
Spice Circuit Reduction for Speeding Up
Simulation and Verification

CANCAN YIN
MENGLIN WANG
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

C
A

N
C

A
N

 Y
IN

 &
 M

EN
G

LIN
 W

A
N

G
Spice C

ircuit R
eduction for Speeding U

p Sim
ulation and Verification

LU
N

D
 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-698
http://www.eit.lth.se

Spice Circuit Reduction for Speeding Up
Simulation and Verification

Cancan Yin
ca8267yi-s@student.lu.se

Menglin Wang
me3457wa-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor:
Joachim Rodrigues

joachim.rodrigues@eit.lth.se
Hemanth Prabhu (Xernergic AB)
hemanth.prabhu@xenergic.com

Xiao Luo (Xernergic AB)
xiao.luo@xenergic.com

Examiner:
Erik Larsson

erik.larsson@eit.lth.se

June 13, 2019

© 2019
Printed in Sweden
Tryckeriet i E-huset, Lund

Acknowledgements

We would like to first thank our supervisor Xiao Luo and Hemanth Prabhu at
Xenergic for their continuous help and precious support through this project. We
also would like to thank Babak Mohammadi, CEO of Xenergic, for always offering
us his support and answering our questions patiently. We wish to thank Joachim
Rodrigues, our supervisor at Lund University, Faculty of Engineering, for giving
us valuable advices. We are grateful to Xenergic for offering us this great oppor-
tunity and also to our colleagues for sharing their experience with us.

We would like to express our gratitude to Lund University for giving us the
chance to take this Master Program, and also thanks to our classmates who have
spent this unforgettable two years with us.

At last but not least, we want to thank our families for their love and support
that encourage us to overcome all the difficulties.

i

ii

Abstract

The focus of this work has been to implement a generic netlist reduction en-
gine to speed up circuit simulations. The netlist reduction techniques are further
optimized for Static Random-Access Memory (SRAM), wherein we exploit the
repetitive pattern of the circuit.

There are many driving factors for developing a netlist reduction engine for
SRAM simulations. In today’s System on Chip (SoC), SRAM sizes are in megabyte
ranges to support ever-increasing demands for features. The increasing size of
SRAM makes it one of the biggest contributors of power consumption and area
of a SoC. Many of today’s state-of-the-art SoCs have on average more than 50%
area and power consumption due to SRAMs. Hence it is very crucial to run full
simulations of SRAM to check functionality, timing and power numbers. Unfor-
tunately, due to the huge size of SRAM, it is unfeasible to simulate the whole
SRAM, since it would take in the order of months to perform simulations. Also, a
typical SRAM needs to be run for different corners, which is performed by Monte
Carlo simulations, which is even more computationally intensive. Tackling these
issues is the key focus of this thesis. We perform this by exploiting the iterative
nature of the SRAM circuit.

The design is implemented in Python and verified on Xenergic’s latest SRAM
by using Cadence® simulation tools. The reduction engine has shown to provide
a speed up of around 95% (using Spectre® simulator) for a 4 kb SRAM. The
tolerance of simulation results between the original SRAM netlist and a reduced
netlist are below 5%. Furthermore, there is no difference when it comes to SRAM
functionality via the digital interface. In addition, time for the whole reduction
process is far less than saved simulation time for a large scale circuit.

iii

iv

Popular Science Summary

Nowadays, people’s reliance on electronic products is ever-growing, which is driv-
ing the demands for higher computational power and mobility of electronic devices.
This increasing demand has led to quick updates on electronic devices in a very
competitive market, which means time for design cycles in electronic devices can
be very short. Shorter design cycles may help companies seize more opportunities.
IC design takes up a portion of electronics device designs. Hence, the design pro-
cess of IC needs to be accelerated to adapt to the rapid changes. The simulation
of design plays an important role in the design process. It allows the designer
to know how the design works in reality, so the designer is able to modify and
verify their design. However, the simulation can take a huge amount of time, since
circuits today consist of hundreds of thousands of transistors and the transistor
model for running accurate circuit simulation is very complex. This means that a
large amount of data are processed to simulate circuit behavior. Besides, during
the design process, circuit design needs to be modified and verified several times
before manufacturing. Therefore, long simulation time can cause a large increase
in the design time. This master thesis proposes decreasing the simulation time
by ignoring redundant parts of the circuit during the simulation. As a result, the
simulation time of the reduced circuit can be cut significantly while the function-
ality of the circuit is still ensured.

v

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis specification and Main Challenge 2
1.3 Thesis Outline . 3

2 Simulation Speeding Up Methodology 5
2.1 Background . 5
2.2 Simulation Model Improving Method 13
2.3 Netlist Reduction Method . 14

3 Implementation of Reduction Engine 21
3.1 Algorithm Design . 21
3.2 Configuration Before the Reduction 26
3.3 Netlist Reduction . 27
3.4 Build RC Models for Redundant Circuits 33
3.5 Extract Critical Path for a Circuit 35

4 Verification of Reduction Engine 37
4.1 Flow of Verification . 37
4.2 General Function Verification . 39
4.3 Results Comparison and Analysis 39
4.4 Comparison with Other Methodology 46

5 Conclusions 49

6 Future Work 51

References 53

vii

viii

List of Figures

1.1 Simulation flow overview showing the application of the netlist re-
duction engine. The reduction process speeding up the simulation is
shown inside a dashed square. 2

2.1 The bistable circuit schematics (right) and its symbol (left).Two in-
verters which consist of M1, M3 and M2, M4, are connected in cascade
along, forming a positive feedback. 6

2.2 The single port SRAM bitcell. M1, M2, M3, and M4 comprise a
bistable structure which can hold the value stored in the bitcell. M5
and M6 connect the BL/BLB with the bistable structure, allowing
writing/reading value when WL is on. 6

2.3 The dual port SRAM bitcell. M1, M2, M3, and M4 comprise a bistable
structure which can hold the value stored in the bitcell. Four transis-
tors (M5, M6, M7, M8) connect the bistable structure with the four
BLs. Two parallel operations can be managed. 7

2.4 A memory macro. Bitcells in each row share one WL and bitcells in
each column share the same BLs. 8

2.5 A memory bank consists of several memory macros. 9
2.6 The schematic of an inverter. 12
2.7 Application of the finite-point-based transistor model [8]. 13
2.8 Redcution based on known structure and known critical path [12]. . . 15
2.9 Simplified BL model and WL model of memory core [13]. 16
2.10 Distributed and lumped π model of wordline [13]. 16
2.11 Distributed and lumped π model of bitline [13]. 17
2.12 Auto DRAM process flow [14]. 18
2.13 Gate recognition method flow for active path tracing. 18
2.14 Logic tree of function recognition algorithm. 19

3.1 Circuit structure after clustering. 22
3.2 Fixed target bitcells. One type circles lead to one input information

group and one target bitcell. Only bitcells labeled [1,1,1,1] remain. . 23
3.3 Active clusters tracing example. The right net is a "start" net and

clusters in shadow squares will be recorded as possible active clusters. 23
3.4 Leakage in inactive bitcell. 24

ix

3.5 First step of reduction for accurate capacitance extraction. 25
3.6 Capacitor model for reduced bitcells which connected directly to target

BLs and WLs. 25
3.7 Two structures to store the netlist data. Flatten circuit structure for

processing and hierarchy circuit structure for new netlist reconstruction. 27
3.8 The flow of classification process. 28
3.9 Bitcells sharing the same BLs. 29
3.10 Active path tracing flow . 30
3.11 Two bitcell targets . 30
3.12 Active cluster tracing flow. A represents the latest testing cluster in

one tracing path and B represents any cluster connect to A. 31
3.13 The flow of reconstruction process. 33
3.14 Different strategies for different bitcells. 34
3.15 Critical path tracing example. "w" is the weight of current cluster

and "r" is the former biggest weight cluster name. Weight can be
calculated differently according to different algorithms. 35

4.1 The flow of verification process. 37
4.2 An example waveform for measurement. 38
4.3 Testbench separation . 39
4.4 Comparison between simulation results of original circuit and reduced

circuit during read operation. (a) is the reference clock signal, (b) is
the output data reading out of the original circuit. (c) is the output
data reading out of the reduced circuit. 40

4.5 Comparison between the simulation results of the original circuit and
the reduced circuit during the write operation. (a) is the reference
clock signal, (b) the signal transition when writing a value into the
bitcell of the original circuit, (c)the signal transition when writing a
value into the bitcell of the reduced circuit. 41

x

List of Tables

4.1 Tested SRAM types . 38
4.2 Rate Calculation Example . 39
4.3 Simulation results influenced by different simulators. 42
4.4 Different mthods to process peripheral circuits 43
4.5 Different peripheral process methods comparison for 4 kb (64 × 64)

SRAM with a simple peripheral circuit (6.2%) 43
4.6 Different peripheral process methods comparison for 32 kb (32× 32×

32) SRAM with a complex peripheral circuit (19.2%) 44
4.7 Reduction time and simulation time comparison 44
4.8 Tolerance when keeping one column and one row of bitcell 45
4.9 Simulation results comparison with other methodology 46

xi

xii

Listings

2.1 An inverter netlist for SPICE® simulator 11
2.2 An inverter netlist for Spetre® simulator 11

xiii

xiv

List of Abbreviations

BL BitLine. ix, 6–8, 10, 22, 24, 33

BLB Bitline-inverse. ix, 6, 7

BSIM Berkeley Short-Channel insulated-gate field-effect transistor Model. 13

C-V Capacitance-Voltage. 13

CMOS Complementary Metal Oxide Semiconductors. 1

HRC High Replication Circuits. 7

I-V Current-Voltage. 13

SoC System on Chip. iii, 1

SPICE Simulation Program with Integrated Circuit Emphasis. 1

SRAM Static Random-Access Memory. iii, ix, xi, 1, 2, 5–7, 10, 14, 21, 26–28,
37, 38, 42–45, 49, 51

WL WordLine. ix, 6–8, 10, 22, 24, 33

xv

xvi

Chapter 1
Introduction

Today’s System on Chip (SoC) needs large amounts of memories to support vari-
ous functionalities and features. On-chip memories can improve the functionality
of SoC and in particular, Static Random-Access Memory (SRAM) is a popular
choice due to its high access speed and relatively low power consumption.

SRAMs in many of today’s SoCs are in the range of megabytes [1] which
results in a very large design. Take the 6-T SRAM for example, every bit will
be stored in an individual unit which contains two stable states of a latch com-
posed of two Complementary Metal Oxide Semiconductors (CMOS) inverters in a
feedback loop [2]. This would result in an extremely huge number of transistors,
resistors, and capacitors. In other words, the netlist file that describes electronic
components, nets, and connections in an SRAM schematic can be extremely large.
If there is a need to run SPICE® (Simulation Program with Integrated Circuit
Emphasis) simulations through all the circuit components to get accurate results,
it can be very computationally intensive. For a large SRAM, these simulations
can take time in orders of weeks or months even in a huge server. During the
iteration of SRAM design, the simulation time reduction can improve the total
design drastically.

1.1 Motivation
The increasing size of memories used in SoCs will lead to the increasing complex-
ity of circuits, so verification of the memories can be a problem due to the long
simulation time. The behavior of components in the circuit are simulated by anal-
ysis and computation based on device models. During the simulation, stimuli are
given to activate a part of the circuit. Take the SRAM circuit as an example, only
a very small part of the circuit (active bitcell rows and corresponding peripheral
circuits) is operating. Therefore, there are different methods to speed up circuit
simulation, such as netlist reduction or improving device models.

This thesis focuses on using circuit reduction techniques to shorten the simu-
lation time. The advantages of this method are that it will not change the circuit

1

2 Introduction

design itself and the simulator does not change.

1.2 Thesis specification and Main Challenge
In order to decrease the simulation time, an automatic netlist reduction engine is
proposed. Figure. 1.1 shows the general design idea of the reduction engine. The
idea is to lower the number of circuit components in the netlist so that the simula-
tion speed improves. This is achieved by observing circuit components and nodes
and checking those parts which influence the observation nodes. These components
which influence the observation nodes are flagged. By removing the non-flagged
parts of the circuit and equivalent simpler models are substituted for them, the
simulation time can be significantly lowered. One important aspect to note here is
that the functionality of the circuit should remain unaffected. In this project, the
reduction engine has a particular pattern detection function which will enhance the
reduction dramatically for a special structured circuit like SRAM. After the real-
ization of the reduction aimed at 6-T SRAM, the program can also be extended to
other kinds of SRAM and even to general circuits through a corresponding add-on.

original
netlist

original
netlist

simulator simulator

reduced
 netlist

simulation
 results

simulation
 results

(slow) (fast)

reduction
 engine

Figure 1.1: Simulation flow overview showing the application of the
netlist reduction engine. The reduction process speeding up the
simulation is shown inside a dashed square.

The main challenges in this project are described below.

• The pattern recognition of the bitcell logic.

Introduction 3

• The method to detect the redundant part of the circuits based on the given
simulation condition.

• How to establish a replacing model to maintain the accuracy of the simula-
tion results.

1.3 Thesis Outline
In Chapter 2, basic concepts related to the netlist reduction algorithm and previ-
ous work about reducing circuit simulation time are presented. In Chapter 3, a
hybrid circuit reduction algorithm is proposed first. The implementation process
is described thoroughly after the algorithm description. The verification of the
design and results comparison are discussed in Chapter 4. In Chapter 5, a conclu-
sion is drawn for the thesis. Chapter 6 discusses the future work of this project.

4 Introduction

Chapter 2
Simulation Speeding Up Methodology

Circuit simulation accounts for a substantial portion of a whole circuit design pro-
cess. In order to decrease the simulation time, various simulation speeding up
methodologies have been proposed. In this Chapter, relative background concepts
are explained first. Several methodologies from two aspects, improving device
model and improving the simulation process, are studied after the background
description.

2.1 Background

In this section, the relative background knowledge of the netlist reduction engine
is introduced. Section 2.1.1 gives an introduction about the architecture of mem-
ory. Section 2.1.2 explains some concepts related to simulation and verification of
designs.

2.1.1 Memory Architecture

The structure of memories is the reason why the netlist reduction is more efficient
on SRAMs than general circuits. In this section, a short introduction of SRAM
bitcell structure and SRAM architecture is present.

2.1.1.1 SRAM bitcell structure

Bistable Circuit: A bistable circuit is an electronic circuit that can hold two
stable states (0 and 1). This structure is also in SRAM. As shown in Figure. 2.1,
two inverters are connected in cascade along. The positive feedback in this struc-
ture is a basis of the storage capacity of SRAM [3].

5

6 Simulation Speeding Up Methodology

VDD

GND

M1

M3

M2

M4

Figure 2.1: The bistable circuit schematics (right) and its symbol
(left).Two inverters which consist of M1, M3 and M2, M4, are
connected in cascade along, forming a positive feedback.

VDD

GND

WL

BL BLB

Q QB

M1 M2

M3 M4

M5 M6

Figure 2.2: The single port SRAM bitcell. M1, M2, M3, and M4
comprise a bistable structure which can hold the value stored in
the bitcell. M5 and M6 connect the BL/BLB with the bistable
structure, allowing writing/reading value when WL is on.

Simulation Speeding Up Methodology 7

VDD

GND

WL1

BL1 BL1B

WL2

BL2 BL2B

M1 M2

M3 M4

M5 M6

M7 M8

Figure 2.3: The dual port SRAM bitcell. M1, M2, M3, and M4
comprise a bistable structure which can hold the value stored
in the bitcell. Four transistors (M5, M6, M7, M8) connect the
bistable structure with the four BLs. Two parallel operations
can be managed.

Single port SRAM: A conventional 6-T single port SRAM bitcell is shown in
Figure. 2.2. Six transistors are used to store one bit in this SRAM structure. By
pre-charging/discharging Bitline (BL) and Bitline-inverse (BLB), the voltage of
bitlines can be controlled. In write mode, BL will be set to 0/1 and BLB will
be set to the opposite value, then by activating wordline (WL), the value can be
stored in SRAM. When doing a read operation, two BLs need to be charged to 1
at first. The value stored in the bitcell can be known by detecting the voltage of
these two BLs when WL is active.

Dual port SRAM: A conventional 8-T dual port SRAM bitcell is shown in Fig-
ure. 2.3. The write operation and read operation of 8-T dual port SRAM bitcell
is quite similar to the 6-T single port SRAM bitcell, but the 8-T dual port SRAM
bitcell can manage two parallel operations due to the presence of two pairs of BL
and two WL.

2.1.1.2 SRAM architecture

SRAM is a High Replication Circuit (HRC), because bitcells are replicated in the
whole circuit [4]. Netlist reduction can be very efficient on the SRAM circuit, due
to this feature. It is also the reason why simulating reduced netlist can verify the
functionality of the SRAM circuit.

8 Simulation Speeding Up Methodology

Memory Macro: A memory macro consists of a bitcell arrary and correspond-
ing peripheral circuits. A memory macro is shown in Figure. 2.4. Bitcells in the
same row1 shares the same WL, and bitcells in one column2 use the same BL.
By selecting the WL and two BLs, a certain bitcell can be chosen for one read
operation or write operation.

BL1 BLB1BL2 BLB2 BLN BLBN

WL1

WL2

WLM

BITCELL

BITCELL

BITCELL

BITCELLBITCELL

BITCELL

BITCELLBITCELL

BITCELL

BITCELL

Pe
rip

h
e
ra

l C
ircu

its

Peripheral Circuits

Row 1

Row 2

Row M

Column 1 Column 2 Column N

Memory Macro

Figure 2.4: A memory macro. Bitcells in each row share one WL
and bitcells in each column share the same BLs.

Memory Bank: A memory bank is a unit of memory, which is commonly used in
large-scale memory design. The capacitance on WL and BL can be very large if a
large memory comprises one large bitcell array directly. This can lead to errors in
write operation or read operation, such as writing a wrong value into the bitcell,
and the speed of reading operation and writing operation can also be influenced.

Large memories normally consist of several memory banks and these memory
banks are composed of small size bitcell arrays. A memory bank consists of several
memory macros is shown in Figure. 2.5. The bitcells in one memory bank are se-

1In this paper, one row of bitcells means a row of bitcells on WL-direction
2In this paper, one column of bitcells means a column of bitcells on BL-direction.

Simulation Speeding Up Methodology 9

lected by giving a certain address at the input during the write and read operation.

Memory Bank

Memory Macro 1

bitcell bitcell bitcell

bitcell bitcell bitcell

Peripheral Circuits

Peripheral Circuits

Peripheral C
ircuits

Memory Macro N

Pe
rip

h
e
ra

l C
ircu

its

Peripheral Circuits

Pe
rip

h
e
ra

l C
ircu

its

Figure 2.5: A memory bank consists of several memory macros.

The simulation time is very long due to a large number of transistors/compo-
nents, although only one bitcell in one memory bank is required when doing the
write or read operation. Therefore, the rest of the bitcells can be replaced with
simpler models to reduce the total number of transistors. Take an 8 kb (64×64×2)

10 Simulation Speeding Up Methodology

size memory as an example, which means there are 64 rows and 64 columns of bit-
cells in one memory bank and the memory consists of two memory banks. If one
bitcell is the target bitcell of read/write operation, 8191 bitcells can be removed
and only one bitcell remains during netlist reduction process. If the 6-T SRAM
bitcell structure is used in this memory, the number of transistors in inactive bit-
cells are 49146. A large number of transistors in inactive bitcells can lead to a
large amount of information to be processed during circuit simulation. The reduc-
tion will be more efficient when the size of SRAM is large, since bitcells takes the
largest number of transistors in the whole SRAM circuit.

The SRAM architecture is also the reason why the functionality of the SRAM
circuit can be verified by simulating the reduced circuit netlist. The peripheral
circuit in the SRAM circuit takes a small number of transistors in the whole cir-
cuit, and some peripheral circuit blocks are shared by the HRC in the SRAM. For
example, a row of bitcells can be activated by one WL and the WLs are controlled
by the decoder, which means the decoder block can manage several rows of bitcells.
It is able to verify that one row of bitcells can be activated by the corresponding
WL by testing the behavior of one bitcell in this row. Therefore, the simulation
results of the reduced circuit can be used to verify the feature of the whole SRAM
circuit.

2.1.1.3 Peripheral Circuits

The peripheral circuits are very important parts of the memory circuit. It consists
of blocks with different functionalities, such as address decoders, sense amplifiers
as well as timing and control blocks.

Address decoder: Address decoder is a functional block which is responsible for
WL selection. It is comprised of a lot of logic gates. Each input address pattern
is referring to a certain WL of the memory. Normally, an X-input decoder is able
to handle 2X WLs [3].

Sense amplifier: Sense amplifier is a functional block which outputs the value
reading from the bitcell by sensing the difference on BLs. The sense amplifier can
be used to reduce the operation delay because it can detect a small difference on
the BLs and amplify it to large signal output. This means that the voltage of BLs
does not need to be exactly 0, when 0 is reading out from the bitcell. Therefore,
the time between WL activated and signal read out can be reduced [3].

Timing and control: The operation of the memory consists of a series of se-
quential actions. For example, the bitlines need to be precharged before the WL
is activated. Therefore, the timing and control circuit should be designed very
carefully [3].

A large part of the peripheral circuit blocks can be removed during the netlist
reduction process while reducing the memory to one bitcell or one row of bitcells.

Simulation Speeding Up Methodology 11

In particular, some sensitive analog circuit blocks, such as the timing control block,
are set as "do not touch" to avoid inside modification.

2.1.2 Simulation and Verification of Designs
The simulator is also one factor which lead to a long time simulation. In this
section, concepts related to simulation and verification process is introduced, in-
cluding the feature of netlist and simulators.

2.1.2.1 Circuit Netlist

A netlist is a description of an electronic circuit. It contains the information about
components, such as transistor models, and their connections. Netlists can be writ-
ten in different formats, and the one we are dealing with is hierarchical netlist.

The circuit design is normally divided into small parts when the design is very
large. These small parts, called subcircuits, are ‘packaged’ and used in the circuit
as instances. In netlists, a subcircuit is declared only once and invoked as the
circuit model of instance. Therefore, the subcircuit is in lower hierarchy and the
circuits that invoke the subcircuit are in a higher hierarchy.

Listing. 2.1 and Listing. 2.2 shows an example of an inverter netlist for SPICE®

simulator and Spectre® simulator respectively. The corresponding inverter schematic
is shown in Figure. 2.6. The inverter is described as a subcircuit in the netlist. At
the beginning of the subcircuit declaration, the subcircuit name and the ports of
this subcircuit are mentioned. All the components in this subcircuit are described
in the body. The description order of one component is the component name, the
component connection, the component model and some related parameters. The
main structures of these two netlists are very similar, although there is a small
difference in the format. Netlists can be processed by a specific simulator. There-
fore, the reduced netlist can be simulated directly.

Listing 2.1: An inverter netlist for SPICE® simulator
. SUBCKT Inve r t e r out in vdd vdds gnd gnds
M0 out in vdd vdds trans i s tor_mode l L=length W=width
M1 out in gnd gnds trans i s tor_mode l L=length W=width
.ENDS

Listing 2.2: An inverter netlist for Spetre® simulator
subckt I nv e r t e r out in vdd vdds gnd gnds
M0 (out in vdd vdds) trans i s tor_mode l L=length W=width
M1 (out in gnd gnds) trans i s tor_mode l L=length W=width
end Inve r t e r

12 Simulation Speeding Up Methodology

vdd

gnd

in out

vdds

gnds

M0

M1

Figure 2.6: The schematic of an inverter.

2.1.2.2 Simulator for processing netlist

There are different simulators that can be used to process circuit netlist files for
different requirements.

SPICE® simulator: SPICE® is a circuit simulator for verifying the integrated
circuit design in detailed transistor-level. It can simulate the behavior of circuits
by processing certain electronic component models. SPICE® simulation allows
designers to verify if the circuit operation is exactly as it is expected before man-
ufacturing [5].

Spectre® simulator: Spectre® simulator is a SPICE-class circuit simulator
that can analyze circuits in detailed transistor-level. It can provide high precision
simulation results, but with long time and high memory occupancy at the same
time [6]. For large-scale circuits with high complexity, the Spectre® simulator
is not even able to process them in a general server, due to the huge amount of
information to be calculated and to be stored.

UltraSim® simulator: UltraSim® is a circuit simulator which can verify the
functionality of large-scale hierarchical circuits. It is faster and with lower memory
consumption compared with traditional simulators like Spectre®. The drawback
is that the simulation results of UltraSim® are not as accurate as of the results of
the Spectre® simulator [7]. Therefore, the UltraSim® can be used to check the
functionality of huge circuits which are even not able to be run by the Spectre®
simulator.

Simulators use complex device models to simulate the whole circuit, including
active parts and inactive parts. Some inactive parts of the circuit do influence the
active parts of the circuit somehow, and the influence comes from the resistance
and capacitance characteristics of transistors. However, the simulator will perform

Simulation Speeding Up Methodology 13

a very complicated calculation based on a corresponding transistor model library.
This process is very time-consuming and memory-consuming since the intensive
computation can generate a huge amount of data. This can be solved if the inac-
tive part of the circuit is replaced by equivalent resistance and capacitance models.

2.2 Simulation Model Improving Method
Some researches focus on decreasing simulation time by improving the simula-
tion principle itself. As explained in Section 2.1.2, a trade-off between speed and
accuracy exits in different simulators. These methods are going to decrease the
simulation time without sacrificing accuracy or increase the accuracy without sac-
rificing simulation time.

[8] proposed a new simplified transistor model, a finite-point-based transistor
model, to handle the increasing transient simulation time. This model uses an
analytical expression to describe the process impact and design variations for the
finite key points in I-V (Current-Voltage) and C-V (Capacitance-Voltage) charac-
teristics of a transistor. The finite data points, five critical data points specifically,
are extracted based on physical meaning and their importance in circuit opera-
tion. As shown in Figure. 2.7, this model extrapolated the full I-V and C-V from
limited data point to save the statistical simulation time. As a result, this model
can reduce the simulation time up to nine times compared to Monte-Carlo sim-
ulations with BSIM (Berkeley Short-Channel insulated-gate field-effect transistor
Model) [10, 11].

compact transistor model

variation-aware models for
finite points on I-V and C-V

full I-V and C-V extrapolated
 from finite points

statistical circuit simulations

 process
sensitivity

 variations
(L, Vth, Vdd, etc.)

Figure 2.7: Application of the finite-point-based transistor model [8].

[9] proposed a new method to reduce the order of circuit equations in simula-
tion processes for both linear and nonlinear circuits. In order to reduce the order of
a circuit, a congruence transformation with the projection matrix is needed. This
method speeds up the whole process by reducing the calculation cost in generating
a projection matrix. It remodels the projection matrix at each time point in the

14 Simulation Speeding Up Methodology

simulation. This means calculating a reduced Jacobian matrix directly in each
Newton-Raphson iteration to avoid calculating the original size of the Jacobian
matrix which will cost more time.

2.3 Netlist Reduction Method
The two methods mentioned in Section. 2.2 focus on device evaluation time, while
some other methods focus on another factor of simulation runtime: circuit scale
itself. These methods use different algorithms and different pre-configurations to
achieve the same purpose: reduce the inactive parts of the circuit with fixed pre-
confugurations. This is also the purpose of our engine.

2.3.1 Manual SRAM Reduction Method
The manual reduction methods always have an assumption: the architecture and
details of the circuit is known before the reduction and modifications can be done
manually. Two methods are studied in this section and they are both struggling
with the complexity of the reduction process, the efficiency of the reduction and
the accuracy of the reduction.

2.3.1.1 Pure Reduction

[12] proposed a method based on a known specific structure. A critical path, the
worst delay path, will be manually analyzed first. As shown in Figure. 2.8, the
bitcell in the top right corner has the longest path to peripheral circuits (decoder)
in this exact floorplanning. Then only the bitcells and peripheral circuit blocks
on the critical path or neighboring paths will remain. This step is achieved by
modifying and renaming basic circuit block modules. After function and Layout
Versus Schematics (LVS) checking, the reduced circuit will be used for parasitic
parameters extraction for post-layout simulation. For a 2K × 32 bit SRAM, this
model can save 92% simulation time while keeping the tolerance below 5%. But
this method has low flexibility for its fixed floorplanning requirement and critical
path manually extraction. In addition, module based modifications can be time-
consuming. And for a n × m cell array, (2n+2m-2) bitcells will remain which
means 6 × (2n + 2m − 1) more transistors will remain compared to some other
methods like [13].

2.3.1.2 Reduction with Equivalent Model

Some research reduced only the bitcells of the whole SRAM. [13] proposed a cor-
responding equivalent and simplified model of bitcell array, bitline, and wordline.
The model will ignore peripheral circuits and do the substitution to the cell array

Simulation Speeding Up Methodology 15

D
E
C
O
D
E
R

CD

SA
CK

IO

CD

SA

IO

Figure 2.8: Redcution based on known structure and known critical
path [12].

except for the positioned bitcell. The parasitical parameters of the layout will
be extracted without cell arrays first, then the memory core will be replaced by
the reduced memory core with corresponding parasitical parameters. As shown in
Figure. 2.9, the reduced model of bitcell, bitline and wordline are based on layout
netlist so the length and width of the line will also be considered.

The parameters can be calculated by the Equation 2.1 and Equation 2.2:

C1 = C2 = Cox × Wn × Ln × ε0εox/tox (2.1)

R = ρL/W (2.2)

The wordline model is shown in Figure. 2.10. The value of the resistance and
capacitance shown in the above figure are calculated by the Equation 2.3 and
Equation 2.4:

Rm = (R1 +R2)× (C1 + C2)× (m− 1)/2 (2.3)

16 Simulation Speeding Up Methodology

VDD

GND

WL

BL BLB

Q QB

 wordline
equivalent model

 bitline
equivalent model

 bitline
equivalent model

Figure 2.9: Simplified BL model and WL model of memory core [13].

C1 C2

R1 R2

m-1

Rm

Cm1 Cm2

Figure 2.10: Distributed and lumped π model of wordline [13].

Simulation Speeding Up Methodology 17

Cm1 = Cm2 = (C1 + C2)× (m− 1)/2 (2.4)

The bitline model is shown in Figure. 2.11. The value of the resistance and
capacitance shown in the above figure are calculated by the Equation 2.5 and
Equation 2.6:

RL

RL

CL

CL

Cn

CnRn

n-1

Figure 2.11: Distributed and lumped π model of bitline [13].

CL = CJ + CJSW = CjLSW + Cjsw(2LS +W) (2.5)

Rn = R× (n− 1), Cn = CL × (n− 1)/2 (2.6)

This method focuses on layout and only cares about one cell array in the
whole memory, while inactive peripheral circuits also take much unnecessary time
to simulate. The advantage is that this model calculated parasitical parameters
for memory core ahead to completely avoid extracting parasitical parameters from
bitcells.

2.3.2 Automatic Circuit Reduction Method
The two methods discussed in Section 2.3.1 need to be done manually which is
time-consuming in circuit design flow. The methods discussed below can reduce
the circuit automatically with corresponding configurations before the reduction.

2.3.2.1 DRAM Reduction Based on Pre-defined Architecture

[14] presents a DRAM reduction tool which can reduce the DRAM circuit auto-
matically based on pre-configurations. The reduced DRAM architecture will be
built first, then the corresponding circuit block extracted from the original netlist
will be filled in the architecture. Two architectures are available in this tool, one

18 Simulation Speeding Up Methodology

is Block-Selection Type Memory Array Structure and another one is Parameter-
Selection Type Memory Array Structure. Bitlines and wordlines in the architecture
will be replaced by wire models chosen from six different wire models. As for the
bitcells, the reduction method can be chosen by the user from two options. One is
replacing the inactive cell by a simplified model, another one is keeping all the cells
and redistributing the multiple factor parameter M. One disadvantage of this tool
is that several DRAM architectures are predefined in the tool which is not flexible.
Only one bitcell is fixed during each simulation and this need to be defined before
simulation each time. The flow of the tool is shown in Figure. 2.12.

Customize DRAM Reduced Circuit Configuration

Build DRAM Reduced Circuit Model Architecture

 DRAM Circuit Design and Layout

 Create DRAM Macro Model

 Define DRAM Model Parameters

 Set Up Peripheral Block Stimulus Signal

Build DRAM Reduced Circuit Model Architecture

Figure 2.12: Auto DRAM process flow [14].

2.3.2.2 Genral Circuit Reduction Based on Fixed Stimuli

[15] presents a recognition method to trace signal flows of a general circuit and
reduce the circuit according to the signal flow. The flow of this method is shown
in Figure. 2.13.

net recognition

layout pattern

extract circuit

gate recognition

trace signal flow

process capacitive load

Figure 2.13: Gate recognition method flow for active path tracing.

Simulation Speeding Up Methodology 19

In the first step, the circuit will be recognized from layout pattern data. With
given stimuli, the signal flow can be traced by using their new presented function
recognition algorithm. During the gate reduction and parasitics reduction based
on a specified critical path and signal flow, the terminated net will be considered
as a capacitive load.

As for the function recognition algorithm, logic blocks will be recognized first
and the logic tree will be formed as shown in Figure. 2.14. This algorithm has
two restrictions to avoid some special function blocks (clock) becoming a vertex
in the logic tree. As for the capacitive load, one example model is that if a net
connected to the gate terminal of a transistor, the source and drain terminals of
the transistor will be connected together.

nand

or

net2net1

net3

Figure 2.14: Logic tree of function recognition algorithm.

20 Simulation Speeding Up Methodology

Chapter 3
Implementation of Reduction Engine

The whole flow of the design and details of the engine implementation are de-
scribed in this chapter. After a brief description of the configuration, the major
reduction process will be introduced. Adding RC models and tracing critical paths
will also be discussed in this chapter as add-ons.

3.1 Algorithm Design
Although the methods discussed in Section. 2.3 are based mostly on layout, the
circuit analysis and reduction process will always be done after filtering the par-
asitics data of the layout pattern first. An automatic hybrid netlist reduction
focuses on schematic netlists is presented in this section.

3.1.1 Clustering
The first step of clustering is detecting special units and clustering each of them.
Different special units will be labeled differently to be recognized. A special unit
can be defined in a configuration file before the reduction. In the second step,
the remaining transistors that are connected to each other by source terminals or
drain terminals will be clustered together. One thing that needs to be mentioned
is that all the power and ground connections will not be considered as normal
nets. Considering the special structure of SRAM bitcell arrays, the bitcell needs
to be recognized as a special unit before beginning normal clustering. This pre-
detecting can ensure that the bitcells connected to the same bitline are considered
as different clusters, which will increase the reduction efficiency.

Another function embedded in the engine is the "do not touch" circuit setting.
In the configuration file, users can input the name of the module that they do not
want to be modified. When the engine is flattening the circuit, the "do not touch"
sign will be labeled on all the transistors in the specific module. After clustering,
the clusters which contain "do not touch" labeled transistors will be considered as
"do not touch" clusters. This is a trait to be detected in the following steps.

21

22 Implementation of Reduction Engine

In the end, the structure of the circuit will look like in Figure. 3.1.

cluster

type A

cluster

type N

cluster

type N
cluster

type A

cluster

type N

cluster

type N

cluster

type B

cluster

type B

cluster

type N

cluster

type N

...

no-touch

Figure 3.1: Circuit structure after clustering.

3.1.2 Active Path Tracing

At the beginning of the path tracing, the ports of the clusters received from the
last step will be defined. If a port in a given cluster is connected to the gate of
one of the transistors in it, it will be defined as a gate port. Similarly, if a port
in a cluster is connected to the source or drainl of the transistors in it, it will be
defined as a channel port. A port can be a gate port and a channel port at the
same time.

In the first step, multiple target bitcells can be pre-configured by BL and WL
information. This function makes different bitcell simulations after only one re-
duction process possible. Four net names "BL1, BL2, WL1, WL2" are considered
as one input information group. The two WL net names can be the same if the
bitcell is connected to only one WL. In order to find the target bitcells, bitcell
clusters connected directly to any net of the start group will be correspondingly
labeled. Those bitcells which are labeled by all four nets in one start group are
the target bitcells. Except for these target bitcells, all the other bitcells will be
reduced. For example, "BL3, BLB3, WL2, WL2" is the input information group1
and "BL4, BLB4, WL3, WL3" is the input information group2. As shown in Fig-
ure. 3.2, only the bitcells labeled by [1,1,1,1] will remain.

Implementation of Reduction Engine 23

BITCELL BITCELL BITCELL BITCELL

BITCELL BITCELL BITCELL BITCELL

BITCELL BITCELL BITCELL BITCELL

BITCELL BITCELL BITCELL BITCELL

BL1 BLB1BL2 BLB2BL3 BLB3BL4 BLB4

WL1

WL2

WL3

WL4

[0,0,1,1]

[0,0,0,0] [0,0,0,0] [1,1,0,0] [0,0,0,0]

[0,0,1,1][1,1,1,1][0,0,1,1]

[0,0,0,0] [0,0,0,0] [1,1,0,0] [0,0,0,0]

[0,0,0,0][1,1,0,0][0,0,0,0][0,0,0,0]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [1,1,0,0]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [1,1,0,0]

[1,1,1,1][0,0,1,1][0,0,1,1][0,0,1,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [1,1,0,0]

Figure 3.2: Fixed target bitcells. One type circles lead to one input
information group and one target bitcell. Only bitcells labeled
[1,1,1,1] remain.

In the second step, all the nets in an input information group and all the ob-
servation points will be considered as "start" nets. From the start nets, all the
clusters that may affect the "start" nets will remain. As shown in Figure. 3.3, the
cluster whose output is connected to the "start" net will be recorded and traced,
except for the bitcell clusters. The input nets of the to-be-traced cluster will be
considered as new "start" nets and be recorded and traced. The loop chain will
be stopped and all the clusters in the chain will be labeled as active if the chain
meets the input of the whole circuit or the target bitcell.

cluster

cluster

cluster

bitcell

cluster

net net

out

out

out

in in

in

in/out

cluster

bitcellin/out

Figure 3.3: Active clusters tracing example. The right net is a
"start" net and clusters in shadow squares will be recorded as
possible active clusters.

24 Implementation of Reduction Engine

3.1.3 Add Equivalent Model of Bitcell

For the reduced circuit, a huge amount of reduced bitcells on target bitlines and
word lines will cause huge capacitance loss. Capacitance loss on general circuits
nets can be ignored temporarily compared with those on target BL and WL. As
shown in Figure. 3.4, 0 or 1 is stored in a bitcell when the wordline is not enabled.
For BL, the 1-store-side-bitline will have a leakage current path to the power while
the 0-store-side-bitline will have a leakage current path to the ground. For WL,
the capacitance loss depends mostly on the capacitance between the gate and the
body of the transistor.

VDD

GND

WL

BL BL

0 1

Figure 3.4: Leakage in inactive bitcell.

To compensate for the capacitance loss, a pure capacitance model shown in
Figure. 3.6 is used. The capacitors which connect to one net will be combined
together in the end. CW and CB are the capacitance of the corresponding single
bitcell. And the capacitance value of a single bitcell can be pre-defined or ex-
tracted from single bitcell netlist.

In order to extract the capacitance more accurately and technology indepen-
dently, an add-on function is embedded in the engine. All the bitcells which
connect directly to the target WL and BL will not be reduced at first as shown in
Figure. 3.5. This first edition of reduced netlist will be simulated first by Ocean®

script [17] and the capacitance information of one bitcell will be extracted from
the simulation results automatically. After this extraction, the first edition of the
reduced netlist will be reduced again until only target bitcells remain and the
sum of capacitance being added to the target BL and WL. One advantage of this
method is that the first reduced edition can also be used as a final edition in a
high accuracy required situation.

Implementation of Reduction Engine 25

BITCELL

BITCELL

BITCELL

BITCELL BITCELL BITCELL BITCELL

BL1 BLB1BL2 BLB2BL3 BLB3BL4 BLB4

WL1

WL2

WL3

WL4

Figure 3.5: First step of reduction for accurate capacitance extrac-
tion.

BITCELL

BL2 BLB2

WL4

Cw Cw Cw Cw Cw Cw

CB CB

CB CB

CB CB

Figure 3.6: Capacitor model for reduced bitcells which connected
directly to target BLs and WLs.

26 Implementation of Reduction Engine

In Chapter 4, simulation results of different SRAM circuits will be listed in
tables and be compared with each other. The efficiency, function, and accuracy
will also be compared with some other methods published by others.

3.2 Configuration Before the Reduction

An information text document can be read in to give variables corresponding val-
ues after users input the information.

Path information: The path of an original netlist is necessary for the engine to
find the original netlist. The path of the output folder is necessary for saving all
the output results files, including reduced netlist and other log files of the reduc-
tion process.

Transistor model name list: All the used transistor model names should be
included in this list. This configuration can help to identify transistors from in-
stances when the engine read in the original netlist.

Bitline and wordline information: The information of bitline and wordline is
used to fix target bitcells. So for each target bitcell, information of four net names
(two bitlines and two wordlines) will be provided. If one bitcell has only one
wordline, same net names are acceptable. To avoid unnecessary bitcells being se-
lected, this information must be given in a group. For example, if eight net names
belong to two groups are given together, four bitcells will be fixed rather than two.

Module names of no-touch blocks: For those circuit blocks that the users
want to keep in a black box without any modification, their name should be given.
All the transistors and instances in no-touch blocks will remain exactly the same
after the reduction.

Net name of power/input/output: The ports of top-level connections to pow-
er/input/output is informed before the reduction to save the time of identifying
the port type.

Input and output net name of critical path: The input and output net can
be any net inside the circuit. The add-on function, critical path extraction, will
start from the output net to the input net specified in this configuration.

All the net name information in the document above should have a complete
form with hierarchy, like "I0.I3.net1".

Implementation of Reduction Engine 27

3.3 Netlist Reduction
The process of the reduction is divided into four parts: preprocessing the data,
classifying the circuit, reducing the circuit, and reconstructing the circuit to out-
put. All of these steps are realized by Python, a high-level programming language.

3.3.1 Data Pre-processing
Figure. 3.7 shows the procedures of preprocessing the data read from an original
netlist.

original
 netlist

reduced
 netlist

Flatten Circuit Structure

Hierarchy Circuit Structure

...

instance

instance
... ...

reduction reconstruction

Figure 3.7: Two structures to store the netlist data. Flatten circuit
structure for processing and hierarchy circuit structure for new
netlist reconstruction.

The circuit information is described in a netlist with hierarchy. This means
that the netlist consists of one or more circuit blocks and these circuit blocks can
invoke each other. The circuit information is extracted from a netlist and stored
by a particular data structure. In this project, two data structures are used. One
structure is called “flatten circuit structure”. All the devices in the circuit will be
instantiated as single transistors or other basic electronic components with only
information of connection. There is only one circuit block in this structure with-
out sub-blocks. Data stored in this structure will be used for the major circuit
analysis. Another structure is called “hierarchical circuit structure”. In this struc-
ture, the invoking relationship between subcircuits in the original netlist will be
stored. Data stored in this structure will be used as a reference when the engine
reconstructs the reduced netlist. This will keep the reduced netlist well-structured.

3.3.2 Classification
To reduce the complexity of the circuit which will be reduced, a classification of
components needs to be done. In this process, all the transistors are classified into
different clusters. Figure. 3.8 shows the flow of this process.

Bitcell detection is run at the beginning of the classification process. By search-
ing the bistable circuit structure which is a common structure in SRAM bitcells,
all the components which can be SRAM bitcell are found. Then these components

28 Implementation of Reduction Engine

are verified if they are SRAM bitcells by checking if only drain or source of two
NMOS are connecting with the bistable circuit. This method can be further de-
veloped to detect different bitcell structures like an 8-T SRAM bitcell structure
shown in Figure. 2.3. All the transistors in one bitcell will be labeled and can be
easily recognized in the further process. Transistors, except those in bitcells which
are connected together by drain or source, are considered as a cluster since they
will influence each other during operation. After giving these clusters different
labels, the classification process is finished.

Bitcells are considered as special clusters, due to the structure of the bitcell
array. As shown in Figure. 3.9, bitcells which are sharing the same BL will be
considered as one cluster if we do not do bitcell detection before clustering. This
huge cluster will keep more inactive transistors in the reduced netlist and decrease
the efficiency of the netlist reduction engine.

The reduction process can be messy and complicated without this step since
it can reduce the types of port for one cluster. If the reduction process is imple-
mented in transistor level, a port of transistors can be input, output or both. After
classification, only the ports used for clusters connection need to be considered,
and the direction of the path can be determined easier during reduction.

Find all the components comprise of
bistable structure.

Find and label the components which
are connected with each other with

drain and source.

Can the components
compose a bitcell?

Label the components
as a bitcell

N

Y

Figure 3.8: The flow of classification process.

Implementation of Reduction Engine 29

WL1

VDD

GND

QBQ

BL BLB

VDD

GND

QBQ

WL2

Cluster1 Cluster2

BL BLB

VDD

GND

QBQ

WLn

Figure 3.9: Bitcells sharing the same BLs.

3.3.3 Active Path Tracing
According to the configuration file, transistors in blocks which are not expected
to be reduced will be labeled first. Figure. 3.10 shows the algorithm flow of the
active path tracing.

30 Implementation of Reduction Engine

Create cluster objects

Create cluster connection objects

Process one paire BL and WL

Define taeget bitcell

Process one observation net

Calculate cap for taeget BL and WL

Figure 3.10: Active path tracing flow

The first step is creating cluster objects. One cluster object contains all the
information of the transistors that have been classified into this cluster. As for
the ports of these transistors, only the transistor ports that connect between this
cluster and any other cluster will be defined as the ports of the cluster. These
ports will be divided into two types. One type is the port that can only be the
input of the cluster circuit, and another type is the port can be the input and also
can be the output of the cluster circuit. All this information will be stored in the
cluster objects. The cluster connection objects are simple net objects that only
contain the name information of the clusters which connect to the net.

BITCELL

BL1 BLB1BL2 BLB2BL3 BLB3BL4 BLB4

WL1

WL2

WL3

WL4

TARGET2 TARGET1

Figure 3.11: Two bitcell targets

Implementation of Reduction Engine 31

Is
 B

 a
 b

it
ce

ll?

Is
 B

 a
ta

rg
e
t

b
it

ce
ll?

Ig
n
o
re

 B
Ig

n
o
re

 B

Ig
n
o
re

 B
B

 b
e
co

m
e
s

a
 n

e
w

 A

 D
o
e
s

B
 c

o
n
n

e
ct

 t
o
 A

b
y
 o

n
ly

 i
n
p
u
t

te
m

in
a
l

a
n

d
 t

o
u
ch

a
b
le

?

Fl
a
g
 t

h
e
 w

h
o
le

 c
u

rr
e
n
t

p
a
th

 a
n
d
 i
g
n
o
re

 B

H
a
s

B
 b

e
e
n
 fl

a
g
g
e
d

 a

s
ke

e
p
 b

e
fo

re
?

Is
 B

 i
n
 c

u
rr

e
n
t

p
a
th

?

Fl
a
g
 t

h
e
 w

h
o
le

 c
u

rr
e
n
t

p
a
th

 a
n
d
 i
g
n
o
re

 B

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

n
o

n
o

n
o

n
o

n
o

Figure 3.12: Active cluster tracing flow. A represents the latest
testing cluster in one tracing path and B represents any cluster
connect to A.

32 Implementation of Reduction Engine

After creating objects, the possible active cluster path will be traced depend-
ing on several pairs of BL and WL information. And the bitcells which connect
to the target BL and WL will be flagged correspondingly. Then the target bit-
cells can be fixed. In addition, the number of deleted bitcells in target BL or
WL will be calculated with the capacitance value of one bitcell for further ca-
pacitance calculation. Take the cell array in Figure. 3.11 for example, the target
bitcell 1 and 2 are fixed, the weight of BL2 and BLB2 is 3 and the weight of WL2
is 4. The last step is the possible active cluster path tracing from observation nets.

The main process of reduction is the possible active cluster tracing, and this
process will be divided into two parts. One is tracing from the BL and WL infor-
mation in the configuration file and another one is tracing from observation nets
in the configuration file. The algorithm flow is shown in Figure. 3.12.

In the diagram, A represents the latest testing cluster in one tracing path, and
B represents any cluster that connects to A. If B is a target bitcell cluster, the
whole tracing path from start point to A will be kept and the engine will keep
searching for other clusters which connect to A. If B is a normal bitcell cluster, it
will be passed and the path will keep searching for the next cluster connected to
A. When B is not a bitcell cluster, if it connects A only by its only-input-terminal
and it is not configured as a "do not touch" cluster at the beginning, the B cluster
will be ignored. Then if B has not been tested before, it will become the new A of
the whole path and the steps above will be repeated until all the possible active
clusters are found and flagged.

3.3.4 Reconstruction
In this process, the hierarchical structure of the reduced circuit is built. The flow
is shown in Figure. 3.13.

After the reduction operation, all the transistors which are considered as active
are labeled. The information about circuit hierarchy is recorded and shown via
the name of devices in flatten circuit. Therefore, the tool can easily identify which
hierarchy the transistors are in and relocat them in the hierarchical circuit. After
this relocation, the reduced circuit can be reconstructed via labeled transistors
and hierarchical circuit structure. This step rebuilds the structure of the reduced
netlist and keeps the netlist structure hierarchical. Moreover, when checking the
structure of the reduced netlist is necessary, the structure rebuilding can make this
checking easier.

Due to the instantiation of all the components in the hierarchical circuit struc-
ture, repeated circuit model declaration will cause a huge size netlist for the new
reconstrcuted reduced circuit. By comparing the information in the circuit mod-
els, those repeated circuit models will be replaced by one single model. This step
helps reduce the size of the reduced netlist file and makes the verification of the
netlist easier.

Implementation of Reduction Engine 33

Instatiate the subcircuits from higher
level to lower level and label the

transistors

For subcircuits which are instatiated from the
same circuit model, choose a subcircuit as

the reference circuit

Divide the transistors in reduced
flatten circuits by the depth of

the subcircuits

Is all the information in the
subcircuit the same as one of

the reference circuits?

YReplace this
subcircuit with the
reference circuit

Add this subcircuit
to the reference

circuit group

N

Is the comparison of one
original circuit model

finish?

N

Are all the circuits
checked?

Go to next process

Figure 3.13: The flow of reconstruction process.

At this point, the whole netlist reduction process is finished and a new reduced
netlist file can be output.

3.4 Build RC Models for Redundant Circuits
The capacitance extraction is necessary for building the capacitance model for
deleted circuits. The BL and WL capacitance model is the most determining fac-

34 Implementation of Reduction Engine

tor for the accuracy of the netlist reduction engine.

Only the capacitance of transistors is concerned when extracting the capaci-
tance since the reduction aims at a schematic level and the wires in the schematic
are considered as ideal wires. In Cadence Virtuoso®, there is a function called
cap table extraction, which can extract the capacitance of all the circuit nodes at
one moment during a simulation.

Capacitance is a dynamic characteristic of transistors. Therefore, the value of
it changes depending on the working condition of the transistors. During reduc-
tion, a row and a column of bitcells are remained for this extraction, as shown in
Figure. 3.14. A is the target bitcell. The bitcells labeled as D has been deleted
in previous steps, and bitcells labeled with B and C will be deleted after extraction.

This process has been integrated into the reduction engine. The capacitance
can be extracted and add back to the circuit automatically if it is required. The
capacitance value can also be given previously and the extraction process will be
skipped.

Column 1 Column 2 Column 4

BL2 BLB2BL3 BLB3 BL4 BLB4

WL1

WL2

WL3

WL4

Row1

Row2

Row3

Row4

Column 3

BL1 BLB1

BITCELL
D

BITCELL
D

BITCELL
D

BITCELL
D

BITCELL
D

BITCELL
D

BITCELL
D

BITCELL
D

BITCELL
D

BITCELL
B

BITCELL
B

BITCELL
B

BITCELL
C

BITCELL
C

BITCELL
C

BITCELL
A

Figure 3.14: Different strategies for different bitcells.

Implementation of Reduction Engine 35

3.5 Extract Critical Path for a Circuit
Extracting critical path for a circuit is implemented as an add-on in the netlist
reduction engine. The critical path is the worst delay path of the circuit. The
delay depends on the resistance and capacitance mostly. So the delay of the cir-
cuit depends on the parasitics on the critical path. The critical path extraction
in this project is an add-on function and it is only an approximate critical path.
The circuit is divided into small units. A unit can be a transistor or a cluster. We
assume every unit have a weight. The weight represents the length of the critical
path from input to the unit. The former unit who provide the largest weight to
the recent unit will be recorded in the recent unit. Furthermore, the weight can
be calculated differently according to different algorithms. Take the diagram in
Figure. 3.15 for example, an input “I” and an output “O” will be known as the
function input. The first step is comparing the weight of “b” and “e”. When the
engine found “b” and “e” have not been defined a weight, it will keep comparing
the weight of “a” and “c” for “b”. This step will repeat until tracing to the input.
Then the units will have weight one by one from the input to output. For example
“b” will be given a weight equal to 4 and the name of “c” will be stored in “b”
because “c” can provide 3 to “b” while “a” can only provide 2 to “b”. At last, “O”
will get 4 from “b” and the critical path will be “I”-“a”-“c”-“b”-“O”.

a

c

b

I

d e

O
w=1

r=null

w=2

r=I

w=3

r=I

w=2

r=I

w=3

r=d

w=4

r=c

w=5

r=b

Figure 3.15: Critical path tracing example. "w" is the weight of cur-
rent cluster and "r" is the former biggest weight cluster name.
Weight can be calculated differently according to different al-
gorithms.

36 Implementation of Reduction Engine

Chapter 4
Verification of Reduction Engine

In this chapter, a verification flow and corresponding scripts are introduced first.
Results of the verification are listed in tables and compared between different
SRAM sizes and different reduction methodologies.

4.1 Flow of Verification
The verification flow is shown in Figure. 4.1. After inputting the original netlist
and configuration to the reduction engine, the reduced netlist and the log file
recording reduction time will be generated. After the original netlist and the re-
duced netlist being simulated by the same simulator, a raw file and simulation time
for each netlist will be output as the results of a simulation. Based on the raw
data, important constraints will be calculated by the constraint calculator. These
constraints will be compared between an original netlist and a reduced netlist to
show the accuracy of the reduction engine.

REDUCTION
ENGINE

SIMULATOR CONSTRAINTS
CALCULATOR

original
netlist

reduced
netlist

reduction
log file

simulation result
(raw data & tsim)

configuration

deviation

simulation result
(raw data & tsim)

COMPARE
CALCULATOR

write delay
read delay

...

write delay
read delay

...

Figure 4.1: The flow of verification process.

In the verification phase, various size SRAM circuits are used to test the re-
duction engine as shown in Table. 4.1. As for the simulator, Spectre® is used for
all the netlists except for the original netlist of 32 kb (32 × 32 × 32) size SRAM
for its unfeasible simulation time. For this large netlist, UltraSim® is used as
the simulator. As for the constraint calculator, the delay of the read and write
operation, and the rise time and fall time of the switch of observed signals will be
calculated. Figure 4.2 shows the calculation method of delay for the two signals
and the fall time of a signal switch.

37

38 Verification of Reduction Engine

Table 4.1: Tested SRAM types

Peripheral
structure Null Type A(simple) Type B(complex)

256 b (16× 16) D D

512 b (16× 32) D D

1 kb (32× 32) D D

4 kb (64× 64) D D

8 kb (64× 64× 2) D D

32kb (32× 32× 32) D

Input

Signal

Observed

Signal

Delay

50%

50%

Signal Change
Duration

90%

10%

Figure 4.2: An example waveform for measurement.

As described in Section. 3.1.2, the active path tracing is based on the target
bitcells rather than stimulus. When one or more target bitcells are fixed, the
stimulus can change. In the verification flow, a circuit with a testbench in the
netlist can also be read in and be separated to circuit and testbench. The circuit
part will be sent to the reduction engine and the testbench part will be kept
and added back to the reduced netlist after the reduction process as shown in
Figure 4.3. The testbench of the netlist can be exactly the same because the ports
of the highest level are not changed in the reduction.

Verification of Reduction Engine 39

Reduced
netlist

Original
netlist

Reduction
engine

Testbench

Original
netlist

Testbench Testbench

Reduced
netlist

Figure 4.3: Testbench separation

4.2 General Function Verification
The first step of verification is the functional verification. The expected result of
this step is fundamental. If the reduced circuit can read the data stored in target
bitcells and write data into target bitcells correctly, the general function verifica-
tion will be considered as correct. More detailed verification such as read delay
tolerance and write delay tolerance will be calculated and compared in the next
section. The result of function verification is shown in Figure 4.4 and Figure 4.5,
the upper waveform is the original circuit signal and the lower waveform is the
reduced circuit signal. Figure 4.4 is the simulation results of a reading operation
and Figure 4.5 is the simulation results of a writing operation. All the coordinate
values are being normalized but we can still see the basic function is fulfilled in
this example.

4.3 Results Comparison and Analysis
In this section, the reduction engine performance and simulation results will be
compared in different aspects.

4.3.1 Data Formation
All the data presented in the table are normalized for better intuitive comparison.
For example, initial raw data is listed in Table 4.2.

Table 4.2: Rate Calculation Example

Original netlist result Reduced netlist result Rate(%)

A B (1−B/A)× 100

Parameters are calculated from raw data using the formulas below:

tolerance =
original netlist result− reduced netlist result

original netlist result
(4.1)

40 Verification of Reduction Engine

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

0

0.2

0.4

0.6

0.8

1

Time(ns)

V
ol
ta
ge
(V

)

(a) The clock signal

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

0

0.2

0.4

0.6

0.8

1

Time(ns)

V
ol
ta
ge
(V

)

(b) The output of the original circuit

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

0

0.2

0.4

0.6

0.8

1

Time(ns)

V
ol
ta
ge
(V

)

(c) The output of the reduced circuit

Figure 4.4: Comparison between simulation results of original circuit
and reduced circuit during read operation. (a) is the reference
clock signal, (b) is the output data reading out of the original
circuit. (c) is the output data reading out of the reduced circuit.

Verification of Reduction Engine 41

5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4

0

0.2

0.4

0.6

0.8

1

Time(ns)

V
ol
ta
ge
(V

)

(a) The clock signal

5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4

0

0.5

1

Time(ns)

V
ol
ta
ge
(V

)

(b) The result of the original circuit

5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4
−0.5

0

0.5

1

Time(ns)

V
ol
ta
ge
(V

)

(c) The result of the reduced circuit

Figure 4.5: Comparison between the simulation results of the orig-
inal circuit and the reduced circuit during the write operation.
(a) is the reference clock signal, (b) the signal transition when
writing a value into the bitcell of the original circuit, (c)the
signal transition when writing a value into the bitcell of the
reduced circuit.

42 Verification of Reduction Engine

reduced tsim =
original sim time− reduced sim time

original sim time
(4.2)

In order to measure differences between original netlists and reduced netlists in
an equal way, one circuit (including an original netlist and a reduced netlist) must
be simulated by one simulator, but different simulators can be used for different
circuits. However, different circuits must be simulated by one simulator when it
comes to the comparison between of different size SRAMs. As shown in Table 4.3,
the reduced simulation time and tolerance will be influenced by using different
simulators. In general, UltraSim® is faster and less accurate so the netlist re-
duction has less reduced simulation time when using this simulator. For example,
after same reduction process, a 4 kb SRAM reduced 96% simulation time using
Spectre® while only 52.31% reduced using UltraSim®. This difference comes
from different simulation principles inside different simulators. So in the next sec-
tions, all the example SRAM circuits will be simulated using Spectre® except for
a 32 kb SRAM because the original netlist of this 32 kb SRAM is unable to be
simulated by Spectre® since it will cause a processor memory overflow. To make
a fair results comparison between an original netlist and a reduced netlist, both
the original netlist and the reduced netlist of this 32 kb SRAM will be simulated
using UltraSim® and this is marked in the tables when the results are simulated
from UltraSim®.

Table 4.3: Simulation results influenced by different simulators.

Size 4 kb(32× 32× 2× 2) 2 kb(32× 32× 2)

Simulator Spectre® UltraSim® Spectre® UltraSim®

Reduced tsim 99.65% 81.06% 96.31% 52.31%
Tolerance 1.62% 2.56% 1.24% 3.87%

4.3.2 Peripheral Circuit Structure and Processing Method Com-
parison

Normally, SRAM consists of bitcells and peripheral circuit blocks controlling the
reading and writing operation. Most researches on SRAM netlist reduction focuses
only on reduction of the bitcells while keeping all the peripheral circuit remained.
In this section, we take a 4 kb SRAM as an example to compare different ways to
process peripheral circuits.

Table 4.4 shows three methods to process the peripheral circuit of SRAM. The
reduction method on bitcells are exactly the same and the reduction on a periph-
eral circuit is the only variable.

Verification of Reduction Engine 43

Table 4.4: Different mthods to process peripheral circuits

Algorithm

Method 1 Keep the active clusters in the peripheral circuits
Method 2 Keep both active clusters and inactive clusters which

directly connects to active clusters
Method 3 Keep the whole peripheral circuit

Table 4.5 shows the simulation results using these three different methods for
a 4 kb (64×64) SRAM. Write delay is used for tolerance calculation. The write de-
lay in this situation is the time difference between decoder enable signal inversion
and bitline signal inversion. The peripheral circuit transistors account for 6.2% of
the whole circuit. The difference among different methods is slight in this table
because of the small amount of peripheral circuit in this SRAM. But we can see
that if we reduce the netlists for the peripheral circuits, the transistor number and
simulation time will be reduced. If we use method2, the accuracy will improve but
much more simulation time will be needed. According to these results, method1
is used in our engine.

Table 4.5: Different peripheral process methods comparison for 4 kb
(64× 64) SRAM with a simple peripheral circuit (6.2%)

Method 1 Method 2 Method 3

Reduced transistors 95% 94.16% 93.76%
Reduced tsim 96.8% 96.5% 96.1%
Tolerance 3.35% 3.30% 3.30%

Table 4.6 shows the simulation results for a complex structured 32 kb (32 ×
32× 32) SRAM. The peripheral circuit transistors account for 19.2% of the whole
circuit. For a complex peripheral SRAM, the reduction of a peripheral circuit will
bring more efficiency. The engine can reduce almost 10% transistors if reducing
the inactive part of the peripheral circuit. But due to the huge amount of periph-
eral circuitry and simulator changing (for large scale netlist), the simulation time
will reduce less than the former SRAM under the same condition.

4.3.3 Simulation Results Comparison for Different Size SRAMs

Applying the same reduction method on different size SRAMs will give us different
results. In this section, the reduction time and reduced simulation time will be
compared for different size SRAMs first and accuracy comparison follows.

44 Verification of Reduction Engine

Table 4.6: Different peripheral process methods comparison for
32 kb (32 × 32 × 32) SRAM with a complex peripheral circuit
(19.2%)

Method 1 Method 3

Reduced transistors 91.4% 80.8%
Reduced peripheral transistors 19.93% 48.5%
Reduced tsim (UltraSim®) 73.52% 68.48%
Tolerance (UltraSim®) 0.5% 1.07%

4.3.3.1 Reduction Time and Simulation Time

The reduction time and simulation time for different size SRAMs are shown in
Table 4.7. The first two SRAMs have the same simple structure, and the third
SRAM has a complex structure. The upper four rows are the time spent on
different reduction steps, and the fifth row is the total time spent on reduction.

Table 4.7: Reduction time and simulation time comparison

4 kb 8 kb 32 kb

Memory bank structure 64× 64 64× 64× 2 32× 32× 32
Flatten <1s <1s 4s

Classification 1s 5s 162s
Active path trace 5s 15s 184s
Reconstruction <1s <1s 6s

Reduction process time 7s 21s 256s

Reduced tsim 96.6% 98.7% 73.52%(Ultrasim®)
Reduced transistor 94.2% 95.9% 91.4%

Peripheral/total 6.3% 5.2% 19.2%

From the table above, the engine has a better reduction efficiency on a large,
regular SRAM structures, both in terms of reduced transistors and reduced simula-
tion time. For different structures, the amount of peripheral circuitry will influence
the reduction efficiency. Take the 32 kb (32× 32× 32) SRAM for example, the pe-
ripheral circuit accounts for 20% of the total transistor number, so the percentage
of the reduced transistors of the whole circuit is less compared to other structures.
Additionally, UltraSim® is used to simulate the 32 kb SRAM instead of Spectre®
because the circuit is too large to run the Spectre® simulation. For a one-time
simulation, the total reduced time can be calculated by Equation 4.3. If an iter-
ative simulation is run, the reduced total time will be much closer to 1 according
to the Equation 4.4.

Verification of Reduction Engine 45

reduced total time = 1− reduction time+ reduced sim time

original sim time
(4.3)

reduced total time = 1− reduction time+ reduced sim time× N

original sim time× N
(4.4)

As for the different reduction steps, the active path tracing is the most time
consuming because of the iteration algorithm. The classification step will be slower
if the structure is more complex or the size is larger, but it depends more on the
structure complexity. The flatten and reconstruction costs less than 10% of total
reduction time.

In a nutshell, the engine can reduce more simulation time for larger sized
memory with the same peripheral structure under the same simulation condition
(simulator and processor). When the size of memory is fixed, the engine will have
lower efficiency if the peripheral structure is simpler. As for the reduction time,
tracing the active path is the most time consuming and it depends on the scale
and complexity of the circuit. But for iterative simulations, the reduction time
can even be ignored compared with total simulation time.

4.3.3.2 Accuracy

The tolerance of simulation results between the original netlist and the reduced
netlist is considered as the criteria of the engine accuracy. As for the simulation
results of an SRAM circuit, read and write delay are measured. Read delay is
the time delay between reading enable inversion and read output signal inversion.
Write delay is the time delay between write enable inversion and value inversion
inside the target bitcell. The tolerance for different size SRAMs is shown in ta-
ble 4.8.

Table 4.8: Tolerance when keeping one column and one row of
bitcell

1 kb 4 kb 8 kb

Memory bank structure 32× 32 64× 64 64× 64× 2
Read delaytolerance 0.8% 1.91% 1.9%
Write delay tolerance 0.03% 0.05% 0.05%

The results in the table above are from a reduction method that keeping one
column and one row. The tolerance depends on the single cell array most, the
bitcells number connected on one bitline or wordline. The more bitcells connected
on one bitline or wordline, the larger the tolerance will become.

46 Verification of Reduction Engine

4.4 Comparison with Other Methodology
For the limited results of different reduction methodology being published, these
results are compared based on different-size-memory in table 4.9. Except for sim-
ulation time and tolerance, the reduction is finished automatically or manually,
and whether the method can be used in general circuit or not is also compared in
the table below.

Table 4.9: Simulation results comparison with other methodology

Method Size Reduced tsim Tolerance Auto General

Our engine 2 kb (16× 16× 8) 93.2% 4.3% Yes Yes
[12] 64 kb (2k × 32) 90% 5% No No
[13] 2 kb (16× 16× 8) 97.3% 2.4% No No
[15] Not mentioned >80% >10% Yes Yes

Reducing circuit manually is a good option if the circuit is small, but when the
circuit is in large-scale, manual reduction can be complex. It requires the person
who is doing the reduction have a deep understanding of this circuit, so the person
can know which part of the circuit should be reduced. Moreover, for those subcir-
cuits which have been invoked repeatedly, instantiation of these subcircuits should
be considered. This can be complicated and can take a long time. Therefore,
a manual reduction is normally for reducing bitcells and adding equivalent RC
models. Besides, there is a greater probability of tolerance in manual reduction
compared with processing with automatic reduction engine.

During a design process, various data structures and methods have been tried
and the one we presented in previous parts is the most efficient one. In this part,
comparisons between these methods will be introduced.

The reduction process now is implemented on a flatten circuit. In the begin-
ning, it was supposed to operate on a hierarchical circuit structure. The compo-
nents are labeled and the instances are instantiated when they are found on the
path.

The advantage of this method is that the data structure will be simple. The
reconstruction function is not needed since the process is working on a hierarchi-
cal structure. On the other hand, the drawback of this method is obvious. It can
be complicated when tracing a path from low hierarchy to high hierarchy, from
example, from WL to input. The information of which hierarchy this instantiated
subcircuit is invoked is needed when tracing a path from low hierarchy to high hi-
erarchy, but it is hard for the tool to distinguish which hierarchy or which instance
the target subcircuit is corresponding to if the subcircuit has been invoked in dif-
ferent hierarchies. To process components in a different hierarchy, the method of
flattened circuit structure comes out.

Verification of Reduction Engine 47

48 Verification of Reduction Engine

Chapter 5
Conclusions

A netlist reduction engine was designed and tested in this project. The verification
focuses on the efficiency of the netlist reduction engine and the functionality of the
reduced circuit. To evaluate the efficiency, netlist reduction was run on different
size circuits. The reduced simulation time and reduced transistor number were
compared in table 4.7. The amount of remaining transistors number is less than
10% of the transistor number in the original circuit, while the simulation time is
decreased to under 10% compared with the simulation time on the original circuit.
Another factor we concerned is the tolerance between the simulation result of an
original circuit and a reduced circuit. The comparison of an SRAM circuit with
peripheral and the comparison of different size SRAM can be seen in table 4.5 and
table 4.8. The tolerance will increase with size increasing.

In conclusion, the netlist reduction engine is able to reduce the simulation time
efficiently by reducing the inactive circuit, and the differnence of simulation results
between the original circuit and the reduced circuit can be very small depending
on the accuracy of the replaced circuit model.

49

50 Conclusions

Chapter 6
Future Work

This project focuses on pre-layout netlist reduction. For future work, a netlist
reduction aiming at post-layout simulation can be implemented. The post-layout
netlist needs one more pre-processing step to recognize the circuit and remove the
parasitic parameters. The RC model of the layout netlist will also be more com-
plex to develop because the wire is not ideal in the post-layout netlist.

For the bitcell detection, a more bitcell type can be detected besides 6-T SRAM
bitcell. For example, 8-T SRAM can be detected based on a similar detecting al-
gorithm. And circuit which has a similar array structure as memory can also be
reduced in an efficient way by detecting a configured pattern.

Additionally, a more accurate RC model for a general circuit can be developed
to reduce more transistors other than keeping all the clusters that connect directly
to active clusters.

51

52 Future Work

References

[1] V.G. Oklobdzija, Digital Design and Fabrication, Chapter 7.3 High-
Performance Embedded SRAM2007, CRC Press.

[2] P.Girard , A.Bosio , L.Dilillo , S.Pravossoudovitch , A.Virazel, (2010) Basics
on SRAM Testing. In: Advanced Test Methods for SRAMs, Springer, Boston,
MA.

[3] J.M. Rabaey, A.Chandrakasan, B.Nikolic, Digital Integrated Circuits: A De-
sign Perspective, 2nd Edition, Chapter 7.2, Page 330.

[4] A. Singhee, R. A. Rutenbar, Extreme Statistics in Nanoscale Memory Design,
Charpter 1.2, Page 2, Springer.

[5] N. Laurence, and D. O. Pederson. SPICE (Simulation Program with Integrated
Circuit Emphasis), 1973.

[6] Cadence® Spectre® Circuit Simulator Reference, Version 18.1. Avali-
ble: https://support1.cadence.com/tech-pubs/Docs/spectreref/
spectreref18.1/spectreref.pdf

[7] Cadence® Virtuoso UltraSIm Simulator User Guide, Version 18.1. Aval-
ible: https://support1.cadence.com/tech-pubs/Docs/UltraSim_User/
UltraSim_User18.1/UltraSim_User.pdf

[8] M.Chen, W.Zhao, F.Liu, Y.Cao, FinitPoint_based Transistor Model: A New
Approach to Fast Circuit Simulation, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 10, pp. 1470-1480, Oct. 2009.

[9] T.Mine, H.Kubota, A.Kamo, T.Watanabe, H.Asai, Hybrid Reduction Tech-
nique for Efficient Simulation of Linear/Nonlinear Mixed Circuits, Proceed-
ings Design, Automation and Test in Europe Conference and Exhibition,
Paris, France, 2004, pp. 1327-1332 Vol.2.

[10] C. Z. Mooney, Monte Carlo Simulation, [Elektronisk Resurs]. SAGE, 1997.

[11] B.J. Sheu, D.L. Scharfetter, P.-K. Ko, M.-C.Jeng, BSIM: Berkeley short-
channel IGFET model for MOS transistors., IEEE Journal of Solid-State
Circuits, vol. 22, no. 4, pp. 558-566, Aug. 1987.

[12] X.Jing, R.Yao, A Fastsimulation Model for Post-layout SRAM, 2007 7th In-
ternational Conference on ASIC, Guilin, 2007, pp. 1197-1200.

53

54 References

[13] Z.Zhou, G.Zhang, The Fast Simulation Model of SRAM, 2006 8th Interna-
tional Conference on Solid-State and Integrated Circuit Technology Proceed-
ings, Shanghai, 2006, pp. 1333-1335.

[14] W.H.Kao, X.C.Gao, R.Hamazaki, H.Kikuchi, A Modeling and Circuit Re-
duction Methodology for Circuit Simulation of DRAM Circuit, Records of
the 1995 IEEE International Workshop on Memory Technology, Design and
Testing, San Jose, CA, USA, 1995, pp. 15-20.

[15] G.Yokomizo, C.Yoshida, M.Miyama, Y.Motono, K.Nakajo, A New Circuit
Recognition and Reduction Method for Pattern Based Circuit Simulation,
IEEE Proceedings of the Custom Integrated Circuits Conference, Boston,
MA, USA, 1990, pp. 9.4/1-9.4/4.

[16] A.Blotti, F.Mannozzi, R.Roncella, R.Saletti, F.Tinfena, Gate Recognition
and Netlist Reduction for Switch-level Simulation of Dynamic Bit-level
Systolic Arrays,2001 Southwest Symposium on Mixed-Signal Design (Cat.
No.01EX475), Austin, TX, USA, 2001, pp. 56-60.

[17] Cadence® OCEAN Reference, Version ICADVM18.1. Avali-
ble: https://support1.cadence.com/tech-pubs/Docs/oceanref/
oceanrefICADVM18.1/oceanref.pdf

Spice Circuit Reduction for Speeding Up
Simulation and Verification

CANCAN YIN
MENGLIN WANG
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

C
A

N
C

A
N

 Y
IN

 &
 M

EN
G

LIN
 W

A
N

G
Spice C

ircuit R
eduction for Speeding U

p Sim
ulation and Verification

LU
N

D
 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-698
http://www.eit.lth.se

