Development of a new verication environment for
a GPU hardware block using the Universal

Verication Methodology (UVM)

NIKLAS KARLSSON

MASTER’S THESIS

DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

arm

EITMO1 Degree Project in Electrical and Information Technology

LUND UNIVERSITY

Development of a new verification environment for
a GPU hardware block using the [Universal
| Verification Methodology| (U

Master Thesis

Author
Niklas KARLSSON (19930809-5117)
tir13nk1@student.lu.se

Erik LARSSON, Main Supervisor LTH
erik.larsson@eit.lth.se

Pedro ARAUJO, Supervisor ARM
pedro.araujo@arm.com

Pietro ANDREANI, Examiner LTH
pietro.andreani@eit.lth.se

Project Start Date Project Completion Date
2020-01-20 2020-06-07

Department of Electrical and Information Technology, Faculty of Engineering, LTH,
Lund Univeristy, SE-221 00 Lund, Sweden

mailto:tfr13nk1@student.lu.se
mailto:erik.larsson@eit.lth.se
mailto:pedro.ara\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 u\egroup \spacefactor \accent@spacefactor jo@arm.com
mailto:pietro.andreani@eit.lth.se

©) 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

POPULARVETENSKAPLIG SAMMANFATTNING

Uppfinnandet av den integrerade kretsen banade vég for dagens datorer, mobiltele-
foner och all annan elektronik som ar en sjilvklar del av var vardag. En integrerad
krets bestar idag av hundramiljontals halvledarkomponenter som sitter ihop med
varandra pa ett sa kallat chip. Komplexiteten och antalet komponenter pa chipen
fortsdtter att oka vilket har forandrat utvecklingsprocessen. Ett chip som tidigare
sags som ett system utvecklas idag som separata block och monteras sedan ihop
till det slutliga systemet. For att foretag ska kunna halla produktionstiden kort
och kostnaderna laga har verifikation med aren blivit en allt viktigare del i utveck-
lingen av integrerade kretsar. Verifikation innebér att en krets kontrolleras sa att
den uppfyller kraven i specifikationen innan den skickas for tillverkning genom att
simulera designen. Daérigenom kan eventuella fel upptéckas och atgérdas tidigt i
utvecklingsprocessen.

For att verifiera kretsen anvénds en verifieringsmiljo, dven kallat testbank, vars
uppgift ar att generera insignaler till designen och sedan samla in utsignalerna.
Genom att analysera utsignalerna gar det att avgora om kretsen har korrekt be-
teende eller om fel behover atgirdas. I takt med att antalet komponenter okar
och kretsarna blir mer avancerade okar ocksa svarigheten i att pa ett effektivt sétt
utforligt verifiera all funktionalitet i designen. Ofta verifieras block forst enskilt
och sedan tillsammans med de andra blocken i kretsen. Manga olika simulatorer
och sprak har utvecklats och forfinats for att mota behoven hos ingenjorer som
utvecklar verifikationsmiljoer. SystemVerilog har blivit det dominerande spraket
men kompletteras oftast med en verifikations metodologi.

Det héar arbete kommer att utveckla en ny verifieringsmilj6 enligt [Universal Verifica-|
[tion Methodology| fér att understka hur denna verifierings metodologi kan anvéndas
nar olika separat utvecklade block ska verifieras tillsammans. Ett hardvarublock i
en grafisk processor kommer anviindas och[UVM]standarden kommer att analyseras
utifran hur den paverkar strukturen pa verifieringsmiljon och dess prestanda. Det
kommer resultera i ett antal riktlinjer for hur metodologin ska anvéandas effektivt
for block integrerande verifiering generellt och verifikation av grafiska processorer
specifikt.

II

ABSTRACT

The invention of the integrated circuit is a key milestone in the history of electronic
circuits. Since its introduction the number of components on a chip have increased
rapidly, making them more powerful and able to perform complex operations, but
it has also changed the design process. Today different parts of a chip can be
developed separately as [Intellectual Property| and then put together to form
the final system.

Over the last years making sure that the design follows the specification, also known
as functional verification, have become a key part of the development life cycle.
Finding bugs early is crucial for keeping cost down and achieving time-to-market
requirements. This means that as the complexity of the design continues to increase,
the time needed to thoroughly verify it cannot follow the same line of increment.
This has pushed engineers to come up with new tools and methodologies to improve
the verification process.

The |Universal Verification Methodology (UVM)| is created by Accellera together
with experts from electronic design automation vendors Synopsys, Mentor and
Cadence. Its emphasis is on improving the development of verification environments
by increasing interoperability and making it easier to reuse verification components.

This project will develop a new verification environment verification environment
according to the [Universal Verification Methodology| (UVM)) to investigate how it
can be implemented when separately developed blocks are verified together. A
hardware block with sub-components from a [Graphics Processing Unit] (GPU)) will
be used and the methodology will be analysed based on how it affects the structure
and performance of the verification environment. The dissertation will result in
a new implemented verification environment along with guidelines on how to pos-
sibly improve block-integrating verification in general and verification of graphics
processor specifically.

II1

v

ACKNOWLEDGEMENTS

This project was suggested by arm and originated from the need of a new verifi-
cation environment for a hardware block responsible for a big part in the graphics
pipeline. I want to thank the [GPU] Hardware Verification team for their support
and especially Pedro Araijo, his endless support and availability to answer all my
questions at any time was essential for completion of this project. I also want to
thank Erik Larsson and Pietro Andreani for their guidance in scoping the project
and finalising the documents.

Finally I am grateful for all friends that have been apart of creating unforgettable
memories throughout my academic journey and my family for their continuous
support.

VI

(1 Introductionl

|2__Background|
[T Tntegrated circuit design] o v oo
2.1.1 ardware Description Languages|

2.1.2 SystemVerilog for Designl
2.2 Integrated circuit verification| oo
2.2.1 Hardware Verification Languages|
[2.2.2 SystemVerilog for Verification|.
2.2.3 Verification Methodologies].
2.2. niversal Verification Methodology]
2.3 Graphics Processing Unit|

3 Approach and Methodolo
3.1 nalysis of the hardware block|
3.2 Analysis of the current Verification Environment|
3.3 Analysis of sub-block testbenches| 00000
3.4 Development of the new Verification Environment|
3.9 nalysis of the new Verification Environment|

4_Resuli]

4.1 Test structure analysis|
4.2 New Testbench Structurd,

4.3 Testbench size analysis|.,

6__Conclusionl
[References]

VII

TABLE OF CONTENTS

15
15
16
18
21
22

23
23
24
25

27

29

VIII

LIST OF FIGURES

2.1 Generic Testbenchl 7
[2.2_Directed vs Constrained-Random testing time progress|. 8
P37 UVM hierarchy] 10
2.4 UVM Testbenchl 11
[3.1 Hardware block diagram| 15
3.2 ctive part of old testbench| o000 17
3.3 Active part of depth testbench| 18
3.4 Active part of the GPU State Machine Manager testbench|. 20
4.1 Active part of new testbench| 0000000 24

LIST OF TABLES

4.1 Memory for different test structures] 23
(42 estbench size for different configurations| 25

IX

LIST OF ABBREVIATIONS

DUT Device Under Test.

GPU Graphics Processing Unit.

HDL Hardware Description Language.
HVL Hardware Verification Language.

IC Intergrated Circuit.
IP Intellectual Property.

RTL Register Transfer Level.

TLM Transaction Level Modelling.

UVM Universal Verification Methodology.

XI

CHAPTER 1

INTRODUCTION

[Intergrated Circuit (IC)| designs are growing in size and complexity at the same
time as companies want to keep production costs low and time to market short.
For example, a typical microprocessor life cycle from exploration to start of pro-
duction that before ranged between three and four years can now last less than a
year [1]. This amounts to challenges to the verification process that need to both
properly and quickly functionally verify the design and find the bugs as early as
possible in the project. New tools and languages that help verification engineers are
constantly being developed and improved. SystemVerilog with its object-oriented
and random-constraint stimulus features is a powerful and popular language used
by many companies. The problem is that creating testbenches that take advantage
of those features is time-consuming and does not scale up or enable reuse across
environments and projects. To address this issue verification methodologies that
sit on top of the language are being adapted in testbench development.

The [Universal Verification Methodology] (UVM)) is a hybrid of technologies origi-
nating from Mentor’s AVM E[, Mentor & Cadence eRM E| and Synopsys’s VMM El
It has a base class library that is supported by all simulators, making the method-
ology portable. Another key feature is the well-defined class hierarchy that give
each component a specific purpose and a distinct interface to the rest of the test-
bench. This strongly facilitate the creation of components that allow re-usability.
The lowest layer in the hierarchy, also known as the agent, communicates with the
[Device Under Test (DUT)| by converting transactions to pin wiggles and vice versa.
It can include an configuration object to provide possibilities to control aspects of
the agent. This allows for reuse of the same agent for different scenarios and the

test writer can think at an transaction level, focusing on the functionality to be
verified [2].

! Advanced Verification Methodology
2e Reuse Methodology
3Verification Methodology Manual

Introduction

1.1 Problem Description

The rapid development in the electronic industry have changed the perception of
a system and thereby the design process. With today’s size and complexity differ-
ent parts of the system are today developed separately and then put together to
form the final circuit. As technology have continued to advance these sub-systems
can today contain hundreds of millions of gates and be very complex by themselves.
With this magnitude testbenches for each individual block are needed to thoroughly
verify all features. However, the customer is not interested in an isolated module
and all blocks must be verified together to make sure that the final system fulfil the
functional specifications. Therefore multiple testbenches are needed and verifica-
tion can take about 70% of the design effort and the number of verification engineers
can be twice the number of [RTL] designers in the same project. The amount of test-
bench code can after project completion be up to 80% of the total volume [3]. As
the testbench used for verifying a system with multiple blocks together will share
functionality with those at unit unit level, reusing existing components has become
one of the biggest opportunities to improve the verification process by reducing the
development time and code size. It can potentially remove duplication of function-
ality and reduce testbench code maintenance. It can also provide improved internal
visibility, making it easier to debug errors detected at system level [4].

[Graphics Processing Units (GPUs)|are no exception to the trends in the electronic
industry and are becoming more and more complex with an increasing number of
cores. Different parts of the[GPU]are today developed and verified separately before
they are put together to form the final processor, making the verification challenges
mentioned above a problem. This is exemplified by a testbench used for verifying
a hardware block connecting separate sub-blocks in the arm Mali[GPU] It covers a
big part in the graphics pipeline and the testbench does not reuse components from
module level, adding unnecessary overhead to the project when making updates or
adding new features. Furthermore the current structure, that does not follow any
standard verification methodology, is very demanding in memory consumption and
require a lot of time and effort when it comes to code maintenance.

Introduction

1.2 State of the art

The |[Universal Verification Methodology| provide a set of standards of how to use
the SystemVerilog language and build verification environments with reusability in
consideration. There is a big emphasis on configurability, enabling projects to share
components horizontally. Therefore [UVM] typically have been applied to create
generic verification environments that include the core architecture and supports
multiple configurations, for example for memory controllers and communication
protocols [5][6]. When components are reused horizontally their role are unchanged
by it having the same responsibilities, making the use-cases more predictable.

[UVM] also enable vertical reuse, but despite the potentially benefits consistent and
efficient reuse is not achieved in all projects. Components may be re-used with a
different role when blocks are verified together, creating unknown use-cases. There
is a growing demand for better guidelines as the existing ones can be to theoretical
and does not take testbench performance into consideration. Today simulations are
often run on computing clusters with shared resources between verification teams.
A slow simulation time and high memory consumption could not only affect the the
process of verifying the own design, but also impact other parallel projects using the
same resources. A verification environment at unit level will have more components
than at block-integration level since different blocks then will stimulate each other.
Therefore its important to be considerate when reusing components from lower level
so that the structural benefit does not come at the price of a negative impact on
the performance [7][8].

Introduction

1.3 Project aims

This project aims to investigate how the[Universal Verification Methodology] (UVM)
can be adequate used for block-integrating verification and for verifying [GPU|[In]
[tellectual Property (IP)s. A new verification environment that follows the
standard will be proposed and implemented for a hardware block responsible for
a big part in the graphics pipeline. Potentially it could provide a lot of reusabil-
ity from components used to verify sub-blocks, meaning decreased time and effort
needed when making updates and adding new features. The project will also exam-
ine the effect the [[VM] standard has on the verification performance. The project
will result in best practice guidelines for how to reuse unit level verification envi-
ronments to improve the structure and performance of testbenches development for
block-level verification.

1.4 Structure of the document

Chapter [2] gives a short background about the development of integrated circuit
design and verification tools and methodologies. An overview of the SystemVerilog
language is presented and the [Universal Verification Methodologylis discussed in
more detail. Chapter [3|starts with an analysis of the hardware block and its current
verification environment and discusses how the structure of the new testbench was
derived. Then follows chapter [4] which presents the new verification environment
and highlights the result of this project and finally chapter [5| discusses conclusions
and further possibilities.

CHAPTER 2

BACKGROUND

The introduction of the integrated circuit started the rapid increase in number
of components in a electronic system. Engineers have then continued to make
transistors smaller and smaller to be able to fit more of them on a chip to make it
perform more powerful and complex operations. To be able to take advantage of
the possibility of more transistors on a chip its been essential to develop new ways
of designing them.

2.1 Integrated circuit design

In the beginning designers would manually place components and connections when
creating the circuits. This quickly became a bottleneck with the increasing number
of components. The solution was placing and routing programs that allowed the
user to specify the gate-level netlist and the tool would then decide on the location
of the gates and the wires connecting them. It did not take long until this also
proved to be too detailed work and synthesis tools were introduced to allow the
designer to express the functionality in a [Hardware Description Language (HDL)|
The tool then generates the netlist out of the [Register Transfer Level (RTL)| code
written in the language. are now the preferred way to enter the design of an
integrated circuit[9].

2.1.1 Hardware Description Languages

Compared to a standard programming language that is a way to code an algorithm,
a [Hardware Description Language|is used to describe the layout of a circuit using
words and symbols. Two well—known are VHDL (Very High Speed Integrated
Circuit Hardware Description Language) and Verilog.

When Verilog was created in the mid-1980s, the typical design size was of the
order of five to ten thousand gates. Throughout the 1990s, the Verilog language
continued to evolve with technology, and in 2001 new extensions was added to the
IEEE standard. As design sizes continued to grow a need for new features and better
collaboration opportunities between designers and verification engineers grew. The
result was the SystemVerilog language that unifies several proven hardware design
and verification languages into one Hardware Design and Verification Language
HDVL. The design part of the language is discussed in the following section and
verification features is discussed in section [10].

Background

2.1.2 SystemVerilog for Design

SystemVerilog can be used for design and is an extension of Verilog, meaning
that it has all the previous functionality together with new features. The first
release in 2002 began with a version number 3.0 to show that it was the third
generation of Verilog. Some examples of significant enhancements are interfaces,
C-like datatypes, user-defined types and packages.

The addition of packages is leveraged from VHDL and allow global declarations.
Verilog limited variables, functions and other design information to be declared
and used within a module. A package can instead hold information common for
multiple blocks and be accessed by importing or references using the scope resolu-
tion operator (::). This removes the need for duplicated declarations and increases
reliability [10].

2.2 Integrated circuit verification

Avoiding bug escapes into silicon is today necessary for companies to meet budgets
and keeping projects within the planned timeline. This generates a need to develop
digital circuits that comply with the specification at the first try, finding all bugs
before tape-out. Therefore verification, to model or simulate a portion or the whole
system and analysing the result, is an important part of the development pipeline.
Verification uses a testbench to generate input data, also known as stimuli, to the
[DUT] and then captures the resulting output. An abstraction of this is shown in

Figure 2:1]

Background

Testbench

Design outputs
»| Under >

Test

inputs

Figure 2.1: Generic Testbench [11]

Traditionally verification engineers have used direct testing. This means that after
reading the hardware specification a verification plan with a list of tests is outlined.
These test each concentrate on a set of features and have their respective stimulus
vectors. The[DUTlis then simulated with these vectors and the result is determined
by manually reviewing the log files and waveforms. This process can be improved by
passing the stimulus vectors to a reference model that can compare its result with
the output from the simulation to determine if the test was successful. Although
this speeds up the process by removing the manual checking it still have limitations.
Creating test vectors that cover all inputs in a big design is time-consuming, but
the main issue with directed testing is that only the expected bugs are found. To
properly twist and torture the design, random testing is needed.

Random stimuli can find scenarios that the verification engineers never anticipated
and without spending time to create detailed vectors. However the stimuli should
not be completely random, it should still be a meaningful stream of data. This
is achieved by enforcing constraints over the stimuli and the inputs to the [DUT]
is decided in a constraint solver. With constrained-random stimulus the output
cannot be predicted and checked manually, a reference model is needed to be able
to determine the success of the test. It is also important to keep track of what
areas of the design that are visited, known as functional coverage. Setting up a
testbench with constraint-random stimuli, reference model and coverage adds some
up-front work, but is quicker than directed testing once up and running, which is
illustrated in Figure 2.2 below. To limit this initial time needed its important to
design testbenches with reusability and interoperability in mind.

In the last 1990s were used to simulate the design. They only had simple
constructs for creating tests and the design size eventually outgrew verification
capabilities. Therefore[Hardware Verification Languages (HVLs)|such as OpenVera
and e were introduced, intended for verification only.

Background

100% [=777 "TTTTTTTTTTTTTTmosorgTTTTosossoososoooosoooges

Directed
Test

Coverage

Time
Figure 2.2: Directed vs Constrained-Random testing time progress [11]

2.2.1 Hardware Verification Languages

While a [Hardware Description Language|l need to be synthesizeable into the actual
layout of the circuit, a[Hardware Verification Language| (HVI]) should provide stim-
ulus to the design to make sure that is does what it is intended to do. This means
that an [HVI] can be constructed differently to make it as easy as possible to build
testbenches. Some typical features that are included in a [HVI] are constrained-
random stimulus, functional coverage and Object-Oriented-Programming struc-
tures.

Verification is generally viewed as a fundamentally different activity from design
and this split led to development of narrowly focused languages for verification. As
mentioned previously in section this started to become a bottleneck in terms
of communication between the two groups and SystemVerilog was introduced with
capabilities for both areas.

Background

2.2.2 SystemVerilog for Verification

SystemVerilog introduces many datatypes that are useful for verification such as
two-state variables, strings and classes with support for abstract data structures.
Clocking blocks synchronise a group of signals on a particular clock and separates
the time related details from other elements of the testbench. It helps in avoiding
race condition by specifying a input and output skew a number of time units away
from the clock edge the signals should be sampled or driven [11].

Although SystemVerilog have many good features and can be used to create pow-
erful testbenches, a major challenge is providing scalable solutions. The size of
the language can lead to huge diversity of testbench architectures, making them
different across [[P] blocks and consequently hard to understand and to maintain.
This also limits the possibilities of reuse since there is no shared understanding of
best practice or conventions for verification components [12].

2.2.3 Verification Methodologies

The purpose of verification methodologies is to provide a manual with common set
of standards to form a consensus of proper use of a verification language. It can be
viewed as a blueprint for verification success and often include a base class library.
The methodology should provide portable best practice skills that allow different
domains to share knowledge and experience. An issue with the first methodologies
was that they where specific to certain tool vendors [13].

2.2.4 Universal Verification Methodology

The [Universal Verification Methodology] (UVM)]) is a methodology for functional
verification using SystemVerilog. Its provided as an open-source library directly
from the Accellera website and it should be compatible with any [HDI] simulator
that supports SystemVerilog, which means its highly portable. Another key feature
of [[VM]is that it builds testbenches with reusability in mind. Changes to the DUT]
or wanting to apply different kind of stimuli should not engender big changes to
the testbench [13].

A strength of the methodology is the strict class hierarchy, illustrated in Figure
leading to a separation between data (stimulus modulation) and components
(structural parts of the testbench). Sequences and sequence_items that are used
to represent stimuli are transient objects, meaning that they do not have a fixed
simulation life-time and can be created and destroyed at any point. This brings
a object oriented approach to stimuli generation that is more flexible. Traditional
testbenches rely on being able to call sub-routines that exist as elaborated code at
the beginning of the simulation.

Background

uvm_object

Adds reporting infrastructure

pY

uvm_report_object

uvm_transaction

Adds static hierarchy, phase and

configuration support Adds sequencer hooks

4

uvm_sequence_item

uvm_component

Adds body method

uvm_sequence

Component Branch Sequence Branch

Figure 2.3: UVM hierarchy |2]

[UVM]also enforces a set of conventions concerning the life cycle of a testbench, know
as phases. They order the major steps that take place during simulation and allow
components to be developed in isolation since there is a common understanding of
what should happen in each phase. The three main phases are

e Build phases - where testbench components are created, configured and con-
nected

e Run-time phases - where time is consumed in running the testcase on the
testbench

e (Clean up phases - where the result of the testcase are collected and reported

10

Background

Test

Env

Agent

AL

Sequencer DUT
EI Driver -.\) .

AL

Figure 2.4: UVM Testbench

Figure 2:4] shows an overview of an [UVM] testbench, highlighting the layers and
typical components. At the lowest layer, closest to the the driver can in its
run_phase requests sequence_items, also known as transactions, from the sequencer
using the get_next_item method. The transactions contain the information that the
driver need in order to interact with the [DUT] mainly the values to drive on the
connected virtual interface handle. The driver waits until the sequencer passes an
item from its internal FIFO via the [TLM] ports and then converts it into pin-level
signals. Once done, it signals back to the sequencer that the transaction object
have been processed and can be destroyed.

[UVM] sequences are the containers that hold the stimuli. Their body method cre-
ates transactions and pushes them onto the sequencer FIFO. To execute the body
method the sequence need to be started on a sequencer, either from a test case
or from a virtual sequence. This allows full control of when and what type of
transactions are created. The sequencer, also referred to as the stimulus genera-
tor, controls the flow of uvm_sequence_items generated by one or more sequences.
When a request is received the sequencer selects an available sequence to produce
the item and then forwards it to the driver.

The monitor listens to the communication on the interface and captures both the
generated input stimuli and any output response coming from the [RTL] It then
converts the signal activity back to transaction objects and send them to compo-

11

Background

nents higher up in the hierarchy through [TLM] analysis ports. The input data is
needed by the reference model to predict the result and for coverage analysis.

The driver, sequencer and monitor are all static components extended from the
root class uvm_component (see Figure . That means they inherit the defined
phased test flow and are provided with interfaces to the factory and to the report
handler. The three components are encapsulated in an agent along with optional
configuration objects and functional coverage collectors. The configuration typically
include an enumeration to set the agent in either active or passive mode. In active
mode all sub-components are created and the driver and sequencer ports
are connected together. If configured passive, only the monitoring components are
created since the agent does not drive any stimuli to the [DUT]in this mode.

The environment contains one or multiple agents, the scoreboard and a functional
coverage collector. It should create all components in the build phase and define
a default configuration. It can optionally retrieve configurations from a higher
instance, for example the test, that override the default settings before it passes
configuration objects to sub-components. The environment also need to connect
different components, for example the [TLM] port of a agent monitor to the a port
on the scoreboard.

The test is responsible for verifying specific features of the design and should create
the environment in its build_phase. Different test scenarios can now be created with
the same environment, meaning no changes to code in sub-components are needed,
by overriding constraints, tweaking control knobs and enable or disable agents.
The test also need to start the sequences, otherwise the drivers would never receive
any transactions to drive. If multiple agents are used, a virtual sequence can be
implemented to control the stimuli flow. It can be regarded as a container that in
its body method can start multiple sequences on different sequencers. The test can
start the virtual sequence on a virtual sequencer that contain handles to the agents
sequencers. Finally there is a top module that instantiates the [DUT] creates the
interfaces and launches the global helper function run_test(”test_name”).

provides an internal database where items can be stored under a given name
and retrieved by some other testbench component. It can contain configuration
settings to easily control testbench components without modifying the actual code.
For example an agent can be changed between active and passive or its coverage can
be toggled on or off. The uvm_config_db class is a convenient way to interact with
the database. Its set() method will create a new or update an existing entry. The
function parameters specify the scope where the data can be accessed and the name
associated with the stored item. Items can be retrieved with the get() method with
scope, name and variable to store the data in as parameters. The method returns
false if no match is found which can be used to trigger faults or warnings [2].

12

Background

2.3 Graphics Processing Unit

A [Graphics Processing Unit| (GPU) is an electronic circuit specialised to accelerate
the process of image creation, especially in 3D graphics. Its job is to compute pixel
colour and write the result into a buffer. This can to a high extent be done in
parallel, meaning its beneficial to have a specialised unit for these operation. The
process of turning a 3D model into what the screen later will display, also known
as the graphics pipeline, consist of four steps.

Application - the software loads primitives into the hardware

Vertex Processing - vertices transformation

Rasterization - transformation to 2D screen space

Fragment Processing - compute the final pixel colour

In the application step changes are made to the scene. These changes can be
triggered by the user moving the direction of view or interacting with objects.
Every object in the scene are made out of primitives, usually triangles, combined
to form complex structures. These primitives are loaded into the vertex processing
pipeline step.

A vertex contains the spatial position of a triangle corner together with attributes
such as colour and texture coordinates. Object are usually defined in a local co-
ordinate system and during the vertex processing step vertices are processed and
transformed from object space to world space to place multiple objects together.
Rasterization then takes the image described by the different objects and coverts
the three dimensional primitives into a two dimensional screen position called frag-
ment.

Finally the fragments are processed with a number of operations to compute the
final pixel colour on the screen. Depth calculations are performed to check if an
object is behind or in front of something. If an object is obscured and will not
be visible in the final image, the processor can potentially optimise the rest of
the processing. Shaders are used for the colour calculations, using the fragment
attributes together with lighting and reflections from surroundings. Since there are
a huge number of objects in a screen a blender can be used to mix colours [14].

Traditionally desktop computers and consoles uses immediate mode rendering,
meaning that the [GPU] draws the entire frame at once. However, there is an
alternative where the image is divided into a grid and each section of the grid,
also knows as tile, are rendered separately. This is used by many mobile devices
to reduce the amount of memory and bandwidth needed. An example is the arm
Mali series where the tile size is 16x16 pixels. A benefit with this approach is that
the portion of the framebuffer for the tile currently being processed can be stored
on chip. This provides quick access when performing blend or depth operations in
contrast to fetching values from external RAM [15].

13

Background

14

CHAPTER 3

APPROACH AND METHODOLOGY

The project starts with a study of the hardware block to understand its functional-
ity. From there the current verification environment will be investigated to see how
connecting block are currently being simulated and stimuli provided to the [DUT}
Parts that are hard to maintain and are heavy on computational resource will be
identified as important to replace. Then sub-block testbenches will be examined
for verification components that potentially can be reused in the new structure.

3.1 Analysis of the hardware block

The hardware block handles the fragment processing part of the graphics pipeline,
meaning its job is to calculate the final pixel colour. It can be considered as a
system with three sub-blocks that each have their own task. The responsibility of
the system is to handle the connections and control logic with the rest of the [GPU|
and between the different tasks. Figure shows the fragment processing block
and highlights the three main blocks connecting to it.

Rasterizer
< > l’ Fragment
GPU St'ate D;;;tlh Processing
Machine Shader g e RTL
Manager
e
Blend
’ RTL
—1 ‘
< > Memory RTL
Settings l
Cache] External RAM
| f—- RAM writeout interface | ——

Figure 3.1: Hardware block diagram

15

Approach and Methodology

The GPU State Machine Manager is responsible for controlling the flow of tiles
and to keep track of when they are done processed. The rasterizer performs trans-
formation on the fragments in the tile before they are grouped and sent to the
depth block. There depth calculations, to determine the how far away from the
camera position a fragment is, are performed either before or after passing them
to the shader. The result of the calculations is then passed to the depth buffer.
The blender receives colours from the shader and can potentially blend them with
colours in the buffer and then the buffer is updated with the result. The memory
block holds copies of the buffers for the portions of the screen that is currently
being processed and writes them back to main memory once all fragments have
been processed.

All blocks involved in the fragment processing pipeline step need settings to know
when and how to perform its calculations. It could be to see how depth testing
should be enabled or how to perform the blend operation. To provide quick access
to the settings they are loaded in to a cache when requested.

3.2 Analysis of the current Verification Environ-
ment

The testbench should generate tiles and pass it both to the fragment processing
block and a reference model. It also needs to capture the [RTL] output when the
buffers are written to external RAM and compare it to what the model predicted.
To help with the control flow the verification environment includes the GPU State
Machine Manager as an block. It needs to be stimulated with the settings
and the generated tiles to make it output signals to trigger different tasks in the
other blocks. In the full [GPU] the fragment processing block receives its inputs as
fragments from the rasterizer. Therefore the tiles need to be transformed which is
done in the rasterizer driver. The driver needs the tile positions as inputs and then
outputs groups of fragments to the depth block. Both the depth and blend block
expects communication with the shader that have its logic replicated in a driver.
The settings cache is also simulated with a driver that need to be able to receive
requests for a specific index and return the setting, or return a index along with
the setting if the item was not already in the cache.

16

Approach and Methodology

The testbench drivers are big monolithic components that spawns multiple pro-
cesses to drive the data trough the different sub-blocks. They do not have sequences
and receive data through big transaction objects. The stimuli is then pass to the
[DUT] through non standard [UVM] interfaces. An overview of the active part of the
testbench is shown in Figure [3.2

Tile Rasterizer
Driver Driver
GPU State « » Fragment
Machine Depth Processing
Shader [, RTL
Manager Driver |t RTL
RTL
< > RTL
v
< > Memory RTL
Graphics 1 External
<p] Settings |49 i ' RAM

. RAM writeout interface | e —
Driver |

Figure 3.2: Active part of old testbench

The lack of sequences means that in order to generate stimuli to the drivers each
test need to extend all transaction classes. A memory analysis was performed to in-
vestigate the memory consumption. The testbench was compiled with two different
testlists, one containing multiple tests and the other only a single. A measurement
was made at simulation time 0, before stimuli objects are generated and put on
the heap, to capture the minimum amount memory needed by the testbench. The
same analysis was made on a testbench that follows a [UVM] approach to compare
the difference. Another drawback with the current test structure having verifica-
tion components directly inside the test class is that any changes to the [DUT] will
require updating all test files. This can be time consuming and does not enable
reuse or configurability of the testbench since the test rely on a specific structure.

17

Approach and Methodology

The depth [RTT]is a complex block and its difficult to exercise all its functionality
from a system point of view. Therefore it has its own verification environment
to properly verify the depth calculations. The interaction between the fragment
processing block and the tiles is complicated, even with the extra included [RTL]
but the GPU State Machine Manager also have a unit level verification environment
that potentially could facilitate the interactions. These two environments were
analysed to investigate if they have components that could be re-used in the new
fragment processing verification environment.

3.3 Analysis of sub-block testbenches

The Depth testbench should generate fragments as inputs and capture what the
block writes to the memory buffers. An overview of the active components can be
seen in Figure [3.3] below.

et [T
DEPTH Pa— Rasterizer
Agent
Shader RTL
o EEE— Memor
Agent < N A
gent
State
Machine [e=—] Depth Buffer
Agent

Figure 3.3: Active part of depth testbench

18

Approach and Methodology

In the graphics pipeline the depth block receives its inputs from the rasterizer.
The testbench therefore includes an agent to control the flow of fragments into the
IDUT] The agent does not create any transactions, instead the data is generated in
testcases and passed to the driver via a transaction level modelling fifo. All settings
needed for the depth block is modelled in an verification component and likewise
the shader behaviour. It also communicates with the state manager and memory
buffers that have their respective agents to stimulate the [RTL}

The analysis of the Depth verification environment show that it contains a lot of the
functionality needed for verifying the whole fragment processing block. Having two
distinguished testbenches result in duplication of work when adding new features or
making changes in for example shader calculations or depth settings. Reusing these
components in the new verification environment could reduce the project overhead
and improve the development process.

The GPU State Machine Manager have a unit level testbench to test state transac-
tions. It should verify that the [RTT] block can receive tiles, output control signals
for other blocks to start processing and monitor their responses. An illustration of
the active components is shown in Figure

19

Approach and Methodology

Rasterizer
State GPU State Agent
transaction ey, Machine
agent Manager \
RTL Depth ‘
Agent
Blend
Settings Agent
Agent >
Memory
Agent

Figure 3.4: Active part of the GPU State Machine Manager testbench

The flow of tiles are driven by the state transaction agent. The testbench im-
plements a virtual sequence to drive multiple different sequences on the agents
sequencer. This quite complex stimuli generation is also needed in the fragment
processing testbench and could be reused to avoid duplicated functionality along
with the rasterizer agent to capture the tile positions and the settings agent to
simulate the cache.

20

Approach and Methodology

3.4 Development of the new Verification Environ-
ment

After analysing the current testbench and the sub-block environments the following
areas were identified as the ones in most need of improvements.

e Smaller testbench components with a clear interface to the [DUT]
e A new test structure to reduce memory consumption and facilitate updates

e Reusage of verification components to decrease project overhead when adding
new features

The development of the new testbench started with disabling the old drivers and
creating a new structure that follows the [[VM] The old top module that defines
testbench signals and instantiates the [RTL] blocks can be reused, with the addition
of the agent specific interfaces. A test base class is created that holds the common
standard setup. Test cases for specific scenarios can then extend this base and
override configurations to create different testbenches. A virtual environment is
created to instantiate the Fragment Processing, GPU State Machine and Depth
environment. The motivation for having a virtual environment and not creating
the sub-environments inside the Fragment Processing environment is discussed in

chapter [

A virtual sequence and virtual sequencer is implemented to start the sequences in
the correct order to match the graphics pipeline flow. Ideally the virtual sequence
would extend one from the GPU State Machine Manager testbench to reuse the
logic for generating and driving tiles. However, that virtual sequence test a high
number of state transactions to thoroughly verify the[RTL] This would risk wasting
computational resources on things not needed for verifying the fragment processing
block. Therefore a new virtual sequence is created with simpler state transactions.
On the other hand, the state transaction, settings and rasterizer agent is reused
from the GPU State Machine environment. Other verification components, such as
the blend and depth agent, that are now stimulated by the design are configured to
passive or disabled completely. Likewise the Depth environment is configured with
the settings, shader and rasterizer agent active and the rest set to passive.

21

Approach and Methodology

Since the Depth environment only need fragments to verify its calculation, the
new Fragment Processing testbench need an agent to convert the generate tiles
to fragment and load into them into the rasterizer agents fifo. This new agent,
called Tile to Frag agent, can take advantage of that the GPU State Machine
Manager testbench captures the generated tile positions for the next tile to process
in its rasterizer agent. The new environment also need settings for the blender
and memory since they are not generated by the sub-environments. This agent is
smaller and simpler than the old big driver, but imposes a challenging aspect of
when it comes to creating transactions on top of transactions for reuse across
multiple layers. Different settings are modelled as individual transactions and some
are used by multiple components, for example settings that act on the entire frame.
This is resolved by creating a main setting transaction inside the virtual sequence
every time a frame is started. This transaction is written into the resource database
for other components to gain access to it. To resolve constraints between different
transactions not being available upon creation SystemVerilogs post_randomize()
is used. An illustration that highlights the reused and newly implemented active
components in the new verification environment is shown in figure [41]

3.5 Analysis of the new Verification Environment

Although the sub-environments allow for reuse of verification components there are
things in the testbenches that are not used at integration level since [RTL] blocks
now provide the stimuli. The impact on the testbench size when having non-used
components was investigated by analysing the number of classes and objects in
different configurations at the start of simulation.

22

CHAPTER 4

RESULT

4.1 Test structure analysis

The result from the test structure analysis discussed in section [3.2] are showed in
Table below. To configure the analysis a fatal message was added at the start
of a test in the old fragment processing testbench to abort the test at simulation
time zero. The simulator captures the memory needed by the structural parts of
the testbench, refereed to as the minimum amount of memory needed, and outputs
it into a log file. The test was then compiled and executed, once with a full testlist
and once with only the basic test. The same seed was used to ensure the same
setup in both cases. The [[VM]testbench used for comparison followed an identical
setup, using a basic test with an abort trigger at simulation time zero. The test
was compiled and executed with both a full testlist and only containing the single
test, using the same seed in both cases.

Table 4.1: Memory for different test structures

Test structure Full test list | Single test
Old Fragment Processing testbench | 699 MB 605.4 MB
[UVM] structured testbench 211 MB 211 MB

The result show a big difference in structural memory needed depending on the
testlist size for the fragment processing testbench. Having components and trans-
actions directly in each test consumes memory for every test case, which explains
the reduced memory for a shorter testlist. In contrast the [[VM] testbench is un-
affected by the testlist size. Note that this is not a comparison between the old
and new verification environment, instead the results highlight the need of a test
structure extended from a test base class and transactions created inside sequences
which was implemented in the new testbench.

23

Result

4.2 New Testbench Structure

The resulting new verification environment for the fragment processing block fol-
lows the [Universal Verification Methodology| and the active parts are showed in
Figure [£.1] below. The new structure is expected to improve maintenance and re-
duce development time since the identified problem areas with the old testbench
have been resolved. The big drivers that spawned multiple processes that were
tangled together have been replaced with smaller verification components with a
specific purpose, making them easier to understand. The reuse of agents from sub-
environments removes the duplication of already existing features and changes are
no longer needed in multiple places when making updates. Also, the introduction
of phases makes the testbench flow easier to understand.

TOP
TEST extends test_base Virtual Virtual
sequence sequencer
Virtual ENV
GPU State Machine DEPTH ENV Fragment
Manager ENV ProcessingENV

Tile to

Settings Frag
State ol
ate DEPTH BLEND Agent

transaction
RTL
GPU Agent Rasterizer RTL
S Shader
State = Agent B - Agent
s Rasterizer
Agent Shader >
Manager Agent <
RTL | Settings Settings
h Agent Agent
Memory RTL 1

v

Figure 4.1: Active part of new testbench

A basic test with the default configurations and constraints is used to exercise the
testbench. To inherit the standard setup the test extends the test base and calls
the super method in its build and connect phase. Thereby the virtual environment
is created and the agents showed in Figure are configured to active while the
rest of the components in the sub-environments are passive. To start generating
stimuli the test starts the virtual sequence on the virtual sequencer in the run_phase.
The virtual sequence is essential for simulating the pipeline flow of the graphics
processor. It creates the tiles and settings needed for multiple components and the
starts the sequences in the correct order.

24

Result

4.3 Testbench size analysis

As discussed in section [3.5] reusing the sub-environments will include many compo-
nents not needed to actively generate stimuli to the[DUT] The analysis of unutilized
agents affect on testbench size was performed by adding a uvm_fatal report macro
to the start of the run_phase of the basic test. Thereby the test will abort after
creating and connecting all structural components and the the result is not de-
pendent on any stimuli randomisation or number of transactions created. Three
different configurations was then analysed. In the first configuration only the driv-
ing agents that can be seen in Figure are constructed. This is compared with
having all components from the GPU State Machine environment created, with the
non-driving agents in both active and passive mode. Table shows the number
of objects and classes that were created in the different configurations.

Table 4.2: Testbench size for different configurations

Configuration Total Objects | Classes
Only driving agents from GPU | 112 111 30 172
State Machine ENV enabled

All GPU State Machine ENV agents | 114 377 30 794
enabled

All GPU State Machine ENV agents | 117 955 31 776
enabled and active

The analysis shows that unutilized components from sub-environments affect the
testbench size, adding up to 5% extra objects. This difference is expected to grow
as more environments are included, for example if the depth environment also was
configured in the different settings. Moreover, having many monitoring components
risk affecting the number of run-time objects and memory consumption further.
Methods to keep the size to a minimum is discussed in chapter

25

Result

26

CHAPTER b

CONCLUSION

This project have showed that following the [Universal Verification Methodology]
when building testbenches for block-level integration and graphics processing veri-
fication have significant structural benefits. Using smaller components with a clear
purpose makes the testbench easier to understand and re-usage from sub-block
environments facilitate maintenance and reduce project overhead.

The test structure that was identified as a key area for improvement is resolved
by the test_base class having the common build and configurations that test cases
can inherit from. A test writer can build different testbenches without rewriting
the whole test by changing configurations or overriding constraints. The impor-
tance of the test_base grows when reusing sub-environments for integration level
verification since the number of components is increased. The observed high mem-
ory consumption caused by the test structure is also resolved by the test base and
having transient stimuli that is generated inside the agents sequences, instead of
statically elaborated code from big transactions classes. The run time memory is
also expected to improve since transactions are created only when requested and
destroyed when processed instead of being extended by all tests at the start of
simulation.

The usage of a virtual environment is motivated with further levels of integration
in consideration. The fragment processing testbench can be reused at a higher level
without having to configure the depth and state machine environments, which have
had been the case if the new environment created the sub-environments directly.
Not being able to reuse the virtual sequence from the GPU State Machine environ-
ment is a weakness in the new testbench. This could have been resolved by having
a base virtual sequence that both could be inherited by the fragment processing
testbench and extended at block-level to add more specific functionality. However,
at integration-level verification its important to have in mind that SystemVerilog
support single inheritance, meaning that the new virtual sequence only can inherit
from one sub-block.

27

Conclusion

However, its important to have a couple of things in mind when building integra-
tion testbenches according to the Replacing a few big drivers with multiple
smaller components and including complete sub-environments can have a negative
impact on performance if not implemented carefully. As Table shows its im-
portant that the verification engineers designing unit-level testbenches provide the
option to not only configure an agent passive, but to disable it completely. This
may seem as unnecessary work at the time since that testbench will use all com-
ponents, but is important for keeping the number of objects to a minimum at a
higher levels of verification.

Another drawback with an increasing number of components is that the resource
database can easily get populated with a high number of entries, making the pro-
cesses of finding an item slow. This could be optimised by writing a wrapper
interface to the database and then writing the specific interfaces to the agents in
the environment only if they are enabled. The same can be done for the config-
uration objects. The testbase can create one configuration object containing the
component configurations for the entire environment and only writing the a agent
entry in the database its going to be used.

Contemplating these conclusions the [Universal Verification Methodology| can be
used to build testbenches that reduce project overhead without affecting the veri-
fication performance.

28

REFERENCES

W. Chen et al. “Challenges and Trends in Modern SoC Design Verifi-
cation”. In: IEEFE Design Test 34.5 (2017), pp. 7-22.

Mentor Graphics. Universal Verification Methodology UVM Cookbook.
Verification Academy, 2016.

Janick Bergeron. Writing testbenches: functional verification of HDL
models. Springer Science & Business Media, 2012.

Brian Bailey and Kathy Werner. Intellectual Property for Electronic
Systems: An Essential Introduction. Intl. Engineering Consortiu, 2007.
A. El-Yamany, S. El-Ashry, and K. Salah. “Coverage Closure Efficient
UVM Based Generic Verification Architecture for Flash Memory Con-
trollers”. In: 2016 17th International Workshop on Microprocessor and
SOC Test and Verification (MTV). 2016, pp. 30-34.

Pedro Araijo. “Development of a reconfigurable multi-protocol verifi-
cation environment using UVM methodology”. MA thesis. Faculdade
de Engenharia da Universidade do Porto, 2014.

Mark Litteric. Vertical & Horizontal Reuse Of UVM Environments.
DVCON Conference. 2015.

Janick Bergeron et al. Verification methodology manual for System Ver-
ilog. Springer Science & Business Media, 2006.

Louis Scheffer, Luciano Lavagno, and Grant Martin. Electronic Design
Automation For Integrated Circuits Handbook. Boca Raton, FL: CRC
Press Taylor, Francis Group, 2006.

Stuart Sutherland, Simon Davidmann, and Peter Flake. System Ver-
ilog for Design Second Edition: A Guide to Using System Verilog for
Hardware Design and Modeling. Springer Science & Business Media,
2006.

Chris Spear. SystemVerilog for verification: a guide to learning the
testbench language features. Springer Science & Business Media, 2008.
Nisvet Jusic and Jan Nilsson. Design and verification languages. Dec.
2007.

J. Bromley. “If SystemVerilog is so good, why do we need the UVM?
Sharing responsibilities between libraries and the core language”. In:
Proceedings of the 2013 Forum on specification and Design Languages
(FDL). 2013, pp. 1-7.

29

REFERENCES

[14]

[15]

Edward Angel, Dave Shreiner, et al. Interactive computer graphics:
a top-down approach with shader-based OpenGL. Boston: Addison-
Wesley, 2012.

Graphics And Gaming Development — Tile-Based Rendering — Arm
Developer. <https://developer .arm.com/solutions/graphics—
and-gaming/developer-guides/learn-the-basics/tile-based-
rendering/single-page>. Accessed: 2020-04-08.

30

<https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/learn-the-basics/tile-based-rendering/single-page>
<https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/learn-the-basics/tile-based-rendering/single-page>
<https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/learn-the-basics/tile-based-rendering/single-page>

LUND

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2020-766
http://www.eit.Ith.se

0207 puni ‘18sny-3 1 1w1UIAIL AQ patuid

	MasterThesisReportNiklasKarlsson.pdf
	Introduction
	Problem Description
	State of the art
	Project aims
	Structure of the document

	Background
	Integrated circuit design
	Hardware Description Languages
	SystemVerilog for Design

	Integrated circuit verification
	Hardware Verification Languages
	SystemVerilog for Verification
	Verification Methodologies
	Universal Verification Methodology

	Graphics Processing Unit

	Approach and Methodology
	Analysis of the hardware block
	Analysis of the current Verification Environment
	Analysis of sub-block testbenches
	Development of the new Verification Environment
	Analysis of the new Verification Environment

	Result
	Test structure analysis
	New Testbench Structure
	Testbench size analysis

	Conclusion
	References

