
Gate Recurrent Unit Neural Networks for
Hearing Instruments

HARSHIT SHARMA
PALLAVI RAJANNA
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

H
A

R
SH

IT SH
A

R
M

A
 &

 PA
LLA

V
I R

A
JA

N
N

A
G

ate R
ecurrent U

nit N
eural N

etw
orks for H

earing Instrum
ents

LU
N

D
 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-774
http://www.eit.lth.se

Gate Recurrent Unit Neural Networks for
Hearing Instruments

Harshit Sharma
ha2442sh-s@student.lu.se

Pallavi Rajanna
pa6354ra-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Oskar Andersson and Adrian Mardari

Academic Supervisor: Joachim Rodrigues

Examiner: Pietro Andreani

June 25, 2020

c© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Gated Recurrent Unit (GRU) neural networks have gained popularity for applica-
tions such as keyword spotting, speech recognition and other artificial intelligence
applications. Typically for most applications training and inference is performed
on cloud servers, and the result are transferred to the power constrained device,
e.g., an hearing instrument (HI). This approach has disadvantages such as latency
and connectivity, privacy concern, and high energy cost per bit for real-time data
transfer. Therefore, there is a strong demand to move inference from cloud to
power constraint devices. However, executing inference on HI introduces many
challenges in terms of throughput, power budget, and memory footprint. This
research investigate how efficient it is to execute inference on a dedicated hardware
accelerator, rather than using an existing audio digital signal processor (xDSP in
Oticon’s HI).

The two approaches are compared in terms of area, power, energy dissipation
and total clock cycles required to perform an inference. Straightforward implemen-
tation of nonlinear activation function is expensive in hardware, therefore, different
methods of approximation are evaluated. Out of different approximation algo-
rithms, fast sigmoid and fast tanh approaches were chosen. A pretrained keyword
spotting (KWS) model was used. However, it exceeds the memory space available
on xDSP. Instead, three small GRU networks were trained and executed on xDSP
to approximate energy dissipation and clock cycle count if a bigger network was
run on the xDSP.

Precision needed to store and compute data was reduced to minimize storage
needed keeping detection accuracy in mind. By reducing wordlength from 32-bit
to 8-bit for network parameters, memory space required was reduced by 4 times
while accuracy decreased from 91% to 88%. The GRU inference runs on per layer
basis, data flow was optimized to achieve significant reduction in area and power.

The xDSP needs around 2× more clock cycles to complete a full network
inference for a benchmark keyword spotting neural network compared to dedicated
hardware accelerator. The energy dissipation increased by around 10× while using
Oticon’s xDSP processor instead of a dedicated accelerator. The xDSP is capable
of executing GRU network with upto 40 neurons per layer, but for bigger networks
hardware accelerator is a better solution. All in all, the dedicated accelerator
solution has the best performance from the explored solution and can be integrated
in HI to compute neural networks.

i

ii

Popular Science Summary

Artificial intelligence is becoming a huge part of our life, from being used in mobile
phones, smart watchs, home entertainment systems etc. However, due to a large
amount of computations need to be performed to execute a simple task, most of
this processing is done in cloud servers. Although, there is a breakthrough in
artificial intelligence, there has been serious limitation in terms of power and energy
efficiency that needs to be addressed.

In 2019, artificial intelligence (AI) computer program known as AlphaStar built
by Google’s AI firm DeepMind played the science-fiction video game StarCraft
II on European servers. The AI competed against 90,000 player and was placed
within the top 0.15%. DeepMind, previously built world-leading AIs that play
chess and Go. However, estimated power consumption of these AI is in order of
megawatts, whereas human brain only consumes 20 watt. This means that AI
needs to be more efficient before it can be completely integrated in daily our life.

AI has gained popularity in speech recognition technology, where AI can
recognize spoken words, which can then be converted to text or used to perform
tasks. A subset of speech recognition is keyword spotting, where a task is performed
after identifying a keyword in the input voice signal. Companies such as Facebook,
Amazon, Microsoft, Google and Apple have already integrated this feature on
various devices through services like Google Home, Amazon Echo and Siri.

With this in mind, the goal of this thesis has been to select a pretrained
keyword spotting model and propose a efficient dedicated hardware accelerator
to perform this task. The spotting of spoken keyword has been performed using
a GRU algorithm which is an advanced recurrent neural network. In order to
compare the scalable and efficient hardware accelerator design, it was compared
with an existing audio digital signal processor used in Oticon’s hearing instruments.
This research addresses the problem of high power consumption and large memory
reference that restricts the use of large scale neural networks on power constrained
devices. Research also addresses the issue of privacy, i.e., sharing of data with
cloud servers.

The proposed dedicated hardware accelerator can be integrated in HI to
compute neural networks.

iii

iv

Table of Contents

1 Introduction 1
1.1 Artificial Neural Networks . 1
1.2 Artificial NN at the edge . 5
1.3 Recurrent Neural Networks . 6
1.4 Keyword Spotting System . 8
1.5 Thesis Goal . 10

2 Gated Recurrent Unit - GRU 11
2.1 A GRU cell . 11
2.2 Arithmetic Operations . 14
2.3 Data dependencies . 15

3 Wordlength and Hardware Optimization 17
3.1 Data representation . 17
3.2 Role of the Activation Function 19
3.3 Activation Function exploration . 20
3.4 Quantization Experiments . 28

4 xDSP Implementation 35
4.1 Register Files . 35
4.2 Datapath . 35
4.3 Memory interfaces . 36
4.4 Design considerations . 36
4.5 Implementation . 37
4.6 Result . 39
4.7 Discussion . 41

5 Dedicated Neural Network Engine 43
5.1 Design Considerations . 43
5.2 Overview . 44
5.3 Top module . 44
5.4 Input ping-pong registers . 49
5.5 Arithmetic Functional Units . 50
5.6 Configuration Module . 53

v

5.7 Memory . 54
5.8 FSMs . 56
5.9 Buffer for bias . 59
5.10 MAC input selector module . 60
5.11 Activation result buffer module . 61
5.12 Scratch pad memory controller module 62
5.13 Functionality verification . 62

6 Synthesis Results 65
6.1 xDSP . 65
6.2 Dedicated GRUE . 66
6.3 Discussion . 71

7 Conclusion 73
7.1 Future works . 73

Bibliography 75

vi

List of Figures

1.1 Neural network vs deep neural network. Edges represent weights and
vertices/nodes represent activations [2]. 2

1.2 Operations at one neuron of a neural network. 2
1.3 Sigmoid non-linearity squashes real numbers to range between [0,1]. . 3
1.4 The tanh non-linearity squashes real numbers to range between [-1,1]. 3
1.5 Rectified Linear Unit (ReLU) activation function, which is zero when x

< 0 and then linear with slope 1 when x > 0. 3
1.6 Recurrent Neural Network. 4
1.7 Feedforward Neural Network. 5
1.8 RNN cell. 7
1.9 Back propagation in RNNs. 8
1.10 KWS system [14]. 9

2.1 Gated Recurrent Unit (GRU). 11
2.2 Reset and update gate in a GRU unit. 12
2.3 Candidate hidden state computation in a GRU unit. 13
2.4 Structure of an GRU unit followed by a output layer and a softmax

activation function. 14
2.5 Data dependency graph of the GRU algorithm 16

3.1 Example layout of 32-bit floating point 18
3.2 Format of a Fixed-Point Number 18
3.3 Feature selection Linear vs Non linear [27]. 20
3.4 Sigmoid function. 21
3.5 The hyperbolic tangent function (tanh). 21
3.6 PLAN approximation of sigmoid function. 23
3.7 PLAN approximation of hyperbolic tangent function (tanh). 23
3.8 Second Order approximation of sigmoid function 24
3.9 Second Order approximation of hyperbolic tangent function (tanh). . 25
3.10 Fast sigmoid function approximation 26
3.11 The Fast hyperbolic tangent function approximation 27
3.12 Network accuracy for GRU network with different precision bits to

represent the network. 30

vii

3.13 Network accuracy for different network parameter precision for fixed-
point implementation of 154x154x154x12 topology. 31

3.14 The figure shows the accuracy for different input data precision. . . . 32
3.15 The figure shows the accuracy for different input data precision and

MAC output precision at Q10.6 format. 33
3.16 Raw prediction of the fixed-point implementation (red line) against

the 32-bit floating-point implementation (blue line). 34

4.1 MAC unit. 37
4.2 Illustration of steps executed to load the bias value into accumulator. 38
4.3 96-bit accumulator divided into low and high part. 39
4.4 Clock cycles required per inference of GRU NN. 41

5.1 Top level architecture of the design. 45
5.2 Data Flow of GRUE without optimizations. 46
5.3 The proposed architecture of GRUE. 48
5.4 Structure of data memory representing the way biases and weights are

arranged. 49
5.5 Structure of ping-pong registers. 50
5.6 Architecture of MAC unit. 52
5.7 Structure of RAM bank. 54
5.8 Structure of scratch pad memory constructed using standard cells. . 55
5.9 Figure showing the flipping of scratch memory segments after each

time step. 55
5.10 Main controller FSM. 57
5.11 Matrix controller FSM. 58
5.12 Activation computation in parallel with the MAC operation. 59
5.13 Block diagram of bias buffer. 60
5.14 Data flow of MAC input controller. 61
5.15 A shift register with parallel output to buffer activation results. . . . 61
5.16 Block diagram of scratch pad memory controller. 62
5.17 Overview of the testbench setup 63

6.1 Area percentage occupied by modules. 67
6.2 Power cost comparison of GRUE with three and ten memory instances. 68
6.3 Area comparison of GRUE with three and ten memory instances. . . 69
6.4 Energy cost comparison of GRUE with xDSP. 70
6.5 Area comparison of GRUE with xDSP. 70

viii

List of Tables

3.1 Energy and area comparison [34]. 29
3.2 Accuracy of GRU network with different precision. 29
3.3 Accuracy of 16-bit GRU network with different precision bits for pa-

rameters. 30
3.4 Classification accuracy for different input data precision. 31
3.5 Classification accuracy for different input precision based KWS Tensor-

flow dataset. 32

4.1 Register files. 35
4.2 Number of entries for different parameters in GRU NN. 36
4.3 Instruction calls per inference for the network with 4, 20, and 40

neurons per layer. 40

6.1 Power in µW for the small and estimated GRU network implemen-
tation on xDSP. It includes power numbers with and without power
management (PM). 65

6.2 Energy dissipation in µJ for the GRU network implementation on xDSP. 66
6.3 Power in µW for the dedicated GRUE with three and ten memory

instances. 67
6.4 Energy cost for the dedicated GRUE. 68

ix

x

List of Abbreviations

GRU Gated Recurrent Unit

GNNE GRU Neural Network Engine

ANN Artificial Neural Network

RNNs Recurrent Neural Networks

NN Neural Network

NNs Neural Networks

RTL Register Transfer Level

RAM Random-access Memory

MAC Mulitiply And Accumulate

LUT Look Up Tables

KWS Keyword Spoting

FSM Finite State Machine

FSMs Finite State Machines

HI Hearing Instruments

xi

Chapter 1
Introduction

Deep learning is an umbrella term for a set of machine learning algorithms that
attempt to model high-level abstractions in data. Included in this machine learning
branch are neural networks, which try to mimic the highly intricate way of the
human brain in which it processes information. In large, due to increasingly
powerful computing capabilities, these types of networks have, in the past years,
produced remarkable advances in several fields.

1.1 Artificial Neural Networks

Neural Networks (NNs) were first proposed by Warren McCullough and Walter
Pitts in 1944. Neural networks are multi-layer networks of neurons that are used to
classify things, make predictions, etc. Artificial Neural Networks (ANNs) attempt
to emulate the human brain, which is a collection of connected networks of neurons.
An ANN is based on a network of connected units or nodes called artificial neurons
where each connection can transmit a signal to other neurons. Different sections
of the human brain are responsible for processing different pieces of information,
and these parts of the brain are arranged hierarchically in layers. Therefore, as
information enters the brain, it is processed in each layer of neurons and passed
to the next one. It is this layered approach to processing information and making
decisions that ANNs are trying to replicate. In the simplest form, an ANN has only
three layers of neurons: the input layer (where the data enters the system), the
hidden layer (where the information is processed), and the output layer (where the
system decides what to do based on the data). However, ANNs can get much more
complex than that, and include multiple hidden layers. When a Neural Network
(NN) has more than one hidden layer it is referred to as a deep neural network.
This distinction is illustrated in Figure 1.1. Whether it is three layers or more,
information flows from one layer to another, just like in the human brain [1].

The basic structure of a NN consists of neurons whose underlining operation
is multiply-accumulate (MAC). A neuron computes the weighted average of the
input data and passes the information through a non-linear function, i.e., activation
function, such as sigmoid function. Figure 1.2 illustrates operations at one neuron
of a NN. For a given artificial neuron, let there be a n+ 1 inputs with signals a1
through aN and weights w1 through wN . The inputs (a1 to aN) are multiplied
with their respective weights (w1 to wN), and the results are summed together. A

1

2 Introduction

bias value (b) is added to this value, resulting in the final sum (z). The activation
function is used to bring non-linearity in the output of the neuron.

Figure 1.1: Neural network vs deep neural network. Edges represent
weights and vertices/nodes represent activations [2].

S
W1

W2

ba1

a2

WN
an

Activation
z aout

Figure 1.2: Operations at one neuron of a neural network.

Every activation function (or non-linearity) takes a number as input and performs
a certain fixed mathematical operation on it. Figure 1.3, Figure 1.4 and Figure 1.5
illustrates three commonly used activation functions namely sigmoid, tanh, and
rectified linear unit (ReLu).

Introduction 3

Figure 1.3: Sigmoid non-linearity squashes real numbers to range
between [0,1].

Figure 1.4: The tanh non-linearity squashes real numbers to range
between [-1,1].

Figure 1.5: Rectified Linear Unit (ReLU) activation function, which
is zero when x < 0 and then linear with slope 1 when x > 0.

4 Introduction

Activation functions and the algorithms explored to approximate the sigmoid and
tanh activation functions are explained later in Chapter 3.

The three most commonly used types of neural network architectures in artificial
intelligence:

• Feedforward NNs - also referred to as multi-layer perceptrons, dense/fully
connected networks, or ANNs. The flow of information through the network
is unidirectional without any internal feedback connections, and are the
essential deep learning models [3].

• Recurrent NNs (RNNs) [4]–[6] - these networks have an internal state (mem-
ory) to process sequences of inputs. Unlike feedforward NNs, RNNs have
feedback loops which makes their output depended on the previous com-
putations. However, conventional RNNs have a few limitations. They are
difficult to train and have a very short-term memory, which limits their
functionality. More advanced variants of RNNs models were developed, e.g.,
Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM), to
overcome this problem.

• Convolutional neural network - has the ability to capture the spatial and
temporal dependencies in an input through the application of relevant filters.
It performs better on the image data set due to the reduction in the number
of parameters involved and reusability of weights [7].

One of the neural network architecture paradigms that have driven breakthroughs
in deep learning is RNNs. Recurrent neural networks, as their name states, use
recurrent paths (loops) to insert previous outputs as inputs for the current iteration
as shown in Figure 1.6.

Recurrent network

X1

X2

Y

Input layer Output layerHidden layers:”deep” if > 1

Figure 1.6: Recurrent Neural Network.

Introduction 5

RNNs are a type of neural network that takes sequential input and produces
sequential output by sharing parameters between time steps. Two identical data
structures will not produce the same output if the previous inputs were not
identical as well. Compared to the feed-forward neural networks which do not
process previous results or states to make decisions. Feed forward computations
require no feedback of previous outputs or any kind of short or long range context
as shown in Figure 1.7. A feed-forward neural network is trained to match two
identical inputs to the same output. This is very efficient in many cases where past
events must not alter the networks perception of the current situation. A typical
example is image recognition where two identical images must produce the same
output.

X1

X2

Y

Input layer Output layerHidden layers:”deep” if > 1

Figure 1.7: Feedforward Neural Network.

RNNs have led to breakthrough results in natural language processing [8], image
captioning [9], and speech recognition [10]. Their limitation is that this mechanism
provides access to the most recent events only. As stated in [10], traditional RNNs
are incapable of dealing with long term dependencies.

1.2 Artificial NN at the edge

There are two main phases in the deep learning process: training and inference.
Training refers to the preparation of a machine learning model to do a specific task.
During training, each layer of data in the model assigned with random weights.
After running forward pass through the data, the model predicts the scores and
classify labels using the random weights assigned. After comparing classified labels
against the actual labels, a loss function is used to compute the error. This error is
then backpropagated through the network, and weights are updated accordingly
via weight update algorithm such as Gradient Descent.

The inference is the actual execution of the task using the statistical model
obtained during the training session. It comprises of a similar forward pass as

6 Introduction

training to predict the values. Unlike training, it does not include a backward pass
to compute the error and update weights. Therefore, the inference cannot happen
without training.

Training and inference have different computational needs. Since deep learning
algorithms are very costly in terms of energy dissipation, both the training of
a NN and its inference is typically executed on Central Processing Unit (CPU)
servers or Graphics Processing unit (GPU) in the cloud. Afterward, the results are
transmitted to lower-complexity power-constrained (edge) devices such as hearing
instruments. However, this setup has several disadvantages [11]

• Latency and connectivity issues, as it requires a wearable device always to
be connected to the cloud, and low latency is critical for specific tasks.

• Privacy issues related to sharing raw data such as images, speech, video,
locations with a remote system, which is not desirable for users.

• Wireless connections have a high energy cost per transferred bit for real-time
data transfer on energy-constrained platforms.

Due to these reasons, there is a strong demand to move especially the inference
from the cloud to the edge instead. This setup would mitigate latency and privacy
issues as well as improve the battery life of the device [12] [3]. Designing efficient
hardware architectures at the edge is therefore crucial; especially for low-power
devices such as hearing instruments where area, memory footprint, power budget,
and throughput, are limiting factors. These limiting factors of hearing instruments
have the disadvantage that large NNs cannot fit on the edge device. Therefore,
there should be a balance between which NNs that are deployed on the edge devices
and which NNs that still are run in the cloud. Another motivation to design
dedicated hardware accelerators for NNs is that conventional processors are not
optimized for running NNs.

1.3 Recurrent Neural Networks

The feed forward neural networks make assumption that all inputs are independent
on each other. This assumption is wrong in the case of sequential data, where data
exhibits a dependency on past data.

RNN model include dependency on past data through a hidden state, or
memory, that holds information of what has been processed so far. At any point in
time, (1.1) shows that the value of the hidden state is a function of the value of the
hidden state at the previous time step and the value of the input at the current
time step.

ht = φ(ht−1, xt) (1.1)

The term ht and ht−1 are the values of hidden state at the time steps t and t-1,
respectively, and xt is the input value at time t. RNNs are network of nodes
(neurons) organized into successive layers. Each node in a given layer is connected
with a one-way connection to every other node in the next layer. Figure 1.8
illustrates the graphical representation of RNN cell on the left and unrolled RNN
on the right. The RNNs, parameters are defined by three weight matrices U, V,

Introduction 7

and W, corresponding to the input, output and hidden state respectively. At time
t, the cell has an input xt and an output yt. A portion of output yt (the hidden
state ht) is fed back into the cell as an input to next time step t+1.

Since, the same operation is applied on different inputs at each time step,
weights matrices U, V, and W are shared across the time steps. Due to the sharing
of weight vectors across all the time steps, the number of parameters that needs to
learn reduces. The value of hidden vector is

ht = tanh(Wht−1 + Uxt), (1.2)

where W is the hidden state weigh matrix, ht−1 is the previous hidden state, U is
the input weight matrix and xt the input at time t.

x(t)

U

V

W

y(t)

ht-1

x(t-1)

U

V

y(t-1)

ht

U

V

ht+1

U

V

WW W
W

time steps

Unfold

x(t) x(t+1)

y(t) y(t+1)

Figure 1.8: RNN cell.

Using (1.3), the output vector is computed where V is the weight matrix, ht the
hidden state at time t and softmax is the function that converts the raw predictions
to the probability distributions of a list of potential outcomes the input sequence
belongs.

yt = softmax(V ht) (1.3)

Tanh is chosen over other nonlinearities, to keep the gradients in the linear region
of the activation function and prevent the vanishing gradient problem.

1.3.1 Vanishing and exploding gradient problem

Training of RNN involves back propagation. Since the parameters are shared by
all the time steps, the gradient at each output not only depends on the current
time step, but also on the previous time steps. This is known as backpropagation
through time (BPTT).

8 Introduction

ht-1

x(t-1)

U

V

y(t-1) L(t-1)

ht

U

V

ht+1

U

V

WW W
W

x(t) x(t+1)

y(t) L(t) y(t+1) L(t+1)

Figure 1.9: Back propagation in RNNs.

Figure 1.9 represents the state of an RNN at different instances of time t. During
the forward propagation (denoted by solid black lines), the network produces
predictions that are compared with the labels (ground truth values) to compute the
loss Lt at each time step. During backpropagation (shown by solid red lines), the
gradients of the loss with respect to the weight matrices U, V, and W are computed
at each time step and the parameters are updated by adding the gradients. At any
point of time, the gradient is the product of all the gradients up to that point.

When the gradients of the hidden state is less than one, brackpropagation
across multiple time steps leads to smaller and smaller product of the gradients,
leading to vanishing gradient problem. Similarly, if the gradients are larger than
one, the product gets larger and larger, leading to the exploding gradient problem.

The side effect of vanishing gradients is that the gradients of distant time
steps do not contribute to the learning process, so the RNN do not get trained for
long term dependencies. Exploding gradients are easy to identify, as the gradients
becomes very large, the training process will crash.

As stated in [10], traditional RNNs are incapable of dealing with long term
dependencies. Over the years more advanced alternatives such as the Gated
Recurrent Unit (GRU) and Long Short Term Memory (LSTM) have evolved. Both
the architectures have been designed to deal with vanishing gradient problem and
learn long term dependencies. The GRU is a simpler form of LSTM, using fewer
gates that modulate the flow of information inside the unit and has no separate
memory cell. The GRU architecture is the focus of this thesis and is explained in
the chapter 2 in detail.

1.4 Keyword Spotting System

The goal of keyword spotting is to detect the presence of specific spoken words
in unconstrained speech. The majority of keyword spotting systems are based on
generative hidden Markov models and lack discriminative capabilities. However,
discriminative keyword spotting systems are currently based on frame-level posterior
probabilities of sub-word units [13]. This project presents a discriminative keyword

Introduction 9

spotting system based on GRU NN, that uses information from long time spans to
estimate word-level posterior probabilities. KWS application has highly constrained
power budget and typically runs on tiny microcontrollers with limited memory and
compute capability [14].

An open-source KWS project developed by ARM [14] is used in our experiments.
The project provide pretrained models for various neural network architectures
such as DNN, CNN, LSTM, GRU, etc.

The parameters are extracted from the pretrained GRU model using python
and are used for inference in both high-level (Python and Matlab) and low level
(xDSP and hardware) implementation. The pretrained GRU model has three layer
(input, hidden and output), having 154 neurons in input and hidden layer and 12
neurons in output layer. The input to the GRU NN is the flattened featured matrix,
Mel-frequency cepstral coefficients (MFCC) is one of the commonly used for feature
extraction. Feature extraction using MFCC involves translating the time-domain
speech signal into a set of frequency-domain spectral coefficients, which enables
dimensionality compression of the input signal.

The input data represents features from a one-second long audio recordings
which are obtained from the Google speech commands dataset [14] created by
TensorFlow and AIY teams. The dataset has more than 65,000 one-second long
utterances of 30 short words, by thousands of different people. The files are in
16-bit little-endian PCM-encoded WAVE format. They are divided into three sets,
namely training, validation, and test set in 80:10:10 ratio that undergo further
selection. Raw data was extracted from the recordings using Python in a test set,
which was used as an input for the GRU NN.

Figure 1.10 illustrates a feature extractor and a NN based classifier. The input
signal of length L is framed into overlapping frames with window size of l and
window stride s. The total frames are given as

T =
L− l
s

+ 1.

From each frame F MFCC features are extracted, producing total of TF features
for the input audio signal of length L. For GRU NN, 10 MFCC features (F) are
extracted from a window size of 40ms (l), with a stride of 40ms (s), which gives 250
features for 1 second of audio input. A GRU NN processes 250 features sequentially,
ten per frame.

Figure 1.10: KWS system [14].

The output layer has 12 neurons, each representing on keyword/category. The
first neuron correspond to "silence" (no speech is present in the recording) and

10 Introduction

"unknown" (meaning that GRU NN is not able to classify the word into one of the
twelve keywords). The remaining ten neurons represents the following keywords
respectively : "yes", "no","up", "down", "left", "right", "on", "off", "stop", "go".

To meet the requirement of implemented feature extractor, there is a real time
requirement of 40ms to classify the features using GRU NN.

1.5 Thesis Goal

The objective of this master thesis is to examine the GRU algorithm and propose
an efficient ASIC architecture capable of functioning as an GRU NN and can be
implemented at the edge device. To achieve the mentioned goals, the thesis project
is split into five tasks:

1. Behavioral model of GRU Network using Python and Matlab -
The first task is to implement a behavioral model of GRU network using
numpy scientific library, and parameters from pretrained KWS model in
Python and then construct a fixed-point model without using any predefined
functions. Both the numpy and fixed-point models are functionally the same
and are used as reference models.

2. Basic implementation of neural network on the xDSP - Implement
GRU NN inference on Oticon’s audio DSP processor referred to as the xDSP.
This implementation is carried out to obtain important metrics such as cycle
count and energy dissipation, which are further used to compare performance
of dedicated GRU engine (GRUE).

3. Wordlength exploration and hardware optimization - Neural net-
work accelerators with low latency and low energy dissipation are desirable
for edge computing. Due to resource constraints, specifically the memory
requirements, model size plays an important role. Model size refers to the
network parameters (inputs, weights and biases). A common approach to
reduce the model size is by reducing the precision of the parameters. How-
ever, reducing precision leads to trade-off between network accuracy and
computation efficiency. Different ways of realising activation functions such
as sigmoid and tanh are also explored to have efficient hardware resource use.
Therefore, the purpose of this task is to investigate efficient algorithms to
implement the activation functions and identify the appropriate wordlength
for representing the NN parameters.

4. Data reuse exploration - For RNNs, the fundamental operation unit is
MAC which requires multiple memory access operations. This has an impact
on both throughput and energy efficiency. Hence, we will exploit different
data reuse techniques, to enhance the parallel execution of the algorithm,
and minimize the data movement.

5. A dedicated neural network engine - Implementation of a dedicated
accelerator and investigate the improvements in latency and energy dissipa-
tion.

Chapter 2
Gated Recurrent Unit - GRU

GRU is a variant of RNN that is capable of learning long term dependencies. GRUs
have an internal mechanism called gates that regulate the flow of information and
avoid the vanishing gradient problem. Two such mechanisms are update gate zt
and reset gate rt. During training GRU learns the parameters for these gates. This
chapter will explain how the GRU mechanism work and discuss how the output of
a GRU cell can be used to classify the given input sequence.

2.1 A GRU cell

σ σ

Reset
Gate
rt

Update
Gate
zt

Input xt

Sigmoid
activation

Element-wise
Operator

Copy Concatenate Tanh
activation

tanh

Candidate
Hidden state

ht

1-

+ ht

~

Hidden state
ht-1

σ tanh

Figure 2.1: Gated Recurrent Unit (GRU).

The architecture of a GRU cell used is depicted in Figure 2.1 and encapsulated in
the following equations:

rt = σ(xtUr + ht−1Wr + br) (2.1)

zt = σ(xtUz + ht−1Wz + bz) (2.2)

11

12 Gated Recurrent Unit - GRU

h̃t = tanh(xtUh + (rt � ht−1)Wh + bh) (2.3)

ht = zt � ht−1 + (1− zt)� h̃t. (2.4)

Each element of (2.1), (2.2), (2.3), (2.4) is summarized as follows:

• rt is the reset gate.

• zt is the update gate.

• h̃t is the candidate hidden state.

• U and W are weight matrix, and subscripts r, z, and h indicate that weight
matrix belongs to reset gate, update gate and candidate hidden state, re-
spectively.

• b denotes the bias vector and subscripts r, z, and h indicate that bias vector
belongs to reset gate, update gate and candidate hidden state, respectively.

• σ denotes the sigmoid activation and tanh signify tangent hyperbolic activa-
tion.

• � stands for element-wise vector multiplication also known as Hadamard
product, and subscripts t denote the time step associated with the gate or
unit.

2.1.1 Reset gate and Update gate

Through the use of reset rt and update zt gates, a GRU network can learn when
the incoming information is important and when it should be integrated into the
internal state of the cell (hidden state).

σ σ

Reset
Gate
rt

Update
Gate
zt

Input xt

Sigmoid
activation

Element-wise
Operator

Copy Concatenate Tanh
activation

Hidden state
ht-1

σ tanh

Figure 2.2: Reset and update gate in a GRU unit.

The reset gate rt defines how to combine the new input xt with the previous
memory ht−1, i.e., how much past information to forget. The update gate zt allow

Gated Recurrent Unit - GRU 13

us to control how much hidden state ht is a copy of the old state. The sigmoid
function modulates the outputs of the reset and update gate to the interval [0,1].

Figure 2.2 illustrates the inputs for both the reset and update gate in a GRU
unit, for current time step input xt and the hidden state of previous time step ht−1.
The reset gate rt and update gate zt are computed as (2.1) and (2.2), respectively.

2.1.2 Candidate hidden state

The candidate hidden state (ht−1) is computed as (2.3). The value of the reset
gate rt decides how much information from previous hidden state ht−1 to forget,
denoted by rt � ht−1. Setting the value of rt closer to one makes the influence of
the previous hidden state ht−1 influence less and vice versa. Figure 2.3 illustrates
the computational flow after including the candidate hidden state. The symbol �
indicates the pointwise multiplication between the tensors.

σ σ

Reset
Gate
rt

Update
Gate
zt

Input xt

Sigmoid
activation

Element-wise
Operator

Copy Concatenate Tanh
activation

tanh

Candidate
Hidden state

ht
~

Hidden state
ht-1

σ tanh

Figure 2.3: Candidate hidden state computation in a GRU unit.

2.1.3 Hidden state

The hidden state, ht, is computed as (2.4). The hidden state stores the information
of the current GRU cell and passes this information down the network. The update
gate zt is used to decide how much information to gather from previous hidden
state ht−1, given by zt�ht−1 and current memory content h̃t, given by (1−zt)� h̃t.
When zt is set close to one, 1 − zt will be close to zero, the model retains the
previous information ht−1, ignoring the information from xt and skipping the
timestep t in the dependency chain. On other hand, when zt is close to zero, the
new hidden state ht approaches the candidate hidden state h̃t.This helps to cope
with the vanishing gradient problem and capture long-term dependencies better.

14 Gated Recurrent Unit - GRU

2.1.4 Output layer

A fully connected layer that takes the hidden state output ht as input and delivers
the number of classes in the network as output yt. The output layer is computed
by

yt = htWy + by. (2.5)

After the output layer, softmax activation is performed that converts the logits
into probabilities that sum to one. Softmax activation given by (2.6), outputs a
vector that represents the probability distributions of a list of potential outcomes
the input sequence belongs. Logits are the raw prediction output by the output
layer of GRU NN, before softmax activation takes place.

softmax(yi) =
eyi∑n
j=1 e

yj
(2.6)

Figure 2.4 shows the complete structure of an GRU cell connected with a fully
connected layer and a softmax function to deliver the expected probability results.

σ σ

Reset
Gate
rt

Update
Gate
zt

Input xt

Sigmoid
activation

Element-wise
Operator

Copy Concatenate Tanh
activation

tanh

Candidate
Hidden state

ht

1-

+ ht

~

Hidden state
ht-1

σ tanh

Output
Layer

+
exp

Predictions

Softmax Activation
yt

Figure 2.4: Structure of an GRU unit followed by a output layer and
a softmax activation function.

2.2 Arithmetic Operations

In order to design an architecture that can efficiently function as an GRU neural
network it is important to understand the sequence of arithmetic operations, their
number and dependencies. This section goes through the arithmetic operations
that formulate the entire algorithm.

Matrix to vector multiplications dominate the number of computations and
parameters. For each matrix to vector multiplication, the input vector xt of size
m and the hidden state output vector ht−1 of size n are multiplied with weight
matrices of size (m + n)×n. That requires (m + n) times n MAC operations,
which is equivalent to (m + n) times n multiplications and additions. Since this
computation is repeated three times within the GRU computation for reset, update

Gated Recurrent Unit - GRU 15

and hidden state, these numbers are multiplied by three to obtain the total number
of MAC operations for an GRU. However this calculation can be broken into smaller
operations which can prove valuable when it comes to designing the control of the
arithmetic units and exploring design space parallelism.

Every matrix to vector multiplication operation in the algorithm is followed
by addition of bias. This requires n more additions.The result of bias addition is
saturated by the sigmoid function for reset and update gates. However, for the
candidate hidden state tanh function is used.

σ(x) =
1

1 + e−x
(2.7)

tanh(x) =
ex − e−x

ex + e−x
(2.8)

Using (2.7) and (2.8), the sigmoid and tanh function implementation requires
division and an exponential function which would cost a lot in terms of area, energy
and efficiency. In order to avoid this and also reduce execution time, these function
can be approximated.

The hidden state ht computes as (2.4), requires element-wise matrix multipli-
cation. This operation requires additional n adders. Finally, the output layer also
requires a matrix to vector multiplication operation increasing the number of such
operations to four in the entire computation.More details on this will be discussed
in the following chapters.

2.3 Data dependencies

It is crucial to determine data dependencies throughout the entire algorithm.
Identifying data dependencies allows parallelization of operations in an ASIC imple-
mentation. Figure 2.5 shows data dependencies throughout arithmetic operations
in the GRU algorithm. It can be observed that the gate operations rt, zt opera-
tions can be computed in parallel, independent of each other. However the ct, ht
computations require the output of gate operations.

16 Gated Recurrent Unit - GRU

X X

+

σ

+

rt Ur ht-1 Wr

br

rt

ht-1

X X

+

+

xt Wh

bh

tanh

σ
zt

-
1 ht-1

1-zt

+

ht

Uh

ht
~

X X

+

+

xt Uu ht-1 Wu

bu

Figure 2.5: Data dependency graph of the GRU algorithm

Chapter 3
Wordlength and Hardware Optimization

GRUs have been successfully developed in broad range of applications including
speech recognition [6], [15]. However, storage and computational complexity of
these models have forced the majority of computations to be performed on high-end
computation platforms or in the cloud. Storing of data such as weights and biases
becomes an issue with growing size of the network. Our initial representation of
GRU uses 32 bits for representing weights, biases and inputs. Such precision costs
in terms of computation and storage complexity, model size and memory access
operations such as load and stores.

Therefore, to cope with the computational and storage complexity, solutions
such as weight and bias quantization are evaluated in this section along with
the impact of reduced wordlength on performance, energy and accuracy. This
step includes both high-level simulation, e.g., Python/Matlab, of GRU NN’s and
evaluation of their accuracy, as well as evaluating different algorithms to implement
activation functions (sigmoid and tanh).

3.1 Data representation

An important consideration for implementing an NN is the arithmetic representation
format. The difficulty is to achieve a balance between the need for numeric precision,
which is important for network accuracy and speed, and the cost of hardware logic
associated with increasing precision. While standard floating point representation
(i.e 32 and 64 IEEE floating point formats) offer adequate precision, they require
more resources than other area efficient arithmetic representations, such as less
precise floating and fixed point formats.

Recent studies have empirically shown that 16-bit precision is sufficient to train
DNNs without effecting model accuracy [16], [17], and [18]. Therefore, state-of-the-
art hardware platform for training are now moving towards 16-bit floating point
precision from traditional 32-bit floating point. This is due to reduced storage
requirements associated with the reduced precision and high energy efficiency [19],
[20]. Furthermore, research on using floating point 8-bit for training are also carried
out, demonstrating two to four times speedup without compromising in accuracy
[21].

17

18 Wordlength and Hardware Optimization

3.1.1 Floating-Point format

A floating point number is represented as ±d0.d1d2...dp−1 ∗ βe. Where β is called
the base and e is called the exponent and p is the precision. For example, if β =
10 and p = 4 then the number 0.2 is represented as 2.000x10−1. The exponent is
said to have biased representation when the value of the exponent is

e = k − (βm−1 − 1), (3.1)

where k is the value of the exponent bits interpreted as an unsigned integer and m
is the number of bits in the exponent. The Floating-Point number is said to be
normalized number when d0 is ’1’.

One of the most common floating point formats is the IEEE floating point
format (IEEE 754-1985 format [22]). In this format, for 32-bit precision numbers,
β = 2, p = 24, m = 8, and e = k - 127. The value of floating point number can be
obtained as

±(d0 + d1β
−1 + ...+ dp−1β

−(p−1))βe, (0 <= di < β). (3.2)

The bit representation of this format is illustrated in Figure 3.1.

sign exponent (8 bits) fraction (23 bits)

02331

0 0 1 1 1 1 1 0 0 0 1 0 = 0.15625
30 22 (bit index)

Figure 3.1: Example layout of 32-bit floating point

3.1.2 Fixed-Point format

Figure 3.2 illustrates a Fixed-point representation. It contains two parts, one is
the integer part which is bws−1 to bw and the other part is fractional part which is
b3 to b0. If the base of the Fixed-Point number is β and it is a positive number,
the decimal equivalent value can be calculated by

bws1β
ws−5 + ...+ b4 + b3β

−1 + b2β
−2 + b3β

−3 + b4β
−4. (3.3)

bws-1 bws-2 b5 b4 b3 b2 b1 b0

Most Significant bit Radix point Least Significant bit

Figure 3.2: Format of a Fixed-Point Number

If the base of Fixed-Point number is 2, the value is determined by which number
representation that is used.

Wordlength and Hardware Optimization 19

• Sign bit representation ranges from −(2(k−1) − 1) to (2(k−1) − 1), for K bits.

• Signed representation ranges from −(2(k−1)) to (2(k−1) − 1), for K bits.

Generally 2’s complement representation is preferred because of unambiguous
property and more convenient arithmetic operations.

Wordlength and number representation of GRU model parameters such as
weights, biases, inputs, has a big impact on the overall performance of the GRU
inference. A larger wordlength increases the model size, and effects the efficient use
of HW resources. By reducing the parameters, word length, more parameters can
be read through the same memory interface in a single cycle, thus, decreasing the
memory wordlength requirements. Another motivation is that reduced wordlength
of the parameters can enable a higher number of operations for almost same
hardware costs, since lower precision multipliers require less silicon area and power.
The drawback of using a smaller wordlength is potential accuracy decrease of the
implementation, explained in following sections.

A reduced floating-point representation could provide lower wordlength param-
eters with close to no impact on accuracy, since it has a greater dynamic range
and precision than fixed-point. However, the drawback of using an equivalent
floating-point is that the energy cost increases up to 10 times [23]. Floating-point
can provide a higher range for the same wordlength. There is significant amount of
research that suggests that for majority of applications, 8-bit fixed-point or lower
precision is sufficient, specifically for inference purposes [23].

Another advantage of using fixed-point representation is that the adders and
multipliers occupy less area and are more power-efficient since the same adders
and multipliers as for integer operations can be reused. Quantizing the fixed-point
by powers of two is also considerably cheaper to do than the other touched upon
representations, since it only requires arithmetic shift operations.

Our experiments are focused on 16 bit fixed point implementation, described
in detail in the following section in terms of higher-level simulations using Matlab
and Python.

3.2 Role of the Activation Function

Neural network activation functions are a crucial component of deep learning.
Activation functions determine the output of a deep learning model, its accuracy,
and also the computational efficiency of training a model. Activation functions
are mathematical equations that determine the output of a neural network. The
function is attached to each neuron in the network, and determines whether it
should be activated (“fired”) or not, based on whether each neuron’s input is
relevant for the model’s prediction[24]. Besides restricting outputs to a certain
range, activation functions break the linearity of a neural network, allowing it to
learn more complex functions than linear regression.The weight multiplication at
each layer is a linear transformation. Adding the bias vector makes it an affine
transformation. Thus, a many layer neural network would reduce to a single layer
network in the absence of non-linear activation functions [25], [26].

20 Wordlength and Hardware Optimization

Figure 3.3: Feature selection Linear vs Non linear [27].

A linear equation is simple to resolve, but it is restricted in its complexity and has
less power to learn complex functional mappings from data. Thus with an non
linear activation function, neural network will be able to learn and model other
complicated kinds of data such as images, videos, audio, speech, etc. Also, another
important feature of an activation function is that it should be differentiable to
perform backpropagation optimization strategy during training [19].

3.3 Activation Function exploration

GRU network uses two activation functions, sigmoid function and tanh function .
Sigmoid outputs range from 0 to 1, and are often interpreted as probabilities, as
shown in Figure 3.4 and is given by (3.4).

σ(x) =
1

1 + e−x
(3.4)

The tanh function is simply a scaled and shifted version of the sigmoid function,
such that its outputs range from -1 to 1, as shown in Figure 3.5. The relationship
between sigmoid and tanh is given by (3.5).

tanh(x) = 2 · σ(2 · x)−1 =
ex − e−x

ex + e−x
(3.5)

Due to its symmetric property it’s enough to calculate the activation function only
for positive arguments x. For negative values of x it can be calculated using

F (−x) = 1− F (x). (3.6)

Gated Neural network algorithm uses nonlinear activation functions sigmoid and
the hyperbolic tangent (tanh) function to flatten the vectors within range [0,1] and
range [-1,1]. Since the reset and update in GRU neural network outputs a value
between 0 and 1, it can either let no flow or complete flow of information. The
sigmoid function is used as a gating function for the two gates (reset and update
gate).

Wordlength and Hardware Optimization 21

-6 -4 -2 0 2 4 6

x

0

0.2

0.4

0.6

0.8

1

S
ig

m
oi

d(
x)

Figure 3.4: Sigmoid function.

-6 -4 -2 0 2 4 6

x

-1

-0.5

0

0.5

1

T
an

h(
x)

Figure 3.5: The hyperbolic tangent function (tanh).

To overcome the vanishing gradient problem, a function whose second derivative
can sustain for a long-range before going to zero is required. Since tanh has
the above property, it is used to calculate the candidate hidden state value [28].

22 Wordlength and Hardware Optimization

Straightforward implementation of the nonlinear activation functions in hardware
is very expensive in terms of hardware, as these equations require division and
exponent function [29]. Different methods of approximation are used for the
hardware implementation of nonlinear activation functions: look up table (LUT),
Taylor transformation, piecewise linear approximation, fast sigmoid and tanh
approximation.

When decomposing a taylor series, many multiplications and additions need
to be performed, therefore, this method is not well suitable for implementation
in hardware [30]. LUT is the most commonly used approach to implement the
sigmoid and tanh functions. In this approach, the function curve is divided into
different segments and the corresponding output values for each input segment are
stored in a table. Only one memory access time is required to get the function
outputs, thus, LUT is the fastest implementation as compared to other techniques.
However, in order to get better accuracy, large storage space are required for LUT
implementation [29].

3.3.1 Piecewise linear approximation of the sigmoid function (PLAN
approximation)

In this method, the approximation is performed using

f(x) =


1 x ≥ 5

0.03125 ∗ x+ 0.84375 2.375 ≤ x < 5

0.125 ∗ x+ 0.625 1 ≤ x < 2.375

0.25 ∗ x+ 0.5 0 ≤ x < 1.

(3.7)

Calculations need to performed only for positive input data x. For negative input
data x, the sigmoid function is calculated using (3.6). For implementation in
hardware the real numbers are converted to integers using multiplication by 210 as

f(x) =


1024 |x| ≥ 5120

2−5 · |x|+ 864 2432 ≤ |x| < 5120

2−3 · |x|+ 640 1024 ≤ |x| < 2432

2−2 · |x|+ 512 0 ≤ |x| < 1024.

(3.8)

This expression can be implemented in hardware with only shifters and adders,
with no multipliers needed. Figure 3.6 and Figure 3.7 illustrates the comparison of
sigmoid and tanh approximation, respectively.

The functions are tested by passing inputs ranging from -6 to 6 in steps of
0.001. The sigmoid PLAN approximation has relative error of 0.032 and tanh has
relative error of 0.151. Since PLAN approximation algorithm used is optimised for
sigmoid approximation, approximating of tanh using (3.5) introduces error (spikes)
as shown in Figure 3.7.

Wordlength and Hardware Optimization 23

-6 -4 -2 0 2 4 6

x

0

0.2

0.4

0.6

0.8

1

S
ig

m
oi

d(
x)

replacement function
original function

Figure 3.6: PLAN approximation of sigmoid function.

-6 -4 -2 0 2 4 6

x

-1.5

-1

-0.5

0

0.5

1

1.5

T
an

h(
x)

replacement function
original function

Figure 3.7: PLAN approximation of hyperbolic tangent function
(tanh).

24 Wordlength and Hardware Optimization

3.3.2 Taylor Series Implementation

The Taylor series expansion of the sigmoid and hyperbolic tangent function are
computed as

σ(x) =
1

2
+
x

4
− x3

48
+

x5

480
− · · · (3.9)

tanh(x) = x− x3

3
+

2x5

15
− 17x7

315
+ · · · (3.10)

Implementing these polynomials is not feasible for hardware as it is complex and
costly in terms of area. Therefore, this approach was not evaluated.

3.3.3 Second order curve approximation

In this method, the approximation is performed using

f(x) =

{
1024, x ≥ 4096

−2−15 · x2 + 2−2 · x+ 512 0 ≤ x < 4096.
(3.11)

Calculations must be performed only for positive input data x. For negative input
data x, the sigmoid function is calculated using (3.6). For implementation in
hardware the real numbers are converted to integers using multiplication by 210.

f(x) =

{
1, x ≥ 4

−0.03125 · x2 + 0.25 · x+ 0.5 0 ≤ x < 4.
(3.12)

-6 -4 -2 0 2 4 6

x

0

0.2

0.4

0.6

0.8

1

S
ig

m
oi

d(
x)

replacement function
original function

Figure 3.8: Second Order approximation of sigmoid function

Wordlength and Hardware Optimization 25

Inputs in the range (-6, 6) are divided in steps of 0.01. In this range the maximum
and average relative error of approximation of sigmoid function were 0.029 and
0.020, respectively. The hyperbolic tangent function is a scaled and shifted version
of sigmoid function, its implemented using (3.5).

-6 -4 -2 0 2 4 6

x

-1

-0.5

0

0.5

1

T
an

h(
x)

replacement function
original function

Figure 3.9: Second Order approximation of hyperbolic tangent func-
tion (tanh).

The maximum error and average relative error of approximation of tanh function
were 0.357 and 0.121, respectively. Implementation of second-order polynomial on
HW requires one multiplier, shift registers, and adders.

3.3.4 Fast Sigmoid and Hyperbolic Tangent function

Sigmoid function can be approximated as

f(x) =


1 x ≥ 4

(0.5 ∗ x)/(1 + x) + 0.5 0 ≤ x < 4

1− ((0.5 ∗ x)/(1 + x) + 0.5) −4 ≤ x < 0

0 x ≤ −4.

(3.13)

From (3.5), hyperbolic tangent function can be written as

f(x) =


1 x ≥ 4

2 ∗ ((0.5 ∗ x)/(1 + x) + 0.5)− 1 0 ≤ x < 4

2 ∗ (1− ((0.5 ∗ x)/(1 + x) + 0.5))− 1 −4 ≤ x < 0

0 x ≤ −4.

(3.14)

26 Wordlength and Hardware Optimization

f(x) =


1 x ≥ 4

2 ∗ ((0.5 ∗ x)/(1 + x) + 0.5)− 1 0 ≤ x < 4

2 ∗ (1− ((0.5 ∗ x)/(1 + x) + 0.5))− 1 −4 ≤ x < 0

0 x ≤ −4.

(3.15)

Figure 3.10 and Figure 3.11 illustrates the comparison of original and replacement
functions for sigmoid and tanh activation, respectively. The average relative error
of sigmoid and tanh function were 0.07 and 0.17, respectively.

-6 -4 -2 0 2 4 6

x

0

0.2

0.4

0.6

0.8

1

S
ig

m
oi

d(
x)

replacement function
output function

Figure 3.10: Fast sigmoid function approximation

The fast sigmoid, and fast tanh function were implemented using adders, shifters,
and division operation can be performed using CORDIC division algorithm . A
CORDIC division algorithm is based on re-writing the equation z = x/y into the
form x−yz = 0 [31]. The expanded series representation of z is expressed as (3.16),
which can be simplified to (3.17).

x− y ∗
B∑
i=1

a(i)2−i = 0 (3.16)

x−
B∑
i=1

a(i)(y2−i) = 0 (3.17)

Wordlength and Hardware Optimization 27

-6 -4 -2 0 2 4 6

x

-1

-0.5

0

0.5

1

T
an

h(
x)

replacement function
original function

Figure 3.11: The Fast hyperbolic tangent function approximation

Using (3.17), the quotient z is estimated one bit at a time by driving x to zero
using right shifted versions of y. If the current residual is positive, the ith bit in z
is set. Likewise if the residual is negative, the ith bit in z is cleared.

1 divide(x,y){
2 for (i=1; i=<B; i++){
3 if (x > 0)
4 x = x - y*2^(-i);
5 z = z + 2^(-i);
6 else
7 x = x + y*2^(-i);
8 z = z - 2^(-i);
9 }

10 return(z)
11 }

Listing 3.1: Cordic algorithm 1 [31].

While x may be either positive or negative, y is always assumed to be positive. As
a result, the division algorithm is only valid in two quadrants. Also, if the initial
value for y is less than the initial value for x it will be impossible to drive the
residual to zero. This means that initial y value must always be greater than x,
resulting in domain of 0 < z < 1. The algorithm may be modified as follows for
four quadrant division with -1 < z < 1.

1 divide_4q(x,y){
2 for (i=1; i=<B; i++){
3 if (x > 0)
4 if (y > 0)

28 Wordlength and Hardware Optimization

5 x = x - y*2^(-i);
6 z = z + 2^(-i);
7 else
8 x = x + y*2^(-i);
9 z = z - 2^(-i);

10 else
11 if (y > 0)
12 x = x + y*2^(-i);
13 z = z - 2^(-i);
14 else
15 x = x - y*2^(-i);
16 z = z + 2^(-i);
17 }
18 return(z)
19 }

Listing 3.2: Cordic algorithm 2 [31].

Since multiplications are all powers of 2, they are realized using shift operations;
no actual multiplier is needed. Hence, it is well suited to hardware implementation,
simplifying overall hardware complexity.

Due to the nature of fast sigmoid given by (3.14), the value of y is never less
than the initial value of x. Therefore, CORDIC algorithm mentioned in Listing
3.1 was used. The fast sigmoid and fast tanh approximation technique has been
chosen for implementation for this thesis.

3.4 Quantization Experiments

The motivation behind quantization and wordlength optimization is that NNs
are typically trained with floating-point weights and activations. In various cases,
quantizing a model trained with a 32-bit floating-point into eight-bit fixed-point,
without any re-training, can result in a moderately low accuracy loss, which can
be improved by further fine-tuning [32].

Quantizing a model without re-training is referred to as post-training quantiza-
tion. However, publications have shown that there are cases where post-training
quantization to eight-bit fixed-point effect accuracy [33]. Smaller models such
as MobileNet does not respond well to post-training quantization, likely due to
their smaller representational capacity. As discussed above, fixed-point weights
are sufficient to run NNs without any significant accuracy loss. Edge devices have
memory constraints that motivate the need for quantization of 32-bit floating-point
weights and biases to eight-bit fixed-point weights and biases. Also, using an
eight-bit fixed-point consumes four times less overall bandwidth and the model size
compared to 32-bit floating-point. Furthermore, fixed-point integer operations are
more energy efficient than floating-point operations as shown in Table 3.1.

Wordlength and Hardware Optimization 29

Table 3.1: Energy and area comparison [34].

INT8 Operation Energy Saving vs FP32 Area Saving vs FP32
Add 30x 116x

Multiply 18.5x 27x

A basic quantization of fixed-point numbers is shifting the values until the MSBs fit
within the specified word length. The range of fixed-point is determined by −2i−1

to 2i−1 − 2−f . For instance, if the wordlength is 16 bits and the number of both
integer i and the fractional f bits is eight, its range is -128 to 127. If the number lies
out side this range, it is truncated by a specific number of positions. If the number
is very small, e.g., 0.00034 and cannot be represented by the available fractional
bits in fixed-point representation, number get eradicated to zero. Therefore, the
chosen number of integer and fractional bits significantly influences the outcome,
and it should be adjusted to fit the specified dataset. For values of weights w ε [0, 1],
reserving most of the fractional bits during quantization gives the highest precision.

3.4.1 High-level model (Accuracy evaluation)

Implementing pretrained KWS GRU NN with 32-bit parameters is not efficient
approach. To compress the neural network model, the number of bits required
per parameter (weights and biases) was reduced by truncating the fraction bits.
The MATLAB model of GRU fixed point implementation was used to perform
experiments. The accuracy of the fixed-point model remained constant untill 28-bit
representation, dropped by one percentage unit at 24-bit representation, and two
percentage unit at 16-bit representation as illustrated in Figure 3.12. This section
will focus on 16-bit representation and below. The accuracy of the fixed-point model
is compared with accuracy of 32-bit full-precision floating-point implementation
having a accuracy of 91%. Within 16-bit fixed point representation, the most
accurate results were achieved with the Q10.6 format. Since, input ranges from
-247 to +90, minimum nine integer bits are required.

Table 3.2: Accuracy of GRU network with different precision.

GRU network precision Accuracy
32-bit floating point 91.1%
32-bit fixed-point 90%
28-bit fixed-point 90%
24-bit fixed-point 89%
16-bit fixed-point 87.7%
14-bit fixed-point 80%

30 Wordlength and Hardware Optimization

32-bit 28-bit 24-bit 16-bit 14-bit

Number of bits to represent GRU network

85

86

87

88

89

90

N
et

w
or

k
A

cc
ur

ac
y

(%
)

Figure 3.12: Network accuracy for GRU network with different
precision bits to represent the network.

After selecting a 16-bit fixed-point representation for GRU network, a second
experiment was conducted where network parameter (weights and biases) bits
were truncated from 16-bit to 6-bit representation. The accuracy of the network
remained constant until 10-bit representation, a shoulder was noticed at 8-bit
representation as illustrated in Figure 3.13. Also, fluctuation in the network
accuracy was observed just before the shoulder. To reduce the precision of the
network, fractional bits are truncated. Table 3.3 shows the accuracy of GRU NN
with varying network parameter precision.

Table 3.3: Accuracy of 16-bit GRU network with different precision
bits for parameters.

Network parameter precision Accuracy
10-bit fixed-point 87.7%
9-bit fixed-point 86.6%
8-bit fixed-point 87.7%
7-bit fixed-point 85.5%
6-bit fixed-point 83.3%

Since the accuracy was identical with eight bits as network parameter precision,
further experiments were conducted using 16-bit GRU network with 8-bit parameter
precision.

Wordlength and Hardware Optimization 31

32-bit 28-bit 24-bit 16-bit 14-bit

Number of bits for network parameters

83

84

85

86

87

88

N
et

w
or

k
A

cc
ur

ac
y

(%
)

Shoulder

Figure 3.13: Network accuracy for different network parameter preci-
sion for fixed-point implementation of 154x154x154x12 topology.

Figure 3.14 depicts the accuracy plot for different input precision. Figure 3.15
illustrates the accuracy plot when the MAC output precision is kept same as input
precision, shoulder was noticed at 13-bit representation. MAC output precision
here refers to the wordlength used for truncating the output of the MAC unit.
Table 3.4 and Table 3.5 show the accuracy of various combinations of input and
MAC output precision used.

The shoulder in the graph refers to a point, after which there is a sudden drop
in the accuracy.

Table 3.4: Classification accuracy for different input data precision.

Input precision Accuracy
16-bit fixed-point 87.7%
15-bit fixed-point 87.7%
14-bit fixed-point 87.7%
13-bit fixed-point 87.7%
12-bit fixed-point 85.5%
11-bit fixed-point 80%

32 Wordlength and Hardware Optimization

16-bit 15-bit 14-bit 13-bit 12-bit 11-bit

Number of bits for input

80

81

82

83

84

85

86

87

88

N
et

w
or

k
A

cc
ur

ac
y

(%
)

Shoulder

Figure 3.14: The figure shows the accuracy for different input data
precision.

When the MAC output precision was truncated with the same precision as input,
shoulder was observed at 14-bit representation. From the above experiments, it
can be concluded that reducing the MAC output precision leads to accuracy loss,
and using 16-bit fixed point network with 8-bit weights and biases produced the
best accuracy at slightly higher hardware cost.

Table 3.5: Classification accuracy for different input precision based
KWS Tensorflow dataset.

Network precision Accuracy
16-bit fixed-point 87.7%
15-bit fixed-point 85.5%
14-bit fixed-point 81.1%
13-bit fixed-point 70.0%
12-bit fixed-point 45.5%

Wordlength and Hardware Optimization 33

16-bit 15-bit 14-bit 13-bit 12-bit

Number of bits for MAC output

45

50

55

60

65

70

75

80

85

90

N
et

w
or

k
A

cc
ur

ac
y

(%
)

Shoulder

Figure 3.15: The figure shows the accuracy for different input data
precision and MAC output precision at Q10.6 format.

Figure 3.16 illustrates the raw predictions with the chosen wordlength, i.e., 16-bit
for representing GRU fixed-point model and eight-bit for representing weights and
biases. All the experiments are carried out without retraining the network after
performing the truncation. Findings might be different if the network is re-trained
after performing the truncation of network parameters, which might recover some
of the accuracy loss introduced due to truncation.

34 Wordlength and Hardware Optimization

silence unknown yes no up down left right on off stop go

Keywords

-10

-5

0

5

10

15

20

R
aw

 p
re

di
ct

io
ns

Figure 3.16: Raw prediction of the fixed-point implementation (red
line) against the 32-bit floating-point implementation (blue line).

Chapter 4
xDSP Implementation

The xDSP is a 3-stage pipeline processor optimized for DSP applications with
multiple data-paths, register files, parallel instructions and custom functional units.
The sections below provide a high-level overview of the architecture of the xDSP
processor.

4.1 Register Files

The XDSP contains three register files: one for the integer datapath (R), one for
the scalar datapath (S), and one for the vector datapath (V). To allow a greater
flexibility, the scalar datapath also has access to the R register file, and the vector
datapath has access to the R and S register files.

Table 4.1: Register files.

Register file Data type Integer size Fixed point format
R Integer 16 bits N/A
S Scalar 24 bits {5.19} bits
V Vector 4 x 24 bits 4 x {5.19} bits

4.2 Datapath

The XDSP contains the following datapaths:

1. Integer datapath - supports arithmetic, logic, shift, and compare instructions.
Also handles the program control flow. This datapath can only access the
16-bits R register file.

2. Scalar datapath - is for data processing in both fixed point and integer
format. This datapath also supports more complex operations specifically
targeted to DSP applications and allows access to both R and S register files.

3. Vector datapath - can process four scalars in parallel. This datapath can
access all the register files.

35

36 xDSP Implementation

4. Multicycle datapath - for operations that cannot be completed in a single
clock cycle.

The main bottleneck for processing NN is the memory access. Each MAC operation
requires three memory reads (input, weight and bias). Hence to reduce the memory
access operations and increase the speed of computation the vector datapath is
used.

4.3 Memory interfaces

The xDSP utilizes a 24-bit data bus for scalar/integer datatypes and 96 bit data
bus for vector data. The memory can be accessed with a 16-bit address, which are
stored as sign extended 24 bit variables. All of the vector data memory accesses
are performed as single cycle operations, while the scalar memory accesses depend
on the Network-on-Chip (NoC) arbitration delay.

The program memory consists of variable length instructions (8/16/24/32 bit)
and is packed in 8-bit blocks. The processor uses a 16-bit address format. Hence it
can address a maximum 64 kB of program memory. The program memory interface
is a 64-bit data bus and uses a 128-bit program memory cache for instruction
fetching.

4.4 Design considerations

The XDSP uses 24 bits to represent fixed point data. To implement KWS GRU
model, 230KB of memory storage is required to store the network parameters,
inputs, weights and biases.

The data memory size available on XDSP is limited, which constraints the size
of NNs that can be run on the XDSP. Thus, three small GRU NN with 4, 20, and
40 neurons in each layer were chosen for implementation on XDSP. These network
were trained using the Python script provided with the KWS model. The trained
smaller models occupy 1.5kB, 7KB, and 21KB of the data storage available on
XDSP, respectively. Table 4.2 shows the number of entries required by GRU NN
parameters (inputs, weights and biases).

Table 4.2: Number of entries for different parameters in GRU NN.

Network parameter
Entries

4 neurons 20 neurons 40 neurons 154 neurons

Weights 180 2040 6480 77616

Biases 15 72 132 474

Inputs 10 10 10 10

Total 205 2122 6622 78100

xDSP Implementation 37

The xDSP has a separate datapath for vectorized data, see section 4.2. To use this
feature, weights and initial inputs are loaded into the memory as matrices in the
vectorized format such that four multiplications are executed in parallel.

4.5 Implementation

This section introduces basic concepts that are needed in order to understand
design decisions, wordlength used, and bias alignment in registers.

4.5.1 Multiply-accumulate operation

The Vector double precision MAC functional unit available on XDSP is used for
implementing matrix multiplication operation performed in different layers of GRU
network. This function executes in two clock cycles.

The MAC operation multiplies two input vectors, adds the results together
and then stores the sum in an accumulator. The accumulator uses a vector type
and is interpreted as two custom fixed-point values, high and low, stored in either
the high (accu[3:2]) or low (accu[1:0]) part of the vector. Each part holds the
accumulated values in extended precision of 48 bits (Q18.30). The accumulated
value has 8 guard bits, which also means that the lowest 8 bits are discarded after
multiplication.

The hi and lo in Figure 4.1, return data in Q18.6 format, and Q0.24 bit format,
respectively. Together, they represent a number in Q18.30 format. The result of
the MAC operation in extended precision (Q18.30) is then scaled back to the Q5.19
format.

+

48 48 48 48
op1*op2

40
48+

Discard 8 LSB

24 24 24 24 24 24 24 24
op1 op2

24 24
accu

hi lo

24 24
accu

Figure 4.1: MAC unit.

38 xDSP Implementation

With this MAC unit, only one neuron output can be computed at a time as the
four multiplication results (and the subsequent ones) are added together.

4.5.2 Bias alignment

As mentioned in the above section since computations are executed for one neuron
at a time, bias values are loaded from the memory as regular scalar values in Q5.19
format unlike weights and initial inputs. Hence, loading the bias cannot exploit
the advantages of the vectorized data format.

However, before the MAC operation is performed, the accumulator is initialized
with the bias value to save one addition operation that would otherwise have to be
performed after completing all MAC operations per neuron. Loading the bias into
the accumulator requires an alignment step since the accumulator stores results in
an extended double-precision Q18.30 format as mentioned in section 4.5.1, while
the bias value is in Q5.19 format.

In Figure 4.2 and Figure 4.3, accu[1] interprets data in Q18.6 format, therefore
bias values are by default shifted 13 positions right and loaded into the accu[1].
This step ensures, that all the integer values and first six fractional values are
stored correctly. Then the bias value is shifted by eleven positions left in order to
extract the remaining 13 fractional bits that have to be loaded into the accu[0],
which interprets data in Q0.24 format.

{5.19}
Bias (24 bits)

accu [1] accu [0]

{18.6} {0.24}

Bias >> 13

Bias << 11

Sign bit Integer bit Fractional bit

Figure 4.2: Illustration of steps executed to load the bias value into
accumulator.

xDSP Implementation 39

3 2 1 0

high high low low

accu [3:0] (4x24 bits)

1 0

accu [1] accu [0]

{18.6} {0.24}
{18.30}

Figure 4.3: 96-bit accumulator divided into low and high part.

4.6 Result

The main purpose of the XDSP implementation is to extract metrics for establishing
a baseline energy cost for inference, the memory footprint and latency, which is later
used for comparing with ASIC implementation. After the network with 4 neurons
per layer and 40 neurons per layer was implemented, all the instructions belonging
to the GRU inference are extracted from the execution flow of the program. This
was accomplished by adding two breakpoints instructions to indicate start and stop
of the inference. Instructions between the breakpoints are then responsible for the
inference related operations. This helps in identifying instructions strictly involved
with the GRU computations. The total cycle count of the inference was calculated
by adding the number of times each instruction was called at runtime.

The data memory size available in xDSP as mentioned in section constrains the
size of the GRU NNs run on the xDSP. Therefore, the biggest Network size chosen
for inference on xDSP was with 40 neurons per layer. The memory footprint of this
network is 20.1 kB, with weights occupying major portion of the memory space as
shown in Table 4.2. The memory footprint of the smaller network with four neurons
per layer chosen for inference is 1.4kB. The metrics results of the two networks are
used for obtaining a scaling factor which is later used for approximating energy
dissipation for a network with 154 neurons per layer.

Table 4.3 shows the number of instruction calls for the MAC and load/store
instructions. LD_v, LD_s and LD_i are vector load, scalar load and integer load
instructions respectively. The LD prefix and ST prefix stands for load instructions
and store instructions, respectively.

40 xDSP Implementation

Table 4.3: Instruction calls per inference for the network with 4, 20,
and 40 neurons per layer.

Network Neurons per layer
4 20 40

Instruction Calls
LD_v 4963 40871 126616
LD_s 2007 7027 17452
LD_i 2645 8420 18087

LD Total 9615 56318 162155
ST_v 2137 15258 44075
ST_s 1533 6030 15351
STi 767 3849 7724

ST Total 4437 25137 67150
MAC 1204 12060 39210
Others 30984 129495 331190
Total 46239 223010 560495

Total cycles 40898 195098 492150

The MAC unit has four 24-bit multipliers and four 48-bit adders. The memory
accesses instructions (Load/Store operations) are for 16, 24 or 96 bit words as
described in section 4.1. The "Other" instructions relate to branches, jumps, NOPs,
shifts, etc. It is important to note here that the Table 4.3 do not include the
instruction fetch and instruction decode stages, but only the execution stage.

The GRU NN grows both in x and y dimension, where inputs and the number
of neurons contributes to x dimension and only neurons contribute to y dimension.
From Table 4.2, it can be observed that weights occupies the major portion of the
entries and grows quadratically with number of neurons. By plotting a second
order extrapolation, a scaling factor of ten was estimated when network size row
from 40 neurons per layer to 154 neurons per layer. The the clock cycles for the
154 neurons per layer network was also estimated from second order extrapolation
plot.

Figure 4.4 illustrate required clock cycles to compute an inference. The vertical
bar shows the amount of clock cycles required and the horizontal line depicts the
maximum clock cycles to comply with real time requirement of 40 ms.

xDSP Implementation 41

4 20 40 154 (Scaled)
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

Neuron/layer

Cl
oc

k
cy

cl
e/

In
fe

re
nc

e Th
ou

sa
nd

s

Clock cycle/Inference Real time requirement

Figure 4.4: Clock cycles required per inference of GRU NN.

4.7 Discussion

There is a real time requirement of 40 ms to do computation as mentioned in
section 1.4. From Figure 4.4, it can be observed that GRU NN with upto 40
neurons per layer can be computed on xDSP. However, xDSP is not designed to
compute large-scale GRU NN.

The full implementation, i.e., executing GRU network with 154 neurons per
layer was not possible due to memory limitation. There is a possibility of executing
full implementation by packing the network parameters, which will reduce the
number of bits required per parameter to half. Unpacking of the data is required
while execution. However, packing/unpacking of the data adds extra instructions
in the program memory, which can exceed the program memory space available.

42 xDSP Implementation

Chapter 5
Dedicated Neural Network Engine

This chapter covers the different aspects related to the design of a dedicated GRU
neural network engine (GNNE) and its register-transfer level (RTL) implementation
using SystemVerilog. The motivation for developing a dedicated GNNE is to
improve the energy efficiency required to perform inference and explore optimization
possibilities that can not be exploited using audio digital signal processor (DSP).

Due to the complexity of the entire design, it will be broken down in separate
sections following the order they were designed during the development stage. The
following sections provide a detailed description of the proposed architecture and
implementation of GNNE, followed by behavioural and RTL simulations using
KWS application input data set. The GRU algorithmic flow is also discussed in
order to understand the optimizations performed.

5.1 Design Considerations

There is a number of things to consider before designing an ASIC implementation
for computational units of GRUE.

• Matrix multiplications and element-wise multiplication operation require
a great number of multiplications and additions. Hence it is necessary to
provide sufficient amount of multipliers and adders that operate in parallel
depending on throughput requirement, and reduce the time it takes to
produce a final result.

• The final design needs to be flexible and capable to adapt for different
network sizes.

• Reduce the number of memory read operations while streaming the data
from memory to computational units.

To address the first two considerations, the architecture need to provide the
possibility of parameterized instantiation which allows larger execution blocks that
provide more throughput, such that it can be changed to fit the needs of the
user. The default value is set to eight for adders and multipliers, which is used
throughout this thesis. The data feed to the multiplier and adder unit must be
structured such that improves latency. As the entire multiplier and adder unit is
working with vectors to increase throughput and parallelize the design. Instead of

43

44 Dedicated Neural Network Engine

sending and receiving one element of a vector at a time the memory is designed
to send and receive vectors of size eight. Hence, memories used in the design are
required to store a vector of eight elements at a address to reduce the memory read
operations which also increase throughput. Furthermore, the data flow in entire
design is considered in vector form.

5.2 Overview

The architecture is parameterized with number of integer and fractional bits.
The default is set to 16-bit fixed-point representation (Q10.6 format) with some
exceptions which will be explained in sections below.

NN parameters such as weights and biases contributes to the biggest footprint
in NN applications. Therefore, data movement far from engine will be more costly
in terms of energy and computations. Due to this reason GNNE is implemented
with two dedicated memory types, one is SRAM and another is a scratch pad
memory. Scratch pad memory is used because memory storage required for inter-
mediate results is very small, where SRAM would be area inefficient. Furthermore,
simultaneous read and write operation are performed, which will would require
more instances of SRAM or a dual port SRAM. Initially, the main memory (SRAM)
needs to be populated with data (weights and biases) before the inference begins.
A standard-cell based scratch pad memory is used to store the temporary data
which changes at every time step. The GNNE specific memory layout is further
descried in section 5.7. The input data loading operation is performed by the
xDSP processor or direct memory access (DMA). There are four interfaces to
communicate with the engine:

1. APB_Interface - The Advance Peripheral Bus interface is used for initial
setup of configuration parameters such as start/stop addresses for weights/bi-
ases, different segments of scratch pad memory, and iteration for CORDIC
module.

2. Clkpmrst_Interface - The Clock/Reset interface is used for driving the
clock and reset signals for all the modules in the GRUE.

3. Mem_Interface - The memory interface is used for reading the data from
the memory.

4. SCMem_Interface - The scratch memory interface is used to read/write
data to the scratch pad memory.

The next sections will go through the design steps, optimizations and describe the
data flow to give basic understanding of the design.

5.3 Top module

The modules defined in the previous sections are instantiated in the nn_gru_top
module. The top module forwards the data received via the three interfaces,
i.e., apb_interface, clkpmrst_interface, mem_interface to all the instantiated
submodules. Besides functioning as a wrapper module, the top module performs

Dedicated Neural Network Engine 45

logic necessary for producing the output prediction of keyword spotted along with
the max value. Since the KWS GRU pre-trained model is trained for 12 keywords,
see section 1.4, output layer produces 12 raw predictions. These 12 values are
compared with each other and the maximum value is stored along with its index.
The index of the maximum value is the prediction (label of the keyword detected).

Co
nf

ig
ur

at
io

n
m

od
ul

e

In
pu

t p
in

g-
po

ng
Re

gs
ite

r m
od

ul
e

M
AC

 in
pu

t
co

nt
ro

lle
r

Sc
ra

tc
h

pa
d

m
em

or
y

co
nt

ro
lle

r

 M
em

or
y

co
nt

ro
lle

r

M
AC

Bu
ff

er
 fo

r
bi

as

Ac
tiv

at
io

n
m

od
ul

e

Ac
tiv

at
io

n
re

su
lt

Bu
ffe

r m
od

ul
e

cl
k_

re
se

t_
in

te
rf

ac
e

m
em

_s
_i

f

m
em

_w
_b

_i
f

sc
ra

tc
h

pa
d

 m
em

or
y

in
te

rf
ac

e

 m
em

or
y

in
te

rf
ac

e

ap
b_

sl
av

e_
if

ap
b

in
te

rf
ac

e

FS
M

FS
M

m
ai

n
co

nt
ro

lle
r

m
at

rix
 c

on
tr

ol
le

r

 memory
interface

scratch pad
 memory
interface

Figure 5.1: Top level architecture of the design.

46 Dedicated Neural Network Engine

5.3.1 Data Flow

Without optimizing the architecture a straightforward implementation of GRU
algorithm would require multiple multiplier banks and adder banks to perform
matrix multiplication, element-wise multiplication and addition operations across
different layers shown in Figure 5.2.

In
pu

t
Re

gi
st

er

+1

W
ei

gh
ts

Bi
as

W
ei

gh
ts

St
or

e
Im

d
re

su
lt

G
at

in
g

Ca
nd

id
at

e
H

id
de

n
St

at
e

H
id

de
n

St
at

e

-
St

or
e

Im
d

re
su

lt

St
or

e
Im

d
re

su
lt

St
or

e
Im

d
re

su
ltX

+
σ

X
X

Bi
as +

X

+
X

+
Ta

nh

Figure 5.2: Data Flow of GRUE without optimizations.

However, inference runs on a per layer basis, i.e., the first layer output acts as input
to the second layer and so forth. At a particular time only one multiplier and adder
bank is used for computation, this provides the opportunity to reuse the hardware
to perform multiplication/addition across different layers. Thus, by reusing the
hardware it is possible to achieve significant reduction in area and power which is
crucial for hardware implementations in power-constrained systems.

An implementation as described in Figure 5.2 requires multiple scratch pad
memories to store the intermediate data computed. Upon completion of a layer, the

Dedicated Neural Network Engine 47

intermediate data (output of previous layer) is passed to the computational units
in the next layer, thus, repeating the process until all layers have been evaluated.
As the network size grow larger, the amount of intermediate data that must be
streamed between the compute units increases, in turn increasing the memory
capacity needed.

The algorithmic flow can be understood using Matlab pseudo code shown in
Listing 5.1.

1 %% Gating
2 concatenate1 = [input prev_h];
3 gating = sigmoid(concatenate1 * gate_weights + gate_bias);
4 %% Split
5 reset_gate = gating (1:154);
6 update_gate = gating (155: end);
7 %% Candidate hidden state
8 r_state = reset_gate .* prev_h;
9 concatenate2 = [input r_state];

10 candidate_hidden = tanh(concatenate2 * candidate_weights +
candidate_bias);

11 %% Hidden state
12 new_h = update_gate .* prev_h + (1 - update_gate) .*

candidate_hidden;
13 prev_h = new_h;

Listing 5.1: Matlab pseudo code for GRU NN

The gating stage illustrated in Figure 5.2 computes reset and update gate given by
(2.1) and (2.2). The reset gate result, rt, is multiplied with ht−1, denoted r_state
in Listing 5.1. Input xt is concatenated with r_state and multiplied with weights
Wh. After adding bias bh to the previous result, tanh activation function is applied.
This step is given by (2.3) and represented as candidate hidden state in Figure 5.2.

In the algorithmic data flow, each layer is processed to completion before
proceeding to the next layer. By restructuring the data flow, it is possible to reduce
the need to store and retrieve the intermediate data after each layer. The results of
the previous layer should be processed as soon as it is ready to reduce the memories
required to hold the intermediate results. Figure 5.3 illustrates the proposed
architecture of the GRUE after optimizing the data flow. Furthermore, network
parameters (weights and biases) are structured in a way that biases required for
the computation are stored first, followed by the weights illustrated in Figure 5.4,
this reduces the hardware complexity (logic required to control the memory) and
improves energy dissipation.

Since only one layer is computed at a time, one MAC computational unit is
used for performing all computations. The multiplier bank and adder bank has
eight multipliers and adders, respectively, see section 5.5.3.

48 Dedicated Neural Network Engine

Re
gi

st
er

M
em

or
y

80
KB

Bi
as

Bu

ffe
r

Re
gi

st
er

In
pu

t
Re

gi
st

er

1-
u

M
AC

 U
ni

t

Sc
ra

tc
h

Pa
d

M
em

or
y

1K
B

Re
ad

 (H
t-

1)

Re
ad

/W
rit

e
R t
⊙

H
t-

1

W
rit

e
(H

t)

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3

CO
RD

IC

Ta
nh σ

X
+

Figure 5.3: The proposed architecture of GRUE.

Instead of computing reset gate (2.1) and update gate (2.2) at once at the gating
state, only computations of reset gate are performed. Since update gate results
are not utilized until the hidden state (2.4), denoted as new_h in Listing 5.1, is
computed. Furthermore, only eight values of reset gate (rt) are computed at a time
and stored in a buffer, these values are then multiplied with ht−1 (prev_h) using
the same MAC unit, and the results (r_state) are stored in scratch pad memory.
This process is repeated until all the values of r_state denoted as rt � ht−1 in (2.4)
are computed and stored in scratch pad memory.

Dedicated Neural Network Engine 49

16kB

32kBBank 0

Bank 1

Bank 2

0x000

0x1000
0x1001

0x2000
0x2001
0x2800

32kB

Data memory map

Bias 0x000
0x001Weights

Weights 0x002

Weights 0x0A9
Bias 0x0AA

Weights
Weights

Weights
Bias

0x1000

0x0AB
0x0AC

0x152
0x153

Each word in memory stores
eight values of 8-bit each

1 2 3 4 5 6 6 7 0x0008

Figure 5.4: Structure of data memory representing the way biases
and weights are arranged.

Computation of hidden state (new_h) requires candidate hidden state (h̃t) and
update gate (zt) to be processed, refer (2.4). If the candidate hidden state is
computed completely before computing an update gate, additional scratch pad
memory will be required to store the values. The requirement for extra intermediate
storage is evaded by computing four values of candidate hidden state (h̃t) along
with four values of the update gate (zt). Using these eight values four hidden
state values are computed. Due to this optimization, scratch pad memory was
introduced with a write bit enable functionality. Following sections will go through
the design steps and explain how architecture is structured.

5.4 Input ping-pong registers

The registers in the ping-pong group store the input data for hardware layers.
There are two register groups; each group has ten registers of 16-bit each. The
ping-pong registers are implemented to reduce latency. Figure 5.5 illustrates the
structure of the ping-pong register group. After reset, both group one and group
two are in idle state, and the consumer is set to the group first. The consumer
register is to determine which ping-pong group to select for the datapath.

A producer, e.g., an CPU programs the input data for the first time step
into register group one. After write completes, the CPU sets the enable bit in
group_one_enable register. Each registered group has a status register that is set
when the GRUE is using the data. When register group one is in use, CPU reads
the status register of group two to ensure that it is idle. CPU begins programming
the second register group and sets the second group enable bit when done. When
the enable bit is set, any write to the register of the group that has enabled bit set
will be dropped until the GRUE completes execution.

50 Dedicated Neural Network Engine

APB Interface

Register
Group 0

Register
Group 1

Group 0
enable

Group 1
enable consumer

Ping-pong register

consumer Hw grouop 0
enable

Hw grouop 1
enable

Register
outputs

Figure 5.5: Structure of ping-pong registers.

When the GRUE has consumed the data in the first register group, GRUE will clear
the enable bit of the first register group. GRUE will switch to a second register
group if the enable bit is already has been asserted. This process repeats, with
the second register group as an active group and the first register group inactive,
which CPU can write. This allows the GRUE to switch between groups and keep
executing without delay. Additionally, CPU does not need to enable an interrupt,
nor poll the finish signal.

5.5 Arithmetic Functional Units

The following sections will discuss the mathematical complexity of the required
computations in GRU NN. This section will introduce a proposed structure and
discuss the complications that were considered while designing.

5.5.1 Matrix Multiplication

A vector of m elements multiplied with a matrix of m rows and n columns requires
m x n multipliers and m x (n-1) additions. As mentioned in 5.1 the number of
multipliers in the multiplication unit and the number of adders in the addition
unit are chosen to be eight. Hence, the matrix multiplication is broken down
into smaller chunks of computations. Row by Column multiplication approach is
implemented where each element of vector is multiplied with the corresponding
element of column in the matrix

P = A×B (5.1)

Dedicated Neural Network Engine 51


p1
p2
...
pm

 =
[
a1 a2 . . . am

]
×


a1 × b1,1 + a2 × b2,1 + . . .+ am × bm,1

a1 × b1,2 + a2 × b2,2 + . . .+ am × bm,2

a1 × b1,3 + a2 × b2,3 + . . .+ am × bm,3

...
a1 × b1,n + a2 × b2,n + . . .+ am × bm,n

 (5.2)

Since the inputs are limited to vectors of eight elements, this computation is further
broken down to the following form.

p1
p2
...

pm

 =


[a1 × b1,1 + . . .+ a8 × b8,1] + . . .+ [ak+8+1 × b(k∗8+1),1 + . . .+ am × bm,1]
[a1 × b1,2 + . . .+ a8 × b8,2] + . . .+ [ak+8+1 × b(k∗8+1),2 + . . .+ am × bm,2]

...
[a1 × b1,n + . . .+ a8 × b8,n] + . . .+ [ak+8+1 × b(k∗8+1),n + . . .+ am × bm,n]


(5.3)

where,

k =
⌊m
8

⌋
− 1 (5.4)

This method will produce eight results in parallel every cycle that will eventually
accumulate to a eight values of final result vector P. By repeating the same process
multiple times the entire result vector P is calculated. After m cycles all elements
of the result vector P have been calculated. This approach makes it possible to
acquire an eight value vector as a result and further apply computations on it while
the next eight values of the result vector P is computed.

5.5.2 Element-wise Multiplication

The element wise multiplication also known as Hadamard product is computed
in many layers of GRU algorithm. Element-wise vector multiplication can be
represented by equation 5.5, where A and B are m-sized vectors.

P = A�B (5.5)
p1
p2
...
pm

 =


a1 × b1
a2 × b2,n

...
am × bm

 (5.6)


p1
p2
...

pm

 =


[a1 × b1 + . . .+ a8 × b8,1] + . . .+ [ak+8+1 × b(k∗8+1),1 + . . .+ am × bm,1]
[a1 × b1,2 + . . .+ a8 × b8,2] + . . .+ [ak+8+1 × b(k∗8+1),2 + . . .+ am × bm,2]

...
[a1 × b1,n + . . .+ a8 × b8,n] + . . .+ [ak+8+1 × b(k∗8+1),n + . . .+ am × bm,n]


(5.7)

This operations can be computed using the same multipliers used for matrix
multiplication as these operations are not computed simultaneously. Thus, reducing
the need of a separate unit for element-wise multiplication and reducing energy
dissipation as the number of multipliers in the design reduces. In order to use the
same multiplication unit the element-wise multiplication must also be broken down
to chunks of eight elements.

52 Dedicated Neural Network Engine

5.5.3 Multiply-accumulate (MAC)

Figure 5.6 shows the structure of the MAC unit, which consists of eight 16x8-bit
multipliers, four 24-bit, two 25-bit, one 26-bit and one 27-bit adder, and a 27-bit
accumulator register to store partial sums. The accumulator is designed to be
27-bit to avoid overflow. The accumulator width was obtained through Matlab
simulations, considering the worst-case scenario of NN configuration as KWS GRU
pre-trained model of size 154x154x154x12 [14]. An additional overflow check is
introduced to check the truncated MAC output for overflows.

The bias value is preloaded in the accumulator before MAC operation begins;
this acts as a reset for accumulator and saves one addition operation. Different
layers in GRU NN have different fractional and integer parts for representing
biases, e.g. input layer has Q2.6 format, whereas the hidden layer has Q1.7 format.
Therefore, MAC has a number of shifts (# shifts) as input parameters to properly
align bias in an accumulator.

<<

A B

128 64 8 8

bias # shifts

16

Mul stage

Adder stage 1

Adder stage 2

Adder stage 3

Adder stage 4

Figure 5.6: Architecture of MAC unit.

Due to the limited range of the chosen fixed-point format Q10.6, using the same
word length for the accumulators and weights and activation would quickly cause
overflows, leading to significant accuracy loss. Therefore, higher wordlength is
preferred for accumulators. Multiplying two n-bit integers will result in a 2n-bit
number. To avoid overflow, the accumulator should be 2n+K bits wide, where K
represents the number of bits required to avoid overflow. The extra bits required

Dedicated Neural Network Engine 53

to avoid overflow depends on the network size and the range of the values of the
parameters.

MAC unit is used for point-wise multiplication, vector-matrix multiplication
and addition due to hardware optimization performed in section 5.3.1. It is designed
such that point-wise multiplication and addition results are obtained after multiplier
stage and adder stage 1, respectively.

5.6 Configuration Module

The configuration module contains configuration registers that are needed for
performing inference for multiple time steps. The word length of the configuration
registers is based on pretrained KWS GRU model. The module was designed to
configure the parameters of the NNs. The configuration registers are

• start - 1-bit register to trigger the inference.

• cordic_itr - Represents the number of cordic iteration. A five-bit register is
used to represent CORDIC iteration for up to 32-bit operands.

• sc_blk_0_start_addr, sc_blk_1_start_addr, sc_blk_2_start_addr - Reg-
isters contain the start address of three segments of scratch pad memory.
The word length necessary to address the memory space depends on the size
of the scratch pad memory. A six-bit register is used for the implemented
KWS GRU NN.

• sc_blk_0_end_addr, sc_blk_1_end_addr, sc_blk_2_end_addr - Regis-
ters contain the end address of three segments of the scratch pad memory.

• mem_start_addr - Register contains the start address of SRAM that store
weights and biases. A 14-bit register is used to address the SRAM memory
space.

• mem_end_addr - A 14-bit wide register contains end address of SRAM.

• input_sample_0_0-4 - The APB interface bus width is 32-bits wide. However
to store 12 inputs of 16-bit word length, 192-bit register will be required.
Hence, four 32-bit wide registers are defined to store group 0 input values.

• input_sample_1_0-4 - As mentioned above to accommodate for the 32-bit
wide APB bus, four registers of 32-bit are defined to store group 1 input
values.

• input_consumer - A one-bit wide register to indicate which ping-pong register
group the functional units are using.

• input_sample0_en - A one-bit wide register which is set high when ping-
pong register group 0 input values are ready. The GRUE set this bit low
when the input are consumed and no longer valid.

• input_sample0_stat - A one-bit wide register which is set high when group
0 register input values are used for the GRU network computation.

54 Dedicated Neural Network Engine

• input_sample1_en - 1-bit register which is set high when the interface has
finished loading the group 1 input values.

• input_sample1_stat - 1-bit register which is set when the group 1 register
input values are used for GRU network computation.

• prediction - Register to store the final prediction of the GRUE. The final
prediction is a number between 1-12, four-bits are required to represent the
prediction value.

• finish - A one-bit register that indicate computation of a batch of input is
done.

These registers are accessed over APB interface.

5.7 Memory

The GRUE has two memory modules, one SRAM bank consist of three single-port
SRAM memory that stores 64-bit words. A second is a scratch pad memory which
is a two port memory, consisting of standard-cells, that store 128-bit words. Based
on the requirements of KWS model, the number of words (vectors) required to
store weights and biases of GRU NN inference is 10001 64-bit vectors (∼78.132KB).
The RAM bank consist of three SRAM, two SRAMs of size 32KB and one of 16
KB giving total storage of 80KB as shown in Figure 5.7. Reading from smaller
SRAMs costs less energy when compared to reading from bigger SRAM instance.

Mux Contol

Memory bank

mem_w_b_if
(memory interface)

Memory 1
32KB

Memory 2
32KB

Memory 3
16KB

Figure 5.7: Structure of RAM bank.

Due to data flow optimizations explained in section 5.3.1, there is a need of a
memory that allows read and write in the same clock cycle. Scratch pad memory
is used instead of dual port memory for this purpose due to advantages such as
low latency and less area as dual port memories have an area overhead for small
capacities. A scratch pad memory have 60 words of 128-bit each (∼0.9375kB).

Another approach is to use three single port memories (SRAMs), each of
0.3125kB (20 words x 128-bits). However, this approach also has a higher area than

Dedicated Neural Network Engine 55

standard-cell memories due to the area overhead SRAMs have for small capacities.
Also for applications that requires several small capacity memories scratch pad
memories are a suitable choice [35].

The scratch pad memory is divided into three segments where each word stores
eight elements of 8-bit each, illustrated in Figure 5.8. After each new time step the
memory segment one and three are swapped, i.e. the memory segment used for
reading the inputs in one time step will become a segment for storing new results
in next time step and vice-versa, as shown in Figure 5.9.

128-bit 00h
01h
02h

13h
14h

3Bh

15h

27h
28h

Segment 1

Segment 2

Segment 3

0 1 2 3 4 5 6 7

Figure 5.8: Structure of scratch pad memory constructed using
standard cells.

Read (Ht-1)
Read/Write

Rt⊙Ht-1

Write (Ht)

Write (Ht)
Read/Write

Rt⊙Ht-1

Read (Ht-1)

Time Step 1 Time Step 2

Segment 1

Segment 2

Segment 3

Figure 5.9: Figure showing the flipping of scratch memory segments
after each time step.

56 Dedicated Neural Network Engine

5.8 FSMs

The two FSMs illustrated in Figure 5.10 and Figure 5.11 control the data flow in
the different units. State machines control the counters related to the number of
inputs, time steps, number of elements computed, CORDIC iteration count, etc.
These counters are used to change the states based on the comparison between
the counter value and the parameters. During reset both state machine are in idle
state.

The main controller is responsible for controlling the GRU algorithmic flow
by commanding the matrix controller and transferring the correct data to all the
modules. The matrix controller is responsible for controlling the MAC unit and
activation functions. The communication between the main controller and matrix
controller is limited to two signals, matrix trigger and eight done.

After reset, main controller is in idle state, start signal is generated by a
producer (e.g., a CPU) and transmitted to GRUE through APB interface. The
start signal is to let main controller know, input data is available in ping-pong
registers and computation can be started.

5.8.1 Main Controller FSM

The main controller is an FSM that control multiple time steps of the GRU
algorithm to produce final prediction against the input data set. When valid input
data is presented through the APB bus, it is stored in the input ping pong registers.
The start signal is asserted and the state changes from idle to reset gate state.
In the reset gate state, another FSM called matrix controller is triggered, which
controls bias loading, matrix multiplication, and activation functions. Whenever
matrix controller is triggered, one element is computed and stored in a temporary
register of size 8x16-bit. Once eight such values are computed and stored in a
register, eight_done signal is set high and FSM switch to R_h state.

The R_h state computes rt � ht−1, which is a part of (2.3), and stores the
result in segment two of scratch pad memory via multiplier intermediate results
input port, shown in Figure 5.16. The FSM remains in this state for one clock
cycle. If the scratch memory segment 2 is filled, sc_blk_2_full flag is asserted
and the main controller moves to candidate and update gate state. If the scratch
memory segment two is not full, the main controller moves back to the reset gate
state, and this process continues until scratch memory segment two is full (i.e., 154
values are stored).

In candidate and update gate state, matrix controller is triggered which is used
to calculate four values of candidate hidden state (h̃t) given by (2.2) and four
values of update gate (zt) given by (2.1). These eight values are stored in the same
temporary register, which was used to store the values of the reset gate. Once the
register is full eight_done signal is asserted and main controller moves to new_h
state.

The New_h state, computes h_t given by (2.4). This state computes four
values at a time and stores them in segment 1 or in segment 3 of scratch memory,
depending on which time step is being executed as explained in section 5.7. After
computing four values, main controller moves back to candidate and update gate

Dedicated Neural Network Engine 57

state until mat_comp_done is asserted. When mat_comp_done is set high and
time_step equals 25, main controller transit to output_layer state. Otherwise,
when time_step is less than 25 and cont_comp is high main controller moves to
reset gate state.

Idle

New_h
(Ht)

Output
layer Reset

gate

R_h

Not trigerred

Wait for eight
elements to be

computed
triggered

Eight elements
computed

Scratch memory
Segment two

not filled

Scratch memory
Segment two

filled
Candidate

and update
gate

Trigger FSM
to compute

Matrix elements

Trigger multiplier
unit

Wait for eight
elements to be

computed

Trigger FSM
to compute

Matrix elements

Eight elements
computed

Scratch memory
Segment one/three
 filled and timestep

Is equal to 25

Computation
finished

Wait for twelve
elements to be

computed

Trigger FSM
to compute

Matrix elements

Figure 5.10: Main controller FSM.

The Output layer state computes the final twelve outputs by triggering matrix
controller FSM. Once all the values are computed finish signal is set high, and the
main controller moves to the Idle state.

5.8.2 Matrix controller FSM

The FSM in Figure 5.11 controls the matrix multiplication in the GRUE. The
main controller triggers this state machine explained in section 5.8.1. During reset,
the FSM is in Idle state, and it remains in the idle state until the main controller
triggers the FSM.

In Load bias state, the bias value is loaded into the bias buffer and the
accumulator register from memory as shown in Figure 5.6. In this state ld_bias
signal is asserted, which is sent to the bias buffer module, explained in section
5.9. The FSM stays in load bias state for a single cycle, after which it changes to
compute matrix state.

The Compute matrix state is responsible for computing an element of a matrix

58 Dedicated Neural Network Engine

using MAC operation followed by an activation function. To achieve this several
steps needs to be done: the memory address controller has to increment the weights
address; the MAC input selector module provides the input data from the input
register and segment one/three of the scratch memory depending on time step as
explained in section 5.7 and the MAC module has to be enabled with relevant
weights and input. This is accomplished by setting the mem_addr_cnt_en and
mac_en flags. Once an element is computed ele_calc_done_upcnt_en flag is set
to increment the counter responsible for track of number of elements computed.
Afterwards, sigmoid or tanh activation is performed depending on the layer being
executed by setting act_funct_en and act_funct_sel flags.

Eight biases are fetched at a time from memory, out of which seven are stored
in a buffer, as explained in section 5.9. The rd_bias flag is used to read the bias
from the buffer and load it to the accumulator register. The rd_bias signal is used
for loading the biases corresponding to the computation of the element second to
eight. The FSM stays in this state, and the above process is repeated until eight
elements are computed, this is denoted by "still computing" in Figure 5.11. When
eight values are computed, eight_done flag is set and the state moves to activation
wait.

Idle

Load
bias

Compute
matrix

Activation
wait

Not triggered

Triggered

bias
loaded

Still computing

Computation
done

Performing
activation

Activation
performed

Read bias

Figure 5.11: Matrix controller FSM.

In the Activation wait state, the FSM waits for the activation function to complete
the computation. Since activation function is implemented using fast sigmoid
and fast tanh approximations using the cordic algorithm as mentioned in section
3.3.4, it takes up to 16 clock cycles to perform activation. This state is required

Dedicated Neural Network Engine 59

for the last element because activation functions are performed in parallel with
MAC operation. Once the MAC output is valid, it is sent to activation module, at
the same time MAC unit gets new input and start second element computation
as shown in Figure 5.12. On completion, eight_done flag is asserted and FSM
switches to Idle state.

MAC MAC

Activation

MAC

1 2 16 17-193-15

Activation
Idle for
4 clock
cycles

Idle Idle

MAC

20

Clock Cycles 

Activation

MACMAC MAC MAC

Figure 5.12: Activation computation in parallel with the MAC oper-
ation.

This state is required for the last element because activation functions are performed
in parallel with MAC operation. Once the MAC output is valid, it is sent to
activation module, at the same time MAC unit gets new input and start second
element computation as shown in Figure 5.12. On completion, eight_done flag is
asserted and FSM switches to idle state.

5.9 Buffer for bias

The buffer module consists of seven registers, where each entry in the register is
represented as an eight-bit signed value. Since the design is implemented using
eight multipliers, as explained in section 5.5.3. The weights and biases are arranged
in a memory such that eight values are stored at each word, see section 5.3.1. Due
to this implementation, eight values of the bias are fetched from memory at a time.
Out of these eight biases, one bias at MSB position is loaded to the accumulator
register, and remaining seven values are stored in a buffer. The buffer keeps track
of the values that have been used using a counter.

Two signals, namely ld_bias and rd_bias are used to control the loading and
reading of the biases to and from the buffer, respectively as shown in Figure 5.13.
Initially, at the start of computation, ld_bias signal is set, and biases are fetched
from the main memory and loaded into the buffer. Afterward, rd_bias signal is set
when a new value of the bias is required to be loaded in the accumulator register.
Once all the values in buffer are utilized i.e., eight values are computed, and the
temporary register explained in section 5.8.1 is filled; the buffer is loaded with new
biases by asserting the ld_bias signal and the process repeats.

60 Dedicated Neural Network Engine

Buffer storage

Buffer

bias_o
8

ld_bias

rd_bias

bias_i
56

Counter
FF

bias 2 bias 3 bias 4 bias 5 bias 6 bias 7 bias 8

Paralle data input

bias out

Figure 5.13: Block diagram of bias buffer.

5.10 MAC input selector module

This module is responsible for providing weights and inputs to the MAC unit. Main
memory, scratch pad memory, the activation result buffer, and input ping-pong
registers are four inputs to the MAC input module as shown in Figure 5.14. Based
on the value of the decider signal from the main controller, the MAC input module
determines which combination of the input source should be selected. When
performing matrix multiplication in the GRUE, 21 iterations of MAC operation
are required to get one element of a resultant matrix (P).

[
p1 p2 p3 . . . p154

]
=
[
a1 a2 a3 . . . a164

]
×


w1,1 w1,2 w1,3 . . . w1,154

w2,1 w2,2 w2,3 . . . w2,154

w3,1 w3,2 w3,3 . . . w3,154

...
w164,1 w164,2 w164,3 . . . w164,154

 (5.8)

Consider an example of reset gate computation where (2.1) can be simplified to
form

rt = σ([xt, ht−1]Wr + br), (5.9)

where [xt, ht−1] represents input xt concatenated with ht−1 (which is a vector of
zeros in the first time step).

In first iteration eight values fetched from the input ping-pong register along
with the corresponding weights from the main memory, these are sent to MAC
input A and B, respectively. In second iteration two values are fetched from
the input ping-pong register and concatenated with six values of ht−1 from the
scratch pad memory and sent to A along with the corresponding weights from main
memory to B. From iteration three to twenty-one, values for scratch pad memory
with corresponding weights from main memory are passed to the MAC unit. This
process is carried out for matrix multiplication multiplication in (2.1), (2.2) and
(2.3).

Dedicated Neural Network Engine 61

Ping-pong
register

Memory
(weights)

Scratch pad
memory

(Ht-1)

MAC input
controller

Mac input A

Mac input B

128

64

128

64

128

decider

Activation
result buffer

64

Figure 5.14: Data flow of MAC input controller.

For point-wise multiplication (rt � ht−1) in (2.3), activation results rt are fetched
from activation result buffer, see section 5.11, and eight ht−1 values are fetched
from scratch pad memory.

MAC input controller module handles the input distribution for (2.4) in a
slightly different manner. After computation of eight values in the candidate and
update gate state, see section 5.8.1, activation result buffer has four values of tanh
and four values of sigmoid. MAC input controller uses four values of sigmoid from
the buffer and performs 1− zt operation in (2.4). Append 1− zt result with ht−1

and send it to MAC input A. The Activation result buffer data is sent to MAC
input B.

5.11 Activation result buffer module

The activation functions, i.e., sigmoid and tanh, are computed one at a time. As
seen in (2.3), (2.4) the output of the activation functions are further fed as input
to the MAC unit.

8-bit 8-bit 8-bit8-bit8-bit 8-bit 8-bit8-bit
Serial	Data
Input

Parallel	Data
Output

MSB LSB

Figure 5.15: A shift register with parallel output to buffer activation
results.

62 Dedicated Neural Network Engine

However the MAC unit operates on vectors of eight elements as input. This requires
the output of the activation function to be buffered until eight values have been
computed. Thus, a shift-buffer with parallel output is implemented which stores 8
x 8 bits, a vector of 8 elements. Based on the act_compt_done signal from the
nn_gru_act_wrap_rtl module and decider signal from the main controller ,the
output from the activation function in nn_gru_act_wrap_rtl module is stored.

5.12 Scratch pad memory controller module

This module controls the flow of data to/from the scratch pad memory. On reset
the registers storing start/end addresses for the three segments of scratch pad
memory are initialized zero. When start signal is asserted, registers are loaded
with appropriate start/end addresses by configuration module. Depending on the
decider signal from main controller, read/write operations are performed to the
different segments of scratch pad memory.

When the main controller is in R_h state, i.e., computing rt�ht−1, see section
5.8.1, scratch pad memory controller keep track of the number of values computed.
Once scratch pad memory segment one is full, it asserts the sc_blk_2_full signal
which is used by main controller to switch between states.

Scratch Pad
Memory

Controller

Start address segment
{0-2}

End address segment
{0-2}

write enable
write data
write address
write bit enable
read enable
read address

Multiplier intermediate
results

decider

sc_blk_1_full

start

Figure 5.16: Block diagram of scratch pad memory controller.

5.13 Functionality verification

On reset, the data (weights and biases) are loaded in the nn_gru_memory from
three files namely wght_bias_0.bin, wght_bias_1.bin, and wght_bias_2.bin. Three
binary files corresponds to three memories instantiated in memory bank, see section
5.7. The binary files are generated using a Matlab script and it specifies the weight
and biase values. Testbench uses SystemVerilog’s $loadmemh built-in function to
load binary files in memory, illustrated in Listing 5.2.

Dedicated Neural Network Engine 63

nn_gru_top

nn_gru_top_tb

Environment

wght_bias_0.bin

apb3_if apb_interface

clock_reset_if clkpmrst_interface

mem_interfacewght_bias_1.bin

wght_bias_2.bin
nn_gru_memory

Figure 5.17: Overview of the testbench setup

The input_batch.bin file generated using Matlab was used to load the input values
in the ping-pong input register, see section 5.4.

1 ‘testbench.memory_block_inst.inst0.loadmem("wght_bias_0.bin");
2 ‘testbench.memory_block_inst.inst1.loadmem("wght_bias_1.bin");
3 ‘testbench.memory_block_inst.inst2.loadmem("wght_bias_2.bin");

Listing 5.2: SystemVerilog code for loading SRAM.

The testbench executes a sequence of write operations for populating the config-
uration registers. All the registers in the configuration module are set to their
reset values when reset_sys_b is asserted, the registers in the nn_gru_cfg module
are loaded with data necessary for executing the inference using the cfg_data_in
input. This is done by utilizing the write_reg task that takes register address and
data as arguments. A single write_reg operation require two clock cycles. After
the single GRU inference complete, read_reg task is used to read the max value
and the prediction value from the register.

64 Dedicated Neural Network Engine

Chapter 6
Synthesis Results

The Synopsys Design Vision tool was used to perform synthesis and estimate power
for the proposed design using standard cell library in a 28 nm technology. The
switching activity data generated from the gate-level simulations is dumped to
switching activity interchange format (SAIF) file, which is used for power analysis.
The SAIF file contains toggle counts on the signals of the design.

6.1 xDSP

The xDSP was synthesised at 9.6MHz frequency. The power number obtained by
running a benchmark on the smaller network of 4 neuron per layer are shown in
Table 6.1. As xDSP has a limited amount of memory, leakage of additional memory
instances that would be needed for a full network is added.

Table 6.1: Power in µW for the small and estimated GRU network
implementation on xDSP. It includes power numbers with and
without power management (PM).

Module
Power (µW)

Up to 40 neurons Estimated for 154
neurons

xDSP 44.90 44.90

Memory 36.01 36.01

Additional mem-
ory leakage

0 58.50

Total power 80.89 139.41

The total power during computation of one inference of GRU is 139.41µW, where
the leakage of additional memories that are required to store the parameters of

65

66 Synthesis Results

the GRU network is also added. Table 6.2 illustrates the energy dissipation per
inference for the 4, 20, and 40 neuron per layer network.

Table 6.2: Energy dissipation in µJ for the GRU network implemen-
tation on xDSP.

GRU network Energy (µJ)

4 neuron per layer 0.40

20 neuron per layer 1.93

40 neuron per layer 4.87

154 neuron per layer (estimated) 48.71

Due to the limited memory on xDSP processor, energy for the GRU network with
154 neurons in each layer was estimated by finding the scaling factor, see section
4.6. The energy dissipation of the network with 154 neuron per layer is 48.71µJ,
estimated by multiplying energy dissipation of 40 neuron per layer network by a
scaling factor of 10.

6.2 Dedicated GRUE

Table 6.3 shows the power numbers for the GRUE with three memory instances,
two instances of size 4096x64 and one instance of size 2046x64. The dedicated
GRUE with three memory instances have high dynamic power cost of 121µW. Due
to this another approach was also evaluated, where ten small memory instances of
8KB each was used, shown in Table 6.3.

Synthesis Results 67

Table 6.3: Power in µW for the dedicated GRUE with three and ten
memory instances.

Module
Power (µW)

Three memory instances Ten memory instances

Memory bank 135.50 90.06

Scratch pad memory 7.91 5.99

Combinational 55.82 41.15

Clock network 1.42 1.42

Register 4.73 4.61

Total Power 205.38 143.23

It can be observed from Table 6.3, that memory consumes the majority of the
power, ∼66%. The Figure 6.1 illustrates the area comparison of the SRAMs,
scratch pad memory, and the top module. The SRAMs occupy 87% of the area
and the top module occupy merely 3% of the area.

Memory , 87%

Scratch pad
memory, 10%

Top module, 3%

Figure 6.1: Area percentage occupied by modules.

Figure 6.2 illustrates the change in power cost of the memory when two different
memory configurations were used. The dynamic power, and the total power of the
memory reduced by 47% and 31%, respectively, when ten small memory instances
were used. However, leakage power increased by 76%.

68 Synthesis Results

205.38

135.50
120.70

14.77

143.23

90.06

64.06

26.00

Total Power Memory Memory Dynamic Memory Leakage
0

50

100

150

200

250

Po
w

er
 (µ

W
)

Three instances Ten instances

Figure 6.2: Power cost comparison of GRUE with three and ten
memory instances.

Table 6.4 shows the energy cost of dedicated GRUE with three memory instances
and ten memory instances.

Table 6.4: Energy cost for the dedicated GRUE.

Implementation Energy/CC (pJ) Energy/Inference (µJ)

Three memory instances 20.53 5.52

Ten memory instances 14.32 3.85

Although, significant decrease in power cost was observed when ten small memory
instances was used, there is considerable increase in area, illustrated in Figure 6.3.
The total area increased by 39%, whereas area occupied by memories increased by
45%.

Synthesis Results 69

0.153

0.133

0.212

0.192

Total Area Memory Area
0

0.05

0.1

0.15

0.2

0.25

Ar
ea

 (m
m

2)

Three instances Ten instances

Figure 6.3: Area comparison of GRUE with three and ten memory
instances.

Figure 6.4 illustrates the energy dissipation comparison between xDSP and GRUE.
The xDSP with scaled GRU network dissipate more energy by a factor of ∼13
compared to GRUE with three memory instances. Moreover, GRUE completes the
inference in 268854 clock cycles, which meets the real time requirement of 40 ms
to do the computation.

Figure 6.5 shows the area comparison between xDSP and GRUE implementation.
The area of the additional memory instances that are required for storing the
network parameters are added in the xDSP area. The area of the xDSP without
considering additional memories is 0.3 mm2, which is comparable to area of
dedicated GRUE with ten memory instances.

70 Synthesis Results

5.52 3.85 4.87

48.71

0

10

20

30

40

50

60

En
er

gy
 (µ

J)

GRUE with three memory instances

GRUE with ten memory instances

xDSP running trained 40 neuron/layer model on exsisting HW

xDSP estimated 154 neuron/layer model with additional memories

Figure 6.4: Energy cost comparison of GRUE with xDSP.

0.153

0.212
0.250

0.709

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ar
ea

 (m
m

2)

GRUE with three memory instances

GRUE with ten memory instances

xDSP running trained 40 neuron/layer model on exsisting HW

xDSP estimated 154 neuron/layer model with additional memories

Figure 6.5: Area comparison of GRUE with xDSP.

Synthesis Results 71

6.3 Discussion

The GRUE operates independent of software in general. The loading of input
parameters into the memory, loading of the configuration registers with the appro-
priate network parameters and memory addresses are required to be performed in
software. Adding the power management logic for memories can yield considerable
improvements in terms of leakage power and reduce the energy cost per clock cycle.

In terms of latency, GRUE performs close to minimum number of cycles
considering a single 64-bit memory interface and 8-bit parameters. This was
achieved by data flow optimizations, mentioned in Section 5.3.1. The GRU performs
additional MAC operations, caused by the fact that weights do not fit exactly in the
vector representation, i.e., the last vector is padded with four zero-valued weights,
which are also computed. Most of the energy cost is associated with memory access
and to less extent MAC operations. To achieve significant improvements on an
GRUE in terms of latency and energy dissipation, intermediate results are stored
in the scratch pad memory constructed using standard cells. Also, LUT was not
investigated at the implementation of HW.

72 Synthesis Results

Chapter 7
Conclusion

The purpose of thesis was to explore and evaluate the impact of GRU NN processing
on low-power hearing instruments (HI). Oticon’s HI use xDSP processor for pro-
cessing the audio data. Therefore, the xDSP processor was used for implementation
of GRU algorithm and for comparison with the dedicated GRUE.

The implementation of GRU inference on the xDSP processor was used to get
baseline metrics that were used to measure the improvements of the optimized
GRUE. It was observed that memory access and MAC operations are the most
costly in terms of energy cost. Also, most of the instructions shown in Table 4.3
did not correspond to MAC or memory access operations. This was probably
caused due to un-optimized software implementation and the functional units in
xDSP are designed for a different purpose. Since, energy dissipation and power
budget is a major concern in lower-power devices, a fixed-point or integer number
representation is ideal. The loss of accuracy caused due to reduced wordlength can
be overcome by retraining the network.

The GRUE performs inference in significantly less number of clock cycles. The
number of clock cycles are close to the number of vectorized parameters that need
to be retrieved from memory. In contrast to xDSP, GRUE takes significantly less
clock cycles to perform inference and meets the real time computation requirement
of 40 ms. For an audio sample of one second as input, xDSP takes around 473 ms
where as GRUE takes 26 ms. xDSP in not suitable for computing large-scale GRU
NNs. The dedicated GRUE solution has the best performance from the explored
solution and can be integrated with xDSP to compute NNs.

7.1 Future works

As future work, LUT can be implemented for computing activation functions.
Which will reduce the clock cycles (CC) required for computing sigmoid or tanh
activation from 16 CC to 2 CC. Furthermore, synthesizing GRUE with LUT
provide more accurate area and energy estimations for comparison with current
implementation.

Retrain the GRU NN with quantized weights, biases to recover some accuracy
loss. Inputs can also be quantized to eight-bit along with weights and biases,
followed by retraining, to further reduce the network size. Moreover, physical
implementation by place and route can be carried out to obtain more accurate area

73

74 Conclusion

and timing results.

7.1.1 Look Up Table (LUT)

A LUT approach is also evaluated for approximating the sigmoid and tanh activation.
MATLAB was used to generate a LUT and a decoding logic. The generated LUT
comprises of 50 entries of eight-bit each. A verilog file was also generated using
MATLAB. The LUT are hard-wired after synthesis, whose purpose is specific to
a function. Therefore, sigmoid and tanh require separate LUT. The area of a
single LUT is comparable to fast sigmoid and fast tanh implementation. Since,
separate LUT is required for sigmoid and tanh activation, the resulting area
of LUT implementation will be more than fast sigmoid and tanh approach for
approximation. The average relative error of sigmoid replacement function is 0.0017
and for tanh is 0.0038. It is observed that LUT implementation of activation
functions has less error as compared to other approximations evaluated.

Bibliography

[1] B. Marr, “Deep learning vs neural networks - what’s the difference?,”
2020. [Online]. Available: https://bernardmarr.com/default.asp?
contentID=1789.

[2] amoeba (https://stats.stackexchange.com/users/28666/amoeba),What
is the difference between a neural network and a deep neural network,
and why do the deep ones work better? [Online]. Available: https:
//stats.stackexchange.com/q/184921.

[3] B. Moons, D. Bankman, and M. Verhelst, Embedded Deep Learning:
Algorithms, Architectures and Circuits for Always-on Neural Network
Processing, 1st. Springer Publishing Company, Incorporated, 2018,
isbn: 3319992228.

[4] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. P. Kuksa, “Natural language processing (almost) from scratch,”
CoRR, vol. abs/1103.0398, 2011. arXiv: 1103.0398. [Online]. Available:
http://arxiv.org/abs/1103.0398.

[5] L. Deng, J. Li, J. Huang, K. Yao, D. Yu, F. Seide, M. L. Seltzer,
G. Zweig, X. He, J. D. Williams, Y. Gong, and A. Acero, “Recent
advances in deep learning for speech research at microsoft,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013, IEEE,
2013, pp. 8604–8608. doi: 10.1109/ICASSP.2013.6639345. [Online].
Available: https://doi.org/10.1109/ICASSP.2013.6639345.

[6] “Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups,” IEEE Signal Process. Mag.,
vol. 29, no. 6, pp. 82–97, 2012. doi: 10.1109/MSP.2012.2205597.
[Online]. Available: https://doi.org/10.1109/MSP.2012.2205597.

75

76 BIBLIOGRAPHY

[7] S. Y. K. G. B. L. p. i. L. E. Z. J. Y. T. T. N. X. S. S. Y. W. H. Y.
Jiantao Qiu Jie Wang, “Going deeper with embedded fpga platform for
convolutional neural network,” in FPGA ’16: Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2016, pp. 26–35. doi: 10.1145/2847263.2847265. [Online].
Available: https://doi.org/10.1145/2847263.2847265.

[8] R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning, “Parsing natural
scenes and natural language with recursive neural networks,” in Pro-
ceedings of the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, L.
Getoor and T. Scheffer, Eds., Omnipress, 2011, pp. 129–136. [Online].
Available: https://icml.cc/2011/papers/125_icmlpaper.pdf.

[9] J. Mao, W. Xu, Y. Yang, J. Wang, and A. L. Yuille, “Deep cap-
tioning with multimodal recurrent neural networks (m-rnn),” in 3rd
International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http:
//arxiv.org/abs/1412.6632.

[10] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with
deep recurrent neural networks,” CoRR, vol. abs/1303.5778, 2013.
arXiv: 1303.5778. [Online]. Available: http://arxiv.org/abs/1303.
5778.

[11] W. Wahby, T. Sarvey, H. Sharma, H. Esmaeilzadeh, and M. S. Bakir,
“The impact of 3d stacking on gpu-accelerated deep neural networks:
An experimental study,” pp. 1–4, 2016.

[12] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” CoRR, vol. abs/1703.09039,
2017. arXiv: 1703.09039. [Online]. Available: http://arxiv.org/
abs/1703.09039.

[13] S. Fernández, A. Graves, and J. Schmidhuber, “An application of
recurrent neural networks to discriminative keyword spotting,” in Ar-
tificial Neural Networks - ICANN 2007, 17th International Conference,
Porto, Portugal, September 9-13, 2007, Proceedings, Part II, J. M.
de Sá, L. A. Alexandre, W. Duch, and D. P. Mandic, Eds., ser. Lec-
ture Notes in Computer Science, vol. 4669, Springer, 2007, pp. 220–
229. doi: 10.1007/978-3-540-74695-9_23. [Online]. Available:
https://doi.org/10.1007/978-3-540-74695-9_23.

BIBLIOGRAPHY 77

[14] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword
spotting on microcontrollers,” CoRR, vol. abs/1711.07128, 2017. arXiv:
1711.07128. [Online]. Available: http://arxiv.org/abs/1711.
07128.

[15] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G.
Zweig, X. He, J. Williams, Y. Gong, and A. Acero, “Recent advances
in deep learning for speech research at microsoft,” IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2013. [Online]. Available: https://www.microsoft.com/en- us/
research / publication / recent - advances - in - deep - learning -
for-speech-research-at-microsoft/.

[16] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, F. R. Bach and D. M. Blei, Eds., ser. JMLR
Workshop and Conference Proceedings, vol. 37, JMLR.org, 2015,
pp. 1737–1746. [Online]. Available: http://proceedings.mlr.press/
v37/gupta15.html.

[17] D. Das, N. Mellempudi, D. Mudigere, D. D. Kalamkar, S. Avancha,
K. Banerjee, S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas, A.
Heinecke, P. Dubey, J. Corbal, N. Shustrov, R. Dubtsov, E. Fomenko,
and V. O. Pirogov, “Mixed precision training of convolutional neural
networks using integer operations,” in 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings, OpenReview.net, 2018.
[Online]. Available: https://openreview.net/forum?id=H135uzZ0-.

[18] P. Micikevicius, S. Narang, J. Alben, G. F. Diamos, E. Elsen, D. García,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu,
“Mixed precision training,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings, OpenReview.net, 2018. [Online].
Available: https://openreview.net/forum?id=r1gs9JgRZ.

[19] B. Fleischer, S. Shukla, M. Ziegler, J. Silberman, J. Oh, V. Srinivasan,
J. Choi, S. Mueller, A. Agrawal, T. Babinsky, N. Cao, C. Chen, P.
Chuang, T. Fox, G. Gristede, M. Guillorn, H. Haynie, M. Klaiber,
D. Lee, S. Lo, G. Maier, M. Scheuermann, S. Venkataramani, C.
Vezyrtzis, N. Wang, F. Yee, C. Zhou, P. Lu, B. Curran, L. Chang, and
K. Gopalakrishnan, “A scalable multi- teraops deep learning processor
core for ai trainina and inference,” in 2018 IEEE Symposium on VLSI
Circuits, 2018, pp. 35–36.

78 BIBLIOGRAPHY

[20] M. Harris, Mixed-precision programming with cuda 8. [Online]. Avail-
able: https://devblogs.nvidia.com/mixed-precision-programming-
cuda-8/.

[21] N. Wang, J. Choi, D. Brand, C. Chen, and K. Gopalakrishnan, “Train-
ing deep neural networks with 8-bit floating point numbers,” CoRR,
vol. abs/1812.08011, 2018. arXiv: 1812.08011. [Online]. Available:
http://arxiv.org/abs/1812.08011.

[22] “Ieee standard for binary floating-point arithmetic,” ANSI/IEEE Std
754-1985, pp. 1–20, 1985.

[23] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[24] 7 types of neural network activation functions: How to choose? [On-
line]. Available: https://missinglink.ai/guides/neural-network-
concepts / 7 - types - neural - network - activation - functions -
right/.

[25] h. Avinash Sharma V, Understanding activation functions in neural
networks. [Online]. Available: https://medium.com/the-theory-of-
everything/understanding-activation-functions-in-neural-
networks-9491262884e0.

[26] V. Vaghela, Activation functions and it’s types-which is better? [Online].
Available: https://www.neuronactivator.com/blog/journey-of-
an-ai-enthusiast-second-phase?c=1.

[27] Deep learning: Overview of neurons and activation functions. [Online].
Available: https://mc.ai/deep-learning-overview-of-neurons-
and-activation-functions/.

[28] h.-a. Wasi Ahmad, What is the intuition of using tanh in lstm. [Online].
Available: https://stackoverflow.com/questions/40761185/what-
is-the-intuition-of-using-tanh-in-lstm.

[29] T. Yang, Y. Wei, Z. Tu, H. Zeng, M. A. Kinsy, N. Zheng, and P.
Ren, “Design space exploration of neural network activation function
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 10, pp. 1974–1978, 2019.

[30] M. Paschou, “Asic implementation of lstm neural network algorithm,”
Master’s thesis, KTH, School of Electrical Engineering and Computer
Science (EECS), 2018, p. 79.

[31] M. Pascale, Microcontrollers cordic methods. [Online]. Available:
https://www.drdobbs.com/microcontrollers-cordic-methods/
184404244.

BIBLIOGRAPHY 79

[32] P. Gysel, J. J. Pimentel, M. Motamedi, and S. Ghiasi, “Ristretto:
A framework for empirical study of resource-efficient inference in
convolutional neural networks,” IEEE Trans. Neural Networks Learn.
Syst., vol. 29, no. 11, pp. 5784–5789, 2018. doi: 10.1109/TNNLS.2018.
2808319. [Online]. Available: https://doi.org/10.1109/TNNLS.
2018.2808319.

[33] R. Krishnamoorthi, “Quantizing deep convolutional networks for ef-
ficient inference: A whitepaper,” CoRR, vol. abs/1806.08342, 2018.
arXiv: 1806.08342. [Online]. Available: http://arxiv.org/abs/
1806.08342.

[34] W. Dally, High-performance hardware for machine learning. [On-
line]. Available: https : / / media . nips . cc / Conferences / 2015 /
tutorialslides/Dally-NIPS-Tutorial-2015.pdf.

[35] O. Andersson, B. Mohammadi, P. Meinerzhagen, A. Burg, and J. N.
Rodrigues, “Ultra low voltage synthesizable memories: A trade-off
discussion in 65 nm cmos,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 63, no. 6, pp. 806–817, 2016.

Gate Recurrent Unit Neural Networks for
Hearing Instruments

HARSHIT SHARMA
PALLAVI RAJANNA
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

H
A

R
SH

IT SH
A

R
M

A
 &

 PA
LLA

V
I R

A
JA

N
N

A
G

ate R
ecurrent U

nit N
eural N

etw
orks for H

earing Instrum
ents

LU
N

D
 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-774
http://www.eit.lth.se

