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Popular Science Summary 
In 1959, Arthur Samuel defined Machine Learning (ML) as the “field of study that 

gives computers the ability to learn without being explicitly programmed”. Since then, 
computers had major improvements, and now can handle extremely large number of 
processes in a trivial fraction of time. This highlighted the new benefits ML can provide 
in different areas, especially where large raw data is handled, as it can be challenging to 
visualize and process all data by human individuals. 5G networks is one of these fields, 
where ML is expected to be present in many applications to enhance the overall 
performance. 

Link Adaptation (LA) is one of the Random Access Network (RAN) techniques 
used in 5G, it determines the signals modulation order and coding scheme used in the 
transmission. Therefore, it has a direct impact on the throughput and robustness of the 
transmitted signal. In LA, the scheduler adjusts the throughput mainly according to 
channel conditions and the Block Error Rate (BLER). This is done in two steps called, 
Inner-Loop Link Adaptation (ILLA) and Outer-Loop Link Adaptation (OLLA).  

In 5G New Radio (NR) networks, a new high frequency spectrum was introduced 
as a key feature to meet 5G standards. This high frequency spectrum -known as 
millimeter Wave (mmWave) spectrum- provided a new unutilized frequency bands, 
with more intricate channel conditions compared to sub 6 GHz frequency spectrum used 
in 5G predecessors. However, many new techniques were developed to enable a reliable 
communication in mmWave frequency environment. In this matter, ML was presented 
as one of the techniques that can help tolerating these difficult conditions in many 
applications. This thesis focused on using ML techniques to improve the performance 
of Uplink (UL) OLLA, while considering 5G standards at mmWave frequency 
environment. 

Reinforcement Learning (RL) is one of the popular ML techniques in dynamic 
environments. Therefore, RL was considered a promising approach for this case, as it 
allows the schedular to learn directly from the feedback obtained from a previously 
chosen action, using mathematical algorithms in the process. 

In this thesis, a simulation tool was used to demonstrate the results of implementing 
an RL algorithm on UL OLLA in 5G at mmWave frequency environment. As a result, 
the ML algorithm was able to fine-tune the scheduler’s Modulation and Coding Scheme 
(MCS) decisions, using the feedback of previous actions, leading to a decreased BLER 
while achieving higher throughput, when compared to a non-ML system under the same 
conditions. 
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Abstract  
The demands on wireless communications are continuously growing, due to the fact 

that when higher network capabilities are delivered, new features and applications are 
created, calling for even higher requirements. To keep pace with these demands and to 
allow new applications to rise, the limits of mobile networks must be pushed regularly. 
Therefore, the International Telecommunication Union targets on achieving new 
milestones almost every decade. 5G is the fifth-generation standard for wireless cellular 
networks, which was planned to push the limits once more to a new level. 

To achieve the standards of 5G, a new frequency spectrum of mmWave was 
introduced. This spectrum was unutilized in earlier generations due to its complex 
environment relatively to sub 6 GHz spectrum. However, since then, new techniques 
were introduced helped to overcome these challenges.  

This thesis is investigating on the possibility of improving UL Link Adaptation 
using ML technique on mmWave frequency environment. 

After studying previous related work and different ML techniques, a reinforcement 
learning algorithm was suggested. The algorithm uses the feedback of previous actions 
in consideration when taking future decisions. The system was implemented on a 
professional simulation tool provided by Ericsson. The results showed an improvement 
on both throughput and BLER performance when compared to a non-ML system. 
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CHAPTER 1 
 

1 Introduction 
In 5G New Radio (NR) networks, the transmission techniques and protocols 

have strong similarity to Long Term Evolution (LTE), its predecessor. The 
scheduler is responsible for allocating the resources of transmission between 
different User Equipment (UE). One of the crucial roles of the scheduler is to 
regulate the Link Adaptation (LA) procedure, since it has a direct influence on the 
link throughput and Block Error Rate (BLER). The LA procedure has been 
receiving close review, as more efficient approaches might be proposed in 5G 
networks. 

On the other hand, Machine Learning (ML) is a rising technique that is 
undergoing intense study, as it has shown the capability to improve the system 
overall performance in numerous applications and services [1]. 

This thesis focuses on the benefits that could be gained by applying ML 
techniques to improve the scheduler performance. Particularly, in the uplink LA 
scenario for 5G NR systems, at millimeter wave (mmWave) frequencies. 

 

1.1 Background and Motivation 

The 5G NR Radio Access network (RAN) is expected to provide very high user 
throughput (>1Gbps) under Enhanced Mobile Broadband (eMBB) use case [2]. 
Subsequently, meeting higher user throughput demand requires large frequency 
bandwidth in RAN. In this context, the mmWave band has been considered an 
enabler of the 5G NR bandwidth requirements, due to availability of wider 
bandwidths in the mmWave band. However, there are several challenges associated 
with mmWave frequencies: 
• The radio propagation loss is more profound for mmWave when compared to 

lower frequencies as the wavelength is very small, making the signals more 
prone to propagation attenuation such as absorption by water vapor [3]. 

• Wireless channel conditions and link quality can change more drastically 
compared to low frequencies during slight movement of users. 
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All these challenges call for enhanced scheduler decisions and LA in both Uplink 
(UL) and Downlink (DL) to maintain reliable connectivity and Quality of Service 
(QoS) for users. Therefore, an ML algorithm can be proposed to adopt better 
decisions by schedulers for LA, leading to an increased throughput while 
maintaining a decent level of Block Error Rate (BLER). 

 

1.2 Project Aims and Main Challenges 

This thesis work will propose an ML model for UL LA which shall dynamically 
adjust the UL modulation and coding scheme. The ML algorithm shall be built using 
several decision parameters, targeting improvement of the Outer-Loop LA (OLLA) 
of the network. The substantial thesis goals will span over comparison of the relative 
performance and robustness of evaluated ML techniques to the traditional technique 
for UL LA as described below. Thus, the thesis work will involve the following: 

• Investigate existing UL LA techniques, and their potential drawbacks. 
• Explore previous related work and propose an ML technique for UL LA. 
• Develope a simulation model to evaluate and compare prior art and the 

proposed ML technique, as well as simulating various possible scenarios. 
 

1.3 Approach and Methodology 

LA in current 5G NR systems depends on look-up tables to decide the suitable 
Modulation and Coding Scheme (MCS). These tables are built depending on several 
simulations, which in average results the highest performance of the transmission 
link. The scheduler chooses the MCS value that corresponds to given measured 
inputs, mainly Signal to Interference and Noise Ratio (SINR), while satisfying the 
constraint of keeping the BLER below a certain threshold (10%). However, use of 
static look-up tables leads to ignoring of significant information related to each cell 
environment and UE parameters, as well as being highly dependent on the estimated 
SINR values. Therefore, the application of an ML algorithm can enhance the 
performance and robustness of the scheduler LA decisions, as it can be dedicated to 
each user and each cell alone. Moreover, it will automatically adapt to any new 
changes in the environment, as it will always seek to improve the performance using 
the feedback from previous actions.  
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Figure 1.1 The general block diagram of the proposed ML system for UL link adaptation. 
 

This thesis will evaluate existing and proposed approaches for UL LA, and further 
suggests an ML algorithm suitable for 5G NR systems at mmWave frequencies. 
This will be done using a professional simulation tool provided by Ericsson with 
needed adjustments and possible improvements. Figure 1.1 shows the general block 
diagram of the ML system proposed for UL LA. 

 

1.4 Thesis outline 

This thesis work was organized into 6 chapters. Chapter 1 is an introduction to the 
thesis topic. Chapter 2 reviews the general theoretical background of 5G NR 
networks, the mmWave environment, and LA. Chapter 3 briefly discusses the 
concept behind different ML techniques. Chapter 4 provides an overview of prior 
art, followed by a detailed description of the proposed ML algorithm. Chapter 5 
evaluates the obtained results of the implemented system. Finally, Chapter 6 
summarizes the main conclusions and outlines future work based on the results. 
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CHAPTER 2 

 

2 Theoretical Background 
 
The demands on wireless communications are growing rapidly. New applications 
are rising every day, adding new substantial services to the users, thus driving for 
increased requirements. As an example, Facebook is one of the applications 
launched only in the previous 15 years. Today it is considered an essential source 
for entertainment, information, advertisement, as well as many other services. 
Moreover, it has more than 2 billion monthly active users [4], with over 1 billion of 
those users considered as mobile-only users [5].  
 
In this matter, mobile cellular networks are expected to absorb a massive amount of 
the wireless data expansion. In order to keep pace with these demands, the 
International Telecommunication Union (ITU) initiated the process of evolving 
towards 5G networks in 2015. New scenarios with improved performance were 
introduced in the International Mobile Telecommunication system 2020 (IMT-
2020). According to the Ericsson’s mobility report, published in June 2019, 5G 
networks will carry up to 35 percent of mobile data traffic globally by 2024. The 
expected growth on the global mobile data traffic in exabytes (EB) per month for 
this decade is demonstrated in Figure 2.1 [6].  
 

 
 

Figure 2.1: The expected growth of global mobile data traffic at the present decade. [6] 
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2.1 Introduction to 5G New Radio (NR) 

    In 2016, the Third Generation Partnership Project (3GPP) initiated the 
standardization process for 5G NR [7], which should fulfil the specifications of 
achieving 1000 times higher network spectral efficiency (SE), low cost, guaranteed 
QoS, mobility supporting up to 500 km/h, ultra-reliable & low- latency 
communication, and 100 times better energy efficiency (EE) compared to its 
predecessor [7]. To achieve this target, the unutilized mmWave spectrum was 
introduced, adding new capabilities to the network, though in reverse requiring new 
techniques to overcome its intricate environment. In Figure 2.2, a comparison 
between 4G and 5G network requirement, illustrated through a “spider web” 
diagram. 
 
 
 

 
Figure 2.2 A comparison between IMT-advanced and IMT-2020 specifications. [2] 
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2.1.1 5G Mobile Networks New Concept 

To meet the high standards of 5G networks, a new concept was introduced in IMT-
2020. This new concept was to split the desired 5G specifications into multiple 
scenarios, each with different requirement and different services, as shown in Figure 
2.3 [2]. The first scenario is eMBB, where the users require increased data 
throughput, with high mobility and network capacity.  
 
 
 

 
Figure 2.3 IMT-2020 different services and use cases. [2] 

 
 
 
 
 
On the other hand, Massive Machine-type Communication (mMTC) is more 
focused on lowering power consumption, and greatly increasing the number of 
connected devices to the network, as this scenario is mostly dedicated to the Internet 
of Things (IoT) devices, that have low data traffic and will be connected to the 
wireless network. Finally, ultra-reliable and low latency communications (URLLC) 
is introduced, providing communication services such as Vehicle to Vehicle (V2V) 
and Vehicle to Infrastructure (V2I) communication, which requires high reliability 
and low latency for low data flows. Figure 2.4 illustrates the key capabilities of the 
three different scenarios. 
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As a result, splitting the use cases into different categories was tremendously 
beneficial and essential to meet 5G high standards. This allowed for introducing 
new techniques, which enhanced performance in one desired aspect, even if it leads 
to a lower performance in other less relevant aspect. 
 

2.1.2 5G NR New Key Features 

In 5G NR, several new key technologies are introduced. These technologies can be 
combined to meet the requirements of IMT-2020 for 5G systems. Examples of these 
new features are: Network Ultra-Densification (UDenseNets), mmWave, Optical 
Wireless Communication (OWC), Massive MIMO (mMIMO), Full-Duplex 
technology (FD), Dynamic Spectrum Access (DSA), and Non-Orthogonal Multiple 
Access (NOMA). Figure 2.5 illustrates the uses of these new key technologies in a 
dense 5G macrocell environment. 
 
The new technologies can be very beneficial to each other, whether adding new 
advantages, or helping to overcome the trade-offs of other techniques. For example, 
mmWave can add a lot of new spectra to the system, and significantly increase the 
data throughput. However, due to high penetration losses introduced from the 
atmosphere in mmWave range, the coverage area can be limited. Nevertheless, if 
combined with mMIMO, the coverage area can be extended using beamforming 
techniques, meanwhile the small wavelength of mmWaves can make it easier to 
implement small size antennas of mMIMO. 

 
Figure 2.4 A comparison between the different scenarios in IMT-2020 and their capabilities. [2] 
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Figure 2.5 An illustration of 5G NR macrocell with the use of its new technologies. [10] 

 
On the other hand, mmWave and mMIMO integration requires large number of 
radio frequency (RF) chains, which can be responsible for approximately 70% of 
the total transceiver energy consumption [8]. To reduce this disadvantage, hybrid 
beamforming (analog and digital) is considered, which will affect the system 
performance. Another proposed solution is using beam-space MIMO, which can 
significantly reduce both the number of RF chains and energy consumption [9].  
However, each RF chain can support only one user in the time frequency domain. 
The important role of different new technologies to back up one another can be 
highlighted here, as NOMA can be introduced to help overcome this dilemma 
through its multiplexing capability when users are on the same beam range. Along 
with FD, one RF chain can serve users in both downlink (DL) & uplink (UL) 
channels. [10] 
 
Similarly, many emerging technologies are suggested to join the above features for 
improved overall performance. One of these techniques which can be used in the 
5G network is ML, which might introduce new advantages to overcome many 
challenges. In this thesis, we will investigate the possibility of improving the 
scheduler’s decisions for UL LA, in mmWave environment. 
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2.1.3 mmWave Frequencies, Capabilities and Limitations 

Considering the congestion occurring in different radio frequency ranges in 
previous generations, it was just a matter of time for the idea to include the 
unlicensed higher frequencies. The name of mmWave frequencies was originally 
derived from the small wavelengths measured in millimeters at this spectrum [11]. 
As frequencies ranging between 30 and 300 GHz lead to wavelengths of 10 down 
to 1 millimeter. However, in 5G terminology, it is common to indicate frequencies 
ranging between 24.5 and 52.6 GHz as mmWave frequencies, since only this portion 
of high frequencies is used in 5G NR. Figure 2.6 demonstrates the operating bands 
specified in 3GPP release 15 for frequencies above 6 GHz [12]. 
 
In release 15, 3GPP divided the operating 5G NR frequency band into two frequency 
ranges [13]: 
 
 

- Frequency range 1 (FR1) includes all bands below 6 GHz. 
- Frequency range 2 (FR2) includes the new added spectra in the range 

24.25-52.6 GHz. Table 2.1 shows the operating bands defined by 3GPP in 
Frequency Range 2 [12]. 
 
 

 

 
 

Figure 2.6 Operating bands specified by 3GPP for frequencies above than 6 GHz (FR2). [12] 
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In 5G Networks, mmWave frequencies can be used in all three scenarios, eMBB, 
URLLC, and mMTC. For example, in URLLC, mmWave signals are considered as 
the main resource in V2V and V2I communication, as it enables low latency 
connections, and provides the required frequency spectrum to allocate the data 
generated from the sensors in each vehicle. Meanwhile, in the cellular networks, it 
can enable extremely high data rates, and add a huge spectrum to the network. 
Finally, due to its large capacity, many IoT devices are expected to work in FR2, 
such as smart city sensors, smart phones, wearable devices, wireless headsets, 
augmented reality applications, etc. 
 
 

Table 2.1 The operating bands defined by 3GPP for NR in FR2. [12] 

 

NR Band Uplink and Downlink 
Range (MHz) Duplex Mode Main Regions 

n257 26,500 - 29,500 TDD Asia, Americas (global) 
n258 24,250 - 27,500 TDD Europe, Asia (global) 
n259 37,000 - 40,000 TDD US (global) 

 
 
 
 
Adding FR2 to the frequency spectrum approximately doubles the network total 
bandwidth. However, there is very strong and valid reasons why this huge 
unlicensed spectrum was not used previously. As a matter of fact, for long time, it 
was argued that it might not be possible to use high frequency environment for 
reliable mobile communications. However, the arrival of many new technologies 
has helped to overcome its intricate environment and enabled the possibility to take 
advantage of this spectrum. Some mmWave challenges and solutions are 
demonstrated below. 
 
 
 Challenges 

- In addition to the high isotropic free space losses, mmWave signals suffer 
from excessive penetration loss. Also, high propagation attenuation is 
introduced due to the atmosphere absorption of oxygen molecules and water 
vapor [3]. Therefore, smaller cell size must be used to decrease the 
attenuation, at the expense of increasing number of handovers. This also 
results in increasing the cost and complexity of the network, which is a side 
effect of raising the number of access points and base stations to achieve 
good coverage. 
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- Raindrops can highly affect the availability of the connection [11]. 
 

- Doppler spread as well as frequency and phase errors can have a greater 
effect while receiving mmWave signals. 

 
- The power efficiency of the electronics, especially power amplifiers, 

decrease when operating on higher frequencies [14]. 
 
To reduce and overcome these challenges, several solutions can be applied. Some 
of these solutions are listed below: 
 
 Solutions 

- Network Ultra-Densification (UDenseNets) can be considered as one of the 
offered solutions, as mmWaves can be used as hot spots in the highly 
populated dense areas, where the user speed is limited and Line of Sight 
(LOS) signals are present. This will limit the signal attenuation, and 
therefore ensure extremely high data rates, while maintaining good 
reliability, and greatly increasing network capacity. 
 

- Dual Connectivity (DC) of 4G and mmWave (5G), can be used to improve 
the link handover and reliability [12] [15]. 
 

- Using massive beam forming at high frequencies can increase the coverage 
area along with reasonable antenna size. 
 

- To increase the robustness against doppler spread, frequency, and phase 
errors; higher numerology of sub-carrier spacing are used. This, in addition 
to smaller cell size, lead to lower latency, which can be very beneficial in 
delay-sensitive applications. 

 
 
To take maximum advantage of mmWave spectrum, 5G NR networks also allow 
using Carrier Aggregation (CA) between FR1 and FR2. Applying all these 
solutions enables the network to benefit from the currently under-utilized 
mmWave spectrum, resulting in adding new features such as, extremely high data 
rates, increased network capacity, and lower latency. 
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2.2 Link Adaptation in Wireless Networks 

    In wireless networks, LA is the process where the robustness of the transmitted 
signal is determined. Signal immunity against noise and interference is traded 
against link throughput. This is due to the fact that to increase the robustness of a 
signal, higher code rates are needed, and/or less bits are represented by each 
transmitted signal using lower modulation orders. 
 
 

2.2.1 The Principle of Wireless Link Adaptation 

For a better understanding of the link adaptation procedure, lets imagine the scenario 
in Figure 2.7. In this scenario, multiple speakers are transmitting information using 
different languages, for specific listeners (lets denote them here as users). Each 
speaker has scalable power levels (from 1 to 10). The goal is to determine the 
optimum power level for a successful transmission. For simplicity, all speakers will 
transmit using the same power level: 

 
- First, starting at the lowest power level of the speakers (level 1), the 

users would have a lot of troubles in receiving the information, as the 
voice will be very low, and most of the information will be lost. 
 

- By increasing the power level, the lost information will be decreasing, 
until the point that all information is successfully received. 
 

- If the power level was set to an optimum value (let us assume 5), the 
audio signal will reach to the users with a suitable power level, and most 
of the information will be successfully received. Even while some 
words were not clearly heard, it was still possible for the users to fully 
understand all the information from the context, and therefore, it is not 
needed to increase the power level more than that. 
 

- When the power level reaches level 7, the audio signal will be clearer 
to the users, and they will not need to correct many information from 
the context, since less information was lost compared to power level 5. 
Note that in this case audio speakers have very low interference level 
on each other.  
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- If the power level was set to the maximum value (10), the audio signal 
would still be heard clearly by the users. Although, this time increasing 
the power will not enhance the audio signal quality, this is due to higher 
interference introduced to the users by the other speakers. Moreover, 
some energy will be lost in the process, since the information would 
still be successfully received if lower power levels were used.  

 

A similar example of this scenario is what so called, the cocktail party effect, which 
is the phenomenon of the human's ability to extract information from one audio 
signal, while filtering out a range of other less important audio signals, as when a 
person can focus on a single conversation in a noisy room [16]. The cocktail party 
effect states that higher audio power levels will not necessarily improve the 
situation, unless it introduces  [17].  
After reaching a certain threshold -power level 7 in this case-, the SINR will saturate 
and will be the same for all higher power levels. 
 

  
(a) Transmitting at low power level (PWR LVL 1), leading 
to large number of errors, and therefore, loss of information. 

 
 

(b) Transmitting at an optimum power level (PWR LVL 5), 
leading to a very small number of errors, can be corrected. 

  
(c) Transmitting at a good power level (PWR LVL 7), 

leading to error free transmission, and maximizing QoS. 
(d) Transmitting at maximum Power level (PWR LVL 10), 
resulting in power loss due to higher interference between 

users. 
Figure 2.7 Adjusting the power of the transmittied audio signals, to determine the optimum power level. 
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Now, after demonstrating the above scenario, it is time to relate it to the link 
adaptation procedure in wireless communication networks, starting by defining the 
below: 

 
 Signal to Interference and Noise Ratio can simply be described as a 

measure of how strong the information signal is, relative to the unwanted 
signals (noise and interference). SINR or SNR, when the interference is 
neglected- is a critical parameter for any LA procedure, as it has a direct 
effect on the link capacity, as given in equation (2.1) below [18]: 
 

,  [b/s]. (2.1) 

 
 
Typically, when the transmitted signals are relatively low, the noise signals 
can have the dominant effect on decreasing the SINR. While -as in the 
scenario above-, by increasing the transmitting power in a network, the 
interference signals will have a higher effect than noise on the received 
signal quality, which will eventually cause the SINR to saturate on a certain 
threshold no matter how much the transmitting power is increased. 

 
 Code Rate can be defined as the ratio between the number of information 

bits and the total number of transmitted bits. Code rate always ranges 
between zero and one, since the useful number of bits can never be more 
than the total number of transmitted bits for a successful transmission. 
Decreasing code rate can increase the robustness of the transmission. 
Coding creates a higher number of bits -in total- to be transmitted, but it 
allows the receiver to detect and correct errors even at lower signal power 
levels. Though, this is on the expense of decreasing the data throughput. 
Coding is similar to the process of correctly detecting the information from 
the context as in the scenario above. In relation to this fact, "the father of 
information theory" Claude Shannon proved that English prose has a 
redundancy of more than 50% [19], enabling the possibility of error 
detection and correction in written texts. However, in real wireless systems, 
more complex coding facilitates reliable transmission while using more 
efficient coding than the redundancy present in English language. 
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 Modulation is the phase where the digital bits are converted to analog 
signals, that can be represented and transmitted through the wireless 
channel as an electromagnetic signal. By increasing the order of the 
modulation scheme used, more bits are represented as one analog signal at 
a certain frequency-time resource. Higher order modulation schemes have 
more points allocated in the constellation diagram, leading to each signal 
representing a greater number of information bits. However, this means that 
the Euclidian distance between each point will be decreased since there are 
more points, and therefore will lead to increased number of errors for a fixed 
SINR value. Figure 2.8 [20] below shows the constellation diagram for 
different modulation schemes supported in 5G NR, where Quadrature Phase 
Shift Keying (QPSK) represents two bits per symbol, and 16-Quadrature 
Amplitude Modulation (QAM) and 64-QAM represent four and six bits per 
symbol, respectively. 

 
 

 
 

Figure 2.8 Signal constellations for (a) QPSK, (b) 16-QAM and (c) 64-QAM. [20] 
 

 

Figure 2.9 (a) and (b) where generated by Malab to demonstrate the performance 
variation between QPSK, 16-QAM, and 64-QAM modulation schemes, over an 
Additive White Gaussian Noise (AWGN) channel [21]. The two charts illustrate the 
trade-off of using higher modulation schemes that is, increasing the capacity of the 
link from one hand, and decreasing the performance versus symbol error rate on the 
other. 
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(a) Capacity vs SNR (Es/No) for QPSK,  
16-QAM, and 64-QAM.

(b) Symbol Error Rate vs SNR (Es/No) for 
QPSK, 16-QAM, and 64-QAM.

Figure 2.9 The trade-off between channel capacity and symbol error rate VS SNR using different 
modulation schemes.

Finally, as a conclusion of this scenario, it can be proposed that 5 is the optimum 
power level can be used, which insures successful information transmission with 
lowest possible power consumption. On the other hand, it can also be argued that 
the power level 7 is the ideal value for this case, since it provides a higher received 
signal quality, or what can be called as a higher QoS. Also, power level 6 can be 
suggested which can provide a little bit of both. Therefore, the optimum power level 
can only be determined after deciding the acceptable level of audio signal quality. 
In relation to this concept, 3GPP decided to set a BLER target in 5G standards as 
one of QoS measures, where BLER should be targeted to be below a certain 
threshold of 10%. 

    Another point should be highlighted here, that is, in this scenario human 
languages were used, where even when having a higher received signal quality, the 
obtained data throughput cannot be increased. But unlike human languages, in 
modern wireless communication networks, the increased signal quality -SINR- can 
lead to a higher data throughput. This can be achieved by using higher modulation 
orders and lower code rates. To take a full advantage of the high received signal 
quality, optimal modulation scheme and code rate must be chosen before the 
transmission, at the transmitter side. This requires knowledge about channel 
conditions in advance.  
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However, in real wireless networks, multiple variables add much more complexity 
to the procedure of predicting the optimal modulation scheme and code rate. As an 
example, users can move in random directions with random speeds, causing rapid 
changes on channel conditions. Also, other users can introduce interference signals 
that might hugely decrease SINR. Therefore, it must be a periodic procedure that 
adapts with these changes and optimizes the modulation order and code rate 
frequently. In 5G networks, this procedure is done through two steps as 
demonstrated in the next section (Section 2.2.2). 
 

22.2.2 Inner-Loop and Outer-Loop Link Adaptation 

LA in current 5G NR systems use look-up tables to determine the modulation and 
coding scheme. Each MCS value on the table represents a certain combination of 
modulation order and code rate. The scheduler chooses between 28 possible MCS 
candidates, mainly depending on the estimated SINR. The chosen MCS value 
should result on the highest possible throughput, while satisfying the constraint of 
maintaining the BLER below a certain threshold (10%). However, keeping up with 
this constraint can be very challenging, since suitable channel conditions and 
acceptable accuracy of the estimated SINR are needed. 
 
Moreover, the demand in keeping the BLER below a certain threshold requires more 
conservative MCS selection after failure transmissions. The feedback from the 
receiver side of the transmission success or failure is referred to as 
Acknowledgement and Negative Acknowledgement (ACK/NACK). Those failures 
can be a result of optimistic scheduler MCS decisions, which are mainly caused by 
the inaccurate estimation of SINR. The process of LA depending on the estimated 
SINR is called Inner-Loop Link Adaptation (ILLA), while the process of adjusting 
the MCS value depending on the ACK/NACK of previous transmissions is called 
Outer-Loop Link Adaptation (OLLA).  
 
In this thesis work, we will focus on improving the OLLA performance using a 
reinforcement learning algorithm. This algorithm will use ACK/NACK, as well as 
the scheduler MCS decision as input, to predict a new and more accurate MCS 
value. 
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22.2.3 Downlink and Uplink Link Adaptation in 5G NR 

The process of LA follow the same concept in both UL and DL scenarios. However, 
a few differences are present due to the fact that the channel quality is measured in 
opposite places, while the scheduler decisions for both cases are made at the Base 
Station (BS) side, which is denoted as Next Generation Node B (gNB) in 5G 
terminology. Below is a brief description of the DL and UL LA processes, to avoid 
any confusion between the two cases. 

 
 
 

 Downlink Link Adaptation 

In DL case, the channel is estimated at UE side, the reference signals sent 
from gNB are used for this estimation, these refence signals are called 
Channel State Information Reference Signals (CSI-RS). Since the SINR is 
a continuous (non-discrete) value, an integer value ranging between 0 to 
15 (4 Bits) is used as a reference of channel quality. This value is defined 
as Channel Quality indicator (CQI). The CQI is sent by the UE in control 
channel reports called Channel State Information (CSI), which might also 
include other information, such as Precoding Matrix Indicator (PMI), CSI-
RS Resource Indicator (CRI), Layer Indicator (LI) and Rank Indicator (RI) 
[22]. Table 2.2 shows the 3GPP CQI 4 Bit table and its corresponding 
modulation, code rate, and efficiency in one of the DL scenarios. 
 
Once the CQI is received at the gNB, the scheduler maps the CQI value to 
a suitable corresponding MCS value. However, since CQI is a 4-bit integer 
ranging between 0 to 15 and MCS is a 5-bit integer ranging between 0 to 
31, there will be more than one MCS value that corresponds to a certain 
CQI value in many cases. Therefore, the scheduler must determine which 
MCS value corresponds to the received CQI value. This procedure was not 
standardized by 3GPP and it was left for the different vendors to optimize 
individually.  
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Table 2.2 4-bit CQI table defined by 3GPP as Table 2. [22] 
 

CQI index modulation code rate x 1024 efficiency 
0 out of range 
1 QPSK 78 0.1523 
2 QPSK 193 0.3770 
3 QPSK 449 0.8770 
4 16QAM 378 1.4766 
5 16QAM 490 1.9141 
6 16QAM 616 2.4063 
7 64QAM 466 2.7305 
8 64QAM 567 3.3223 
9 64QAM 666 3.9023 

10 64QAM 772 4.5234 
11 64QAM 873 5.1152 
12 256QAM 711 5.5547 
13 256QAM 797 6.2266 
14 256QAM 885 6.9141 
15 256QAM 948 7.4063 

 

 
 
 
The chosen modulation order and code rate will be used for transmission 
on the Physical Downlink Shared Channel (PDSCH). Then the MCS value 
will be sent among the Downlink Control Information (DCI), to enable the 
UE for correct demodulation. Table 2.3 shows the 3GPP MCS 5 Bit table 
and its corresponding modulation, target code rate, and efficiency in one 
of the DL scenarios. 
 
 
There are 28 possible values, and 4 reserved values, as seen in Table 2.3. 
By increasing the MCS value, the Transfer Block Size (TBS) of the 
transmitted subframe is increased, which represent the useful bits in a 
subframe. As a consequence, higher data rates can be achieved on the 
expense of signal robustness against noise and interference. 
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Table 2.3 MCS index Table 2 for PDSCH [22]. 
 

MCS Index 
IMCS 

Modulation Order 
Qm 

Target code Rate 
R x 1024 

Spectral 
efficiency 

0 2 120 0.2344 
1 2 193 0.3770 
2 2 308 0.6016 
3 2 449 0.8770 
4 2 602 1.1758 
5 4 378 1.4766 
6 4 434 1.6953 
7 4 490 1.9141 
8 4 553 2.1602 
9 4 616 2.4063 

10 4 658 2.5703 
11 6 466 2.7305 
12 6 517 3.0293 
13 6 567 3.3223 
14 6 616 3.6094 
15 6 666 3.9023 
16 6 719 4.2129 
17 6 772 4.5234 
18 6 822 4.8164 
19 6 873 5.1152 
20 8 682.5 5.3320 
21 8 711 5.5547 
22 8 754 5.8906 
23 8 797 6.2266 
24 8 841 6.5703 
25 8 885 6.9141 
26 8 916.5 7.1602 
27 8 948 7.4063 
28 q Reserved 
29 2 Reserved 
30 4 Reserved 
31 6 Reserved 
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The reserved values are used for retransmissions, where each value 
corresponds to a different Redundancy Version (RV). The RV is a two-bit 
integer that represents different bit combinations, and it is an important 
input at the receiver for correct detection. As in 5G NR systems, Hybrid 
Automatic Repeat Request (HARQ) uses the previous erroneously 
received packets, which have different RV, to increase the probability of 
correctly detecting the packet in the retransmission procedure. Each 
erroneously received packet is combined with the recently retransmitted 
packets, to obtain a single, combined packet that is more reliable for 
detection [23]. 

 
 
 

 Uplink Link Adaptation 

In the UL case, the gNB estimates the SINR using the reference signals 
transmitted by the UE. By applying this estimation, the MCS value can be 
mapped using look-up tables, which were optimized using several 
simulations with different scenarios. Then the chosen MCS value is 
transmitted to the UE to enable correct modulation. The UE uses the look-
up tables to determine the Modulation Order (Qm) and Code Rate (R).  
The MCS value is transmitted in the DCI reports, and it ranges between 0 
and 31 (5 Bits). Table 2.4 below demonstrates one of these tables used by 
3GPP to map the Modulation Order and Code Rate. 
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Table 2.4 MCS index table for UL with transform precoding and 64QAM [22]. 
 

MCS Index 
IMCS 

Modulation Order 
Qm 

Target code Rate 
R x 1024 

Spectral 
efficiency 

0 q 240/q 0.2344 
1 q 314/q 0.3066 
2 2 193 0.3770 
3 2 251 0.4902 
4 2 308 0.6016 
5 2 379 0.7402 
6 2 449 0.8770 
7 2 526 1.0273 
8 2 602 1.1758 
9 2 679 1.3262 

10 4 340 1.3281 
11 4 378 1.4766 
12 4 434 1.6953 
13 4 490 1.9141 
14 4 553 2.1602 
15 4 616 2.4063 
16 4 658 2.5703 
17 6 466 2.7305 
18 6 517 3.0293 
19 6 567 3.3223 
20 6 616 3.6094 
21 6 666 3.9023 
22 6 719 4.2129 
23 6 772 4.5234 
24 6 822 4.8164 
25 6 873 5.1152 
26 6 910 5.3320 
27 6 948 5.5547 
28 q Reserved 
29 2 Reserved 
30 4 Reserved 
31 6 Reserved 
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CHAPTER 3 
 
 

3 Introduction to Machine Learning 

As wireless networks evolved, more and more data were generated along with the 
new rising applications and services. Taking full advantage by processing the 
generated data can improve human life significantly. However, this requires new 
techniques since human capability in processing large data is limited. Therefore, an 
increased attention is driven towards research on automatically processing these 
large data sets using Artificial Intelligence (AI). The processed information can be 
used in many major areas such as optimization, statistics, data mining, and many 
others. 

ML is considered as a sub-category of AI. It mainly depends on processing data sets 
to predict future actions or suitable classifications. This can be done using 
mathematical models based on sample data sets. 

 

3.1 Machine Learning Basic Concept 

    In 1959, Arthur Samuel defined ML as the “field of study that gives computers 
the ability to learn without being explicitly programmed” [24]. This is done by 
enabling computers to learn from experience, which will eliminate the need of 
detailed and complex programming. This will also allow computers to learn directly 
from data, without the need for the human interference. Since humans has a limited 
ability of learning from large data compared to computer, surpassing this limitation 
will introduce many new features and applications were not possible previously. 

ML is a very hot research area that is being widely invested in to improve numerous 
life applications. These includes search engines, market prediction, social media 
applications, health care, and speech recognition, to mention a few. 5G networks as 
well are expected to take advantage of ML. Many workshops are being held by the 
ITU that discusses the important role of ML in 5G networks. For example, in the 
context of 5G RAN, ML offers enhanced scheduler performance, Radio Resource 
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Management (RRM) optimization, Beam pattern optimization, indoor positioning, 
and countless other applications [1]. 

The ML algorithms differ based on the input data and the system requirement. The 
most popular algorithms are: supervised learning, unsupervised learning, and 
reinforcement learning.  

 Supervised Learning 

In supervised learning, the aim is to build a mathematical model that can predict the 
output from a certain input data. This is done by exploiting the knowledge of a 
previously observed set of data, this data contains the input data and its actual 
output, this is referred as the training data set. The mathematical model should be 
able to predict the output of new inputs were not included in the training sets. In 
supervised learning it is critical to have large enough and accurate training sets that 
allow for an accurate mathematical model to be built. 

Supervised learning can also be used to classify an input into a certain class, based 
on previous inputs or previous classification attempts and the success or failure 
through supervision. 

 Unsupervised Learning 

Unlike supervised learning, this ML algorithm does not use training sets. Instead, 
unsupervised learning seeks to find hidden similarities and patterns in a required set 
of data. Based on these similarities the data set can be categorized and grouped into 
different subsets. This clustering is used in various applications, where it is 
necessary to automatically separate data that contains similar unique features. For 
example, social media applications use unsupervised learning to label a group of 
users depending on their activities, which helps in selecting more suitable 
advertisements to display for these users. 

 Reinforcement Learning 

A system that uses Reinforcement Learning can be described as “an AI system that 
learns from its own mistakes”. RL uses the experience gained from its previous 
actions for better future decisions. In the beginning, the system will not have enough 
experience to take the correct action. After a while of training and making incorrect 
actions, the system will gain more experience by storing the result of each action 
using a mathematical model. The stored experience allows the system to take better 
decisions in the future. Reinforcement Learning includes two main conditions 
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known as: exploration and exploitation. These two conditions -or policies- 
determine how the system takes an action. In exploitation, the system depends on 
the previous experience as described above. In exploration, it will try to explore new 
outcomes, mostly depending on randomness. Since this thesis discusses the use 
Reinforcement Learning in 5G networks, more detailed description can be found in 
the next section (Section 3.2). 
 

3.2 Introduction to Reinforcement Learning 

In Reinforcement Learning, an agent in a certain environment must choose a 
suitable decision depending on its state (S). Each action or decision taken by the 
agent will have some effect on the environment. After each action a feedback is 
returned to the agent by observing the environment. The feedback is used as an input 
to calculate a reward (R) for the action (a), using a predefined reward function. This 
reward will lead to adjusting the policy of the agent accordingly. If the reward is 
positive, the agent will increase the chances of using the same action under similar 
conditions -state- and vice versa. The decisions are then determined using a 
mathematical model relying on the stored experience. If the actions taken can affect 
the next state, the mathematical model will take in consideration the cumulative 
expected reward when making a decision. Figure 3.1 shows the general procedure 
of a RL system. 
 
In summary, to build an RL system, a mathematical calculation is needed to profit 
from and store previous experience. However, it is important to first define the input 
variables below: 

- The set of States S = {s1, s2, …, sn} of n possible states of the agent in 
the required environment. 
 

- The set of Actions A(t) = {a1(t), a2(t), …, am(t)} of m possible actions 
by the agent, at a certain time in the environment. 
 

- The Reward function R which defines the reward resulting of taking an 
action at a certain state. The reward represents the instant measure of 
the eligibility of choosing this action for that state, and it will affect the 
possibility of selecting this action again in future.  
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Figure 3.1 Reinforcement Learning general procedure. 

3.2.1 Reinforcement Learning Concept 

The idea behind Reinforcement Learning is to imitate one of the human learning 
behaviors that is, to learn by interacting with a certain environment. This can be 
demonstrated by the practical example below: 
 

- Walking requires a complex mixture of muscles and body movement; 
however, humans learn it at a considerably early age. Since it is difficult for 
us to learn by language at that time, we tempt to learn by interacting, that 
is, to take an action and observe the consequences of that action. After many 
wrong decisions -actions- and falls, a few steps can be made for the first 
time. These first steps will result on a positive reward, and therefore allow 
for the repetition of these consecutive actions.  
 

- At this point, it is possible to move these certain muscles with the correct 
amount of power to keep balance while moving. All movements that lead 
to a fall will result in a negative reward, and therefore, will be avoided in 
future. Repetition of this procedure for a suitable amount of time will result 
in storing the experience of walking in our brains. This allows us to use this 
experience for walking in future. The time needed for the repetition mainly 
depends on the complexity of the required procedure. 

 
- When our brains store all the needed experience of walking, most of the 

decisions will be taken based on the previous experience. However, at early 
stages, it is also important to frequently explore new ways to optimize our 
movement. By exploring more and more actions, this allows us to enhance 
our balance and learn new techniques such as jogging, running, and 
jumping. 
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- As we grow older, more actions are taken to exploit previous experience 
and less actions depend on exploration, this is due to the fact that 
exploration decisions normally have higher probability of negative rewards. 
It is very complex to determine when the system should depend on previous 
experience and when it should try to explore new better techniques, this is 
what so called the exploration-exploitation dilemma, which will be 
discussed in more detail in the coming sections. However, in general, the 
RL system should depend more on exploration at the beginning, since there 
is not enough experience. By gaining more and more experience the agent 
should decrease the exploration decisions and start exploiting the previously 
gained experience. 

 

3.2.2 Exploration vs Exploitation 

One of the most controversial topics in RL is the exploration/exploitation trade-off. 
As discussed in the previous example, it can be quite challenging to determine an 
optimal strategy that switches between exploration and exploitation, with the target 
of maximizing the cumulative reward. 
 
To better demonstrate the trade-off, let us consider the scenario in Figure 3.2, where 
the agent is required to find the best route to reach his goal -market-, and the actions 
are the movement around the environment shown in the figure. The state of the agent 
changes according to the actions taken, where the state (S) is the position of the 
agent. In this case, a small reward (+1) is given each time the agent gets closer to its 
destination -the market-, and a negative reward (-1) is given each time it gets farther. 
If the agent reaches its goal, it will receive a huge reward (+100). The positive 
reward will ensure that the agent seeks its goal, while the negative reward is to 
ensure that the shortest path is found. If the agent only focuses on the immediate 
rewards, it will get stuck on the closed end of the maze. If so, the agent will not be 
able to reach its goal, and therefore, the total cumulative reward will not be 
maximized. 
 
For the agent to be able to reach the destination, it needs to go to the opposite 
direction for a while (4 steps in this example), even when getting negative rewards. 
This can be achieved by enabling the agent to explore for some time in the 
beginning. During the exploring time, the agent’s actions will not depend on the 
rewards. However, the real challenge is to determine the time needed for 
exploration, especially in other environments where it can be more complex than 
this example. Also, unlike this example, the environment in many cases can change 
with time. For example, if the walls of the maze are moving or an obstacle appears 
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every now and then. This requires continuous exploration to adapt with any new 
changes on the environment, even if a suitable time of learning the maze has 
previously passed. 
 

 
 

Figure 3.2 An example of an RL environment, where the agent (human) is required to reach a 
goal (market) using the mathematical expression depending on the rewards gained during the 

process. 
 
In fact, this practical example faces us many times in our lives. Such as if we want 
to go to a new place for the first time without using our phones of course. If we were 
walking when we see the building of the destination, we try to go directly towards 
it. The positive reward is when we see it getting closer and closer. If we face an 
obstacle on our way like a fence, we try to go around it for a while, even if we go in 
the opposite direction. Going in the opposite direction leads to a negative reward, 
as we see the building getting farther and farther. Although, if the obstacle -fence- 
is a bit wide, it is always difficult to decide when we should turn back and try for 
another direction.  
 
If we succeed to reach our destination, we can remember this route and use it in 
future. However, it can also be confusing on our second time, as we will hesitate if 
we should exploit our previous experience and go on the same long direction, or if 
we should try to look for another way. After exploring and exploiting multiple times, 
the optimal route will eventually be found. Even so, it can always be a good idea to 
explore every now and then, since a new shorter route might have been opened. 
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One of the strategies used is to include randomness in this procedure, where a 
random variable is generated before each action. This random variable controls the 
policy of the decision, where if it is below a certain threshold, the random process 
of exploration is generated, and vice versa. The threshold is called epsilon, and it 
should decrease as the agent gains more experience. This is known as a Markov 
Decision Process (MDP), where the output of the mathematical model is partly 
random and partly controlled by a decision maker. After a suitable amount of 
actions, the agent will gain a good experience and epsilon is decreased down to a 
determined minimum value, which allows for the exploitation of the gained 
knowledge, as well as to explore every once in a while.  
 

3.2.3 Mathematical Representation 

The main goal of the RL algorithm is to maximize the cumulative reward of a 
sequence of actions. To reach this aim the mathematical expression responsible for 
making the decisions should take in consideration expected future rewards. Thus, it 
is obvious that future rewards should have lower affect than immediate rewards, this 
is due to the fact that future rewards have lower certainty in normal cases. The 
discount value also helps on reaching the maximum value with the least actions 
possible. Then the discounted return can be calculated as 
 

, (3.1) 
 
 
where Gt is the discounted cumulative expected reward, Rt is the reward resulting 
from an action at a certain state and time instant, and  is the discount factor that 
weights the future rewards, where 0 ≤  ≤ 1. The higher the discount factor is, the 
less is the discount and therefore the future rewards are considered more important. 
While low discount factor leads to decreasing the impact of the future rewards on 
the decisions. For example, when the discount factor reaches zero, the agent will 
only consider current rewards, and future rewards will not have any influence. 
 
Equation (3.1) formulates the general mathematical representation of RL systems. 
However, it does not include the policy used to update the probability of choosing 
an action depending on the resulting reward. This is an essential demand since it is 
unattainable in real scenarios to have a complete knowledge of the environment 
behavior.  

This also brings the question of how important the new experience is, compared to 
the old one, and when to discard the old experience and depend on the new one. In 
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other words, if the same action lead to different reward than previously experienced, 
how can the agent decide which experience is more reliable in future. Knowing that 
the new experience has the advantage of being up to date, while the old experience 
has been accumulated along several previous actions and therefore should also be 
reliable for future decisions. 

In the next section, we will discuss one of the model-free learning methods, known 
as the Q-Learning method, that have a continuous update on the decision-making 
strategy, depending on the observed rewards. 

 

3.2.4 Introduction to Q-Learning 

As discussed earlier, RL uses previous experience to perform an action in a certain 
state. This can be applied by using many methods and mathematical models. 
However, Q-learning is considered one of the most popular RL methods, that does 
not require a strong knowledge of the environment, where it seeks to find the 
optimal policy for maximizing the expected cumulative reward. To achieve this 
goal, a reward function is needed, which accurately reflects the agent’s final target. 

Q-learning depends on a table that stores all previous experience, known as the Q-
table. The Q stands for Quality, as it describes the quality of an action at a certain 
state. This is done by following Bellman’s optimality principle, through an iterative 
process. In other words, after building the Q-table that describes all actions at all 
states, the agent follows a greedy policy, where it chooses the action that 
corresponds to the highest Q-value. Figure 3.3 demonstrates the general procedure 
of Q-learning. 
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Figure 3.3 Q-Learning general procedure. 

 

Q-leaning procedure 

- First, the Q-table is initiated, normally by setting its values to zero for all 
possible actions. In cases of impossible and unwanted actions in the 
environment, the Q-value of that action is set to negative infinity, to ensure 
that the selection of this action is avoided. The Q-table size depends on the 
number of states (n) and possible actions (m).  

- Before choosing an action, the agent must decide the action selection policy 
(exploration or exploitation), which can be controlled by the value of 
epsilon. The policy determines whether the action selection follows a 
random process, or if it will exploit the previous experience. As discussed 
in sections 3.2.1 & 3.2.2, the agent tends to explore more at the beginning, 
when the Q-table is not optimized, and after gaining more experience, more 
decisions are made depending on previous knowledge. 
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- After the agent decides the selection policy, the action can be chosen. The 
random policy is quite straightforward, where the action is randomly 
selected out from the set of all actions. On the other hand, the exploitation 
process depends on a greedy policy, by choosing the action that leads to the 
highest Q-value. 

- The agent then observes the outcome of the performed action at that certain 
state, and calculates the reward depending on a predefined reward function. 

- The most important step in this procedure is updating the Q-table, as it is 
responsible for storing the gained experience of the chosen action at this 
state. The Q-value is updated by using Bellman’s equation, 

 

where Q(s,a) is the Q value of action (a) at state (s),  is the discount factor, 
R(s,a) is the reward for action (a) at state (s), and  is the learning rate, 
where  and weights the importance of the new experience 
compared to the old experience. In other words, the learning rate weights 
how quickly the agent abandons former information and replaces it with the 
newly observed experience, that is, if , the new Q-value will 
completely replace the former value and, therefore, the agent is not 
concerned with keeping older observations. 

 

 

 

 

 

, (3.2) 
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Figure 3.4 An example for the process of initiating and training the Q-Table 

Q-Table UP Down Right Left 
Location 1 - ∞ - ∞ 0 - ∞ 
Location 2 - ∞ - ∞ 0 0 
Location 3 - ∞ - ∞ 0 0 
Location 4 - ∞ - ∞ 0 0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
Location 15 - ∞ 0 0 - ∞ 
Location 16 0 0 - ∞ - ∞ 
Location 17 0 - ∞ - ∞ - ∞ 

Q-Table UP Down Right Left 
Location 1 - ∞ - ∞ Q(s0,a2) - ∞ 
Location 2 - ∞ - ∞ Q(s1,a2) Q(s1,a3) 
Location 3 - ∞ - ∞ Q(s2,a2) Q(s2,a3) 
Location 4 - ∞ - ∞ Q(s3,a2) Q(s3,a3) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
Location 15 - ∞ Q(s14,a1) Q(s14,a2) - ∞ 
Location 16 Q(s15,a0) Q(s15,a1) - ∞ - ∞ 
Location 17 Q(s16,a0) - ∞ - ∞ - ∞ 

After a suitable amount of iterations, where 
all actions at all states have been observed 
and accumulated, all table values will be 
updated, representing the quality for each 
decision. 

Initiating the Q-Table 

Actions 

St
at

es
 

Actions 

St
at

es
 

In the begging, all Q(s,a) values are set to 
zero, except impossible or unwanted 
values are set to negative infinity. 
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After a suitable amount of iterations, the Q-table will be optimized to select the 
actions that lead to the highest expected cumulative reward, bearing in mind that 
this optimization is according only to previously observed outputs. From there, the 
agent will be able to perform its goal in its environment. It will, however, be possible 
for the agent to automatically adapt with any future changes on the environment, 
since the Q-table depends on the observation of the performed actions. Figure 3.4 
illustrates the Q-table of the example in Figure 3.2, where location 1 is at the dead 
end, and location 17 is at the destination (market). Therefore, the number of states 
is m = 17, and the number of possible actions is n = 4, which are up, down, right, 
and left. 
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CHAPTER 4 
 
 

4 Machine Learning for Link Adaptation in 
Wireless Networks  

LA is considered one of the popular research areas in wireless networks. This is 
arising from the fact that 3GPP association sets the standard of only the general LA 
procedure, which does not include all aspects. Therefore, it left the door wide open 
for different vendors to investigate individually and compete on achieving highest 
possible performance, leading to many researches in this field. Furthermore, since 
growing attention is driven towards ML techniques recently, many papers are 
focusing on the utilization of ML in 5G networks, including in LA procedures. In 
the next section, we will review some of the related research work. Then a 
theoretical approach for the proposed system is described, before finally describing 
the system implementation. 

4.1 Previous Related Work 

The main goal of this master thesis is to propose a ML model that enhance uplink 
link adaptation in 5G networks. The ML system should dynamically adjust UL 
modulation and coding scheme in the mmWave environment. As previously 
mentioned, several studies [25]-[29] regarding the utilization of ML in wireless LA 
can be found. Although, most previous works were examining different independent 
problems, with multiple ML techniques, and mainly focusing on the DL LA. 
However, no previous work could be found that discussed the use of ML in the 
mmWave environment, or for UL scenario in 5G networks. 

In [25],[27], and [28], the authors depend on supervised and unsupervised learning 
by treating this problem as classification and Support-Vector Machine (SVM) 
models. The main weakness of this solutions is that it requires large sets of training 
data to build a model of the wireless channel dynamics. Also, in [25] and [27], the 
system does not keep pace closely with changes occurring in the environment, as it 
does not rely on the feedback of the system. 
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In [26] and [29], a reinforcement learning was proposed, based on Q-learning 
algorithm to avoid the use of model training phases. However, in [29] the state space 
is defined over the continuous value of received SINR leading to a large number of 
states after discretization, thus a large Q-table needs to be handled by the learning 
algorithm, which requires long exploration to be filled and optimized. 

In [26], the system is designed for the LA DL procedure in LTE networks. The 
target of this paper is slightly different from the goal of the thesis since the DL 
procedure depends on CQI values, which are the main input of its algorithm. 
Moreover, the system focuses on ILLA, since all UE use the same Q-table and, since 
it uses CQI values which are direct outputs derived from the estimated SINR. The 
disadvantage of this algorithm is that it needs a long time for the Q-table to be filled 
and optimized. This can be quite challenging, since some MCS values are more 
common than others in real channel conditions. This leads to unoptimized Q-values 
and therefore the actions can be unreliable even after long time have passed, which 
also increases the time needed to adapt to new changes on environment. Thus, a 
long exploration time is needed to optimize the large Q-table, but even so, this will 
not guarantee optimizing uncommon Q-values. Also, it does not separate between 
new transmissions and retransmissions cases, which have a clear difference since 
the HARQ procedure is used. The retransmitted signals will have higher probability 
of successful reception, due to the HARQ procedure use of previous erroneously 
received packets with different RV in detecting the retransmitted packets. The 
proposed algorithm in [26] also results in a lower performance than the standard 
look-up table currently used when the estimated SINR is accurate, which can be the 
case most of the time. It also has higher retransmission occurrences when trying to 
achieve better throughput. 

In [30], the authors provide a solution for DL LA in 4G networks, by using the MAB 
algorithm for RL. The main weakness of this solution is that the mathematical model 
was built on the BLER, which in some cases can be a deceiving value, and does not 
reflect the accuracy of the chosen action. The algorithm always seeks to push the 
BLER to a certain target by controlling MCS value. However, in rough channel 
conditions, the BLER can be very high and therefore the algorithm will be too 
conservative in future, even if a good channel conditions appear. For instance, it can 
happen when an obstacle interferes the signal for a while, then the BLER will 
increase significantly, and therefore, even if the obstacle is removed and the channel 
conditions become good, the system will still choose very low MCS values until the 
BLER recovers. This may not be suitable in mmWave rough environments, where 
the signal can be blocked easily. Instead, the optimal algorithm should always seek 
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for the lowest possible BLER value while maximizing the throughput. This can 
happen even if the BLER is above the threshold due to out of control channel 
blockage.  

Also, the algorithm used in [30] contains complex calculations. This can cause some 
delay due to processing time, which is vital in for scheduling decisions, and may 
result in outdated actions, especially since each UE will have its own procedure, and 
therefore, large processing is needed at the gNB. 

4.2 Reinforcement Learning for mmWave Uplink Link 
Adaptation 

In this section, the reasons behind choosing the proposed RL solution for OLLA 
will be discussed, followed by the description of the system implementation.  

4.2.1 Theoretical Approach 

Link Adaptation (LA) is a crucial procedure in current mobile cellular networks, as 
it has a direct influence on both the throughput and BLER. In this thesis, the goal is 
to improve the scheduler decisions at mmWave frequencies, while obligating the 
standards of 5G NR networks. In these standards, LA procedure uses an integer 
value that ranges between 0-28 to represent the most suitable modulation and coding 
scheme that should be used in the estimated channel conditions.  

In the UL scenario, the SINR is measured at the BS (gNB), and eventually mapped 
to the MCS value, using a predefined look-up tables that were built depending on 
previous simulations. The MCS value is then sent to the UE in the DCI report to be 
used for transmission. This LA procedure that relies on the look-up tables and 
estimated SINR is known as ILLA. However, it can be noticed that it can be vastly 
vulnerable to outdated and inaccurate SINR estimated values. 

To diminish and overcome this issue, an OLLA is used. The OLLA can reduce the 
MCS subordination to the estimated SINR, by tuning its value when consecutive 
ACKs/NACKs are being received. In case of receiving numerous consecutive ACKs 
-while the maximum MCS value is not achieved-, the system can be assumed as 
being conservative, and therefore, higher throughput might be achieved by 
increasing the MCS value. Contrarily, if the system is being aggressive, the OLLA 
should decrease the MCS in case of receiving multiple NACKs, in order to get a 
successful transmission and reduce the BLER. However, this brings in the demand 
for optimizing a system that is able to define when to intervene, and what is the 
optimal value that the MCS should be attuned to. 
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The necessity for the OLLA is more acute in the intricate mmWave environment, 
as the channel is expected to experience higher variations, as well as an increment 
in sudden blockages due to moving obstacles in the environment. Moreover, the 
SINR estimated value can be outdated or inaccurately measured in many cases. 

 

Figure 4.1 a block diagram of the proposed RL system for UL link adaptation 
 

 

In this thesis, a reinforcement learning system is proposed to control this procedure. 
The system will constantly observe the outcome of previous correction factors and 
MCS values used in each transmission. Consequently, it can notice after a suitable 
number of transmissions if the estimated MCS value can be defined as conservative 
or aggressive based on these previous observations.  

The Q-learning method is one of RL techniques, that provide a simple solution to 
store and exploit the previous experience of the system. As it is mainly based on 
Bellman’s equation to store the quality of each action at a certain state. This 
information is used in future decisions and updated frequently in a table known as 
the Q-table. 

By using this method, the system can automatically adapt to any changes and 
inaccuracy in the estimated SINR values, which is done in a relatively simple 
procedure that does not need high processing. However, the Q-learning system 
depend on a predefined reward function, that can reflect for the system a quality 
measure of the chosen action.  This allows the system to learn if this action was 
favorable or not in this exact condition, and therefore, if it should be chosen again 
in similar circumstances in future. -Figure (1) illustrates a block diagram of the 
proposed ML system for UL link adaptation-. 
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The system -in Figure 4.1- was proposed depending on results from previous related 
work [26] for LTE systems at lower frequencies. As it added robustness to DL LA 
decisions with the use of ML techniques. Even in cases of having inaccurate 
measurements as an input, the system could still be able to predict a suitable MCS 
value. This can be a good addition to improve the LA in mmWave environment, 
especially that the channel is changing rapidly, and the scheduler is required to make 
fast decisions. However, due to disadvantages mentioned in section 4.1, and since 
this thesis focuses on OLLA rather than ILLA, many enhancements were added to 
allow the system to adapt in the mmWave environment. In the next section, we will 
discuss the input and output parameters, as well as the reward function of the system. 

 

4.2.2 System Implementation 

The aim of the ML system is to predict the suitable MCS value which results on 
highest possible link throughput while simultaneously decreasing the BLER. The 
MCS value ranges between 28 integers, starting from 0 with the lowest possible 
throughput, while the 27th leads to the highest possible throughput. 

For this case, RL can be used, which uses a reward function that enables the system 
to automatically achieve the optimal performance based on positive and negative 
feedback of previous actions. These actions are chosen using the Q-learning method, 
where it chooses the action with the maximized future reward values, depending on 
the factors below: 

 
 System states (s) / Input parameters 

 
the system states can be considered as the combination of two factors. First 
is the MCS value chosen by the scheduler for the UL transmission. The 
second input is a flag identifier for new transmissions that is, if the packet 
sent is a not sent previously the flag is set to one, while if packet is being 
retransmitted, the flag is set to zero. It can be considered that this flag allows 
the ML system to use two different Q-tables, where one is used in the case 
of new transmissions and the other is used in the case of retransmissions. 
retransmission of the packet with HARQ process ID (1).  
 
This flag is used as an input to reflect the different properties of the received 
packets introduced by using HARQ procedure, since a retransmitted packet 
is more robust and has higher probability for detection when using HARQ 
procedure. As well as it reflects that the previous action and/or the channel 
conditions are not ideal. 
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Note that this flag is not equal to the ACK/NACK flag will be used in the 
reward function, since ACK/NACK are sent by the receiver depending on 
the condition of the latest transmission. However, this flag follows the UL 
HARQ Process ID, where each packet is assigned to a process ID, and 
retransmitted in case of unsuccessful transmission according to the process 
ID. For example, if the packets of HARQ process ID (0, 1, 2, and 3) are sent 
respectively, and only (0, 2, and 3) were successfully received, and the 
scheduler assigns the next transmission for the packet with HARQ processes 
ID (1), while using different Redundancy Version (RD) as mentioned in 
section 2.2.3. In this case, the ACK/NACK will refer to the latest 
transmission, which is process ID (3), and therefore, will be ACK. While 
the flag of the new transmission will be set to zero, since it is a 
retransmission. 
 
 

 Possible Actions (a) /Output Parameters:  
 

In Q-learning technique, it is desirable to decrease the number of system 
actions as much as possible. This is to reduce the resulting Q-table and 
therefore the complexity of the system, as well as decreasing the exploration 
time needed to reach the optimal performance.  
 
Therefore, to avoid dedicating an action for each possible MCS value, the 
output can be considered as a correction factor (CF) added to the actual 
MCS, and ranges between positive and negative constant value. This 
constant value determines the number of possible actions, and represent the 
threshold of the correction factor, and will be referred to as the correction 
factor margin (k), such as CF = {-k ..., -1, 0, 1, …, k}. 
 
However, in the exploitation phase, adding CF might lead to an MCS value 
less than zero, or greater than the maximum MCS value (27). These 
impossible actions are set to negative infinity in the Q-table, so the agent 
will avoid choosing them in future. While in the exploration phase, the 
random values that lead to impossible actions are discarded. Then the below 
condition is applied: 

. (4.1) 
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 Reward function (R):  
 
as described previously, reward function allows the system to automatically 
achieve the optimal goal based on positive and negative feedback of 
previous actions. In this case, the reward of a certain action at a certain state 
can be calculated as below: 
 

, (4.2) 
 
Where TBS is the Transfer Block Size of the transmitted subframe, and 
ACK is the acknowledgment flag. TBS represents the number of useful bits 
transmitted using the chosen MCS value. The TBS are used to reflect the 
usefulness of the chosen MCS value. Hence, the TBS is calculated 
assuming one-layer UL channel with full buffer state, so there are no 
padded bits that might influence the TBS value and therefore the reward 
function. On the other hand, the ACK is an indicator of the success of 
previous action that is, if the transmission was failed, the ACK will be equal 
to zero, and therefore the agent will not gain any reward from this action. 
However, a buffer is used to combine between each HARQ process ID and 
its ACK/NACK, since multiple transmissions can be performed before 
receiving their ACK/NACK. 
Using this simple reward function can reflect to the system the quality of 
the decision, and therefore, lead for better decisions in future. 

 

 Learning rate (α):  
 
Learning rate ranges (α) between [0,1]. As α increases, the importance of 
new information against old information is increased. In this system, the 
learning rate was chosen relatively high (α = 0.85), to allow the system to 
quickly adapt to the changes occurring in the channel. Using high learning 
rate also decreases the required time to reach its optimized performance. 

 

 Discount rate (Γ):  
 
ranges between [0,1], and as the discount rate increases, the highly the 
system evaluates the long-term rewards. However, in LA, the current MCS 
value have no direct influence on the next MCS value, as it mainly depends 
on the variation of the channel conditions. Therefore, the discount rate was 
set to zero. 
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 Epsilon:  
 

The switching between exploration and exploitation states is controlled by 
the exploration rate (epsilon). As mentioned in section 3.2.2, epsilon value 
decreases progressively to decrease the exploration events in the expense 
of increasing exploitation, until it reaches a minimum value. The minimum 
value allows the agent to explore every once in a while. In this case, the 
minimum value of epsilon should be below the constraint value of BLER 
(10%), and therefore it was chosen to be (0.05). This means that the random 
exploration action occurs once every 20 iterations to look for a better 
reward. 
 
However, in new transmissions, better rewards can only be achieved by 
increasing the MCS value. Hence, the random action is set to only result in 
one direction increment of the MCS value. Contrarily, in retransmissions, 
the exploration event will only result in decreasing the MCS value, since 
the channel conditions were not suitable for the previously chosen MCS 
value. 

 
Finally, Bellman’s equation is used, where all factors are considered to calculate the 
new Q values that is, the expected reward for taking certain action and in a certain 
state, to help in the prediction of future rewards for all states and for all possible 
actions, as below: 

, (4.3) 

After a considerable amount of iterations, the system will be able to choose the 
optimal action that leads to the highest expected cumulative reward, by utilizing the 
obtained Q-table, and selecting the action that corresponds to the maximum Q-
value. 
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CHAPTER 5 
 
 

5 Simulation & Results 
In this chapter, the simulation environment is briefly described, followed by an 
evaluation of the obtained results. 
 
 

5.1 Simulation Environment 

The main goal of simulation is to evaluate the proposed ML algorithm performance 
and compare it with the currently used LA procedure. Therefore, a professional 
simulation tool is used to simulate the mmWave environment in 5G networks. The 
simulation tool was developed by Ericsson, and with the efforts of experts in the 
field. All needed support, devices, tools and materials was provided by Ericsson 
Lund AB. The main ML algorithm was coded in Java, then Matlab was used to 
display the obtained results. 

For simplicity of the implementation, the simulation scenario included only one 
tagged user in the network, randomly moving with walking speed of 1.3 m/s (almost 
5 Km/h). The simulation was repeated with 20 different seeds, each with random 
user direction and starting position, and with simulation period of 10 seconds. Also, 
the tagged user is assumed of having full buffer all the time, to avoid cases with 
padded bits, which might have an influence on the resulted throughput. Table 5.1 
demonstrates the parameters used in the simulation. 
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Table 5.1 Parameter used in the simulation with 20 different seeds. 
 

Parameter Value 
Scenario 5G NR Network with full buffer user 

Simulatin Period 10 s 
User Speed Average Walking speed (1.3 mps) 

Carrier Frequency 28 GHz 
Bandwidth 200 MHz 

No. Of Users 1 
Cell Radius 100 m 

BS Antenna Height 25.0 
UE Antenna Height 1.5 m 
Antenna Tilt Angle 15 

 

 

5.2 Results 

The aim of LA procedure is to maximize the throughput while maintaining BLER 
below 10%. Therefore, to evaluate the scheduler decisions for the UL LA procedure, 
these two main outputs should be taken in consideration. 

After running the simulation, UL throughput and BLER were obtained for 20 
different seeds and using 15 different correction factor margin (K). Thus, to 
facilitate the demonstration of these results, all seed’s outputs were averaged. In 
relevance to this matter, Matlab was used to average the outputs, and present the 
obtained results in clear figures. 

The Correction Factor Margin (K) can limit the actions of the ML system and 
therefore it’s interventions on the MCS value. Such that if K was set to zero, the ML 
algorithm will be unable to modify the MCS value, as the highest CF possible will 
be zero, while having K equal to 27 allows the ML system to have full control on 
the LA procedure. Since the Correction Factor (CF) = {-K ..., -1, 0, 1, …, K}.  

Although, by increasing K, the number of actions is increased, leading to higher 
complexity and larger Q-tables. Therefore, setting K to a small number can be more 
reasonable, especially that OLLA is expected to correct the estimated MCS value 
predicted by ILLA. In addition, by using lower K value, it is expected to result in a 
better performance, due to the decrement in exploration time. 

The 15 values of K used in this simulation are [0 (non-ML), 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 15, 20, 24, 27]. The simulation is run for each value with the period of 10 
seconds and for 20 different random seed. 
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UL User Throughput 

As mentioned earlier, the output of 20 different seeds is averaged to get a reliable 
result from the simulation. To simplify the demonstration of system performance, 
the mean of all the 10 seconds period is calculated, in accordance to the UL user 
throughput. The obtained results for the total averaged UL throughput showed an 
improvement when using K = {1, 2, 3, 4, 5}. While the performance kept degrading 
as K increased. This can be expected, since K value increases the possible actions, 
and lead to decreasing the dependence on the ILLA. The optimal K value (K = 2) 
increased the UL user throughput by 1.9 Mbps compared to the non-ML throughput.  
Figure 5.1 demonstrates the bar chart of the total averaged UL user throughput for 
15 different values of K over the simulation period. 

Figure 5.1 Bar chart of the total UL user throughput averaged over the simulation period, while 
using different values of K.
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For a better demonstration of the results, and for close view of the improvement 
introduced by ML on the obtained averaged UL user throughput, the K values of 
(1, 2, and 3) are plotted along with non-ML curve, over the duration of 10 seconds. 
The result illustrates that these K values result in increment on UL user throughput 
over the entire period, as in all three ML cases, the throughput curve was above 
the non-ML at all the 10 seconds duration. The optimal performance was achieved 
in the case of using K = 2, while K = 1 performed slightly lower. Figure 5.2 shows 
the UL average user throughput of k = [0 (non-ML), 1, 2, 3] during the simulation 
period of 10 seconds. 

Figure 5.2 UL average user throughput of different K values during the simulation period.
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BLER 

Similar to the procedure followed to present the throughput, UL BLER was 
averaged for all 20 used seeds, then the mean was calculated over all the simulation 
period. Figure 5.3 shows the bar graph of the total average BLER for 15 different K 
value. However, in BLER only two K values (1 and 2) resulted in an enhanced 
performance compared to non-ML system. Furthermore, despite the fact that BLER 
for K = 3 was increased, it was able to keep the constraint with being exactly at 
10%. However, all other values of K failed to achieve this constraint, and kept 
degrading as K increased, with comparable performance to the obtained UL 
throughput. 

Figure 5.3 Bar chart of the UL total BLER averaged over the simulation period, while using 
different values of K.
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By observing the BLER curves obtained from K values that managed to improve 
the system performance against BLER, and comparing it with non-ML system, it is 
shown that unlike the throughput case, the different K values replaced places couple 
of times during the 10 second period. That might reflect that there is also more space 
of improvement on the current system. Figure 5.4 illustrates the average UL BLER 
of k values (0 non-ML, 1, 2) during the period of 10 seconds. 

Figure 5.4 Average UL BLER of different K values during the simulation period.
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Close Review of the obtained results (Throughput and BLER) 

Finally, to compare the performance of both the throughput and BLER, only the K 
values that resulted in at least one type of improvement were considered. However, 
a normalization process is needed, since the throughput is measured in bps and have 
a very high value, while the BLER only ranges between 0 and 1. Therefore, the non-
ML learning value was considered as the normalization factor for both the 
throughput (5.87e+7 bps) and BLER (8.36%). As a result, it can be seen that only 
two values of K (1 and 2) achieved better performance in both aspects, while other 
values struggled to maintain the constraint of the BLER. Furthermore, the best 
improvement in both aspects was achieved when K = 2, and therefore it can be 
considered as the optimal K value in this exact scenario. Figure 5.5 illustrate the 
normalized UL BLER and Throughput bar chart for different K values. 

Figure 5.5 The bar chart of the normalized UL BLER and user Throughput for different K values.
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CHAPTER 6 
 
 

6 Conclusion and Future Work 

6.1 Conclusion 

As a conclusion of the obtained results, the RL technique can be considered as a 
strong candidate to enhance the performance of LA in wireless networks. As it can 
compensate for inaccuracies in the selected MCS value. As well as it is able to 
automatically adapt to the changes occurring in the environment that causes a 
fluctuation in estimated SINR, by observing the outcome of each decision. The Q-
learning method can be used to regulate the scheduler decisions in UL LA. The 
proposed Q-learning system is adaptable to 5G networks and at mmWave 
environment. 

After running the simulation of the implemented system on 20 different seeds, the 
adjusted MCS values resulted in an improvement in both aspects of BLER and the 
throughput. By comparing the results with the currently used procedure, that 
depends on look-up tables, the ML system increased the total average throughput 
by 1.91 Mbps, while also decreasing the total average BLER from 8.36% to 8.12%, 
which represents a decrement of 2.89% of BLER value. This result reflects the 
improvement of applying the ML algorithm for only one user, and therefore when 
the implemented system is used for multiple users in the network, the total network 
throughput is expected to gain considerable increasement. 
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6.2 Future Work 

In future work, key system parameters can be optimized to reach better performance, 
such as: the MCS correction margin (K), Learning rate (α), and epsilon. These 
values can be adaptable depending on the environment, and changing automatically 
as well, using optimality theories, to provide the optimal performance. Also, other 
users can be introduced to the network to evaluate the total performance of the 
network and monitor the effect of increasing the number of users and therefore, the 
network interference. Moreover, in future work, more investigation is needed on 
adding new inputs to the Q-learning system, which might enhance the performance, 
such as: channel bandwidth, the tendency in MCS value, and CQI value. The idea 
of including CQI value is that it reflects the quality of the DL channel, and therefore, 
might have relevant information regarding the UL channel, even while being in 
opposite locations, since the UE and gNB normally has the Tx and Rx antennas 
implemented in close positions relatively to the transmission distance.  
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