Logic 36.9 29.8 13.9

Total 100.0 100.0 100.0
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Table A.25: Power & Area consumption on Approximate Computing Compression
- 2 Decoder

Type Instances Area(μm2) Leakage Power(nW ) Internal Power(nW )

Sequential 3218 1.44 ×103 0.93 ×105 83.07 ×105

Inverter 2809 0.25 ×103 0.30 ×105 4.33 ×105

Buffer 772 0.06 ×103 0.07 ×105 1.93 ×105

Clock Network 22 0.05 ×102 0.03 ×104 0.27 ×105

Logic 17059 1.80 ×103 1.15 ×105 31.83 ×105

Total 23880 3.56 ×103 2.45 ×105 121.42 ×105

Table A.26: Power & Area distribution on Approximate Computing Compression
- 2 Decoder

Type Area(%) Leakage Power(%) Internal Power(%)

Sequential 40.6 37.8 68.4
Inverter 7.1 12.3 3.6
Buffer 1.8 2.9 1.6
Clock Network 0.1 0.1 0.2
Logic 50.4 46.8 26.2

Total 100.0 100.0 100.0
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